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Abstract Three time memory tradeoff algorithms are compared in this paper. Specifically,
the classical tradeoff algorithm by Hellman, the distinguished point tradeoff method, and
the rainbow table method, in their non-perfect table versions, are treated.

We show that, under parameters and assumptions that are typically considered in theo-
retic discussions of the tradeoff algorithms, Hellman and distinguished point tradeoffs per-
form very close to each other and that the rainbow table method performs somewhat better
than the other two algorithms. Our method of comparison can easily be applied to other
situations, where the conclusions could be different.

The analysis of tradeoff efficiency presented in this paper does not ignore the effects
of false alarms and also covers techniques for reducing storage, such as ending point trun-
cations and index tables. Our comparison of algorithms takes the success probabilities and
pre-computation efforts fully into account.

Keywords time memory tradeoff· Hellman· distinguished point· rainbow table

1 Introduction

There are numerous security systems in use today that rely on passwords. Access to many
contents on the network requires one to login with a password and many file formats today
have security features that restrict access to the file until the correct password is supplied.
These systems are usually based on apassword hashtechnique, which is to store a one-way
function image of the password in the file or on the system. Indeed, storing the password
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in its raw form within the file one wishes to set access controlto would be meaningless.
Authentication of a user is performed by recomputing the one-way function image from a
freshly supplied password and comparing the result with thestored password hash.

A time memory tradeoff algorithm attempts to recover the password from the knowledge
of the one-way function image, with the help of a table created through pre-computation.
The massive pre-computation that is required before the actual attack can be mounted is the
largest barrier in applying the time memory tradeoff technique to any specific security sys-
tem. However, the pre-computation cost is roughly proportional to the size of the password
space and, since many users do not use strong passwords, the tradeoff attacker is free to
choose a manageable set consisting of short or more likely passwords and decide to be sat-
isfied with recovering only those passwords belonging to this set. Then the pre-computation
requirement does not stand as an impenetrable barrier to thetradeoff attack.

It has long been known that properlysaltinga password can remove any realistic threats
of the time memory tradeoff attacks. The security system concatenates a randomly generated
string (salt) of sufficient length to the user-supplied password before computing the one-way
function image. The salt value that was used is stored alongside the computed password hash
so that it is available to the system for the one-way functionre-computation whenever a user
needs to be authenticated. The effective number of passwords is increased by the use of salts
and this can increase the pre-computation requirement of a tradeoff attack to an unrealistic
degree.

Nevertheless, the salting countermeasure is still not being used in many proprietary sys-
tems and some systems are known to be using both the newer salted and the older non-salted
versions of the security system simultaneously to remain compatible with older systems.
Hence, the time memory tradeoff technique still remains a powerful tool against these vul-
nerable password hash systems. Since human generated passwords will continue to be used
for the foreseeable future, one would like to fully understand the powers and limitations of
the tradeoff techniques.

There are a large number of tradeoff algorithm variants, andwe will restrict ourselves to
the three major tradeoff algorithms in this work. The first algorithm we study is the original
tradeoff algorithm [14] devised byHellman. The second algorithm is thedistinguished point
method, which is attributed to Rivest in [10]. The number of table lookups that are required
by a Hellman tradeoff is significantly reduced in this slightly modified method. The final
algorithm we consider is therainbow table method [24], announced by Oechslin. The pre-
computation table for this method is structurally different from the previous two versions.

Let us briefly mention some of the more notable tradeoff variants or techniques that
we are not treating in this work. The first is theperfect tableversion of the distinguished
point method [8]. This is a variant of the distinguished point method where some of the
redundancies contained in the pre-computed tables are removed and replaced with non-
overlapping data generated through additional pre-computation. The more efficient usage
of storage leads to better performance during the actual attack, at the expense of higher
pre-computation cost. The removal of redundancies is facilitated by the distinguished point
technique and cannot be done as easily with the classical Hellman algorithm, but the rainbow
table method also admits a perfect table version [24] naturally. The perfect table versions of
tradeoff algorithms are of interest due to their better efficiency during the attack phase. How-
ever, analyzing them at the accuracy level aimed for by the current paper is quite delicate,
and is left as a subject of future study.

Another class of tradeoff variants that we do not consider isthe multi-target versions of
the tradeoff algorithms [2, 5, 6, 13], which are usually referred to as the time memorydata
tradeoffs. The objective of these algorithms is to recover at least one of the many original
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inputs that were used to create the multiple one-way function images that are supplied as
inversion targets. This class of algorithms attracted attention as realistic attacks on stream-
ciphers, but present-day streamciphers are designed to withstand these attacks. The most
practical application of the tradeoff technique today is with the password hash systems and
we will present the current work with this application in mind.

Even though a considerable portion of this paper is devoted to the performance analyses
of the three major tradeoff algorithms, the main motivationfor this work was to determine
which time memory tradeoff algorithm is the best. Providing a fair and acceptable answer to
this seemingly simple question is the ultimate goal of this paper.

It has been shown [3, 4] that, if we restrict ourselves to a certain class of algorithms, the
explicit tradeoff algorithms that are known today already achieve the best tradeoff efficiency
one can hope for, at least asymptotically. However, the measure of efficiency considered
by this theory is only accurate up to a small multiplicative factor. In practice, experience
seems to be a critical factor in deciding which algorithm to use, and researchers have varied
opinions on which algorithm performs better.

Comparison of tradeoff algorithms has been a controversialsubject. There are claims
of superiority of one algorithm over another, but, in many cases, these are either heuristic
arguments or based on complexity analyses that are not accurate up to small constant factors.
There are at least two obstacles to providing a fair comparison of tradeoff algorithms. The
first is that the online time of each algorithm is hard to predict accurately, due to certain
events called false alarms. Some answers to this problem maybe found in [1, 15] for the
Hellman and rainbow cases. The current paper relies heavilyon these results. The second
obstacle concerns the minimal number of bits required to store each pre-computation table
entry. In particular, a technique for storage optimizationcalled ending point truncation has
not yet been fully analyzed.

