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Abstract. In this paper we study the asymptotical complexity of solving a system of sparse
algebraic equations over finite fields. An equation is called sparse if it depends on a bounded
number of variables. Finding efficiently solutions to the system of such equations is an un-
derlying hard problem in the cryptanalysis of modern ciphers. New deterministic Improved
Agreeing-Gluing Algorithm is introduced. The expected running time of the Algorithm on
uniformly random instances of the problem is rigorously estimated. The estimate is at present
the best theoretical bound on the complexity of solving average instances of the problem. In
particular, this is a significant improvement over those in our earlier papers [20, 21]. In sparse
Boolean equations a gap between the present worst case and the average time complexity of
the problem has significantly increased. Also we formulate Average Time Complexity Con-
jecture. If proved that will have far-reaching consequences in the field of cryptanalysis and in
computing in general.

1 Introduction

1.1 The problem and motivation

Let (q, l, n,m) be a quadruple of natural numbers, where q is a prime power. Then Fq denotes a
finite field with q elements and X = {x1, x2, . . . , xn} is a set of variables from Fq. By Xi, 1 ≤ i ≤ m
we denote subsets of X of size li ≤ l. The system of equations

f1(X1) = 0, . . . , fm(Xm) = 0 (1)

is considered, where fi are polynomials over Fq and they only depend on variablesXi. Such equations
are called l-sparse. A solution to (1) over Fq is an assignment in Fq to variables X that satisfies all
equations (1). That is a vector of length n over Fq provided the variables X are ordered. The main
goal is to find all solutions over Fq. There may be solutions over the extensions of Fq, but we do
not need them. In the most interesting case m = n we will have just one solution over Fq on the
average.

Deterministic Improved Agreeing-Gluing (IAG) Algorithm which solves the system is here sug-
gested. It is presented by two variations. The expected complexity of one variation is rigorously
estimated assuming uniform distribution on the problem instances; see Section 1.3. The results
provide a significant improvement over earlier average time complexity estimates [20, 21]. Another
variation seems require more sophisticated analysis than that presented here.

Anyway, the run-time analysis is more transparent in comparison with that in [20, 21]. It is
based on the theory of random allocations [13] as earlier. However, it now requires estimating the
probabilities of only few common events; see Section 9. The algorithm running time expectation is
the sum of O(n3) terms, each of them is bounded by the same real-valued function in three real
variables, whose values may differ for different terms. The maximum of the function is computed



with the advanced optimization package MAPLE [15] in Sections 10 and 11. The computation does
not depend on n.

The approach, which exploits the sparsity of equations and doesn’t depend on their algebraic
degree, was studied in [28, 17, 20, 21]. These are guess-and-determine algorithms. In sparse equations
the number of guesses on a big enough variable subset Y ⊆ X and the time to produce them is
much lower than q|Y | due to the Search Algorithm; see Section 8, where the algorithm is described.
This is a more general and efficient method than that in [21]. No preference was previuosly made
on which variables to guess. We now argue that guessing values of some particular variables leads
to better asymptotic complexity bounds.

The article was motivated by applications in cryptanalysis. Modern ciphers are product ciphers,
the mappings they implement are compositions of not so many functions in a low number of vari-
ables. The similar is true for underlying one-way functions in asymmetric ciphers. Any one-way
function is representable by a low number of small gates as its values should be efficiently com-
puted. Intermediate variables are introduced to simplify equations, describing the cipher, and to get
a system of sparse equations like (1). More general type of sparse equations called Multiple Right
Hand Side linear equations and introduced in [18], is even more convenient tool to write equations
from modern ciphers like the AES. An efficient solution to the equations may break the cipher.

Equations common in cryptanalysis depend on large variable sets. Those represented by common
dense polynomials are hardly manageable as it is not possible to keep them in computer memory.
The equations must be sparse in one or the other sense. For instance, suitable sparsity is low degree
polynomials or polynomials that admit only bounded number of terms. In this article we focus on
l-sparse equations over finite fields as they are defined by (1). This definition allows more operating
freedom and generally results in a more efficient solution than with Gröbner basis algorithms.
Moreover bounds on the problem average complexity, which is the goal of the present research, are
relatively easy to get.

The author is grateful to several anonymous referees at SCC 2010 and ”Mathematics in Com-
puter Science” for numerous suggestions on improving the presentation. This is a full paper, the
extended abstract is in SCC 2010 [23].

1.2 How to write equations

Let Y be an ordered string of variables and a be an Fq-vector of the same length. We say that a
is a vector in variables Y , or Y -vector, if the entries of a may be assigned to the variables Y , for
instance, in case of fixation. We look for the set of all solutions to (1) over Fq. Therefore, we only
consider for fi polynomials of degree at most q − 1 in each variable.

The main step of the present method is the Search Algorithm; see Section 8. It repeatedly checks
whether the system fi(Xi) = 0, Y = a, for some subsets Y ⊆ X and Y -vectors a, has any solution
over Fq. If there is a solution, then we say fi(Xi) = 0, Y = a consistent over Fq or simply consistent.

One may choose to work with the polynomials fi(Xi). The decision problem whether fi(Xi) =
0, Y = a is consistent over Fq may then be solved with any Gröbner basis algorithm. At least for
low q, it may be more convenient in practice to deal with the local solutions Vi over Fq. That is
the set of Xi-vectors, where fi is zero. In polynomial algebra terms, Vi are common zeroes of the
polynomials fi(Xi), x

q − x, x ∈ Xi. The sets Vi obviously determine all global solutions over Fq.
As one needs at most ql trials to compute the set Vi and q, l are supposed to be fixed from the

beginning, the computation for (1) requires O(m) field operations. However, at most ldlog2 qeql bits
is necessary to keep Vi and that may be expensive for larger q. The memory requirement may be



reduced to at most ql + ql−1 . . . + q bits per equation with some pre-computation before applying
the Search Algorithm; see Section 8.

1.3 Probabilistic model

Given q, n, m, and l1, . . . , lm ≤ l, uniform distribution on instances is assumed, that is every
instance has the same probability. As any particular information on equations is beforehand as-
sumed unknown, this looks the most fair probabilistic model to compute expected complexities.
The uniformity is equivalent to

1. the equations in (1) are independently generated. Each equation fi(Xi) = 0 is determined by
2. the subset Xi of size li taken uniformly at random from the set of all possible li-subsets of X,

that is with the probability
(
n
li

)−1,
3. and the polynomial fi taken uniformly at random and independently of Xi from the set of all

polynomials of degree ≤ q−1 in each of variables Xi. In other words, with the equal probability

q−q
li

.

Running time of any deterministic solving algorithm is a random variable under that model. We
assume that m/n tends to d ≥ 1 as q and l are fixed and n tends to infinity.

Table 1. Algorithms’ running time: q = 2 and m = n.

l 3 4 5 6

the worst case, [12] 1.324n 1.474n 1.569n 1.637n

Gluing1, expectation, [20] 1.262n 1.355n 1.425n 1.479n

Gluing2, expectation, [20] 1.238n 1.326n 1.393n 1.446n

Agreeing-Gluing, expectation, [21] 1.113n 1.205n 1.276n 1.334n

r 2 3 3 4
Weak Improved Agreeing-Gluing, expectation 1.029n 1.107n 1.182n 1.239n

.

