Black-Box Computational Zero-Knowledge Proofs, Revisited:
The Simulation-Extraction Paradigm

Mohammad Sadeq Dousti

Data and Network Security Lab, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran.
dousti@ce.sharif.edu

Abstract. The concept of zero-knowledge proofs has been around for about 25 years. It has been redefined over
and over to suit the special security requirements of protocols and systems. Common among all definitions is the
requirement of the existence of some efficient “device” simulating the view of the verifier (or the transcript of the
protocol), such that the simulation is indistinguishable from the reality. The definitions differ in many respects,
including the type and power of the devices, the order of quantifiers, the type of indistinguishability, and so on.

In this paper, we will scrutinize the definition of “black-box computational” zero-knowledge, in which there
exists one simulator for all verifiers, the simulator has black-box access to the verifier, and the quality of simulation
is such that the real and simulated views cannot be distinguished by polynomial tests (computational indistinguisha-
bility).

Working in a theoretical model (the Random-Oracle Model), we show that the indistinguishability requirement
is stated in a conceptually inappropriate way: Present definitions allow the knowledge of the verifier and distin-
guisher to be independent, while the two entities are essentially coupled. Therefore, our main take on the problem
will be conceptual and semantic, rather than literal. We formalize the concept by introducing a “knowledge ex-
tractor” into the model, which tries to extract the extra knowledge hard-coded into the distinguisher (if any), and
then helps the simulator to construct the view of the verifier. The new paradigm is termed Simulation-Extraction
Paradigm, as opposed to the previous Simulation Paradigm. We also provide an important application of the new
formalization: Using the simulation-extraction paradigm, we construct one-round (i.e. two-move) zero-knowledge
protocols of proving “the computational ability to invert some trapdoor permutation” in the Random-Oracle Model.
It is shown that the protocol cannot be proven zero-knowledge in the classical Simulation Paradigm. The proof
of the zero-knowledge property in the new paradigm is interesting in that it does not require knowing the internal
structure of the trapdoor permutation, or a polynomial-time reduction from it to another (e.g. an N"P-complete)
problem.

Key words: Zero-Knowledge Proof, Proof of Computational Ability, Proof of Knowledge, Trapdoor One-Way
Permutation, Random Oracle, Simulation Paradigm, Simulation-Extraction Paradigm.

1 Introduction

The notion of zero-knowledge proofs was put forward by Goldwasser, Micali, and Rackoff [GMRS35]. In
their seminal paper, they defined knowledge as the computational power of a party. Such definition dif-
ferentiates “knowledge” from “information.” As an example (adopted from [GMRS83]]), assume that party
A sends party B a random string r. This protocol carries information (with high entropy), yet it does not
carry any knowledge (since party B could itself generate a random string). On the other hand, assume that
party A sends party B the factorization of some number n. This protocol carries no information (as factoring
a number is a deterministic process, the entropy of such message is zero), but it might carry knowledge
(since B might not be able to compute the factorization by itself). This example conceptualizes the way that
knowledge is coupled with computational power.

Zero-knowledge protocols are valuable “spin-offs” of conceptualizing knowledge in the above sense.
Such protocols are usually stated in a two-party setting: Assume we have a two-party protocol (V <> P). The
protocol is said to be zero-knowledge for P on inputs restricted to some set (language) L, if every V* (having
some pre-specified computational power, such as being a probabilistic polynomial-time Turing machine),

after interacting with P on any input x € L, gains no knowledge. In other words, after finishing the protocol,
no such V* should be able to compute things that it could not compute before the protocol.

In order to use the above concepts in theory and practice, we need a formal definition. As we see below,
many papers tried to formalize the concepts of knowledge and zero-knowledge. While definitions for knowl-
edge were usually incomparable, definitions for zero-knowledge often fitted in hierarchical structures. That
is, some definitions were more general, while the others were stricter. A rough sketch of several definitions
of zero-knowledge is illustrated in Fig. |[I} We will review some of these definitions in Section [2] but the
important point is that all definitions share one thing in common: They all require the existence of some
probabilistic polynomial-time Turing machine, called the simulator, which must satisfy some condition.
The condition differs in various definitions, but the spirit is always the same: The simulator M must simulate
the protocol such that V* cannot tell whether it is interacting with P or with M. This way, it is guaranteed
that V*’s “knowledge” does not increase after the protocol terminates: Since V* cannot “distinguish” the
interaction with P and M, it gains computationally nothing more than what M can compute; and since M
and V* belong to the same complexity class, V* could compute the interaction with M all by itself.

The preceding discussion makes reference to two important concepts:

— V*’s Knowledge: As said, in a zero-knowledge protocol, V*’s knowledge must not increase after the
protocol terminates. Several researchers proposed formal definitions for measuring the knowledge of
a machine. Specifically, [TW87, FES87,|[FFS88| FS90] tried to accomplish this task, but none of them
suggested a satisfactory formalism. This was until the work of Bellare and Goldreich [BG93|], which put
forward a formalized definition of knowledge[] Unfortunately, all these works focused on formalizing
the knowledge of a prover (P), not the verifier (V*), since, it was believed that the prover is in possession
of knowledge, not the verifier. As we will see, this belief is not true for some protocols. Consequently,
there should be a formalization for the knowledge of the verifier. For this, we use techniques similar to
those of [BG93|.

- Distinguishin For a protocol to be zero-knowledge, it is required that V* cannot distinguish the in-

teraction with M from the interaction with P. But V* has a prescribed program (i.e. verification), which
does not necessarily involve a distinguishing procedure. In order to overcome this problem, all defini-
tions of zero-knowledge allow V* to use another machine A to satisfy its distinguishing requirement.
A is assumed to be as computationally powerful as V*. Therefore, if A can distinguish two distribution
ensembles, so can V*.
The problem with the above approach is that, by definition, .4 and V* can be two separate, independent,
and completely unrelated entities. Thus, while V* may not be in possession of some knowledge (see
the above discussion about V*’s knowledge), one can assume that A possesses that knowledge (e.g. the
knowledge might be hard-coded into .4’s program). As we will see, separating A and V* can lead to
counterintuitive results. That is, it is possible that no simulator satisfies the zero-knowledge requirement
for protocols which are conceptually zero-knowledge. The main result of this paper is to propose a
definition of zero-knowledge which reunites .4 and V*, so as to get rid of such conceptual problems.

The problem with the above approach is that, by definition, .4 and V* can be two separate, independent, and
completely unrelated entities. Thus, while V* may not be in possession of some knowledge (see the above
discussion about V*’s knowledge), one can assume that A possesses that knowledge (e.g. the knowledge
might be hard-coded into A’s program). As we will see, separating A and V* can lead to counterintuitive
results. That is, it is possible that no simulator satisfies the zero-knowledge requirement for protocols which

! Yet their definitions were refined/specialized by other papers, as in [HM98,BGGLO1].

2 In this paper, we only stress computational indistinguishability: two distribution ensembles are said to be computationally indis-
tinguishable if no probabilistic polynomial-time Turing machine can tell them apart. Other types of indistinguishability (perfect
and statistical) are illustrated in Fig. E}

Zero Knowledge

[GMRS5]
(Type of Adversary/Simulator)

Zero Knowledge
(Type of Indistinguishability)

Transcmt Ind.

Language Membership
GMRS5

Proof of Knowledge

Zero Knowledge
(Composability)

\
Sequentially Composable
[Ores7)

GMRS5 GHY85
o A) Auxiliary Input
Non-Uniform Adversaries Uniform Adversaries Verifier’s Output Ind. [Ore87]
[TW87,|GMRS9| [Gol93| =
= Verifier’s View Ind. Composable in Parallel
Auxiliary Input Auxiliary Input I[GMWS0| [GKO90]
(Ore87) |
= Universal Simulation Concurrently Composable
Universal Simulation /\
[Ore87) Black-Box Non-Black—Box
[Bard3)
Black-Box Non-Black—-Box Resettable
[Ore87] [BarOI] Async. Async. [CGGMO0]
w. w/o
Resettably Sound Timin Timin
IBGGLO1]] DNS98 KPR98|, RK99
Zero Knowledge Zero Knowledge Zero Knowledge
(Quality of Simulation) (Interactivity) (Underlying Model)
Interactive ~ Non-Interactive
Perfect Statistical Computational IBEM&S|BDMPI1]
GMW86 GMRS5 GMR85
Standard Model CRS Model RO Model
(Complexity- [BFMS88,[BDMPI1]] [BRO3]
Theoretic
Model)
NPRO EPRO FPRO
[Nie02) (BR93] [Wee09)]
Zero Knowledge Zero Knowledge Zero Knowledge Zero Knowledge
(Coin Revelation) (Soundness Assumption) (Verifier Honesty) (Interpretation of
“Polynomial Time”)
Public Coin Private Coin Honest Ve{riﬁer ‘ .
Arthur-Merlin . -F0r87 -K1191 Expesci:flill;oolZTo&}lg%nme
| BMBS] Proo Argument | . -
(Unconditional Soundness) (Computational Soundness) Adversarial Verifier) I
[GMRS3] BC386[Cha87l[BCCBS|BCYS9 [GMRS5] Strict Polynomial-time
Simulator [GMRS5|
Zero Knowledge Zero Knowledge
(Round Complexity) (Type of Proof)
Constant Poly-logarithmic Polynomial
Proof of Proof of

omputational Ability
Yun90|[BG92

Zero Knowledge
(Verifier Models)
Single Verifier Multi Verifier
[LMSO03]]

Unbounded Round Bounded Round 2pfa Probabilistic ~ Computationally
Log-Space Log-Space IDS90] Polynomial-Time Unbounded
Automata Automata Turing Machine [BC86|[Cha87]

[Con88] [Kilgs] [GMRS3)

Zero Knowledge
(Prover Models)

Single Prover Multi Prover

[BGKWS&S]
Probabilistic ~ Computationally
Polynomial-Time Unbounded
Turing Machine [GMRS&5]]
Argu?nents

Fig. 1. Several Hierarchies of Definitions of Zero Knowledge

are conceptually zero-knowledge. The main result of this paper is to propose a model of zero-knowledge
proofs which reunites A and V*, so as to get rid of such conceptual problems.