There is a naturally occurring measure of how efficiently a tradeoff algorithm balances
time against storage in achieving its goal and the accurate value of this efficiency measure
becomes accessible once the first obstacle mentioned above is resolved. As was first noted
in [3, 4], the measure of tradeoff efficiency has been expressed in different units for different
algorithms. In this work, by extending the approach of [3, 4], we carefully convert the trade-
off efficiency measures for the three algorithm to a common unit so that they may directly be
compared. The unification of units is intimately connected to the second obstacle mentioned
above. We also carefully treat the time taken for table lookups during our initial transition
of units.

The above two obstacles that are due to our lack of accuracy inpresenting the trade-
off efficiency figures can be overcome through rigorous algorithm analyses, but there is yet
another problem which is related to the pre-computation cost. Currently there is no widely
accepted way of comparing two algorithms that can achieve different tradeoff performances
only after the investment of different pre-computation efforts. Due to this difficulty, many
comparisons of tradeoff algorithms have focused on the above mentioned measure of bal-
ancing capability and have ignored the cost of pre-computation.

In this work, we clear all the obstacles mentioned so far and provide a fair comparison
between tradeoff algorithms. More precisely, we present a method to visualize what can be
achieved by each algorithm in terms of pre-computation costand tradeoff efficiency. This
will be done in a unified way so that the range of choices made possible by each algorithm
can directly be compared against each other. A tradeoff implementer can use this information
to decide on which algorithm to use and which set of parameters to use with the algorithm.
The judgement of which algorithm is more suitable depends onhow the user values the
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pre-computation cost and tradeoff efficiency relative to each other, and, in most cases, the
judgement cannot be done in an objective manner.

While presenting the above comparison method, we will mainly focus on a certain set
of parameters and environmental assumptions that are typically considered during theoretic
analyses of tradeoff algorithms. Under the circumstances under focus, the classical Hellman
and the distinguish point methods are shown to perform very close to each other. When
placed under the additional requirement that the success rates of the tradeoff algorithms must
be high, the rainbow table method is shown to outperform the other two algorithms. These
comparison conclusions will stand true for any relative valuing of the pre-computation cost
and tradeoff efficiency, as long as we are working with the typical situation. Comparisons
at other situations can easily be done by following through our methods, and the resulting
conclusions can be different.

The remainder of this paper is organized as follows. In the next section, we fix notation
and terminologies while reviewing previous results related to this work. Section 3 clarifies
the connection between the theory of tradeoff algorithms and the use of the algorithms in
attacking password hash systems. In Section 4, Section 5, and Section 6, we study the distin-
guished point, Hellman, and rainbow table tradeoff algorithms, in turn. For each algorithm,
we present an accurate tradeoff efficiency figure that does not ignore small multiplicative
factors and also analyze the applicable storage reduction techniques. These sections over-
come the first and second obstacles that were mentioned before. Comparisons of tradeoff
efficiencies under different parameter sets for the same algorithm are made in Section 7.
Finally, our goal of algorithm comparison is reached in Section 8, and the work is sum-
marized in Section 9. Experiment data supporting the arguments of this paper are given in
Appendix E. We acknowledge that a small part of this work was previously made public
through [21].

2 Time Memory Tradeoff Algorithms

In this section we review the basic theory of time memory tradeoffs and fix notation that is
used throughout the paper. We introduce previous results that are related to the results of this
paper, but make no attempt at providing a complete history orsurvey of the time memory
tradeoff technique. In particular, the perfect table tradeoffs algorithms are explained, but
advancements concerning their analyses or comparisons arenot introduced.

Below, after stating some simple technical facts, we describe the three major tradeoff
algorithms, and then explain some auxiliary techniques that can enhance their tradeoff ef-
ficiency. The descriptions are dense and readers that are newto the time memory tradeoff
technique should consult the original papers for more detail.

Throughout this paper, the functionF : N → N will always act on a setN of sizeN
and thek-times iterated compositionF ◦ · · · ◦F of F is written asFk.

2.1 Technical preliminaries

Many of the results given in this paper are expected values for random functions. In very
rough terms, a random functionF is a function that assigns independent and random values
F(x) ∈ N to each of its argumentsx ∈ N . As briefly discussed in [12, 16, 23], working
with a random function is equivalent to choosing a function uniformly at random from the
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set of all functions of certain domain and codomain. In otherwords, any expected value
expressed for a random function is an average computed over all function.

For large positive integersa andb such thata= O(b), we can use the approximation

(

1− 1
b

)a

≈ e−
a

b ,

which is very accurate. For example, whena= b, the error in the approximation is bounded
by e

b
. This approximation is frequently used in the tradeoff literature without any expla-

nation and is also used very frequently in this paper. Its usecan be justified through easy
computation, which is explicitly carried out in Appendix A.

The final technical fact we present concerns the image size ofa random function. Let
F : N → N be the random function. IfM ⊂ N is of sizem0, then the size ofF(M ) is
expected to be

m1 = N

{

1−
(

1− 1
N

)m0
}

≈ N
(

1−e−
m0
N

)

. (1)

An elementary proof of this statement can be given by treating it as a classical occupancy
problem.

More generally, the expectedk-th iterated image sizemk = E
(

|Fk(M )|
)

can be itera-
tively computed through

mj = N
(

1−e−
mj−1
N

)

( j = 1, . . . ,k), (2)

starting fromm0 = |M |. This is stated in [11, 20] to hold asymptotically. The explicit state-
ments given there are only for the case when the input setM is the complete domainN ,
but the case whereM is strictly smaller than the complete domain is used in [24] to state
the success probability of a non-perfect rainbow table. Therelation between (1) and (2) is
carefully discussed in Appendix B.

2.2 Overview of the tradeoff technique

Let F be fixed to a publicly known one-way function. The goal of any tradeoff algorithm is
to recover the inputx, when it is given the function imagey = F(x). Thecorrect answerx
and theinversion targety may occasionally be referred to as thepasswordandpassword
hash, respectively.

Any tradeoff algorithm consists of apre-computation phaseand anonline phase. The
pre-computation phase algorithm gathers information about the one-way functionF through
extensive computation and stores a condensed digest of the gathered information in apre-
computation table. The online phase is when the algorithm is given the targety = F(x) to
invert and tries to recoverx using the pre-computation table.