2 Previous Ideas

One earlier method [20] is based on subsequent computing solutions Uk to the equation subsystems:
f1(X1) = 0, . . . , fk(Xk) = 0 for k = 1, . . . ,m. Gluing procedure extends instances Uk to instances
Uk+1 by walking throughout a search tree. In the end, all system solutions are Um. The running
time is determined by the maximal of |Uk|. Gluing2 is a time-memory trade-off variation of the basis
Gluing1 Algorithm. See Table 1 for their running time expectation in case of n Boolean equations
in n variables and a variety of l. Any instance of (1) may be encoded by a CNF formula with the
clause length of at most k = dlog2 qe l and in dlog2 qen Boolean variables; see Section 6. Therefore
worst case complexity bounds in [12] for k-SAT are also worst case bounds for equations (1). In
Boolean case(q = 2) they are shown in the first line of Table 1.

In Agreeing-Gluing Algorithm [21] we only extend those intermediate solutions from Uk that
do not contradict with each of fk+1(Xk+1) = 0, . . . , fm(Xm) = 0. That makes lots of search tree
branches cut and implies a better average time complexity.



3 New Approach

The new method has two variations. Let Zr denote variables that occur in at least r equations (1),
and Wr denote Zr-vectors that contradict none of (1). In Weak IAG Algorithm(WIAG), see Section
7, r is a parameter to be chosen to minimize the run-time. The vectors Wr are generated by the
Search Algorithm, see Section 8. In case r ≥ 3, the variables Zr are substituted by the entries of
a ∈ Wr. New equations in a smaller variable set X \ Zr are encoded by a CNF and deterministic
local search algorithm, see Section 6, is applied to find all solutions. For r = 1, W1 are already the
system solutions. For r = 2, the solutions are easy to generate from W2; see Lemma 2 below.

This variation is evaluated in Sections 10 and 11 in case li = l. Two last lines in Table 1 show the
expected complexity of the Weak IAG Algorithm and the optimal value of r. The Agreeing-Gluing
Algorithm [21] is a particular case of the present method for r = 1.

In Strong IAG Algorithm(SIAG) the largest r, where Zr is not empty, is taken. The vectors
Wr are generated by the Search Algorithm. For each a ∈ Wr the variables Zr are substituted by
the entries of a. New l-sparse equations in a smaller variable set X \ Zr are to solve. For each of
them assignments to Zr−1 \ Zr that contradict none of the equations are found with the Search
Algorithm. Thus, one recursively computes Wr−1, . . . ,W2. All system solutions are then easy to
deduce.

The latter variation should be faster, as the Search algorithm is on the average faster in compar-
ison with the local search. However, the estimation of the Strong IAG Algorithm should probably
require more sophisticated tools. The work still in progress.

4 Related Methods

Gröbner basis algorithm was designed to work with general algebraic equation systems over any
ground field; see [4, 14, 10, 11]. It may be used to solving them. The running time is bounded by a

value proportional to
(
n+D
D

)ω
ground field operations, where ω is the exponent in matrix multipli-

cation complexity. The estimate simplifies to
(
n
D

)ω
for any Boolean equations [3]. The parameter

D, called regularity degree, is only computed for semi-regular equations as they are defined in [3].
Theoretical complexity of the Gröbner basis algorithms as F4 or F5 on general polynomial equa-
tion systems remains unknown. It is also unknown whether an average equation system behaves
semi-regularly, though this seems plausible [3].

Let l be fixed while n = m tending to infinity. For l-sparse Boolean equation systems each
polynomial in (1) admits at most 2l monomials. Then each row in Macaulay matrices has bounded
number of nonzero terms. Wiedemann algorithm [26] may likely be used to do the linear algebra
step. We then put ω = 2. The regularity degree for semi-regular Boolean equations in case n = m
was estimated as D = αdn+ o(n), where αd depends on the equations maximal algebraic degree d.
So that α2 = 0.09, α3 = 0.15, α4 = 0.2 and so on; see [2]. By estimating the binomial coefficient, the
complexity is then 22H(αd)n up to a polynomial factor, where H(α) is the binary entropy function.
One can see that only for quadratic semi-regular polynomials the running time is lower than 2n,
brute force complexity, and equal to 1.832n bit operations. By computing the exact value of the
regularity degree, the conjectural running time still exceeds the brute force complexity for n = 200;
see [1]. The best heuristic bound is of order 1.724n [27], where the method was combined with
variable guessing.

In contrast to [2, 3, 27], when it comes to average equation systems, our estimates are uncondi-
tional and rigorous mathematical statements. They are very low exponential functions themselves



even in non-quadratic case; see Table 1. Table 2 presents extended data. It shows cl for a larger
variety of l, where the expected complexity, computed at r = 2, on Boolean l-sparse equations is
cnl . That compares favorably with the above estimates by Gröbner basis algorithms for quadratic
sparse polynomials at least for l ≤ 19.

Table 2. IAG Algorithm(r = 2) base constant cl, q = 2 and m = n.

l 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

cl 1.029 1.118 1.191 1.252 1.304 1.347 1.385 1.418 1.448 1.474 1.497 1.518 1.538 1.555 1.571 1.586 1.600

Sparse equations may be encoded by a CNF formula and solved with a SAT-solving software.
The asymptotical complexity of modern SAT-solvers, as MiniSat [9], is unknown, though they may
be fast in practice [7, 25] for relatively low parameters.

5 Notation, Basic Lemma and Example

Let Y ⊆ X be a subset of variables. The following statement is the basement for the IAG Algorithm
complexity analysis in Section 10.

Lemma 1. Let W be the set of Y -vectors consistent with each equation (1). Let X1, X2, . . . , Xm

be fixed and polynomials f1, f2, . . . , fm be taken uniformly at random as in Section 1.3. Then the
expectation of |W | is given by

Ef1,...,fm |W | = q|Y |
m∏
i=1

(
1− (1− 1

q
)q
|Xi\Y |

)
.

Proof. Let a be a Y -vector. We compute Pr(a ∈ W ), the probability that fi(Xi) = 0, Y = a is
consistent for all i. As fi are independent,

Pr(a ∈W ) =

m∏
i=1

Pr(fi(Xi) = 0, Y = a consistent).

Upon fixation Y = a, the polynomial fi(Xi) produces a uniformly random polynomial in variables
Xi \ Y . It follows from Lemma 4 that

Pr(fi(Xi) = 0, Y = a consistent) = 1− (1− 1

q
)q
|Xi\Y |

and this value doesn’t depend on a. So

Ef1,...,fm |W | =
∑
a

Pr(a ∈W ) = q|Y |Pr(a ∈W ) = q|Y |
m∏
i=1

(
1− (1− 1

q
)q
|Xi\Y |

)
.