1.1 Related Works and Contribution

As shown in Fig.[T} many researchers proposed a stricter or broader definition of the original zero-knowledge
formulation. We try to highlight the differences of the most relevant models by using the following “short-
hand notation.”

Let P denote the prover, V* the (possibly cheating) verifier, M the simulator, and A the distinguisher.
In this section, we assume that P is an interactive Turing machine with unlimited power, V* is a proba-
bilistic polynomial-time interactive Turing machine, and both M and A are probabilistic polynomial-time
Turing machines. We therefore use quantifiers freely, without referring to the set over which the element is
quantified. (For instance, V.4 must be read as “for all probabilistic polynomial-time Turing machine .A.)

The original definition of (computational) zero-knowledge is as follows

(W) (EM)(VA)(Vx e L) [AM(x)) ~ A(view(V*,P)(x))] , (1)

where view(V*, P)(x) denotes the view of V* while interacting with P on x (i.e. whatever V* sees during
the interaction), and A(a) ~ A(fB) indicates that the behavior of A on input « differs negligibly from the
behavior of A on input 3.

A stricter definition, known as universal-simulation (computational) zero-knowledge, is due to Oren
[Ore87]. In this definition, the order of quantifiers is reversed, and therefor there exists a single M for all V*:

(IM)(VWH)VA)(Vxe L) [AM(x,L V"))~ A(view(V*, P)(x))] , (2)

where (V* s denotes some canonical encoding of V*’s program.
An even more strict definition, again due to Oren [Ore87], is conceivable, in which M has only black-box
access to V*:
(3M) (VW) (VA)(Vx € L) [A(MV* (x)) = A(view(V* P)(x))] , 3)

Goldreich [Gol93|| suggested that for all practical (cryptographic) purposes, we should limit the (com-
mon and auxiliary) inputs of the protocol to those which are efficiently generatable. That is, instead of saying
that a protocol is zero knowledge on all inputs, we state that it is infeasible to find inputs on which the pro-
tocol is not zero knowledge. To this end, we only consider inputs from a probabilistic, polynomial-time
distribution ensemble D. Such uniform formulation can be given for any above definitions; here we give the
uniform counterpart of the original definition:

(W5 (EIM)(VA)(Yx € D) [A(M(x)) ~ A(view(V* P)(x))] . 4)

In light of Goldreich’s results, Dwork et al. [DNRS99,|DNRSO3|], provided a weak and ultra-weak defi-
nition of zero-knowledge, in which the order of quantifiers is reversed, such that M can depend on D and .A.
Here, we present the weak definition:

(W) (VA)(Vx € D)(EM) [AM(x)) ~ A(view(V*, P)(x))] .)

The weak definition informally states that “name the type of knowledge you think is leaked, and we present
a simulator to prove that no such knowledge is leaked.”

We feel that the definition of [DNRS99, DNRSO03] is too weak, yet we show that there are natural cases
in which knowing type of test before simulation is necessary (otherwise, conceptual inconsistencies between

3 For simplicity, we drop quantifiers over randomness and auxiliary input.

the definitions of knowledge and zero-knowledge arises). To this end, we augment the simulation paradigm
(in the computational black-box zero-knowledge model) with a knowledge extractor K, as follows:

(@M (IK) (W) (VA (VxeL) [..] . 6)

The running time of K and what should go within the square braces is described in the body of the paper,
though we point here that K is given black-box access to .4. We will show that this definition is more suitable
than the original one, yet it does not weaken the model at all.

The new paradigm, termed as Simulation-Extraction Paradigm, enables us to construct interesting proto-
cols. As an example, we construct a 1-round (i.e. 2-move) zero-knowledge proof of the computational ability
to invert a trapdoor one-way permutation in the Random-Oracle Model. It is shown that the protocol is not
zero-knowledge in the simulation paradigm. The protocol does not work via reducing the trapdoor one-way
permutation to another (e.g. an AN'P-complete) problem. Therefore, any trapdoor one-way permutation will
fit in the protocol. Put differently, it is not required to redesign the protocol for specific instances of trapdoor
one-way permutation (e.g. RSA), or know the internal mechanisms or assumptions made by such constructs.
This is in sharp contrast to previous works, such as [CEvVP87,|CEv87,/CM99|, where the protocols heavily
depend on the nature of the construct being studied. (See [OCO91] for an elegant alternative protocol.)

1.2 Road Map

The rest of this paper is organized as follows: Section [2| reviews the basic notations and definitions. In
Section [3| we provide a protocol and prove that it is a “proof of computational ability.” This protocol is
modified in Section [so as the resulting protocol becomes conceptually zero-knowledge. Section [5] con-
tains the main results of this paper: It suggests a new formalization of the concept of zero-knowledge (the
simulation-extraction paradigm), and proves that the protocol presented in Section f]is zero-knowledge in
this paradigm. Finally, Section [6] summarizes the paper, and suggests several open problems for further
research.

2 Notations and Definitions

In this section, we briefly review some definitions. For a more thorough description of most of these con-
cepts, please refer to [|GolO1]].

Foralln € N, and all x € {0, 1}", define |x| & 1. That is, |x| denotes the length of x.

The assignment operator “<—" has several interpretations as follows. The specific interpretation should be
clear from the context:

— Let x and y be variables. Then x <— y means assigning the value of y to x.

— Let P be a (possibly random) processE] Then x < P means running P on its inputs (if any), and assigning
the output to x.

— Let D be a probability distribution, and let supp(D) denote its supportE] Then x <— D means drawing x
from supp(D) according to distribution D.

The assignment operator may be subscripted by an “R”, which gives it a special meaning:

41In this paper, the terms “process” and “function” are used interchangeably. A process (function) might be either Turing-
computable or Turing-uncomputable. In the former case, we may speak of algorithms or (Turing) machines instead of processes
(functions).

3 The support of a function f is the closure of (i.e. the smallest closed set containing) the set of arguments for which f is nonzero.

— Let S be a set. Then x <—¢ S means drawing an element from $ uniformly and independently, and assign-
ing it to x.

Pr[P,Ps,...,B,: E] denotes the probability of event E after ordered execution of (possibly random) pro-
cesses Py,...,P,. The same is true for the mathematical expectation E [P}, P, ...,P,: E].

Whenever we speak of the running time of a machine, we imply its running time in the length of the security
parameter (or the common input to all parties). If no security parameter is available, the running time is
measured in the length of the first input to the machine.

The term “efficient” is used identical to “probabilistic polynomial-time,” which may be abbreviated as PPT.
In addition, we denote by ITM and OTM an “interactive Turing machine” and an “oracle Turing machine,”
respectively. These terms can join together; thus PPT-ITM-OTM means a “probabilistic polynomial-time
interactive oracle Turing machine.”

For any probabilistic algorithm A, let A, denote the algorithm A, when its random input is r. (Thus, A, is
deterministic on its input.)

A function €: N — R is called negligible in n if for every positive polynomial p(n):
1

m .

Let negl(n) denote the set of all functions negligible in n. Sometimes, we may abuse the notation and write

€(n) = negl(n) instead of €(n) € negl(n), as is the case with the Big-O notation.

dng € N s.t. V> ny g(n) < @)

Let P and V be two interactive functions [BG93|], which participate in an interactive proofE] Define:

— state(V, P)(x): The state of V after interacting with P on common input x. The state is either ACC (for
accept) or REJ (for reject).

— tran(V, P)(x): The transcript of the interaction of V and P on common input x. The transcript contains
x, the interleaved sequence of messages sent by both parties during the interaction, and state(V, P)(x).
Including the state enables us to speak of accepting and rejecting transcripts. Denote by ACCy (x) the set
of transcripts of V’s interaction with all possible interactive functions P, on which state(V, P)(x) = ACC.
Define REJy (x) similarly.

— view(V, P)(x): The view of V after interacting with P on common input x. The view contains everything
V sees on its (read-only) tapes (x, the random tape, any auxiliary input, and the messages it receives
from P).

2.1 Trapdoor Permutations

Since our protocol is based on the concept of “collections of trapdoor one-way permutations,” we devote a
subsection to it. One-way functions and trapdoor one-way permutations were first discussed by Diffie and
Hellman [DH76]|. (See also [[Yao82], [GMS84], and [BHSV9§].)

Definition 1. (Collection of Trapdoor One-Way Permutations). Let X C {0, 1}* be an (efficiently sam-
plable) infinite set, and consider a family of functions F = { f,}cx. Assume that for all x € X, f; is a per-
mutation over some (efficiently samplable) set D, C {0, 1}"". The function family F is called a collection of
trapdoor one-way permutatiomﬂ if the following two conditions hold:

6 The proof can be a proof of language membership [GMR85|/GMR89], a proof of knowledge [BG93|, a proof of computational
ability [BG92], and so on.
7 For brevity, we may use the term “trapdoor permutation” to indicate a “collection of trapdoor one-way permutations.”

1. Easy to sample, compute, and invert using the trapdoor: There exist 4 efficient algorithms G, D, F
and I, such that for all n € N:

Pr|(x,ty) < G(1"), z+-D(x) : x€ XN{0,1}"

N Z€E Dx
A F(x,z) :fx(Z)
A(f)) =2 =1 . ®)

The probability is taken over the internal coin tosses of algorithms G, D, F, and I.
2. Hard to invert without the trapdoor: For any PPT adversary A, the following condition should hold:

VeeN, dng € N s.t. Vr>ny

Pr[(x,tx><—G(1"),z<—D(x): Af@) =z <n= . 9

The probability is taken over the internal coin tosses of algorithms G and D, as well those of the adver-
sary A. O

Remark 1. Algorithms G, D, F, and I are called “Generator,” “Domain Sampler,” “Function Evaluator,” and
“Inverter,” respectively.

Remark 2. If (8) holds, we can change the definition so as to allow algorithms F and I to be deterministic.

Remark 3. Deﬁnitioncan be relaxed by allowing algorithms G, D, F, and I to fail with probability negl(n).