To be meaningful as an attack, the sizeM of the pre-computation table must be smaller
thanN and the online phase algorithm should return the answer in timeT that is shorterN.
Note thatN is the size of the complete dictionary{(x,F(x))}x∈N and is also the time
required for an exhaustive search. A tradeoff algorithm should allow tradeoffs between
storage and online time in the sense that online attack timeT can be reduced by using a
larger storageM and, conversely, smallerM could be used if longerT is acceptable. Trade-
off algorithms are usually implemented with the intension of running a large number of
online phases after a single pre-computation phase. This gives one justification for a pre-
computation effort that is larger than exhaustive search.
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Even though every implementation of the tradeoff techniqueworks with a specific one-
way functionF , analyses of the tradeoff techniques are always done with the assumption
thatF is a random function.

2.3 Hellman tradeoff

The first algorithm we explain is the classical tradeoff algorithm by Hellman [14].

2.3.1 Parameter setup

Certain parameters need to be fixed before the pre-computation phase can be started. Positive
integersm andt that satisfy the relationmt2 ≈ N are fixed. This equation is referred to as
thematrix stopping rule. Another positive integerℓ ≈ t, which will become the number of
tables, is also fixed.

In this paper, we let the parametersmandt satisfymt2 = HmscN, with amatrix stopping
constantHmsc that is neither very large nor too close to zero. Much of the tradeoff literature
setsHmsc= 1. The conditions we have given toHmscandℓ may (inaccurately) be expressed as
Hmsc=Θ(1) andℓ=Θ(t), respectively. The parameters are always assumed to be reasonable
in the sense that 1≪ m, t ≪ N. The tradeoff algorithms behave somewhat differently when
instantiated with extreme parameters.

The reduction functions Rk : N → N , one for eachk = 1, . . . , ℓ, are fixed. These may
be any family of simple bijections that are very easy to compute. WhenN is a power of 2 and
N consists of non-negative integers less thanN, bit permutations or XOR-ing by constants
are practical choices for reduction functions. Thecolored iterating functionsFk : N → N

are defined throughFk = Rk ◦F .

2.3.2 Pre-computation phase

In the pre-computation phase, what is explained below is repeatedℓ times, once for each
1≤ k≤ ℓ, to buildℓ tables.

We start by choosingm randomstarting pointsspk
1,spk

1, . . . ,spk
m ∈ N . Hellman speci-

fied for each starting point to be chosen independently at random, but most researchers today
see the starting points as being distinct. For each 1≤ i ≤ m, we initially setxk

i,0 = spk
i and

recursively computexk
i, j = Fk(xk

i, j−1) for 0< j ≤ t. The final point reached by each chain of

iterative computations is said to be anending pointepk
i = xk

i,t = F t
k(spk

i ). The ordered pairs

{(spk
i ,epk

i )}m
i=1 are stored as thek-th Hellman table, after being sorted with respect to the

ending points.
The collection of all points{xk

i, j}i, j , associated with an iterating functionFk of one
color k, is said to be aHellman matrixof size m× t. One usually visualizes a Hellman
matrix as follows.

spk
1 = xk

1,0
Fk−−→ xk

1,1
Fk−−→ xk

1,2
Fk−−→ ·· · · · · Fk−−→ xk

1,t−1
Fk−−→ xk

1,t = epk
0

spk
2 = xk

2,0
Fk−−→ xk

2,1
Fk−−→ xk

2,2
Fk−−→ ·· · · · · Fk−−→ xk

2,t−1
Fk−−→ xk

2,t = epk
1

...
...

spk
m = xk

m,0
Fk−−→ xk

m,1
Fk−−→ xk

m,2
Fk−−→ ·· · · · · Fk−−→ xk

m,t−1
Fk−−→ xk

m,t = epk
m
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It consists ofm rowsandt +1 columns. We number the columns so that the starting point
column is the 0-th column and the ending point column is thet-th column. Each row of
a Hellman matrix is apre-computation chain. Any chain of points fromN that has been
formed by iteratively applying anFk of the same colork is aHellman chain.

2.3.3 Online phase

Once the inversion targety = F(x) is given, the process explained below is repeated for each
1≤ k≤ ℓ, until the correct answerx is found. Occasionally, the algorithm will report failure
in returning the answer after processing allℓ indicesk.

We first computeyk
1 = Rk(y) = Fk(x) and check if this appears as one of the ending

points in thek-th Hellman table. The table lookup is repeatedly done for each recursively
computedyk

j = Fk(yk
j−1), until yk

t = F t
k(x) has been searched for in the table. The Hellman

chain
(

x
Fk−−→

)

yk
1

Fk−−→ yk
2

Fk−−→ yk
3

Fk−−→ ·· · · · · Fk−−→ yk
j

that is computed through this process is referred to as theonline chainfor thek-th Hellman
table.

Whenever a matchyk
j = epk

i is found, the corresponding starting pointspk
i is retrieved

from thek-th Hellman table, and the associated pre-computation chain is (partially) regen-
erate to obtainxtmp= xk

i,t− j = F t− j
k (spk

i ). Since

F j
k (xtmp) = F j

k (F
t− j
k (spk

i )) = epk
i = yk

j = F j−1
k (y1) = F j

k (x),

there is a chance thatxtmp= x. This is why thej-th iteration of the online phase for a specific
table is sometimes referred to as searching for the answerx among the(t − j)-th column of
the Hellman matrix. If multiple ending points match the current end of the online chain, one
must not forget to regenerate all the corresponding pre-computation chains.

Even though the existence ofx in the(t − j)-th column of a Hellman matrix will surely
imply thecollisionof yk

j with an ending point, the converse is not true unlessFk is injective.
An ending point collision could be caused by amergebetween the online chain and a pre-
computation chain. Hence, the online phase algorithm must check whether the candidate
answerxtmp is the correct answerx. The candidate is clearly incorrect ifF(xtmp) 6= y, but
a full verification requires more information than is contained iny and this is explained in
more detail in Section 3. If the candidatextmp is found to be incorrect, the event is referred
to as afalse alarm, in which case the online phase resumes the iterative computations of the
online chain.

2.3.4 Success probability

The algorithm description for the Hellman tradeoff is complete and we now give some rough
analyses.