That proves the Lemma. ut



According to Section 1.3, X1, X2, . . . , Xm are random subsets in X. Therefore the full expecta-
tion of |W | is given by

E|W | = EX1,...,Xm(Ef1,...,fm |W |) = EX1,...,Xm

(
q|Y |

m∏
i=1

(
1− (1− 1

q
)q
|Xi\Y |

))
(2)

by Lemma 5 below. The set Y may depend on the subsets X1, X2, . . . , Xm and therefore be random.
Let Zr(k) be the set of variables that appear in at least r of X1, . . . , Xk and let Wr(k) be Zr(k)-
vectors consistent with each equation fi(Xi) = 0. We have Zr(r) ⊆ Zr(r + 1) ⊆ . . . ⊆ Zr(m) = Zr.
The Search Algorithm extends instances Wr(k) to Wr(k + 1), where the output is Wr = Wr(m).
From (2)

E|Wr(k)| = EX1,...,Xm

(
q|Zr(k)|

m∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr(k)|

))
. (3)

The maximal of these expectations upper bounds the complexity of first stage of the WIAG Al-
gorithm up to a polynomial factor. It is estimated in Section 10. The second stage complexity for
r ≥ 3 is similarly estimated in Section 11. Three cases should be studied separately.

Case r = 1. Then Um = W1, all system solutions in variables X1 ∪ . . . ∪Xm. Extending W1(k) to
W1(k + 1) by walking over a search tree is the Agreeing-Gluing Algorithm [21].

Case r = 2. Remark that variables in different Xi \ Z2 are pairwise different. So every a ∈ W2 is
extendable to at least one solution of (1). Moreover the following statement holds.

Lemma 2. Let Xi1 , Xi2 , . . . , Xis be all variable sets such that Xij * Z2. After reordering of vari-
ables it holds that

Um =
⋃
a∈W2

{a} × Vi1(a)× Vi2(a) . . .× Vis(a), (4)

where Vi(a) are all projections to Xi \ Z2 of the Fq-solutions to fi(Xi) = 0, Z2 = a.

Example. Let the system of three Boolean equations be given with their local solutions:

x1 x2 x3
0 0 1
1 0 0
1 1 1
1 0 1

,

x3 x4 x5
0 0 0
1 0 1
1 1 1
0 0 1

,

x5 x6 x7
0 0 0
0 1 1
1 1 0
1 0 1

.

We see Z2(2) = {x3} and W2(2) = {0, 1}, so Z2(3) = {x3, x5} and W2(3) = {00, 01, 11}. The
directed products (4) are:

x3 x5 x1 x2 x4 x6 x7
0 0 1 0 × 0 × 0 0

1 1
0 1 1 0 × 0 × 1 0

0 1
1 1 0 0 × 0 × 1 0

1 1 1 0 1
1 0

.

So 16 solutions to the system are represented by three strings: 00, and 01, and 11 related to variables
x3, x5.



Case r ≥ 3. The Search Algorithm returns some a ∈Wr. The variables Zr are substituted by the
entries of a. The problem is represented by a k-CNF with k = dlog2 qe l and in n1 = dlog2 qe |X \Zr|
Boolean variables. Local search algorithm, described in [8], is used to find all solutions. In worst
case, that takes O((N + 1)(2 − 2

k+1 )n1) bit operations up to a polynomial factor to find all N
solutions; see Section 6.

6 k-CNF and Local Search

Conjunctive normal form(CNF for short) is a conjunction of disjunctions as x
(c1)
i1
∨ . . .∨x(ck)ik

called

clauses, where x(0) = x and x(1) = x̄. The disjunction terms x and x̄ are called literals. If the length
of each clause in a CNF is at most k, then it is called k-CNF. Let q = 2, and f(x1, . . . , xl) = 0 be
any Boolean equation in l Boolean variables. Let

(a11, . . . , a1l), . . . , (as1, . . . , asl)

be all binary strings such that f(ai1, . . . , ail) = 1.

Lemma 3. Binary string (b1, . . . , bl) is a solution to f(x1, . . . , xl) = 0 iff it is a satisfying assign-
ment for the CNF

Ff = (x
(a11)
1 ∨ . . . ∨ x(a1l)l ) ∧ . . . ∧ (x

(as1)
1 ∨ . . . ∨ x(asl)l ).

If all equations (1) are Boolean, one constructs l-CNF in n variables as F =
∧
i Ffi . Binary string

(b1, . . . , bn) is a solution to (1) iff it is a satisfying assignment for F .
Generally, elements a ∈ Fq may be encoded with the numbers 0, . . . , q − 1. Every variable x in

Fq is written with r = dlog2 qe Boolean variables yr−1, . . . , y0, such that x = a iff (yr−1, . . . , y0) =
(br−1, . . . , b0), where bi ∈ {0, 1} and a = br−12r−1 + . . . + b0. So Fq-solutions to f(x1, . . . , xl) = 0
are written as binary lr-strings.

As in Lemma 3, for the set of binary lr-strings complimentary to those solutions one constructs
a k-CNF in k = lr variables. We do that for each equation in (1). Resulting k-CNF in n1 = nr
variables is a conjunction of them. Solving (1) is equivalent to finding satisfying assignments to that
CNF and therefore is NP-hard as it is polynomially equivalent to a k-SAT problem.

Local search is designed to solve satisfiability problems; see [16, 19]. Given a k-CNF in n vari-
ables, guess an initial assignment to all variables. Repeat 3n times: if the formula is satisfied, then
terminate; let there be some clause not being satisfied by the current assignment, then pick one
of its literals uniformly at random and flip its value in the current assignment. The probability
of finding a satisfying assignment is at least 2

3 ( k
2(k−1) )

n; see [19], and the expected number of this

procedure repetitions before the satisfying assignment if found is (2− 2
k )n up to a polynomial factor.

A deterministic version is described in [8]. Within poly(n)(2− 2
k+1 )n operations the algorithm

finds a satisfying assignments or returns the CNF is unsatisfiable. Therefore local search may be
used to compute all N solutions in time at most (N + 1)(2− 2

k+1 )n up to a polynomial factor.

7 Weak IAG Algorithm

Let r ≥ 1 be such that Zr 6= ∅. The sequence of subsets Zr(r) ⊆ Zr(r + 1) ⊆ . . . ⊆ Zr(m) = Zr
defines a rooted search tree. The tree has at most m− r + 2 levels numbered 0, r, r + 1 . . . ,m. The



root at level 0 is labeled by ∅. Vertices at level k ≥ r are labeled by ∅ if Zr(k) = ∅ and by vectors
Wr(k) if this set is not empty. If Wr(k) = ∅, then there is no any vertices at level k, so the whole
system of equations is inconsistent.

Let a ∈ Wr(k) be a level k vertex label. It is connected to a level k + 1 vertex labeled by
b ∈Wr(k + 1) whenever a is a sub-vector of b. Remark that Zr(k) ⊆ Zr(k + 1).

The search tree for the example system is presented in Fig. 1, where r = 2. Level 2 vertices are
labeled by W2(2) = {0, 1}, vectors in variables Z2(2) = {x3}. The vertices at level 3 are labeled by
W2(3) = {00, 01, 11}, vectors in variables Z2(3) = {x3, x5}. We now describe the Algorithm. More
formal description of its first stage is in the next Section.