2.2 Proof of Knowledge and Proof of Computational Ability

Proofs of knowledge and proofs of computational ability were fully formalized by Bellare and Goldreich
[BG93,[BGY2||. The proofs are stated in terms of binary relations.

Let R C {0,1}* x {0,1}* be a binary relation. Define R(x) def {y|{x,y) € R}, and Lg = dom(R) o
{x|R(x) # @}. Definition 2| formalizes “proofs of knowledge.”

Definition 2. (Proof of Knowledge [BG93|)). Let R be a binary relation, and let x: {0,1}* — [0,1]. Let V
be an efficiently computable interactive function. We call V a knowledge verifier for R with error K if the
following conditions hold:

1. Non-triviality: There exists an interactive function P* such that V always accepts after interacting with
P* on all x € Lg. In other words,

Pr[state(V,P*)(x) =ACC] =1 . (10)

2. Validity: For some constant c > 0, there exists a probabilistic oracle machine K, so that for all interactive
function P and every x € Lg:

If p(x) & py [state(V,P)(x) = ACC] > k(x), then K¥(x) outputs an element of R(x) in ex-

x|

pected number of steps bounded by -k

We call K a universal knowledge extractor for R. O

A similar notion is the concept of “proofs of computational ability.” Definitions [3|and] are devoted to this
concept.

Definition 3. (Solving a Relation [BG92]). Let R be a binary relation, and D be a distribution on dom(R).
Assume that t € N and suppose that M(-) is a machine.

— We say that machine M(-) solves R under D in expected t steps if:
i, 1<i<rt st (x,y) < M({x1,...,x) < D')andy € R(x;) . (11)

and M halts in expected t steps.
— We say that machine M(-) strongly solves R under D in expected t steps if M(x <— D) € R(x), and M
halts in expected t steps.

In both cases, the expectation is taken over the random selection of the input, as well as the coin tosses of
M. O

Let R = {Ry}e0,1}+ be a family of binary relations, where R, C {0, 1 {0,1}. D= {Dy}reqo,1y- is an
input distribution for R if Dy is a distribution on dom(R,) for all x.

Definition 4. (Proof of Computational Ability [BG92]). Let R and D be as defined above, and let x: {0,1}* —
[0,1]. Let V be an efficiently computable interactive function. We call V a verifier of the ability to (strongly)
solve R under D with error x if the following conditions hold:

1. Non-triviality: There exists an interactive function P* such that V always accepts after interacting with
P* on all x € Lg. In other words,

Pr [state(V", P*)(x) =ACC] =1 . (12)

2. Validity: For some constant ¢ > 0, there exists a probabilistic oracle machine K(-,-,-), so that for all
interactive function P, every x € Ly, and all y € ACCy (x), machine K* (x,7,-) satisfies:

prxd:elc Pr [state(V?s, P)(x) = ACC] > k(x), then K (x,7,-) (strongly) solves Ry under Dy
Ll

in expected number of steps bounded by Pt

We call K a (strongly) ability extractor for R under D. O

The verifier might be able to draw elements from D independently. In such cases, one can omit D from
Definition] and speak of distribution-free verifiers of ability.

2.3 Definitions of Zero Knowledge

It is a desired property for security protocols to be zero knowledge (ZK, for short). Informally, a (two-party)
protocol (V < P) is considered ZK for party P if by the end of protocol, V cannot compute something that
it could not compute before the protocol began.

A more practical definition requires the existence of an efficient program, called the simulator, which
approximates the execution of protocol. Based on the “accuracy” of the approximation, we have Perfect ZK
(PZK), Statistical ZK (SZK), and Computational ZK (CZK). In this paper, we only deal with CZK. As such,
other concepts are not defined here.

Zero-knowledge is a term applied normally to interactive proofs, although it can be used independently. To emphasize the
distinction, we use the term “interactive protocols” instead of “interactive proofs.” A ZK interactive proof is an interactive
protocol which is also ZK.

Definition 5 (CZK [[GMRSS]). Let (V <> P) be interactive protocol. We say that this protocol is CZK for
P on L = Lg, if for every PPT-ITM V*, there exists a PPT machine My~ such that for every PPT algorithm
A (the distinguisher):

Ve>0,3ngeN st VYn>ng, VxeLN{0,1}"
[Pr[A(My-(x)) = 1] —Pr[A(view(V*,P)(x)) =1]| <n . (13)

where the first probability is taken over the internal coin tosses of My~ and A, and the second probability is
taken over the internal coin tosses of V*, P, and A. O

Definition [5] has a major drawback: It does not consider any possible auxiliary input in possession of dis-
honest verifiers. Several works (e.g. [Ore87,[TW87,|GMR&9,(GO9%4]) tried to overcome this drawback, re-
sulting in the definition of auxiliary-input ZK. Another definition, called universal-simulation ZK, results
from swapping the “universal quantifier over V*” and the “existential quantifier over My-" in Definition
Such definition guarantees a universal simulator for every verifier. Oren [Ore87]] claimed that the class of lan-
guages possessing auxiliary-input ZK is equivalent to the class of languages possessing universal-simulation
ZKE We do not formalize these concepts here, since we make use of an even more strict definition of ZK:
Black-box ZK.

Definition 6 (Black-Box CZKﬂ). Let V, ¢ () be a function that on input m, a sequence of messages sent
by P, returns the next—message of V on common input x, auxiliary input &, and random input r. In
addition, let V(&) denote machine V with auxiliary input & and random input r.

We call an interactive protocol (V <+ P) black-box CZK for P on L = L, if there exists a PPT-OTM M
such that for every PPT-ITM V*, and all PPT-OTM A (the distinguisher):

Ve>0,3dngeN st Vn>ng, Vxe LN{0,1}", Vr,& € {0,1}"
‘pr [Aot (MY (x, 1, E)) = 1} _pr [AVre) (view (V7 (E),P) (x)) = 1} ‘ <n . (14)

The first probability is taken over the internal coin tosses of M and A, and the second probability is taken
over the internal coin tosses of P and A. (Note that V* is a deterministic machine with hard-coded random-
ness r.)

It is obvious from the definition that, black-box CZK is both auxiliary-input CZK and universal-simulation
CZK.

We will use another variant of CZK, which we prefer to call “passive-observer CZK.” In this variant,
the simulator should approximate the transcript of the protocol, rather than the view of (possibly dishonest)
verifier. In this case, the protocol is CZK for any passive observer eavesdropping the protocol messages.
Definition [7] provides a somehow weaker form of CZK than Definition [5] We will exploit this weaker form
when trying to formulate a revised definition of ZK.

Definition 7 (Passive-Observer CZK [GMRS85]). We call an interactive protocol (V <> P) passive-observer
CZK for P on L = Lg, if for every PPT-ITM V*, there exists a PPT machine My~ such that for every PPT
algorithm A (the distinguisher):

Ve>0,3npeN st VYn>ng, Vxe LN{0,1}"
[Pr[A(My-(x)) = 1] = Pr[A(tran(V*,P)(x)) =1]| <n™¢ . (15)

8 The claim is with respect to non-uniform adversaries. It is conjectured that, with respect to uniform adversaries, the class of
languages possessing universal simulation ZK is a proper subclass of the class of languages possessing auxiliary-input ZK. (See
for example [Bar03].)

9 The definition first appeared in [Ore87,/GO94], but we adopted it from [GolO1].

where the first probability is taken over the internal coin tosses of My~ and A, and the second probability is
taken over the internal coin tosses of V*, P and A. O

Another definition considers the ZK property only with respect to the honest verifier; i.e. the verifier which
sends messages according to the prescribed program (but may store the received messages for further inves-
tigations). Definition [§] formalizes this concept.

Definition 8 (Honest-Verifier CZK (HVCZK)). We call an interactive protocol (V <+ P) HVCZK for P
on L = Lg, if for the honest verifier V, there exists a PPT machine M such that for every PPT algorithm A
(the distinguisher):

Ve>0,3dngeN st VYn>ng, Vxe LN{0,1}"
[Pr[A(M(x)) =1] —Pr[A(view(V,P)(x)) =1]| <n ¢ . (16)

where the first probability is taken over the internal coin tosses of M and A, and the second probability is
taken over the internal coin tosses of V, P and A. O

3 The Base Protocol

f . . .
Let F & {f<}ex be a collection of trapdoor one-way permutations, and let X and D, be its index set and

domain set, and G, D, F and I be the corresponding efficient algorithms, as per Definition [T}
Define the binary relation R, & {{(fx(2),2)}

relations: R & {R\},cx- Note that D def {F(x,D(x))},cx is an input distribution for R.

Proving membership in R is easy (given x and a pair (y,z)) due to the “easy-to-compute” property of F.
In contrast, solving R under D (see Definition[3)) is hard, since F is “hard to invert.” Therefore, we intuitively
believe that, if a prover can solve R under D, it has some computational advantage over an efficient verifier,
and such interaction constitutes a “proof of computational ability” (see Definition 4.

Protocol [1| is a formal presentation of the interaction described above. It is called the “Base Protocol”
since it forms the basis for proofs and protocols presented in this paper. To simplify the exposition, we as-
sume that algorithms G, D, F and [are incorporated into the code of the honest prover and the honest verifier.
In the latter case, this assumption is justified by the fact that these algorithms are efficiently computable.

Another Varian of Protocol |1} presented in [BG92], assumes that x € X is chosen a priori to the start
of the protocol, and given to both parties as the common input. In this variant, P has to show the ability to
invert f, for some fixed x. While the two variants are quite different, the choice of which is immaterial to
the objective of this paper. Theorem [I] formalizes what we expect from the Base Protocol.

.ep, for all x € X, and let R denote a family of binary

Theorem 1. Both variants of Protocol|l|constitute proofs of computational ability. In particular:

Claim 1.1 In Variant 1 of the Base Protocol, V is an ability verifier for solving Ry under F (x,D(x)) (with
zero error), where x is chosen according to the distribution induced by the (first component of) G(1")
output over X N {0, 1}".

Claim 1.2 In Variant 2 of the Base Protocol, V is an ability verifier for solving Ry under F (x,D(x)) (with
zero error), where x € X is chosen a priori.