The success of inversion is intimately related to how many distinct points are covered
by the Hellman matrices. Assume that there are not too many duplicates in anm× t Hellman
matrix and consider the addition of one more pre-computation chain to this matrix. The ex-
iting Hellman matrix and the new chain contain approximately mt andt points, respectively.
Since the matrix stopping rule givesmt·t ≈N, we know from the birthday paradox that there
is a high chance that the new chain and the existing Hellman matrix will contain a common
element. Hence, the new chain is likely to merge into an existing pre-computation chain and
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much of the computation that was done to create this additional chain goes to waste. Hence,
it makes little sense to continue enlarging a Hellman matrixbeyond them× t bound set
through the matrix stopping rule. This is the reason for using multiple small tables, rather
than a very large table. The discussion given so far also indicates that the duplicates within
the matrix will not be too many until one comes close to them× t bound.

Let us use|HM| to denote the expected number of distinct nodes contained ina Hellman
matrix. The probability of successful inversion after the processing of a single Hellman table
is |HM|

N
. Hellman [14] provided the lower bound

|HM|
N

≥ 1
N

m

∑
i=1

t

∑
j=1

(

1− it
N

) j
(3)

and used it to explain the appropriateness of the matrix stopping rule. The arguments given
above that involves the birthday paradox are from [5, 6], andmay not be found in [14].

When allℓ≈ t tables are processed, assuming that the reduction functions provide inde-
pendence between tables, the probability of success becomes

1−
(

1− |HM|
N

)ℓ
≈ 1−exp

(

− ℓ |HM|
N

)

. (4)

Since the number of duplicates within each Hellman matrix iskept low by the matrix stop-
ping rule, we have|HM| ≈ mt. Recallingℓ≈ t and applying the matrix stopping rule, we can
state that the probability of the Hellman tradeoff in successfully recovering the correct an-
swerx is approximately 1− 1

e ≈ 63.2%. This is sufficiently large for the Hellman algorithm
to be meaningful as an attack.

Interestingly, the original paper [14] does not explicitlyexpress the success probabil-
ity (4) of the complete algorithm. It is only stated that the inverse of the right-hand side
of (3) should be taken as the approximate number of pre-computation tables that are to be
created. However, statements similar to (4) may be found in works as far back as [17, 18].

In [18], the right-hand side of (3) was carefully approximated, so that the bound could
be rewritten as

|HM|
N

≥ mt
N

1
Hmsc

∫ Hmsc

0

1−e−x

x
dx. (5)

Experiment data provided in the work supports the correctness of this bound, but it also
showed that this bound was far from being tight. For example,at Hmsc= 1, the test data
provided was|HM|

N
= 0.85 mt

N
, while the right-hand side of (5) was 0.80 mt

N
.

This discrepancy was resolved by [9, 19], which computed theexpected value|HM| itself,
rather than its lower bound. This result is copied as Proposition 21 in the main body of the
current paper.

Success probability of the Hellman tradeoff was also studied in [26]. However, the inver-
sion problem considered there is different from that considered by the current paper. Their
analysis is applicable if one wishes to recoverany pre-image corresponding to arandom
image. This is neither of the two inversion problems that are discussed later in Section 3.4
of the current paper in that the inversion target is directlychosen without the involvement of
an input.
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2.3.5 Cost of resolving alarms

An upper bound for the number of false alarms per table was given asHmsc
2 in [14]. This was

combined with the fact that resolving each alarm requires atmostt iterations to argue that
the side effects of false alarms on the online time complexity was limited.

A much better bound on the effects of false alarms is given in [18] as

(cost of resolving alarms for all tables)≤ Hmsc

6
ℓt. (6)

Almost the same content reappears in [15], expressed in the form

(expected cost of resolving alarms per table)=
Hmsc

6
t. (7)

The proofs given by the two paper for the above two statementsare essentially identical.

2.3.6 Tradeoff curve

We haveℓ≈ t tables, each containingmentries, so that the total storage size isM =mℓ≈mt.
Disregarding the time taken to treat false alarms, it takest iterations of the one-way function
to process each of theℓ ≈ t tables, so the online time complexity is at mostT ≈ tℓ ≈ t2.
Applying the matrix stopping rule toT andM, one can arrive at thetrade-off curve

TM2 ≈ N
2 (8)

for the Hellman tradeoff.
Conversely, suppose that certain valuesT andM satisfy the trade-off curve (8). Then

the parameterst =
√

T andm= M/
√

T satisfy the matrix stopping rule. When the Hellman
tradeoff is implemented with theset, m, andℓ≈ t, it will require storageM and run in online
time T.

The tradeoff curve (8) did not appear in the original publication [14]. The above presen-
tation has been adopted from [5, 6].

2.4 DP tradeoff

The distinguished point method, which we shall simply referto as theDP tradeoff, is a
simple modification of the Hellman tradeoff. Introduction of the DP technique is attributed
to Rivest in the book [10], but no corresponding publicationcan be found. Theperfect table
version of the DP tradeoff was first studied in [7, 8] and this was followed by some further
analyses in [1, 25, 29], but literature analyzing the non-perfect DP tradeoffs, which we deal
with in this work, is hard to find.

2.4.1 Parameter setup

As in the Hellman tradeoff, one fixes positive integersmandt satisfying the matrix stopping
rule mt2 ≈ N. Reduction functionsRk : N → N are chosen and colored iterating func-
tions Fk = Rk ◦F are defined as before. Our work will use the notationmt2 = DmscN with
a matrix stopping constantDmsc= Θ(1). As in the Hellman tradeoff,ℓ = Θ(t) will be the
number of tables. The parameters are always assumed to be reasonable in the sense that
1≪ m, t ≪ N.
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One fixes a property which is satisfied by a random element ofN with probability 1
t .

Thisdistinguishing propertyshould be very easy to check. For example, suppose thatt andN
are powers of 2 and that the setN consists of non-negative integers less thanN. Then, one
usually defines an element ofN to be adistinguished point, or a DP, if the first logt bits of
its binary representation are zero.

2.4.2 Pre-computation phase

Rather than fixing the length of each pre-computation chain to t, the pre-computation itera-
tionsxk

i, j = Fk(xk
i, j−1) are continued until the current chain endxk

i, j is found to be a DP. The
resultingm pre-computation chains will be of varying lengths, but their average length will
be t. As in the Hellman tradeoff, them starting point and ending point pairs are stored as a
DP tableandℓ tables are constructed, each corresponding to a different color 1≤ k≤ ℓ.