Stage 1( Search Algorithm) It starts at the root. Let the Algorithm be at a level k vertex
labeled a. If k = 0, then we extend a to all possible Zr(r)-vectors. If k ≥ r, then we extend a
to Zr(k + 1)-vectors by trying all possible assignments to variables Zr(k + 1) \ Zr(k).

Let b be one such extension. If Zr(k + 1) = b(or Zr(r) = b if k = 0) is consistent with every
equation in (1), then b ∈ Wr(k + 1). Return b if k + 1 = m. The Algorithm walks to the
vertex labeled b. Otherwise, another assignment is taken to extend a. If all the assignments are
exhausted and k = 0, then stop. If k > 0, then the Algorithm backtracks to the level k−1. This
stage output is Wr = Wr(m). If no vertex at level m is hit , then the system has no solution.

Stage 2 Let the Algorithm achieve a vertex at level m labeled by a ∈ Wr. If r = 1, then a is a
system solution. If r = 2, then the system solutions are deduced with (4). If r ≥ 3, a system
of l-sparse equations in variables X \ Zr after substituting Zr by constants a is solved with
deterministic local search; see Section 6.

0 1

00 01 11

∅

Fig. 1. The search tree.

Remark that instead of all possible assignments to variables Zr(k+1)\Zr(k) one may only take
the projections of local solutions fk+1(Xk+1) = 0 to those variables. That slightly accelerates the
first stage.

Theorem 1. Let N be the number of the system solutions.

1. The complexity of the first stage is O (m+m
∑m
k=r |Wr(k)|) bit operations. If r = 1, then

this is the Algorithm’s run-time. If r = 2, then the Algorithm run-time is the sum of the first stage
complexity and O(N).



2. The complexity of the second stage is at most (N + |Wr|) cn−|Zr| bit operations up to a
polynomial factor, where c = (2 − 2

ldlog2 qe+1 )dlog2 qe. If r ≥ 3, then the Algorithm run-time is the

sum of its stages complexities.

Proof. The complexity of the first stage is

mq|Zr(r)| +m

m−1∑
k=r

|Wr(k)|q|Zr(k+1)\Zr(k)|

decisions whether fi(Xi) = 0, Y = b is consistent for some Y . The latter costs O(1) bit operations.
Because |Zr(r)| and |Zr(k + 1) \ Zr(k)| are at most l, the first statement is then true.

Let a ∈Wr andNa be the number of the system solutions after the variables Zr being substituted
by the entries of a. The complexity of the second stage is∑

a∈Wr

(Na + 1)cn−|Zr| = (N + |Wr|) cn−|Zr|

bit operations up to a polynomial factor. That implies the second statement. ut

We realize that EN = qn−m as Ef1,...,fmN = qn−m for any fixed variable sets Xi. Under the
probabilistic model the values |Wr(k)| are random. The expected complexity of the first stage(and
of the whole algorithm for r = 1, 2) is proportional to m + m2 maxk E|Wr(k)|, where E |Wr(k)| is
represented by (3) and estimated in Section 10. For the second stage complexity we have

E (N + |Wr|) cn−|Zr| = E qn−mcn−|Zr| + E |Wr| cn−|Zr|.

The expectations of qn−mcn−|Zr| and |Wr| cn−|Zr| are estimated in Section 11, where the latter may
be shown dominates the sum.

For a range of r the estimates are computed with an optimization software like MAPLE; see
[15]. One then finds r to minimize the running time expectation. Remark that the computation
does not depend on n.

8 General Search Algorithm

Given Y ⊆ X, this general Algorithm finds all Y -vectors over Fq that consistent with each of (1).
A subset sequence Y1 ⊆ Y2 ⊆ . . . ⊆ Ys = Y is taken. That defines a search tree. The root is labeled
by ∅, the vertices at levels 1 ≤ k ≤ s are labeled by Yk-vectors that do not contradict any of (1).
We denote them W (k). Vertices a and b at subsequent levels are connected if a is a sub-vector of b.
The algorithm walks with backtracking throughout the tree by constructing instances W (k). There
are q|Yk+1\Yk| extensions to any of W (k). Each of them should be checked for consistency with m
equations. We represent the Algorithm with a pseudocode. Let, by agreement, Y0 = ∅ and Y0-vector
a = ∅ is consistent with every equation (1). The extension to a = ∅ with an assignment c to some
variables is c.

Procedure EXTEND(k, a).
input: 0 ≤ k ≤ s− 1 and a Yk-vector a consistent with each of (1).
output: all Y -vectors, extensions to a and consistent with each of (1).



1. for every assignment to variables Yk+1 \ Yk do
2. extend a to a Yk+1-vector b. Let b be consistent with every equation in (1). If k + 1 < s, then

call recursively EXTEND(k+1,b). If k + 1 = s, then return b. If b is inconsistent with at least
one equation, then take another assignment.

3. If all assignment are exhausted and k = 0, then stop. If k > 1, then return.

The Search Algorithm is EXTEND(0, ∅) and its running time is proportional to

m(q|Y1| + |W (1)|q|Y2\Y1| + |W (2)|q|Y3\Y2| + . . .+ |W (s− 1)|q|Ys\Ys−1|)

operations. A sequence of subsets that minimizes the running time may be taken. How to do that
is generally an interesting open problem. In IAG Algorithms the sequence is Zr(r) ⊆ Zr(r + 1) ⊆
. . . ⊆ Zr(m) = Zr.

To save time and memory, one may solve the decision problems in advance and keep the tracks.
For each equation one keeps the decision( 1 or 0) on whether fi(Xi) = 0, Xi ∩ Yk = a is consistent,
where a has q|Xi∩Yk| possible values and k = 1, . . . , s. As there are at most l different Xi ∩ Yk,
then that requires at most ql + ql−1 + . . .+ q bits of memory. It is not necessary to keep any local
solutions.

In practice, one may want to find weather a Yk-vector a contradicts the whole system (1) but
not only each of the equations taken separately. One then runs the Agreeing Algorithm [18, 24] after
the variables Yk get substituted by constants a. Even if no contradiction is found, one may learn
values of some new variables. That improves the method efficiency. However such a variation seems
difficult to evaluate.

9 Tools

In this Section we collect miscellaneous auxiliary statements.
Let H be the set of all polynomials over Fq in l ≥ 1 variables, whose degree in each of its

variables is at most q − 1. Let H1 be the subset of polynomials f ∈ H, where the equation f = 0
has no solutions over Fq.

Lemma 4. Every polynomial f ∈ H defines a mapping f : F lq → Fq and vice versa. That is a

one-to-one correspondence. So |H| = qq
l

and |H1| = (q − 1)q
l

.

Proof. The number of polynomials in H and the number of mappings F lq → Fq is qq
l

. One proves
if a polynomial f ∈ H defines an identically zero mapping, then all its coefficients are 0. Really,
f(x1, x2, . . . , xl) = fq−1x

q−1
1 + . . .+ f1x1 + f0, where fi are polynomials of degree at most q − 1 in

each of x2, . . . , xl, they are constants if l = 1. Let f be 0 on F lq. After fixation of x2, . . . , xl by any
constants in Fq, we get a polynomial in x1 which is 0 on Fq. Therefore, its coefficients are zeros as,
otherwise, it can not have more than q − 1 different roots. That proves the statement for l = 1. If
l > 1, then for the same reason the polynomials fi are 0 on F l−1q and by induction they all have
zero coefficients. We conclude f has zero coefficients.