A proof for Claim 1.2 is given in [BG92]. However, their proof suffers from four drawbacks:
1. Itis very complicated;

10 Hereafter referred to as Variant 2.

10

Common Input (Security Parameter): 1”.

Verifier (V) Prover (P)

Let (x,t,) + G(1"),

7+ D(x),

y <+ F(x,z).

(x,y)
Compute w + f 1 (y).
w
%

IF w =z THEN

Set state to ACC.
ELSE

Set state to REJ.

Protocol 1. Base Protocol (Variant 1).

2. The proof is only sketched, and is not thoroughly discussed;
3. The proof is for the special case where D(x) is uniform over {0, 1}";
4. There is a minor error in the proof

The following proof overcomes these shortcomings. In addition, it is general enough to cover both Claims
1.1 and 1.2 (but we only present it for Claim 1.2, since it is simpler). Moreover, the proof ideas are used to
prove the main result of this paper (Theorem [g).

Proof. The “non-triviality” property of Definition [4| follows directly from the existence of the “Function
Evaluator” F for the family . We therefore focus on the validity property.

Let p, & pr [state(V, P)(x) = ACC], where the probability is taken over the random coin tosses of both P
and V. The ability extractor can accurately estimate p, in time poly(n)/py. A good survey of estimating the
average of some function g: {0,1}" — [0, 1] is presented in [Gol97].

Let V(-) and P(-,-) denote the next-message function of V and P, respectively. Note that to evaluate
the next-message function, having oracle access to the corresponding party suffices. We know that
V(x) = F(x,D(x)) for all input x’s (assuming x € dom(R)), since V is supposed to be honest.

We are now ready to provide the ability extractor K. The program of K is given in Program [I] We
assume that V uses fresh randomness every time execution reaches Step 3. Therefore, a new challenge—
drawn according to F (x,D(x))—is applied to each round. In addition, we assume that the extractor resets P
in Step 4, and provides it with fresh randomness. This way, P cannot keep a history of previous challenges,
and thus it returns an independent response.

We now prove that Program I] satisfies the validity property. Since the probability that P can invert y chosen
according to V(x) is py, each iteration halts with expected probability p,. Therefore, the probability that Step
8 runs (i.e. the extractor is unsuccessful in all n/py iterations) is (1 — px)(n/ P) < ¢ which is negligible in

n[?
(i)

11 Specifically, inequality (1) on page 6 of [BG92]| states that S > pr.zf. We confirmed that this is wrong, and found several

‘Yx (l)‘ pk'2i71
20l > n -

counterexamples to it. The correct version is:

&

12 The inequality is due to the fact that g(c) 1- a)é is a decreasing function of o.. Hence g(a) < lim,_,g(r) = e~ for all

o€ (0,1].

11

ESTIMATE p,.
FOR i - 1 TO n/p, DO
LET y < V(x).
LET w < P(x,y).
IF y = F(x,w) THEN
OUTPUT (w,y).
HALT.
PERFORM “Exhaustive Search” on y.

RS A T

Program 1. The Ability Extractor

Thus, the ability extractor is able to invert at least one of y’s provided to it by the verifier with over-
whelmingly high probability. The negligible probability can be eliminated by running an exhaustive search
in Step 8.

The expected running time of Program [T]can be decomposed into the following:

— Step 1: Runs in time poly(n)/py;
— Steps 2-7: Runs in time (n/p,)poly(n);
— Step 8: Runs in time O(2")poly(n) with expected probability at most e .

Consequently, the expected running time of Program is poly(n)/ px, as required by Definition 4| m

It is intuitively obvious that the Base Protocol is a “knowledge carrying” proof. In particular, the prover can
be used as an “inversion oracle”—That is, a dishonest verifier can exploit the prover to invert any string y
under f;(+), whose inverse is not “known” to it.

Before trying to give a ZK variant of the Base Protocol, we take note of the following negative result:

Theorem 2 (Goldreich and Oren [[Ore87,GO9%4)). Let L be a language for which there exists a two-step
auxiliary-input ZK proof of membership with negligible error. Then L € BPP.EI

Note that Theorem [2] holds for proofs of language membership, while the Base Protocol is a proof of com-
putational ability. We do not know whether it holds for such proofs. Thus, we state the modified version as
a conjecture.

Conjecture 1. Theorem [2 holds for proofs of knowledge (respectively proofs of computational ability) as
well. That is, Let (V <> P) be a two-step auxiliary-input ZK proof of knowledge (respectively proof of
computational ability) with negligible error on some language L = Lg. Then, R is trivial, i.e. it can be
(strongly) solved by a BPP algorithm.

Proving or refuting Conjecture I]is of independent interest. If it is proven, a two-step ZK version of the Base
Protocol is out of question (in the auxiliary-input sense). However, even if Conjecture[I]is refuted, it may be
impossible to give a two-step ZK version of the Base Protocol.

Anyway, we could not conceive of the ZK version of our two-step protocol in the Standard Model. Thus,
we resorted to a more powerful model of computation, discussed in the next section.

13 Goldreich and Krawczyk [GK90,/GK96| proved a similar result for three-step black-box ZK proofs of membership.

12

4 Exploiting the Random Oracle Model

Despite what Conjecture |1|states, it might be possible to give a two-step ZK version of the Base Protocol in
a different computational model than the Standard Model. A similar approach has been adopted by Aiello
and Hastad [AH91]. In particular, they proved that relative to some oracle A, there exists a two-step passive-
observer (Deﬁnition PZK proof for some language L ¢ BPPA.

While at first it may seem that we are proving a similar proposition, our approach is unique in that
we perform relativization with respect to a “random oracle” [BR93]FE] In addition, [AH91|] assumes a very
loose definition of ZK (in which the adversary is merely a passive observer, and may not interfere with
the execution of the protocol). Thus, our proposition is stronger in that the adversary (which tries to gain
knowledge) is the malicious verifier itself, and can send messages, in addition to observing them.

4.1 The Random Oracle Model

Intuitively, the Random Oracle Model (RO Model, for short) is the Standard Model augmented with a “ran-
dom function” O. Every party (including the adversary) can query O at the point of its choice, and receive
the answer regardless of its identity.

There are several definitions of the random oracle, based on its length of the input or output. We adopted
a definition in which the length of input is arbitrary, while the length of output is bounded by some prede-
termined function:

Definition 9. A random oracle is a function O, chosen uniformly from the collection of all functions whose
length of output is £(n), where £: N — N is a function, and n is the length of the security parameter of
the system (e.g. the length of the common input). Symbolically, let Fy be the collection mentioned above:
Fo & {£: 0,13 = {0, 1™ Then O < F,.

We assume that ((-) is a polynomial. O

There are at least three variants of ZK in the RO Model. The definitions differ in what the simulator can
perform in order to simulate the view (resp. transcript) of the verifier (resp. the protocol), and whether the
distinguisher can access O. We describe the three variants briefly, and justify the variant we adopt for the
rest of this paper.

In the original definition of ZK in the RO Model (due to Bellare and Rogaway [BR93]]), the “RO-Model
Simulator” has two advantages over a “Standard-Model Simulator”:

1. It can see the queries made by parties to O, and
2. It can choose the answer to every query.

Nielsen [NieO2[] coined the term “programmability” for the second property, and introduced a new model
in which the RO-Model Simulator was not able to program the random oracle. Such model was called the
Non-Programmable Random Oracle (NPRO) model. One year later, Pass [Pas03|] showed that a remarkable
feature of the ZK in the Standard Model, namely deniability, will be lost if we allow the simulator to program
the random oracle. Deniability is informally defined as the ability of the prover to deny its inferaction with
the verifier.

Later, in 2009, Wee [Wee09] coined the term Explicitly Programmable Random Oracle (EPRO) model
for the original definition of Bellare and Rogaway [BR93||, and defined another model he termed the Fully
Programmable Random Oracle (FPRO) model. In FPRO model, the distinguisher may not query O at all.

14 Tt might be helpful to draw an analogy: Our work is to [AH91, as [BG81] is to [BGS75]. However, this analogy is too informal

to be taken serious. It is solely given to provide the reader with some intuition. In addition, note that the main objective of this
paper is to revise the concept of ZK, not to provide some specific protocol.

13

Note that the NPRO model is more restrictive than the EPRO model, which in turn is more restrictive
than the FPRO model. That is, if a protocol is ZK in the NPRO model, it is ZK in both the EPRO and
FPRO models. For this reason, and because we believe that deniability is a natural expectation from any
ZK protocol, we adopted the NPRO model for the rest of this paper. The interested reader may consult
[BR93}|Nie02},Pas03.,(Wee09] for a more thorough review of other models.

We now define what it means for a protocol to be auxiliary-input ZK in the NPRO Model

Definition 10 (Auxiliary-Input CZK in the NPRO Model). Let (V <> P) be an interactive protocol. We
say that this protocol is auxiliary-input CZK in the NPRO Model for P on L = Ly, if for all PPT-ITM-OTM
V*, there exists a PPT-OTM My~, such that for every PPT-OTM A (the distinguisher):

Ve>0,3ngeN st Vn>ng, VxeLn{0,1}*, Vr,& €{0,1}"
’E[O <rFs: Pr {AO (View<V,*O(§),PO>(x)) = 1} —

(17)

Pr [AO (M‘(/r)*(x,r,é) = IH ‘ <n ‘.
The expectation is taken over the random selection of O, the first probability is taken over the internal coin
tosses of P and A (note that V* is a deterministic machine with hard-coded randomness r), and the second
probability is taken over the internal coin tosses of My~ and A. O

4.2 A ZK Implementation of the Base Protocol

We are now prepared to give a ZK implementation of the Base Protocol. We adopted Variant 1 for some
technical reasons.

Let F = {f},cx be a collection of trapdoor one-way permutations, and O be a random oracle. Define

the binary relation R, &f {{£:(2),0(2)) },cp, for all x € X, and let R denote a family of binary relations:

R {R}cx. Note that D &f {F(x,D(x))},x is an input distribution for R.