Any chain computed through iterative applications of a single Fk that ends at a DP is
a DP chain. The collection of all pre-computed DP chains associated with one DP table
is referred to as aDP matrix, even though the collection can no longer be visualized as a
rectangular shaped matrix.

2.4.3 Online phase

Given the inversion targety = F(x), the online phase of the DP tradeoff proceeds quite
similarly to the Hellman tradeoff online phase. However, since only DPs can be found among
the ending points, table lookups are done only when the iteratively computedyk

j is found to
be a DP. Since no pre-computation chain contains a DP in the middle part of the chain, the
online chain iterations for any single DP table is terminated at its first DP occurrence.

Resolving alarms is slightly tricky with the DP tradeoffs. Because the length of each
pre-computation chain is not known, one regenerates the pre-computation chain until either
yk

1 is reached or a DP, which sits at the end of the pre-computation chain, is reached. One can
store the length of each pre-computation chain in the DP table [7, 8] to remove this problem,
but this has the side effect of increasing the pre-computation table size, and is not considered
in the current work. If multiple ending points match the current end of the online chain, all
corresponding pre-computation chains need to be regenerated.

2.4.4 Preliminary analysis

The success probability (4) is also valid for the DP tradeoff, when|HM| is replaced with the
number of distinct entries in a DP matrix. Since the average length of the pre-computed
DP chains ist, each DP matrix covers approximatelymt points and the previous rough
approximation 1− 1

e for the success rate remains valid for the DP tradeoffs. The online
chain is likely to reach a DP in approximatelyt iterations, so that the number of online
iterations isT ≈ ℓt ≈ t2, when the efforts made to resolve alarms are ignored. Combining
this with the pre-computation table size, which isM = ℓm≈ mt, we find that the tradeoff
curve (8) is also valid for the DP tradeoff.

2.4.5 Chain length bound

In practice, a chain may fall into a loop that does not containa DP and never reach a DP.
Hence, any implementation of the DP tradeoff sets a chain length bound [7, 8], which we
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denote bŷt, and any chain that fails to reach a DP within this bound, during either the pre-
computation phase or the online phase, is discarded. The pre-computation phase of a DP
tradeoff must generate additional chains to fill in the discarded chains.

Even though some of our results are stated in a way that displays its dependence on̂t,
we are mainly interested in the case wheret̂ is sufficiently larger thant. The number of
discarded chains is minimized by such a choice and most of thepre-computation is put to
good use. Since pre-computation cost is the main barrier to any large scale implementation
of the tradeoff technique, such a choice is natural in practice.

If a chain is generated with the random function, the probability for it to become a DP
chain within the chain length bound̂t is

1−
(

1− 1
t

)t̂
≈ 1−e−t̂/t . (9)

This easy statement may be found in [7].

2.5 Rainbow tradeoff

The rainbow table method was introduced by Oechslin [24]. From this point on, we will
refer to the rainbow table method simply as therainbow tradeoff.

2.5.1 Parameter setup

One starts with positive integersm andt satisfying the matrix stopping rulemt≈ N. Notice
that this equation is different from the matrix stopping rules for the previous two algorithms.
In this work, we use the notationmt= RmscN with thematrix stopping constantRmsc=Θ(1).
Unlike the previous two algorithms, a small number of tablesℓ = Θ(1) is used with the
rainbow tradeoff. The parameters are always assumed to be reasonable in the sense that
1≪ m, t ≪ N. Reduction functionsRk

j : N →N are fixed as before, but these have double
indices that are made to run overj = 1, . . . , t andk = 1, . . . , ℓ. The doubly colored iterating
functions are defined throughFj,k = Rk

j ◦F .

2.5.2 Pre-computation phase

Instead of using a single reduction function for each table,t different reduction functions
are sequentially applied to create apre-computation chainof lengtht. Eachpre-computation
tablestores the information fromm chains. More explicitly, thei-th pre-computation chain
for thek-th rainbow table takes the form

spk
i = xk

i,0
F1,k−−−→ xk

i,1
F2,k−−−→ xk

i,2
F3,k−−−→ ·· ·· · · Ft−1,k−−−−→ xk

1,t−1
Ft,k−−−→ xk

i,t = epk
i ,

where 1≤ i ≤ m and 1≤ k≤ ℓ. Each of these is arainbow chain.
The complete set ofm chains for any fixedk is anm× t rainbow matrixand the set of

pairs{(spk
i ,epk

i )}i is stored as thek-th rainbow tableafter being sorted on the ending points.
Columns of a rainbow matrix are numbered from the 0-th, containing the starting points, to
thet-th, containing the ending points.
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2.5.3 Online phase

Let the inversion targety = F(x) be given for the online phase. For eachj = 1, . . . , t and
k= 1, . . . , ℓ, we compute thej-th online chain for thek-th table

(

x
Ft− j+1,k−−−−−→

)

yk, j
t− j+1

Ft− j+2,k−−−−−→ yk, j
t− j+2

Ft− j+3,k−−−−−→ ·· ·· · ·
Ft−1,k−−−−→ yk, j

t−1

Ft,k−−−→ yk, j
t ,

through iterative computation, starting from the pointyk, j
t− j+1 = Rk

t− j+1(y) = Ft− j+1,k(x).

After each chain computation, the chain endyk, j
t is searched for among the ending points of

the k-th rainbow table. The absence of a collision indicates thatthe correct answerx does
not belong to the(t − j)-th column of the rainbow matrix. The appropriate pre-computation
chain is regenerated whenever a collision is found. Many of these regenerations will lead to
the announcement of afalse alarm.

The order of incrementing the double indices during the online phase requires clarifi-
cation. One should take the chain lengthj-index to be the outer loop and the table number
k-index to be the inner loop. In other words, for any indexj, one computes thej-th online
chains for allℓ tables, before computing any of the( j +1)-th online chains. This is referred
to as the parallel processing of rainbow tables. The opposite nesting of the loops is called the
sequential processing of tables. As was already noted in [24], the parallel approach is more
efficient in terms of the expected number of one-way functioninvocations. Parallel process-
ing of tables is more commonly considered and this is the approach we assume throughout
this work.