If f1, f2 ∈ H define the same mapping, then f1 − f2 defines an identically zero mapping and,
therefore, f1 = f2. That proves the above correspondence is one-to-one. The polynomials from H1

correspond to the mappings without zero-values. Their number is (q − 1)q
l

. ut

Let η = η(x, y) be any variable that depends on two independent random variables x and y with
finite number of values. Then Ey η denotes the expectation of η, where y is generated to its initial
distribution. So Ey η is a function in x.



Lemma 5. [21] For the full expectation of η = η(x, y) we have

Ex,y η = Ex(Ey(η)).

Random Allocations Theory studies random allocations of particles(balls, shots) into boxes, see
[13]. Let k complexes of particles be independently and uniformly allocated into n ≤ 1 boxes, li ≤ n
particles at the i-th allocation. This means that at the i-th allocation any li boxes are occupied
with the equal probability

(
n
li

)−1. This is how variable sets X1, . . . , Xm are generated according
to Section 1.3. We will need to upper bound the probability of several events defined by such
allocations. There is some useful theory in [13] developed mostly for allocations of particles one
after the other, that is by complexes of size 1. The following Lemma relates the probability of the
same event under the two types of allocation.

Let ν1, . . . , νn be the string of box frequencies, that is νi is the number of particles in the i-th
box. Let A = A(ν1, . . . , νn) be any event depending on νi. Let also Pr(A| l1, . . . , lk) denote the
probability of the event A under the allocation by complexes of l1, . . . , lk particles.

Lemma 6.

Pr(A| l1, . . . , lk) ≤ Pr(A| 1, . . . , 1)∏k
i=1 (1− 1/n) . . . (1− (li − 1)/n)

,

where Pr(A| 1, . . . , 1) is the probability of A under L = l1 + . . .+ lk particles are allocated one after
the other.

Proof. Let L particles be independently and uniformly allocated into n boxes one after the other. Let
B denote the event that the first l1 particles were allocated into different boxes, the following l2 were
allocated into different boxes and etc, until the last lk particles were allocated into different boxes.
In other words, the event B occurs if the particles are allocated by complexes of size l1, l2, . . . , lk.
Then Pr(B) =

∏k
i=1 (1− 1/n) . . . (1− (li − 1)/n) as the particles were allocated independently. By

the complete probability formula we get

Pr(A| 1, . . . , 1) = Pr(B) Pr(A| B) + Pr(B̄) Pr(A| B̄)

≥ Pr(B) Pr(A| B) = Pr(B) Pr(A| l1, . . . , lk)

as Pr(A|B) = Pr(A| l1, . . . , lk). That proves the Lemma. ut

Let f(z) =
∑∞
k=0 ak z

k, where real ak ≥ 0, be a non-zero analytic function. We denote fn(z) =∑∞
k=0 an,k z

k for any natural n.

Lemma 7. 1. For any real z > 0

an,k ≤
fn(z)

zk
= en ln f(z)−k ln z. (5)

2. Let ai, aj > 0 for some i 6= j. Then at any real z > 0 the derivative of zf ′(z)
f(z) is positive.

Proof. The expansion of fn has only nonnegative coefficients, so an,k z
k ≤ fn(z). That proves the

first statement. To prove the second statement one represents(
zf ′

f

)′
=
zf ′′f − zf ′2 + f ′f

f2
=

∑∞
l=0 blz

l

f2
,

where bu =
∑u
k=0(u − k + 1)(u − 2k + 1)akau−k+1 =

∑bu+1
2 c

k=0 (u − 2k + 1)2akau−k+1. Therefore
bi+j−1 > 0. That proves the statement. ut



To minimize the bound (5) one may take a positive root z0 to (n ln f(z) − k ln z)′ = 0 or,
equivalently,

n
zf ′(z)

f(z)
= k.

if there exist any. In case there is only one root, the Lemma estimate is proportional to the main
term of the asymptotic expansion for an,k with the saddle point method as n and k tend to infinity;
see [5]. Lemma 7 estimate is then asymptotically close to the real value of an,k. We use rather (5)
than the saddle point method in Lemmas 8, 9 and 13.

Let µr = µr(t, n) be the number of boxes with just r particle after uniform allocation of t
particles into n boxes one after the other. Let µ′r(l1, . . . , lk, n) be the number of boxes with just r
particle after uniform allocation of k complexes by l1, . . . , lk particles into n boxes. The probability
of some events related to µ′r is required in what follows. We here estimate the probability of them
for the allocation of particles one after the other, that is in case of variables µr. Then Lemma 6 is
used in Section 10.

Let E (x
µr1
1 . . . x

µrs
s ) be the expectation of the random variable x

µr1
1 . . . x

µrs
s , where x1, . . . , xs

are any variables. By definition,

E (x
µr1
1 . . . x

µrs
s ) =

∑
k1,...,ks

Pr(µr1 = k1, . . . ,µrs = ks) x
k1
1 . . . xkss .

Theorem 2 in Chapter 2, Section 1 of [13] states

∞∑
t=0

nt zt

t!
E (x

µr1
1 . . . x

µrs
s ) =

(
ez +

zr1

r1!
(x1 − 1) + . . .+

zrs

rs!
(xs − 1)

)n
. (6)

In particular, we get

∞∑
t=0

nt zt

t!
E (x

µ0
0 . . . x

µr−1

r−1 ) =

(
ez + (x0 − 1) + . . .+

zr−1

(r − 1)!
(xr−1 − 1)

)n
.

We there put x0 = . . . = xr−1 = 0 and get(
ez − 1− z . . .− zr−1

(r − 1)!

)n
=

∞∑
t=nr

ntzt

t!
Pr(µ0 = 0, . . . ,µr−1 = 0)

as Pr(µ0 = 0, . . . ,µr−1 = 0) = 0 for t < nr. Let g(x) = ex − 1− x . . .− xr−1

(r−1)! .

Lemma 8. Let r ≥ 1. For any natural number t ≥ nr

Pr(µ0(t, n) = 0, . . . ,µr−1(t, n) = 0) ≤ gn(x) t!

xt nt
,

where x is the only nonnegative root of the equation

n
xg′(x)

g(x)
= t. (7)



Proof. We have g(x) = xr

r! + xr+1

(r+1)! + . . .. So xg′(x)
g(x) tends to r as x → 0+. Also it tends to ∞ as

x→∞. By Lemma 7, the derivative of xg′(x)
g(x) is positive at positive x. Therefore, the equation (7)

has just one nonnegative root for t ≥ nr.
For t > nr the statement is true by Lemma 7. Let t = nr, then the root x = 0. One sees that

gn(x) t!
xt nt is defined at x→ 0+ and equal to (nr)!

(r!)n nnr . One directly computes

Pr(µ0(nr, n) = 0, . . . ,µr−1(nr, n) = 0) =
(nr)!

(r!)n nnr
.