Protocol 2] is an interactive proof of computational ability—That is, one can prove that V is an ability
verifier for solving R, under F(x,D(x)) (with zero error). The proof is similar to that of Theorem

Remark 4. In fact, there is one clever difference: While membership in relation R, (defined in Section
can be decided efficiently, this is not the case with relation R, (see Theorem [3| Part (ii)). Hence, if we try
to give an ability extractor similar to Program [I] the extractor will probably get stuck at Step 5. A simple
workaround is to change Definition[d] so as to let the ability extractor have oracle access to the final state of
V.

Definition 11. Let xg denote the characteristic function of the k-ary relation R. That is, for every {(ay, ... ,ax) €
w\k .

({0, 1}37)":

1 #<a17"‘?ak>€R)

0 otherwise.

xR(<a1,...,ak>): { (18)

15 Unruh [[Unr07]) put forward a new definition for auxiliary-input in the RO model, in which the auxiliary-input is dependent on
the choice of O. Later, Wee [Wee09] proved that the ZK property is not closed under sequential composition, unless the protocol
at hand is RO-dependent auxiliary-input ZK. However, as we will point out at the end of Section[5} Wee’s proof invalidates under
our revised definition of ZK. Thus, the validity of his negative result remains open (under the new definition of ZK).

14

Common Input (Security Parameter): 1”.

Verifier (V) Prover (P)

Let (x,t,) + G(1"),

74+ D(x),

y < F(x,2).

(x,y)
Compute w + O (f1(y)).
w
%

IF w = O(z) THEN

Set state to ACC.
ELSE

Set state to REJ.

Protocol 2. Alleged ZK Implementation of the Base Protocol.

Relation R is hard to decide if for every efficient algorithm A, there exists an infinite sequence {s;}icn,
where for all i € N, we have s; € ({0,1}*)* and Pr[A(s;) = xr(s;)] < 5 +negl(|s;|). The probability is taken
over the internal coin tosses of A.

Relation R is hard to approximate if there exists an efficient algorithm S, such that for every efficient
algorithm A:

Ye>0,dnpeN st Vr>ng

Pr[(a],...,ak> <—S(1n)l .A((a],...,ak)):xR(<a1,...,ak>)] < %—Fi’lic . (19

where the probability is taken over the internal coin tosses of S and A.

In the RO Model, algorithms S and A have oracle access to O. In addition, the corresponding probabilities
are taken over the random selection of O as well. O

We are now ready to state and prove Theorem 3]

Theorem 3. Relation R (defined at the beginning of this section) is:

(1) hard to approximate; and
(i1) hard to decide.

Proof. Part (i)— Let S be the efficient algorithm whose code is described in Program 2] Note that on input
1", S outputs a pair (y,r), as well as a string x. The latter provides extra information about the former. Out-
putting such extra information strengthens Theorem [3] since we will indeed prove that no efficient adversary
can approximate or decide R, even if it is provided with such extra information.

Let A be any efficient program, and define d <— A (S(1")) = A (x, (y,r)), characterizing A’s verdict as
to whether or not the output of S belongs to R. Let E; denote the event that O is queried at point z = 1),
and E, denote the event that d = p. The proof is based on lemmas and

16 The idea is based on the work of Bellare ef al. [BHSV98].

15

LET (x,t,) < G(17).
LET O < Fy.
LET z D(x).
LET y F(x,2).
LET p < {0,1}.
IF p = 0 THEN

LET r + O(z).
ELSE

LET r g {0,1}¢(D,
10: OUTPUT (x, (y,r)).

R A T

Program 2. The algorithm used to prove that &R is hard to approximate.

1: LETY + o.

2: FOR i < 1 TO t4(|x]) DO

3: SINGLE-STEP A (x, (y,r)).

4: IF A halts THEN

5: HALT.

6: ELSE IF A queries O THEN

7: LET ¢ be the query.

8: IF y = F(x,q) THEN

9: OUTPUT 4.

10: HALT.

11: ELSE IF ¢ € dom(¥) THEN
12 ANSWER query with ¥(q).
13: ELSE

14: LET y ¢ {0, 1},
15: LETY «+ Y U{(q,¥)}.
16: ANSWER query with y.

Program 3. Algorithm of A’.

Lemma 1. For large enough x’s, Pr[E1] = negl(|x]).

Proof. Assume to the contrary that, there exists some ¢ € N, such that the probability that O is queried at
point z is greater than |x|~¢ for infinitely many x’s. We show that, there exists an efficient algorithm 4’,
which uses A as a subroutine, and inverts infinitely many y’s with non-negligible probability.

Let 74(+) be a polynomial upper-bounding the running time of A. Program describes the algorithm of
A’ on input (x, (y,r)) generated by Program

Let us describe Program [3] Function ¥, defined in Step 1, is to simulate the random oracle O. Queries
made by A should be answered consistently; that is, if .4 has asked them before, it should get the same
answer. This consistency measure is enforced in Steps 11-16.

16

1. LET (x,z) « G(1").
2: LET O < Fy.

3: LET z + D(x).

4: LET y < F(x,z).

5 LET p <5 {0,1}.

6: IFp=0THEN

7: LET r + Uj.

8: ELSE

9: LET r « U},

10: OUTPUT (x, (y,r)).

Program 4. A modified version of Program 2]

Remark 5. Instead of function ¥, we could have used pseudorandom function generators |[GGMS86| for
more efficiency (in terms of storage). However, that would make the analysis more complex, which is
undesirable.

In Step 3, SINGLE-STEP .A means “to proceed one step in the computation of .A.” If the next computation
step of A is HALT, algorithm A" halts as well (Steps 4-5), while if it is a query to O, algorithm A’ first
checks whether it is f;!(y) (Step 8), and if so, outputs it and halts. Otherwise, A’ tries to simulate the
behavior of a random oracle as described above.

Obviously, algorithm A’ outputs f; ! (y) with the same probability that A queries O at point £, ' (y) (on
average). Since we assumed that the latter probability was non-negligible for infinitely many x’s, so would
be the former probability. But this contradicts the non-invertibility of F by efficient machines. m

Lemma 2. Pr[E; | E|/] = 1.

Proof. Assuming Ey’ (that is, O is not queried at point z = f_!(y)), from the viewpoint of A, the output
of Program [2| is indistinguishable from that of Program 4, where U; and U; are two independent uniform
distributions over {0, l}m’“'). In Program conditioned on Ej’, A cannot distinguish the case where p =0

from the case that p = 1, even in the information-theoretic sense. Therefore, Pr(E, | E;'] = %]

Given lemmas [T|and [2] inequality (20) holds.

1 . Pr[E>NE/]
EZPT[Eszl] :ﬁ
. PI‘[EQ —El] . PI‘[EQ] — PI‘[El ﬂEz]
- Pr[E/] N Pr(E/’]
Pr[E;] — Pr[E|] B Pr[E;] — negl(]x|)
PAET | 1-negl(k) e

Thus Pr(E,] < 1 + Inegl(|x

), and Part (i) follows. m

Part (ii)— Any hard-to-approximate relation is trivially hard to decide, since for infinitely many n, S(1")
produces tuples which no efficient algorithm A can decide their membership with probability better than
1

5 +negl(n). m

Part (i) of Theorem [3] provides us with an invaluable tool to prove the main results of this paper: That is,
Protocol [2]is a ZK proof. This proposition is studied in the next section.

17

0: LET Y + @.

(This step is taken only while initializing).

LET (x,y) - V*(1").
IF y ¢ dom(¥) THEN
LET y < {0, 1},
LET ¥ « Y U{(y,¥)}.
OUTPUT (1", x,y, ¥ (y)).

AN e

Program 5. The Simulator My- of Theorem 4]

5 Main Results

In the previous section, we proved that Protocol 2]is a proof of computational ability. In this section, we will
concentrate on the ZK property of this protocol. We start by proving that Protocol [2|is ZK in the sense of
Definition [7}

Theorem 4. Protocol|2|is passive-observer CZK.

Proof. Consider the simulator described by Program[5] The simulator simply lets V* send its challenge, and
then answers the challenge with a random string. A more detailed description follows.

Since the algorithm of the simulator is efficient, algorithm 4 of Definition [7] can easily run it over
and over, and the simulator should always give the same answer to the same challenge. This is because
A can easily force V* to ask the same challenge y, since due to the universal quantifier over V* and A in
Definition [7, A might ask for a deterministic V*. The simulator uses function ¥(-) to “memorize” queries
already asked (Steps 0 and 2—4), similar to Program [3] Note that Step 0 of My- runs only once, during the
initialization phase.

Step 1 uses V*’s next —-message function V*(-) to get the query. Here, we assume that V*(+) uses the
internal coin tosses of V*, and didn’t mention the randomness explicitly.

Finally, Step 5 outputs the proof transcript. According to Part (i) of Theorem [3| no efficient algorithm
can distinguish such “simulated” output from the real output with probability better than 1 + negl(|x|), when
x is large enough. This completes the proof. m

Corollary 1 (cf. [AH91])). Relative to a random oracle O, there exists a two-step passive-observer CZK
proof for some relatioR ¢ BPPC.

Proof. Corollary (1| follows from Theorem (4] and Part (i) of Theorem |3| (The latter is used to show that
R&BPP°)m

Theorem [shows that no passive observer can gain knowledge by eavesdropping on the transcript of Pro-
tocol 2] Can we extend this result from passive observers to dishonest verifiers? That is, can we migrate
from the above simulator—which constructed the transcript of the protocol—towards some simulator that
constructs the view of any verifier?

To answer the above question, we first note that Protocol [2[is HVCZK: On input 1", and for every
r € {0, 1}*, the simulator M first runs V,(1") to get the challenge (i.e. y = F(x,z)). It then replies with some
random value, and monitors the query V makes to O. Due to the honesty of V, it will query O at z. Having z

17 We implicitly generalized BPP to cover relations, in addition to languages.

18

I: LET # < my+(1",r), {x,tx) < G (1"), 2 < Dy (x), y < Fu(x,2).
2: SEND (x,y) TO P.

3: RECEIVE w FROM P.

4: ABORT interaction.

5:

INVESTIGATE w to gain knowledge.