2.5.4 Success probability

In [24], one can find the success probability of a rainbow tradeoff that uses a single table
written as

1−
t−1

∏
j=0

(

1− mj

N

)

, (10)

wherem0 = m andmj are recursively computed through (2). However, this was notsimpli-
fied into a closed form formula there.

While studying the perfect table version of the rainbow tradeoff, the work [1] restricts
to them= N case and gives the approximation

t−1

∏
j=t−i

(

1− mj

N

)

≈ t − i
t

t − i +1
t +1

. (11)

Notice that the range of indices in the left-hand side product is shorter than that appearing
in (10). The left-hand side product ofi terms expresses the probability for the firsti on-
line chain computations for a single table (non-perfect) rainbow tradeoff to fail in returning
the correct answerx. This expression is valid for anym, even though the right-hand side
approximation is appropriate only form= N.

After almost repeating the computations done by [1], the work [15] obtains a general-
ization of (11) that is valid for anym. The result is restated as Lemma 28 in the main body
of this paper. Neither (11) nor Lemma 28 were explicitly stated as separate results in the
referenced papers, but they can be inferred from parts of their proofs.
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2.5.5 Preliminary analysis

A collision of points from two rainbow chains will result in merging chains only if the
collision occurred at a matching color index. When a new rainbow chain is added to an
existingm×t rainbow matrix that contains no collisions within each column, the probability
of not experiencing a merge can be expressed as(1− m

N
)t ≈ e−

mt
N . Hence, the matrix stopping

rule mt≈ N is the correct boundary at which collisions among pre-computation chains start
to become problematic.

Let us assume the use of a single table for the rest of this rough analysis. Ignoring
collisions within each rainbow matrix column, the success probability (10) may roughly be
approximated as 1−

(

1− m
N

)t ≈ 1−e−
mt
N ≈ 1− 1

e. This is equal to what we saw during the
rough analyses for both Hellman and DP tradeoffs.

Notice that the computations for thej-th online chain cannot reuse any of the informa-
tion computed for previous online chains. Hence, the numberof one-way function iterations
required for the computation of all online chains isT = 0+1+ · · ·+(t −1) ≈ t2

2 . The stor-
age size for the single rainbow table isM = m. Recalling the matrix stopping rulemt≈ N,
the tradeoff curve can be written as

TM2 ≈ 1
2
N

2. (12)

The above time complexity analysis appears in [24], from which the tradeoff curve directly
follows.

2.5.6 Further analysis

The preliminary analysis given above corresponds to the worst case where the complete
table is processed. In practice, the online phase is likely to terminate before computing the
t-th online chain. On the other hand, the cost of resolving alarms has been ignored. Hence,
the rough analysis does not give the true worst case complexity.

The work [15] provides an accurate analysis of the time complexity for rainbow trade-
offs. The expected number of one-way function iterations required to process a single rain-
bow table was expressed as an explicit rational function ofRmsc timest2. Similar result for
the additional number of one-way function iterations required to process alarms was also
stated. However, the results were restricted to the single table case. We do not state their
results here, but their results are reobtained if we substituteℓ= 1 into (22), appearing in the
main body of this paper.

2.6 Perfect table tradeoffs

The main objective of introducing the DP technique was to reduce the number of table
lookups that occur in the Hellman tradeoff. However, it was soon noticed that DPs allow easy
detection of merging chains. During the pre-computation phase of aperfect tableversion
of the DP tradeoff [7, 8], one removes chain collisions by keeping only the longest of the
merging chains. Chains are additionally generated untilmnon-merging DP chains have been
collected. The resulting perfect DP matrix contains no overlapping points. The online phase
of the perfect DP tradeoff is identical to the non-perfect version. The work [7] gives credit
to the unpublished work [27] for independently introducingthe same algorithm.
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Detection of merging chains is also easily done with the rainbow tradeoff. Theperfect
tableversion of the rainbow tradeoff [24] stores information forjust one chain from each set
of merging chains. Unlike the DP case, a perfect rainbow matrix may contain overlapping
points if they belong to different columns.

The perfect table version of the Hellman tradeoff refers to the case where the Hellman
matrix contains no overlapping points. Some discussions may be found in [1, 26]. However,
generating a perfect Hellman table is costly and its use is not considered to be practical.

Since there are less or no overlaps in a perfect table, these provide better coverage of the
search space than their corresponding non-perfect versions for the same amount of storage.
Hence, perfect tradeoffs are likely to be more efficient thanthe non-perfect tradeoffs. How-
ever, this gain in tradeoff efficiency is paid for with the pre-computation that was wasted in
generating the discarded chains.

The extra pre-computation required for the use of perfect tradeoffs may not seem to be
of importance. However, the pre-computation cost can be critical when implementing trade-
offs at the limit of one’s resources. Consider a large scale implementation for which the
pre-computation may take several months on a large cluster of computers. In such a situa-
tion, extending the pre-computation period by another few month or doubling the number
of computers allocated to the pre-computation task will notbe a viable option, even if it
promised a significant advantage in the online tradeoff efficiency.

Even though there are analyses of perfect tradeoffs [1, 7, 8,15, 24, 29], dealing with them
at the accuracy level aimed for by the current paper is considerably more complicated than
the non-perfect tradeoffs. This is especially true with theperfect DP tradeoffs. In view of
relative practicality and theoretic accessibility, we deal only with the non-perfect versions
of tradeoff algorithms in this work. Inclusion of the perfect tradeoffs into the comparison
results obtained in this paper is left as a subject for futurestudy.

2.7 Storage optimization

The storage sizeM appearing in the tradeoff curves (8) and (12) refers to the total number
of starting point and ending point pairs that need to be stored in the tradeoff tables. In
practice, it is important to know the physical size, or the number of bits, required for the
table. Each starting point and ending point pair can surely be stored in 2logN bits, but there
are techniques that allow more efficient use of storage.

Below, we assume a suitable method of enumerating the elements ofN has been fixed
and treat elements ofN as logN-bit integers. This enumeration is trivial whenN is the set
of all bit strings of certain length, but may require a small amount of work whenN is given
as the set of passwords satisfying certain complicated linguistic structures.

2.7.1 Consecutive starting points

The first storage reduction technique we review is the use of starting points that require less
storage. The work [6] does this while implementing an attackon a specific system and [7]
mentions this as a well-known trick without giving any reference. A clear understanding of
the random functions shows that the starting points may be chosen in any manner, as long
as it has no relation to the graph structure of the specific one-way function under attack.