The statement is true for any t ≥ nr. That proves the Lemma. ut

Let r ≥ 2. It follows from (6) that

∞∑
t=0

nt zt

t!
E (x

µ1
1 . . . x

µr−1

r−1 ) =

(
ez + z(x1 − 1) + . . .+

zr−1

(r − 1)!
(xr−1 − 1)

)n
. (8)

Substitute xi = xi for i = 1, . . . , r − 1. Then

∞∑
t=0

nt zt

t!
E (xµ1+2µ2+...+(r−1)µr−1)

=

[
ez −

(
z + . . .+

zr−1

(r − 1)!

)
+

(
zx+ . . .+

(zx)r−1

(r − 1)!

)]n
.

By the definition of expectation,

E (xµ1+2µ2+...+(r−1)µr−1) =

t∑
k=0

xkPr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = k)

because Pr (µ1 + 2µ2 + . . . + (r − 1)µr−1 = k) = 0 if k > t. We denote zx by x and get from the
last two identities that ∑

t≥k

nt zt−k xk

t!
Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = k)

=

[
ez −

(
z + . . .+

zr−1

(r − 1)!

)
+

(
x+ . . .+

xr−1

(r − 1)!

)]n
,

where the left hand side sum is over t and k such that t ≥ k ≥ 0. We now put z = 0 and get(
1 + x+ . . .+

xr−1

(r − 1)!

)n
=

(r−1)n∑
t=0

nt xt

t!
Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = t).

We remark that the probability is zero if t > (r − 1)n. Let h(y) = 1 + y . . .+ yr−1

(r−1)! .

Lemma 9. Let r ≥ 2. For any integer number t such that 0 ≤ t ≤ (r − 1)n we have

Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = t) ≤ hn(y)

yt
t!

nt
,



where y is the only nonnegative root (including ∞) of the equation

n
yh′(y)

h(y)
= t. (9)

Proof. yh′(y)
h(y) tends to 0 as y → 0+. Also it tends to r − 1 as y → ∞. By Lemma 7, the derivative

of yh′(y)
h(y) is positive at positive y. Therefore, the equation (9) has just one nonnegative root for

0 ≤ t ≤ (r − 1)n including y = 0 for t = 0 and y =∞ for t = (r − 1)n.
Let 0 < t < (r − 1)n. The equation (9) has the only positive root. The estimate is true by the

first statement of Lemma 7. Let t = 0, then y = 0 and the Lemma is true as both the sides of the
inequality are 1. Let t = (r − 1)n, then y = ∞. The right hand side of the inequality is defined at
y =∞ and equal to t!

((r−1)!)n nt . By direct calculation,

Pr (µ1 + 2µ2 + . . .+ (r − 1)µr−1 = t) = Pr (µr−1(t, n) = n) =
t!

((r − 1)!)n nt
.

That proves the Lemma. ut

From the Stirling approximation to k!, see [6], we get

Lemma 10. For every integer number k ≥ 0 it holds that

kke−k ≤ k! ≤ kke−k
√

2π(k + 1).

10 Complexity Estimate. Stage 1

Let r ≥ 2 and li = l for all i = 1, . . . ,m. We now estimate the expectation of |Wr(k)| with (3).
Its maximum in k will be estimated with (17). According to the probabilistic model, X1, . . . , Xm

are uniformly allocated into the whole variable set X of size n. So we use the language of particle
allocation into n boxes from now. In particular, Zr(k) is the set of boxes with at least r particles
after uniform allocation by k complexes of size l. We split the product in (3):

E|Wr(k)| = EX1,...,Xm

q|Zr(k)| k∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr(k)|

) m∏
j=k+1

(
1− (1− 1

q
)q
|Xj\Zr(k)|

) .

We say the event A = A(U, t1, . . . , tk) occurs if Zr(k) = U and |Xi \U | = ti, where i = 1, . . . , k; see
Fig. 2. With the conditional expectation formula we get

E|Wr(k)| =
∑
U

∑
t1,...,tk

q|U |
k∏
i=1

(
1− (1− 1

q
)q
ti

)
E(A) Pr(A), (10)

where U runs over all subsets of X and 0 ≤ ti ≤ l and we denoted

E(A) = EX1,...,Xm

 m∏
j=k+1

(
1− (1− 1

q
)q
|Xj\Zr(k)|

)∣∣∣∣∣∣A
 .



X

U

l-t
1

...

l-t
k

t
1

...

t
k

Fig. 2. The event A.

So

E(A) = EXj+1,...,Xm

m∏
j=k+1

(
1− (1− 1

q
)q
|Xj\U|

)

=

m∏
j=k+1

EXj

(
1− (1− 1

q
)q
|Xj\U|

)
=

(
EXj

(
1− (1− 1

q
)q
|Xj\U|

))m−k
.

We remark that E(A) only depends on the size u of the set U , and not on the set itself. Let u = βn,
where 0 ≤ β ≤ 1, then

EXj (1− (1− 1

q
)q
|Xj\U|

) = 1−
l∑
t=0

(
u
l−t
)(
n−u
t

)(
n
l

) (1− 1

q
)q
t

= 1−
l∑
t=0

(
βn
l−t
)(
n−βn
t

)(
n
l

) (1− 1

q
)q
t

.

By taking limn→∞, we get

Lemma 11. As n tends to ∞

EXj (1− (1− 1

q
)q
|Xj\U|

) = F (β) +O(
1

n
),

where F (β) = 1−
∑l
t=0

(
l
t

)
βl−t(1− β)t(1− 1

q )q
t

and O( 1
n ) is uniformly bounded in β.

Lemma 11 implies E(A) ≤ (F (β) + ε)m−k, where ε is any positive number and n is big enough.
Let L = lk = αn, where 0 ≤ α ≤ dl. So m−k

n = m
n −

α
l . As m

n tends to d, then

E(A) ≤ (F (β) + ε)(d−
α
l )n (11)

for any positive ε and for all big enough n. We now estimate the probability of the event A. Let as
above |U | = u.

Lemma 12. Let L = lk and T = t1 + . . .+ tk. Then

Pr(A) ≤
(
u
n

)L−T (n−u
n

)T
P1(L− T, u) P2(T, n− u)

∏k
i=1

(
l
ti

)∏l−1
i=1 (1− i

n )k
,

where

P1(L− T, u) = Pr(µ0(L− T, u) = 0, . . . ,µr−1(L− T, u) = 0),

P2(T, n− u) = Pr(µ1(T, n− u) + 2µ2(T, n− u) + . . .+ (r − 1)µr−1(T, n− u) = T ).



Proof. Let u = 0, then T = L and A occurs if in the allocation of X1, . . . , Xk every variable is hit
at most r − 1 times. So by Lemma 6,

Pr(A) ≤ P2(L, n)∏l−1
i=1 (1− i

n )k
,

and the statement is true. Let u = n, then T = 0 and A occurs if in the allocation of X1, . . . , Xk

every variable is hit at least r times. So by Lemma 6,

Pr(A) ≤ P1(L, n)∏l−1
i=1 (1− i

n )k
,

and the statement is true. So we can assume 0 < u < n. We say the event B occurs if |Xi \U | = ti
for i = 1, . . . , k. Then Pr(A) = Pr(B)Pr(A|B).