Program 6. The Program of V* € V*.

at hand, M will output (1", r, L, x,y,O(z)). The symbol L denotes that the auxiliary input is empty, since the
honest verifier does not use such input. Note that the simulated view is identical to the real view. Therefore,
not only Protocol@] is HVCZK, but it is honest-verifier PZK (HVPZK).

Another possible way of outputting a view identical to the real view is as follow: On input (1”,r, L), M
runs algorithms G, D, and F to get x, y, and z, and outputs (1”,r, L, x,y,O(z)).

In contrast to the passive-observer and honest-verifier cases, it is impossible to prove the ZK property for
general verifiers using “classical” ZK definitions. In particular, old techniques such as rewinding the verifier
or monitoring the verifier’s queries to the random oracle will not help the simulator. Theorem [3] states this
formally.

Theorem 5. ProtocolDlis not ZK in the classical black-box CZK sense.

Proof (Sketch). Consider the family V* of dishonest verifiers, each of which has a polynomial-time com-
putable permutation, hard-coded into its program. That is, to every verifier V* € V*, a polynomial-time
computable permutation my-: 1* x {0,1}* — {0, 1}* is associated, where the first input determines the run-
ning time, while the second input specifies the domain over which the permutation is applied. (Note that
only a polynomial prefix of the second input is used.) Since there are infinitely many such permutations,
V* will be an infinite family. The verifiers in V* are dishonest since they do not use their random input r
directly; instead, they first compute ' = 7y« (1", r), and then use 7’ instead of r. Since 7y~ is a permutation
and r is a uniformly random string, will be a uniformly random string as well.

The program of V* € V* is described in Program[6] M cannot acquire z by monitoring V*’s queries to
O, since it does not make any queries at all. Therefore, it should try another trick.

The black-box CZK requires the existence a universal simulator M for all verifiers. Since there are
infinitely many permutations 7ty=, M cannot incorporate the description of all such permutations into its
program. In contrast, since the distinguisher A is chosen after V*, we can assume that my- is hard-coded
into A’s program. Fixing r, A can deterministically verify whether the output of the simulator is identically
distributed to the real view: Assume that, on input (1", r,&), M outputs (1”,r,&,x",y',w). Then, A computes
r' = my«(1",r), and outputs 1 if and only if:

- x/ equals the first component of G,(1"); AND
- Yy equals F (¥, D, (x")); AND
- wequals O(D,(x')).

Therefore, given the input (17, r,&), the values of x', ', and w are uniquely determined. This implies that M
has one of the following two approaches to satisfy .A4:

1. Find my- so that it can compute #/, and therefore the second component of G,-(1") (that is, the trapdoor).
2. Get (x,y) using the next -message function of V*, and try to find 7’ such that O(z') = O(f;(y)).

X

19

The first approach is infeasible due to the universality of the simulator (described earlier). The second
approach is infeasible since it involves inverting the one-way permutation f.
We conclude that a black-box simulator for Protocol 2l does not exist. m

As a side note, if we assume that Protocol 2]is ZK in the classical auxiliary-input sense (which is less strict
than the black-box sense), then Theorem [6] holds.

Theorem 6. If Conjecture |I| holds, and Protocol [2|is ZK in the classical auxiliary-input sense, it will be a
non—contrivecff] example of a protocol secure (=ZK) in the RO Model which, for no implementation of the
random oracle in the Standard Model will remain secure (=ZK).

Proof. Conjecture (1] states that nontrivial two-step auxiliary input ZK proofs of computational ability do
not exist in the Standard Model. if Protocol [2]is ZK in the classical auxiliary-input sense, and because it is
two-step, any implementation of the random oracle (using a single function or a function ensemble) will not
preserve the ZK property in the Standard Model. m

Now that we proved that Protocol [2| does not possess a black-box simulator, let us intuitively justify why
failure to show the existence of such simulator does not rule out the ZK property for this protocol. Consider
a spectrum of verifiers, from the honest one (which exactly follows the prescribed rules of protocol), to the
most adversarial ones (which deviate from the rules of protocol as much as they can). We proved earlier that
the protocol is HVPZK. Consequently, the protocol is ZK at one extreme of the spectrum.

In the middle of the spectrum, we have verifiers with “some knowledge” about z. As an example, con-
sider verifiers with “full knowledge” about z, such as those of Theorem@ Such verifiers “know’ z, but do not
let the simulator learn it too. However, the protocol is conceptually ZK for such verifiers, since the message
sent by P (i.e. O(z)) will not carry more knowledge than z.

We now look at the other extreme of the spectrum, where the (dishonest) verifier V* “knows” nothing
about z (beyond what can be efficiently computed from y). For instance, consider a verifier with empty
auxiliary input, which sets y <—¢ {0, I}M and sends it to P. The protocol is ZK for such V* as well, since it
has no advantage over a passive observer; and by Theorem 4] we know that the protocol is CZK for passive
observers.

We intuitively and conceptually argued that Protocol [2|is ZK for special classes of verifiers in different
parts of the spectrum. However, is it true for other types of verifiers? (That is, those dishonest verifiers
possessing some partial knowledge about z.)

To answer the above question, let us present several notations. For all n € N, and every efficient (possibly
dishonest) verifier V (of Protocol , and for every r,& € {0,1}*, let Ve (1) denote the next -message
function of V on common input 1", random input r, and auxiliary input &. Similarly, let P(1",x,y) be the
next-message function of the (honest) prover P on common input 1" and on (x,y) < V,¢(1"). (The
random input, if any, is implicit in this function.) Let M be the simulator in Program [5] with the difference

that Step 1 is no longer needed.

. . . S def def
Now consider the experiment in Program which is similar to Program Define Ay = A Aleré) =

Pr[d = p], where the probability is taken over the random selection of O and the internal coin tosses of .4
and M. We did not mentioned the internal coin tosses of P since there exists a deterministic algorithm, which
can mimic the behavior of P on y. That is, £, !(y) can be computed deterministically.

As stated in the informal analysis above, if V is honest, there exists an efficient machine A which can
easily distinguish the real proof from the simulated proof. This is due to the fact that since the honest
V “knows” z, there exists some efficient machine A which, given the same common and random inputs
as V, can regenerate z. Then, A queries O at z, and outputs 1 if its sixzh input (i.e. w) is O(z), and 0

18 Canetti, Goldreich, and Halevi [CGH98, CGHO4,(CGHO8]| proved this theorem for contrived encryption and signature schemes.

20

LET w « M(1",1,& x,y).
LET d < A% (1",1,& ,x,y,w).

I: LETp«x{0,1}.

2: LET (x,y) <= Ve (1").

3 LETO <« F,

4: IF p =1 THEN

5: LET w < P(1%,x,y).
6: ELSE

7:

8:

Program 7. An experiment used to prove Theorem]

otherwise. Thus, for the honest verifier and such A, A4 > 1 —negl(n). (There’s a negligible probability that
the simulator outputs the correct response.) On the other hand, if V is the dishonest verifier described in the
informal analysis above (where V* knew nothing about z), we have A4 < %4— negl(n) for every efficient
algorithm A and large enough n’s. (The proof is similar to that of Theorem[4])

Define the advantage of A in guessing p (and therefore distinguishing real and simulated views) as

oA LA A — 1. By definition, the |d4| equals the absolute difference of two probabilities: The probability

that A outputs 1 given the real view, and the probability that .4 outputs 1 given the simulated view.
Theorem 7. For every efficient A, the probability that A queries O at z is at least 0 4.

Proof. Let events E| and E; be defined as in the proof of Theorem 3] That is, let E; denote the event that O
is queried at point z, and E; denote the event that d = p. Note that Pr[E>] = A4, and Pr[E>|E;'] = 1. (The
latter can be proven using Lemma[2]) By inequality (20): Pr[E|] >2A4—1=04.®

Let A be an efficient machine which queries O at z with advantage d4. Then, there exists an efficient
machine A" which queries O at z with the same advantage J 4, while A" makes at most 1 query to O. This
is because A’ can use the A as a subroutine, which, on an oracle query by A:

1. returns O(z) if the query is at point z;
2. returns a random but consistent answer otherwise.

We call A" a single-query machine. Intuitively, the knowledge of A" is no more than that of A. Thus,
statements about the knowledge of A can be “lower-bounded” by the knowledge of .A’, and in the rest, we
only give propositions about single-query machines.

We now deal with verifiers with partial knowledge about z: Informally, For every (single-query) efficient
algorithm A, if A has advantage 8 4, then A “knows” z with probability max{0, 5 4}. Using the formalized
concept of “a machine knowing something” in Definition[2] we state the main result of this paper: Theorem|8]

Theorem 8 (Main Theorem). There exists a constant ¢ > 0 and a probabilistic oracle machine K (the
Universal Knowledge Extractor) such that for every efficient single-query algorithm A, and for all strings
1", 1, &, x, and y as described above, if 4 > 0, then KA(1",r,E x,y) outputs 7 = f'(y) in expected time
upper-bounded by %.

Proof. Note that since M is an efficient algorithm, K can incorporate its code within itself. Now, consider
the algorithm of the universal knowledge extractor K, described by Program [§]

Program [§] resembles Program [I] One difference is the command PROCEED in Step 5. This command
allows A to run, until it “pauses.” The pause is due to A entering either the halt state (in which its execution

21

1: ESTIMATE 6 4.

2. FORi« 1TO 41 DO

3: LET P1 <R {0,1}*.

4: LET py < {0,1}*.

5: PROCEED A, (Mp,(1",1,&,x,y)).
6: IF Ap, queries O THEN

7 OUTPUT the query.

8: HALT.

9:

PERFORM “Exhaustive Search” on y.

Program 8. The Universal Knowledge Extractor K of Theorem 8]

terminates), or the query state (in which A writes some query on its query tape and waits for response from
the random oracle). Since we assumed that A is a single-query machine, if the latter case happens, the query
is indeed the string z, and we output it at Step 7, and finish the search at Step 8. Otherwise, a new round of
search begins.