A practical method of choosing starting points is to use consecutive integers [1]. The
integers 0 throughm−1 will work for any (non-perfect) table. Inter-table collisions among
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11101001
11001010
10111001
01101110
01011100
01010101
00101100
00010110

101001
001010
111001
101110
011100
010101
101100
010110

11
10
01
00

Fig. 1 Index table technique (The sorted list on the left-hand sideis transformed to the right-hand side list,
which contains two less bits per entry.)

the starting points can be removed by concatenating the table index to the consecutive in-
tegers [4]. Note that the table index need only be recorded once for each table. However,
the effect of joining table numbers is almost nonexistent oneven the second columns of the
pre-computation matrices, so this detail is not very important. In any case, the starting points
can be stored in logm bits, rather than logN bits.

The experiment provided by Hellman [14], supporting the arguments concerning the
success probability, was executed with starting points setto small numbers, rather than ran-
dom points. However, it is not clear if this was intended to reduce the storage size.

2.7.2 Taking advantage of the DP definition

In the case of DP tradeoffs, any information that can be recovered from the definition of a
distinguished point may be removed from the ending point before storage. For example, if a
prefix consisting of logt zero bits defines a DP, the logt bits of zeros can be removed from
each ending point without any loss of information. This method was actively used in [6]
and clearly stated in [29], but seems trivial enough to have been widely known before these
works.

2.7.3 Index table

The work [6] introduces theindex tablemethod. This is a degenerate form of a widely known
technique called hash tables, which is explained in Appendix D.

To facilitate fast table lookups, the pre-computation tables are usually sorted on the end-
ing points before being written to storage. Let us focus on the{(logm)−ε} most significant
bits of each ending point in the sorted table, whereε is any small positive integer. Assuming
that the ending points are randomly distributed, for each integer 0≤ i < m

2ε , we can expect to
find approximately 2ε consecutive entries in the sorted table that have the{(logm)− ε} bit
prefix of the ending point equal to integeri. Hence, one can remove{(logm)− ε} bits from
each ending point and replace it with an index table that points to the starting positions for
eachi value without loosing any information. The number of entries contained in the index
table is only m

2ε and hence the additional storage required by its introduction can be ignored.
An example is illustrated by Figure 1.

In practice, the index table could store the number of entries corresponding to each index
value rather than the full physical addresses. With such an approach, since only very small
number of bits are required to store each count, even the use of ε = 0 could be considered.
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2.7.4 Ending point truncation

The methods described so far reduce the storage size withoutlosing any information con-
cerning each starting point and ending point pair. However,this is not so with the final
storage reduction method we describe, which is to simply truncate a part of the ending point
before storage.

The truncation of ending points was done in [6] for a specific tradeoff implementation,
where it was simply stated that the number of bits they allocate is sufficient for identification
purposes. In [4]1, under the assumption thatm≈ N

1
3 , it is claimed that the ending points of

a DP table can becompressedto slightly more than1
3 logN bits. It is also claimed that the

ending points for the rainbow tradeoff can be compressed to slightly more than2
3 logN bits.

The paper does not provide any justification for these claims.
During the online phase, when a table lookup is required, theobject to be searched for

in the table is truncated to the same length and compared withthe truncated ending points
of the table. The table lookups may now falsely return a matcheven when a merge between
the online chain and a pre-computation chain did not happen.Still, since we were already
expecting false alarms, no new measure needs to be devised todeal with the new type of false
alarms. Aggressive ending point truncation will cause morefrequent false alarms, hence the
degree of truncation should be carefully controlled.

The word truncation may give the impression that such a method is applicable only when
the spaceN consists of bit strings. On spaces that look different, any surjective map that is
pre-image uniform, in the sense that the number of pre-images for each element in the range
is identical, can serve as the truncation operation. In practice, password hashes are usually
bit strings and one does not apply the reduction function at the end of a chain, so truncations
can easily be done.

2.8 Parameter optimization

Choosing the parametersm, t, andℓ for a concrete tradeoff implementation is not an easy
task.

The work [18] starts with the assumption that the cost, in dollars, of a tradeoff attack
implementation is proportional to the storage size and the number of one-way function com-
putations the online phase machine can perform per unit time. This allows one to consider
the lowest possible monetary cost of an attack machine that must succeed with a given
probability and finish within a preset real-world time. Expressions giving lower and upper
bounds for the optimal cost are presented and parameterst, m, andℓ that can achieve the
optimal cost are also found. The optimal parameters that arestated depend on the relative
cost of storage versus one-way function computations at unit speed.

This analysis is one of the few that takes false alarms into account when computing the
time complexity of the online phase. However, the analysis relied on the bounds (5) and (6),
which are not very tight, and the upper bound for the optimal cost was simply taken to be
an approximation for the optimal cost. Also, while defining the optimal cost, the amount of
pre-computation was fixed to what is required for a single exhaustive search.

The measure of efficiency used in the current work is different from the monetary cost
discussed by [18]. Our interest is in how efficient each tradeoff algorithm is in balancing stor-

1 The paper refers to the Hellman tradeoff, but it seems that the DP tradeoff was implied. Many researchers
view the Hellman tradeoff as always incorporating the DP technique.
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age against online time. This balancing ability changes with the amount of pre-computation
that is invested and the required success rate. The optimal monetary cost for implementation
can easily be computed whenever this balancing ability is accurately fixed.

In [17], an attempt was made to optimize the success probability of Hellman tradeoff,
while keeping both the time and storage complexities constant. The gain in success proba-
bility was paid for with larger pre-computation.

There are two parts of their argument that introduce inaccuracy into their results. Since
they did not have access to a good expression for the time complexity, it was not possible
for them to keep the time complexity exactly constant. They had to be satisfied with keeping
ℓt, which is an upper bound for the time complexity in the absence of false alarms, constant.
The second point was that they lacked knowledge of the exact success probability and had
resorted to using its lower bound given by (5).

The general conclusions of [17] may still be correct, but thedetails, in particular, the
explicit optimal parameters and values, will need to be recomputed with the information
given in the current paper. A little more light was shed on theattempt by [24], but the
discussion there still relied on rough estimates of time complexity and success probability.