Pr(B) =

k∏
i=1

Pr(|Xi \ U | = ti) =

k∏
i=1

(
u
l−ti

)(
n−u
ti

)(
n
l

) =

=

k∏
i=1

(
l

ti

) (u
n

)l−ti (n− u
n

)ti (1− 1
u ) . . . (1− l−ti−1

u )(1− 1
n−u ) . . . (1− ti−1

n−u )

(1− 1
n ) . . . (1− l−1

n )

=

(
u
n

)L−T (n−u
n

)T ∏k
i=1

(
l
ti

)∏k
i=1 (1− 1

u ) . . . (1− l−ti−1
u )

∏k
i=1 (1− 1

n−u ) . . . (1− ti−1
n−u )∏l−1

i=1 (1− i
n )k

.

The event A|B occurs if and only if the following two events A1 and A2 occur simultaneously.
First, the complexes of l − t1, . . . , l − tk particles are allocated into |U | = u boxes, where each box
is occupied by at least r particles. Second, the complexes of t1, . . . , tk particles are allocated into
|X \U | = n− u boxes, where each box is occupied by at most r− 1 particles; see Fig. 2. These are
independent events. Therefore Pr(A|B) = Pr(A1)Pr(A2).

The event A1 occurs if and only if µ′i(l− t1, . . . , l− tk, u) = 0 for i = 0, . . . , r− 1. The event A2

occurs if and only if µ′i(t1, . . . , tk, n− u) = 0 for i ≥ r. The latter is equivalent to

µ′1(t1, . . . , tk, n− u) + 2µ′2(t1, . . . , tk, n− u) + . . .+ (r − 1)µ′r−1(t1, . . . , tk, n− u) = T.

See the definition of µ′s in Section 9. By Lemma 6,

Pr(A1) ≤ P1(L− T, u)∏k
i=1 (1− 1

u ) . . . (1− l−ti−1
u )

and

Pr(A2) ≤ P2(T, n− u)∏k
i=1 (1− 1

n−u ) . . . (1− ti−1
n−u )

So Pr(A) = Pr(B)Pr(A|B) =

= Pr(B)Pr(A1)Pr(A2) ≤
(
u
n

)L−T (n−u
n

)T
P1(L− T, u) P2(T, n− u)

∏k
i=1

(
l
ti

)∏l−1
i=1 (1− i

n )k
.

That proves the Lemma. ut



From (10), as E(A) only depends on u, and Pr(A) only depends on u, t1, . . . , tk we get

E|Wr(k)| =
n∑
u=0

(
n

u

)
qu E(A)

∑
t1,...,tk

k∏
i=1

(
1− (1− 1

q
)q
ti

)
Pr(A). (12)

From (12) by Lemma 12,

E|Wr(k)| ≤ 1∏l−1
i=1(1− i

n )k

n∑
u=0

(
n

u

)
qu E(A) (13)

×
L∑
T=0

CT

(u
n

)L−T (n− u
n

)T
P1(L− T, u) P2(T, n− u),

where

CT =
∑

t1+...+tk=T

k∏
i=1

(
l

ti

) (
1− (1− 1

q
)q
ti

)
.

Let

f(z) =

l∑
t=0

(
l

t

)(
1− (1− 1

q
)q
t

)
zt.

It is obvious that fk(z) =
∑lk
T=0 CT z

T .

Lemma 13. For every 0 ≤ T ≤ l k we have CT ≤ fk(z)
zT

, where z is the only nonnegative

root(including ∞ for T = lk) to the equation k zf
′(z)

f(z) = T .

Proof. It is similar to the proofs of Lemmas 8 and 9. ut

Let T = γn, where 0 ≤ γ ≤ α. By Lemma 8, P1(L−T, u) ≤ gu(x) (L−T )!
xL−T uL−T

, where x is a nonnegative

root of the equation β xg
′(x)
g(x) = α− γ. Therefore, by estimating (L− T )! with Lemma 10, we get

P1(L− T, u) ≤

[
gβ(x)

xα−γ

(
α− γ
βe

)α−γ
+ ε

]n
, (14)

for any positive ε and big enough n. By Lemma 9, P2(T, n− u) ≤ hn−u(y) T !
yT (n−u)T . Therefore,

P2(T, n− u) ≤
[
h1−β(y)

yγ

(
γ

(1− β)e

)γ
+ ε

]n
, (15)

for any positive ε and all big n, where y is a nonnegative root to (1− β)yh
′(y)

h(y) = γ. By Lemma 13,

CT ≤
(
f
α
l (z)

zγ

)n
, (16)



where z is a nonnegative root to α
l
zf ′(z)
f(z) = γ. We remark that for any positive ε bounds (11), (14),

(15) are true simultaneously for any α, β, γ and big enough n. Therefore, taking all these bounds
into account, from (13) we get

E|Wr(k)| ≤ (n+ 1)(lm+ 1)∏l−1
i=1 (1− i

n )m
max

[
max

(
qβ gβ(x) h1−β(y) f

α
l (z) (α− γ)α−γ γγ

ββ (1− β)1−β xα−γ yγ zγ eα
F (β)d−

α
l

)
+ ε

]n
,

for any positive ε and big enough n, where Lemma 10 was used to bound the binomial coefficient(
n
u

)
. Therefore,

E|Wr(k)| ≤ (maxG(α, β, γ) + ε)n (17)

for any positive ε and big enough n, where

G(α, β, γ) =
qβ gβ(x) h1−β(y) f

α
l (z) (α− γ)α−γ γγ

ββ (1− β)1−β xα−γ yγ zγ eα
F (β)d−

α
l .

The maximum in (17) is over 0 ≤ β ≤ 1 and 0 ≤ γ ≤ α. We remark that the parameters α, β, γ
should satisfy rβ ≤ α− γ and (r − 1)(1− β) ≤ γ, otherwise P1(L− T, u) = 0 or P2(T, n− u) = 0.
The first stage complexity is upper bounded by (17) with the maximum over above α, β, γ, where
nonnegative x, y, z satisfy

β
xg′(x)

g(x)
= α− γ, (18)

(1− β)
yh′(y)

h(y)
= γ, (19)

α

l

zf ′(z)

f(z)
= γ. (20)

However, the function G(α, β, γ) may have some singularities. For instance, at β = 0, we should
have α− γ = 0 and every 0 ≤ x ≤ ∞ is the solution to (18). The similar is true at β = 1 with (19)
and at α = 0 with (20). So one may then take a small ε1 > 0 and consider the extrema of G(α, β, γ)
in the area ε1 ≤ β ≤ 1− ε1, ε1 ≤ α ≤ dl, where the function is well-defined and continuous. Out of
this area the contribution of the right hand side terms in (13) is negligible. The maximum is unique
and it is computed with an advanced optimization package like MAPLE.

11 Complexity Estimate. Stage 2

We recall that if r ≤ 2, then nothing to do. Let r ≥ 3. Let Wr = Wr(m) and Zr = Zr(m).
Let X1, . . . , Xm be fixed and f1, . . . , fm randomly generated. It was proved in Section 7 that the
expected complexity of the second stage is E(qn−m + |Wr|)cn−|Zr|, where c is defined in Theorem
1. As in (3), we prove

E
(
|Wr|cn−|Zr|

)
= EX1,...,Xm

(
q|Zr|cn−|Zr|

m∏
i=1

(
1− (1− 1

q
)q
|Xi\Zr|

))
.