At each iteration of the loop, A either makes the required query or halts. Since, according to Theorem 7]
A queries O at point z with probability at least 4 (assuming J4 > 0), we expect that, at each iteration, Step
7 gets to run with probability at least 0 4. An analysis similar to the proof of Theorem |I{shows that, for large
enough x’s, the probability that Step 9 gets to run is no more than (1 —J A)i <e ™

Consequently, since Step 9 gets to run with negligible probability, the expected running time of Pro-
gramis at most ﬁO(l), as required by Theorem [

5.1 The Simulation-Extraction Paradigm

Before proposing the Simulation-Extraction Paradigm, let us study the properties of Protocol [2| which we
exploited to prove its ZK property:

(a) The honest verifier of Protocol [2| “knows” the right answer when sending its challenge. In addition, the
protocol is HVZK.

(b) Protocol [2]is not a repetition/composition of some primitive protocol.

(c) The verifier of Protocol [2|uses private coins.
(d) Protocol 2Juses the RO Model.

We “believe” that Property (a) is crucial for our paradigm, while we do not know whether other properties
are required or not.

Below, we formalize what we mean by the term Simulation-Extraction Paradigm (abbreviated as SE
Paradigm):

Definition 12 (Black-Box ZK in the SE Paradigm). Let V, ..« (/i) and V,(§) be defined as in Definition @
We call an interactive protocol (V <+ P) black-box SE-CZK for P on L = Lg, if there exists an (expected)
PPT-OTM M, a probabilistic OTM K, and some constant c| > 0, such that for every PPT-ITM V*, every PPT-
OTM A (the distinguisher), all constants c; > 0, every x € L and all r,& € {0,1}*, the following property
holds:

22

Let 8 4 denote the advantagepf] of A in distinguishing the real and simulated views. If 6 4 > 0, then
KV**A(x, r,&) can output a view in expected running time upper-bounded by %, such that A’s
absolute advantage of distinguishing K’s output from the real view is less than |x| 2.

The definition in the RO Model follows easily. O

Several observations are in order:

— All existing black-box CZK protocols are black-box SE-CZK. This is due to the fact that for all existing

6

black-box CZK protocols, and for all PPT-OTM A, §4 is a negligible quantity in |x|. Therefore, K’s
expected running time is upper-bounded by some super-polynomial. However, M already simulates the
view in polynomial-time; and therefore we can take K to be identical to M.

K is not too powerful. In other words, consider a protocol which is not black-box CZK; in the sense
that for every PPT-OTM simulator M, there exists a PPT-OTM A which distinguishes the simulated and
real views with noticeable advantage. Then, the expected running time of K will be bounded by some
polynomial, much the same as M. Therefore, the only advantage that K has over M is that K has oracle
access to A.

The above discussion demonstrates that the SE Paradigm simplifies proving positive results (i.e. a pro-
tocol is ZK), while it complicates proving negative results (i.e. a protocol is not ZK). In particular, it
invalidates some proofs which were totally valid in the classical sense (for example, see the proof of
Theorem 3 in [WeeO9Eb.

We already proved, in the context of Protocol 2} how K can simulate a view indistinguishable from the
real view. Therefore, by definition, Protocol E] is black-box SE-CZK.

Conclusion and Open Problems

The concept of “zero-knowledge” was proposed before “knowledge” was formalized, and it was not revised
thereafter. The current formalism is too strict to include all the protocols which are conceptually zero-
knowledge. As an example, we came up with one such protocol, and formally proved that it was zero-
knowledge. The formal proof provided us with a relaxed paradigm for proving the zero-knowledge property.

The new formalization of zero-knowledge led us to many open problems, a few of which are listed

below:

1.

Does Conjecture|1|hold? That is, is it true that 1-round proofs of knowledge (or proofs of computational
ability) exist only for trivial relations?

At the beginning of Section [5.1] we discussed several properties, labeled (a)-(d). Is it true that all of
these properties are required? Specially, is it possible to use the paradigm in models other than the RO
Model, such as the Common Reference String (CRS) Model or the Standard Model?

In addition, are there any other required/sufficient properties which, if satisfied by a protocol, make it a
candidate for the SE Paradigm?

. We proved that Protocol 2]does not have a classical black-box CZK simulator. Can we conceive of other

useful protocols, which are not zero-knowledge in the classical sense but are zero-knowledge in our
paradigm?

. Does revising the concept of zero-knowledge result in the revision of any concept/theorem in the foun-

dations of cryptography? We are specially interested in revising the concept of zero-knowledge proofs in
the non-black—box sense [BarOl1|], and in the CS Proofs model [Mic94,[MicO0|]. Moreover, we are inter-
ested in theorems about the composition of ZK protocols: Is SE-ZK closed under various compositions?

19 Thatis, |§.4] =)Pr [A"Tr-r@ (M"E?r@ (t,1,&)) - 1} —Pr [AV&"»Q (view(V*(§),P)(x)) = 1})

20 Note that we are stating nothing about the validity of the theorem itself. We are merely pointing that the proof becomes invalid.

23

5. In Definition[I2] the knowledge extractor K tries to extract .A’s knowledge as if A is a prover of knowl-
edge. This might be inappropriate in some cases, since A is a “judge,” not a prover. Therefore, its
one-bit output may be inadequate for K to extract .A’s knowledge within a limited number of steps. A
workaround is to give K non-black-box access to .4, similar to the approach [BGGLOI]]. Yet a better
solution is to formalize the concept of knowledge in such a way that it is not limited to parties who
engage in proving, but includes verifiers and distinguishers as well.

Acknowledgements

We would like to thank Mohammad Mahmoody for his fruitful and valuable discussions.

References

[AH91] William Aiello and Johan Hastad. Relativized Perfect Zero Knowledge is not BPP. Journal of Information and
Computation, 93(2):223-240, 1991.

[Bab85] Laszl6 Babai. Trading Group Theory for Randomness. In Proceedings of the 17th Annual ACM Symposium on
Theory of Computing (STOC ’85), pages 421-429, New York, NY, USA, 1985. ACM.

[BarO1] Boaz Barak. How to Go Beyond the Black-Box Simulation Barrier. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS '01), pages 106-115, Las Vegas, Nevada, USA, 2001.
IEEE Computer Society.

[Bar03] Boaz Barak. How to Go Beyond the Black-Box Simulation Barrier, 2003. Available from: http://www.cs.
princeton.edu/~boaz/Papers/nonbb.ps. See [BarOl| for the conference version.

[BC86] Gilles Brassard and Claude Crépeau. Non-Transitive Transfer of Confidence: A Perfect Zero-knowledge Interactive

Protocol for SAT and Beyond. In Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’86), pages 188—195. IEEE Computer Society, 1986.

[BCCS88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum Disclosure Proofs of Knowledge. Journal of
Computer and System Sciences (JCSS), 37(2):156-189, 1988.
[BCY89] Gilles Brassard, Claude Crépeau, and Moti Yung. Everything in NP can be Argued in Perfect Zero-Knowledge in

a Bounded Number of Rounds. In Proceedings of the 16th International Colloquium on Automata, Languages and
Programming (ICALP ’89), pages 123—-136, London, UK, 1989. Springer-Verlag.

[BDMPI1] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive Zero-Knowledge. SIAM
Journal on Computing, 20(6):1084-1118, 1991.

[BFM8S] Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-Knowledge and its Applications. In Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing (STOC ’88), pages 103—112, Chicago, Illinois,
United States, 1988. ACM.

[BG81] Charles H. Bennett and John Gill. Relative to a Random Oracle A, P4 # NP4 £ co-NP4 with Probability 1.
SIAM Journal on Computing, 10(1):96-113, 1981.
[BG92] Mihir Bellare and Oded Goldreich. Proving Computational Ability. Unpublished manuscript. Available

from: http://cseweb.ucsd.edu/~mihir/papers/poa.psorhttp://www.wisdom.weizmann.
ac.i11l/~oded/PS/poa.ps, 1992.

[BG93] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Advances in Cryptology—CRYPTO 92,
pages 390-420, London, UK, 1993. Springer-Verlag.

[BGGLO1] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-Sound Zero-Knowledge and Its
Applications. In Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS '01), pages
116-125. IEEE, 2001.

[BGKW8S] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-Prover Interactive Proofs: How to Re-
move Intractability Assumptions. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC ’88), pages 113—131, New York, NY, USA, 1988. ACM.

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P 2 NP Question. SIAM Journal on
Computing, 4(4):431-442, 1975.

[BHSV9S] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil Vadhan. Many-to-One Trapdoor Functions and their Relation
to Public-key Cryptosystem. In Advances in Cryptology—CRYPTO 98, pages 283-299. Springer-Verlag, 1998.
Extended version available from http://cseweb.ucsd.edu/~mihir/papers/tf.htmll

[BM88] L4sz16 Babai and Shlomo Moran. Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Com-
plexity Class. Journal of Computer and System Sciences (JCSS), 36(2):254-276, 1988.

24

http://www.cs.princeton.edu/~boaz/Papers/nonbb.ps
http://www.cs.princeton.edu/~boaz/Papers/nonbb.ps
http://cseweb.ucsd.edu/~mihir/papers/poa.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/poa.ps
http://www.wisdom.weizmann.ac.il/~oded/PS/poa.ps
http://cseweb.ucsd.edu/~mihir/papers/tf.html

[BR93]

[CEv87]

[CEvP87]

[CGGMO0]

[CGH98]

[CGHO4]
[CGHO8]
[Cha87]
[CM99]

[Con88]

[Con91]
[DH76]

[DNRS99]

[DNRSO03]

[DNS98]

[DNS04]

[DS89]

[DS90]

[DS92a]
[DS92b]

[FFS87]

[FFS88]

[For87]

[For89]

Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.
In Proceedings of the 1st Annual ACM Conference on Computer and Communications Security, pages 62—73. ACM,
1993.

David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An Improved Protocol for Demonstrating Possession
of Discrete Logarithms and Some Generalizations. In Advances in Cryptology—EUROCRYPT ’87, pages 127-141,
London, UK, 1987. Springer-Verlag.

David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René Peralta. Demonstrating Possession of a Discrete
Logarithm Without Revealing It. In Advances in cryptology—CRYPTO ’86, pages 200-212, London, UK, 1987.
Springer-Verlag.

Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable Zero-Knowledge (extended abstract).
In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pages 235-244, Portland, Oregon,
United States, 2000. ACM.

Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited (preliminary version).
In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC ’98), pages 209-218, New
York, NY, USA, 1998. ACM.

Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited. Journal of the ACM
(JACM), 51(4):557-594, 2004.

Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revisited. Technical Report
arXiv:cs/0010019v1, arXiv.org, February 1, 2008. Available from: http://arxiv.org/abs/cs/0010019
David Chaum. Demonstrating that a Public Predicate Can Be Satisfied without Revealing any Information about
How. In Advances in Cryptology—CRYPTO ’86, pages 195-199, London, UK, 1987. Springer-Verlag.

Jan Camenisch and Markus Michels. Proving in Zero-Knowledge that a Number is the Product of Two Safe Primes.
In Advances in Cryptology—EUROCRYPT 99, pages 107-122. Springer-Verlag, 1999.

Anne Condon. Space-Bounded Probabilistic Game Automata. In Proceedings of the 3rd Annual IEEE Structure in
Complexity Theory Conference (SCT °88), pages 162—174, Washington, DC, USA, 1988. IEEE Computer Society.
See [Con91] for the journal version.

Anne Condon. Space-Bounded Probabilistic Game Automata. Journal of the ACM (JACM), 38(2):472—494, 1991.
See [Con88|| for the conference version.

Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. [EEE Transactions on Information
Theory, IT-22(6):644-654, 1976.

Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic Functions. In Proceedings of the
40th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’99), pages 523-534, New York, NY,
USA, 1999. IEEE Computer Society. See [DNRSO3] for the full version.

Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic Functions. Journal of the ACM
(JACM), 50(6):852-921, November 2003. See [DNRS99] for the conference version.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In Proceedings of the 30th Annual ACM
Symposium on Theory of Csomputing (STOC ’98), pages 409—418, New York, NY, USA, 1998. See [DNS04] for
the conference version.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent Zero-Knowledge. Journal of the ACM (JACM),
51(6):851-898, November 2004. See [DNS98]| for the conference version.

C. Dwork and L. Stockmeyer. On The Power of 2-Way Probabilistic Finite State Automata (Extended Abstract). In
Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’89), pages 480—485,
Washington, DC, USA, 1989. IEEE Computer Society.

Cynthia Dwork and Larry J. Stockmeyer. Zero-Knowledge with Finite State Verifiers (Extended Abstract). In
Advances in Cryptology—CRYPTO 88, pages 71-75, London, UK, 1990. Springer-Verlag. See also [DS89,/DS92a,
DS92b)|.

Cynthia Dwork and Larry Stockmeyer. Finite State Verifiers I: The Power of Interaction. Journal of the ACM
(JACM), 39(4):800-828, 1992.

Cynthia Dwork and Larry Stockmeyer. Finite State Verifiers II: Zero Knowledge. Journal of the ACM (JACM),
39(4):829-858, 1992.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-Knowledge Proofs of Identity (extended abstract). In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC ’87), pages 210-217, New York, NY, USA,
1987.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology, 1(2):77-94,
1988.

Lance Fortnow. The Complexity of Perfect Zero-Knowledge. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing (STOC ’87), pages 204-209, New York, NY, USA, 1987. ACM. See the full version
in [For&9|.

Lance Fortnow. The Complexity of Perfect Zero-Knowledge. In Franco P. Preparata and Silvio Micali, editors,
Advances in Computing Research, volume 5: Randomness & Computation, pages 327-343. JAI Press, Inc., 1989.

25

http://arxiv.org/abs/cs/0010019

[FS90]
[GGMS6]

[GHYSS5]

[GHY89]

[GK90]

[GK96]

[GM82]

[GMS84]
[GMRS5]
[GMR89]

[GMW86]

[GMW91]
[GOY4]
[Gol93]
[Gol97]
[Gol01]
[HM98]
[Kil88]
[Kil91]

[KPRIS]

[LMS05]
[Mic94]

[Mic00]
[Nie02]

[OCO91]

[Ore87]

Uriel Feige and Adi Shamir. Witness Indistinguishable and Witness Hiding Protocols. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing (STOC ’90), pages 416426, New York, NY, USA, 1990. ACM.
Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random Functions. Journal of the ACM
(JACM), 33(4):792-807, 1986.

Zvi Galil, Stuart Haber, and Moti Yung. A Private Interactive Test of a Boolean Predicate and a Minimum-
Knowledge Public-Key Cryptosystems. In Proceedings of the 26th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’85), pages 360-371, Washington, DC, USA, 1985. IEEE Computer Society. See
[GHY89] for the journal version.

Zvi Galil, Stuart Haber, and Moti Yung. Minimum-Knowledge Interactive Proofs for Decision Problems. SIAM
Journal on Computing, 18(4):711-739, 1989.

Oded Goldreich and Hugo Krawczyk. On the Composition of Zero-Knowledge Proof Systems. In Mike Paterson,
editor, Proceedings of the 17th International Colloquium on Automata, Languages and Programming (ICALP ’90),
volume 443 of Lecture Notes in Computer Science, pages 268—282, Warwick University, England, 1990. Springer.
See [GK96] for the journal version.

Oded Goldreich and Hugo Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIAM Journal on
Computing, 25(1):169-192, 1996. See [GK90] for the conference version.

Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How to Play Mental Poker Keeping Secret All
Partial Information. In Proceedings of the 14th Annual ACM Symposium on Theory of Csomputing (STOC ’82),
pages 365-377, New York, NY, USA, 1982. See [GM&4] for the journal version.

Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer and System Sciences (JCSS),
28(2):270-299, 1984. See [GMS8?2]| for the conference version.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof Systems.
In Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages 291-304, 1985.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive Proof Systems.
SIAM Journal on Computing, 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing But their Validity and a Methodology
of Cryptographic Protocol Design (Extended Abstract). In Proceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’86), pages 174-187, 1986. See [GMWOI| for the journal version.
Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing But their Validity or All Languages
in NP Have Zero-Knowledge Proof Systems. Journal of the ACM (JACM), 38(3):690-728, 1991.

Oded Goldreich and Yair Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Journal of Cryptol-
0gy, 7:1-32, 1994. See [Ore87] for the conference version.

Oded Goldreich. A Uniform-Complexity Treatment of Encryption and Zero-Knowledge. Journal of Cryptology,
6(1):21-53, 1993.

Oded Goldreich. A Sample of Samplers: A Computational Perspective on Sampling (survey). Technical Report
TR97-020, Electronic Colloquium on Computational Complexity (ECCC), 1997. http://eccc.hpi-web.
de/report/1997/020/\

Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press, 2001.

Shai Halevi and Silvio Micali. More on Proofs of Knowledge. Cryptology ePrint Archive, Report 1998/015, 1998.
http://eprint.iacr.org/.

Joe Kilian. Zero-knowledge with Log-Space Verifiers. In Proceedings of the 29th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’88), pages 25-35. IEEE Computer Society, 1988.

Joe Kilian. Interactive Proofs with Provable Security Against Honest Verifiers. In Advances in Cryptology—
CRYPTO 90, pages 378-392, London, UK, 1991. Springer-Verlag.

Joe Kilian, Erez Petrank, and Charles Rackoff. Lower Bounds for Zero Knowledge on the Internet. In Proceedings
of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS "98), pages 484-492, Washington,
DC, USA, 1998. IEEE Computer Society.

Matt Lepinski, Silvio Micali, and Abhi Shelat. Fair-Zero Knowledge. In Theory of Cryptography—(TCC ’05),
pages 245-263. Springer-Verlag, 2005.

Silvio Micali. CS Proofs. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’94), pages 436453, Santa Fe, New Mexico, USA, 1994. IEEE Computer Society.

Silvio Micali. Computationally Sound Proofs. SIAM Journal on Computing, 30(4):1253-1298, 2000.

Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-committing
Encryption Case. In Advances in Cryptology—CRYPTO 2002, pages 111-126. Springer-Verlag, 2002.

Tatsuaki Okamoto, David Chaum, and Kazuo Ohta. Direct Zero Knowledge Proofs of Computational Power in Five
Rounds. In Advances in Cryptology EUROCRYPT 91, volume 547 of Lecture Notes in Computer Science, pages
96-105. Springer Berlin / Heidelberg, 1991.

Yair Oren. On the Cunning Power of Cheating Verifiers: Some Observations about Zero Knowledge Proofs (Ex-
tended Abstract). In Ashok K. Chandra, editor, Proceedings of the 28th Annual IEEE Symposium on Foundations

26

http://eccc.hpi-web.de/report/1997/020/
http://eccc.hpi-web.de/report/1997/020/
http://eprint.iacr.org/

[Pas03]
[RK99]

[TW87]

[Unr07]
[Wee(9]
[Yao82]

[Yun90]

of Computer Science (FOCS ’87), pages 462-471, Los Angeles, California, USA, 1987. IEEE Computer Society
Press. See [GO94| for the journal version.

Rafael Pass. On Deniability in the Common Reference String and Random Oracle Model. In Advances in
Cryptology—CRYPTO 2003, pages 316-337. Springer-Verlag, 2003.

Ransom Richardson and Joe Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In Advances in
Cryptology—EUROCRYPT ’99, pages 415-431. Springer-Verlag, 1999.

Martin Tompa and Heather Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession
of Information. In Proceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS
'87), pages 472-482. IEEE, 1987.

Dominique Unruh. Random Oracles and Auxiliary Input. In Advances in Cryptology—CRYPTO 2007, pages
205-223. Springer-Verlag, 2007.

Hoeteck Wee. Zero Knowledge in the Random Oracle Model, Revisited. In Advances in Cryptology—ASIACRYPT
2009, pages 417—434. Springer-Verlag, 2009.

Andrew Chi-Chih Yao. Theory and Applications of Trapdoor Functions (extended abstract). In Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS ’82), pages 80-91. IEEE, 1982.

Moti Yung. Zero-Knowledge Proofs of Computational Power. In Advances in Cryptology—EUROCRYPT ’89,
pages 196-207. Springer-Verlag, 1990.

27