Let L = lm. Similarly to (13),

E
(
|Wr| cn−|Zr|

)
≤ 1∏l−1

i=1(1− i
n )m

n∑
u=0

(
n

u

)
qucn−u

×
L∑
T=0

CT

(u
n

)L−T (n− u
n

)T
P1(L− T, u) P2(T, n− u),

where CT =
∑
t1+...+tm=T

∏m
i=1

(
l
ti

) (
1− (1− 1

q )q
ti
)

. Therefore,

E
(
|Wr| cn−|Zr|

)
≤
[
max c1−βG(dl, β, γ) + ε

]n
, (21)

for any positive ε and big enough n. The maximum is over 0 ≤ β ≤ 1 and 0 ≤ γ ≤ dl, where
nonnegative x, y, z satisfy (18),(19),(20) and α = dl. Similarly to (13),

E
(
qn−mcn−|Zr|

)
≤ 1∏l−1
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n )m
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)
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×
L∑
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)L−T (n− u
n

)T
P1(L− T, u) P2(T, n− u),

where C ′T =
∑
t1+...+tm=T

∏m
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(
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)
=
(
lm
T

)
. Therefore,

E
(
qn−mcn−|Zr|

)
≤
[
max

(
q1−dc1−β gβ(x) h1−β(y) (dl)dl

ββ (1− β)1−β xdl−γ yγ edl

)
+ ε

]n
(22)

for any positive ε and big enough n. The maximum is over 0 ≤ β ≤ 1 and 0 ≤ γ ≤ dl, where
nonnegative x, y satisfy (18),(19). Computations with MAPLE, similar to those in the previous
Section, shows that E|Wr| cn−|Zr| dominates the complexity of the second stage and the overall
algorithm complexity is dominated by the first stage at least for the parameters in Tables 1 and 2.

12 Trivially Unsolvable Equations

Trivially unsolvable equations are often generated according to the Section 1.3 model. However that
phenomenon only negligibly contributes to the average complexity bounds if they are exponential.

The probability that a randomly chosen equation in l variables is solvable over Fq, i.e., admits

at least one solution over Fq, is 1− (1− 1
q )q

l

. So the probability the equation system (1) is trivially

unsolvable( at least one of the equations has no solutions over Fq) is 1 −
[
1− (1− 1

q )q
l
]m

. This

value tends to 1 as l and q are fixed and m = dn tends to infinity. It is very easy to recognize, with
some average complexity R, a trivially unsolvable equation system. However, for small d that only
gives a negligible contribution to the average complexity estimate while it is exponential. Really,
let Q denote average complexity of a deterministic algorithm on all instances of (1). Let Q1 denote
average complexity of the algorithm on the instances of (1) which are not trivially unsolvable, i.e.,



each equation has at least one solution over Fq. In both cases uniform distribution is assumed. By
the conditional expectation formula,

Q =

[
1− (1− 1

q
)q
l

]dn
Q1 +

(
1−

[
1− (1− 1

q
)q
l

]dn)
R.

Therefore, Q1 <
[
1− (1− 1

q )q
l
]−dn

Q. For q = 2 and d = 1 that will only change the bound at

l = 3. For the Weak IAG Algorithm, Q1 becomes bounded by 1.033n while Q is bounded by 1.029n

for large n. For all other l the influence is negligible: estimates for Q and Q1 are almost identical.
For larger d = 1 + δ the contribution is larger, but Q becomes sub-exponential fast, that follows
from the analysis in Sections 10 and 11. So Q1 remains bounded by a very low exponential function
at least for low δ. In fact, we believe that Q1 becomes sub-exponential too, though it is not proved
here.

Generally, a subsystem of some t ≥ 2 equations may be inconsistent(without solutions). Then
the whole system is inconsistent too. At least for low t the case may be identified by trying

(
m
t

)
possible t-subsystems and therefore in polynomial time providing m does not grow very fast. It
seems difficult to compute the probability of the event and give its asymptotical analysis. For t = 2
some heuristic argument shows that slightly affects algorithm’s average running time only for q = 2
and very low l as it is exponential. That is despite the probability presumably tends to 1 as for
t = 1. Anyway, the algorithms studied here equally handle this and more complicated cases.

13 Average Time Complexity Conjecture

A drastic improvement over last few years in average time complexity of solving (1) raises the
question about the function type that may represent it. Exponential function in n representing
the run-time of an Algorithm is, by definition, (1 + ε)n, where ε is a positive constant. For any
sub-exponential function we have positive ε = ε(n)→ 0 as n tends to infinity. We remark

Fig. 3. Typical exponential and sub-exponential functions in log-scale

1. for q = 2 and very low l as 3, 4 the estimates presented in Table 1 are as (1 + ε)n, where ε has
tendency to diminish to 0,

2. generally, as l is bounded and n grows, the same type function(exponential or sub-exponential)
likely represents the problem complexity for low and larger l,

3. experiments on random 5-sparse Boolean equations in n = m ≤ 220 variables, Fig. 9 in [25],
show the average running time of MiniSat obeys rather a sub-exponential law (on the right in
Fig. 3 here) than an exponential (on the left).



Therefore, the following statement called Average Time Complexity Conjecture might be true(it
was already formulated in [22]).

There exists an algorithm whose expected time complexity on uniformly random instances
(1) is sub-exponential in n as q and l are fixed, m ≥ n while n tends to infinity.

Symmetric ciphers security is based on the assumption of exponential complexity. A cipher is
commonly considered broken if there is an attack whose running time is less than the full search
of the key-space, no matter how small the gain is. That differs much from the asymmetric case,
where there are effective methods of sub-exponential complexity for integer factoring and discrete
logarithms in finite fields. In elliptic curve crypto the underlying problem is exponential, though
only half of the key-space in logarithmic measure is to be searched. The similar is true for lattice
based crypto-systems.

We believe that sparse equation systems over finite fields are of fundamental importance in
cryptanalysis as they provide a tool to write computational problems from either symmetric or
asymmetric ciphers in one way. From the point of view of the above conjecture and precedent
discussion, it would not be a big surprise if those problems are in nature sub-exponential. Remark
that does not contradict with the problem of solving sparse polynomial equations over finite fields
is still NP-hard.

Finding the conjectural algorithm(that may be already a Sat-solver like MiniSat, but we do not
have any proof of that) might imply a series of improvements from the crypto communities as it was
with the index calculus for discrete logs and factoring. Therefore, if proved the conjecture may have
far-reaching consequences in the field of cryptanalysis, as changing the symmetric ciphers security
assumption or may be breaking some of them, and in computing in general. Its publication may
stimulate research in the field.

Previously, for quadratic semi-regular Boolean equation systems it was shown the Gröbner basis
algorithm is of sub-exponential complexity provided n = o(m); see [2]. The present conjecture claims
that is true for average sparse equation systems regardless their regularity and algebraic degree,
and for any m ≥ n.
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