2.9 Comparison of tradeoff algorithms

Let us attempt a comparison of the three tradeoff algorithmswe have explained, based on
their tradeoff curves that are already available. Both the Hellman and DP tradeoff curves are
given by (8) and the rainbow tradeoff curve is given by (12). Considering the case where
the same storageM is given to the three tradeoff algorithms, the tradeoff curves imply that
the rainbow tradeoff will require only half the number of one-way function invocations
compared to the other two algorithms during the online phase. In addition to giving an
argument that is equivalent to what we have just describe, the work [24] argues heuristically
that the rainbow tradeoff is at an advantage over the DP tradeoff concerning false alarm
issues.

The claimed efficiency of the rainbow tradeoff over the DP tradeoff is refuted in [3, 4]2

with the observation that the number of physical bits required to store each entry of the
tradeoff table has been ignored by [24].

Assume the use of typical parametersm= t = ℓ=N
1
3 for the DP tradeoff. Recalling the

contents of Section 2.7, one finds that the starting points for the DP tradeoff can be stored
in 1

3 logN bits. It is claimed in [4] that the ending points can first be compressed to slightly
more than1

3 logN bits and then further compressed to a very small number bits by applying
the index table method. Hence each entry of a DP table requires slightly more than1

3 logN

bits to record. In the case of rainbow tradeoffs, one assumesthe typical parametersm= N
2
3 ,

t = N
1
3 , andℓ = 1. Then each starting point requires2

3 logN bits. The ending point is first
compressed to23 logN bits and then most of this is removed through the index table method.

Accepting the above arguments, we see that each entry of a rainbow table requires twice
the number of bits required by an entry of a DP table. When given the same physical amount
of storage, the DP tradeoff can store twice as many starting point and ending point pairs.
This translates to a gain in online time by a factor of four through the tradeoff curve. In
conclusion, the DP tradeoff will run two times faster than the rainbow tradeoff for the same
physical amount of storage.

2 It seems the DP tradeoff was implied, even though the paper refers to the Hellman tradeoff.
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The more recent work [1] once again advocates the rainbow tradeoff and tries to explain
that the arguments of [4] that we have explained so far are misleading. They emphasize
that the advantage of the rainbow tradeoff claimed in [24] was by a factor ofat leasttwo,
rather than just two. This is a reasonable point to make, but their ensuing arguments seem
to indicate that they were not aware of the ending point truncation method, which was taken
into account in [4]. One could interpret this as showing how uninformative [4] was in treating
the ending point truncation method.

As we will verify in this work, the claims of [3, 4] were mostlycorrect, but there are
hidden issues that can overturn their conclusion. The first is that the tradeoff curves given
by (8) and (12) are not accurate. Both of these correspond to the worst case where the
algorithms are executed to the end without the correct answer being found. In fact, this was
the point made by [1], although it was used to support only therainbow tradeoff. One must
also note that the effects of false alarms have been ignored by both tradeoff curves so that
neither accurately reflects even the worst case complexity.

The second issue is that the success probabilities of the twoalgorithms may not be
precisely equal at the typical parameters. We have already noted that both algorithms have
approximate success probability of 1− 1

e at the typical parameters, but this is an extremely
rough estimate, and the running time of a tradeoff algorithmis very sensitive to the required
success rate. The controversy explained here are discussedin more detail in Section 8.4,
after we have developed the necessary tools.

The comparison claims by [24] and [3, 4] were made using parameters that require pre-
computation equal to a single exhaustive search. Recent comparison claims that deal with
the perfect tables, which we do not treat in this paper, have the tendency to completely
ignore the pre-computation cost. Neither approach reflectswhat can be done in practice. The
difficulty of including the pre-computation cost into the comparison of tradeoff algorithms
seems to have been one reason why perfect tradeoffs have received more focus recently.
They certainly appear more attractive, when pre-computation is ignored.

2.10 Checkpoint

The checkpoint[1] technique allows for the resolving of alarms without theregeneration
of the pre-computation chain. This technique is applicableto both Hellman and rainbow
tradeoffs. Application to the DP tradeoff is also possible but slightly more complicated due
to the variations in chain lengths.

A column of the pre-computation matrix is designated as thecheckpointbefore pre-
computation. After generation of each pre-computation chain, the least significant bit of the
chain element that sits at the checkpoint column is appendedto the starting point and ending
point pair that is to be recorded in the pre-computation table. During the online phase, we
proceed as usual until an alarm is encountered. At each collision, the online chain is aligned
with the colliding pre-computation chain at the ending points. If the online chain is long
enough, the least significant bits of the two points that belong to the checkpoint column are
compared. If the two checkpoint bits do not match, the endingpoint collision must have
resulted from a merge of chains, and the collision is declared a false alarm. If the checkpoint
bits do match, the pre-computation chain is regenerated as usual to resolve the alarm.

The use of checkpoints filters out some of the efforts spent onpre-computation chain
regeneration. One can generalize what has been explained tomultiple checkpoint columns,
consider other methods of extracting a checkpoint bit, or collect more than one bit of infor-
mation from each checkpoint column.
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An analysis of the effects of checkpoints in reducing onlinetime was given by [1] for
the perfect rainbow tables. Analysis for Hellman tradeoffsand single table (non-perfect)
rainbow tradeoffs were done in [15]. With a single checkpoint at the optimal position, the
Hellman tradeoff online time decreases by 3.17% atHmsc= 1, and the online time of a
single table non-perfect rainbow tradeoff decreases by 5.91% atRmsc= 1. The effects of
checkpoints are more visible at higherHmscandRmscvalues.

The advantage of checkpoints must be compared with its side effect on the storage size.
After the techniques of Section 2.7 have been applied, even asingle bit difference in table
entry size could translate to a meaningful size ratio change. For example, at 50 bits per
table entry, if the increase of single bit per table entry caused by the use of checkpoints was
instead allocated to enlarge the number of table entries, the online time would have reduced
by 1−

( 50
51

)2
= 3.88%. This is better than the above mentioned 3.17% reduction effect of

checkpoints on the Hellman tradeoff and the 5.91% reduction effect on rainbow tradeoff
should be interpreted as achieving only approximately 2.0% extra reduction.

Since the effects of checkpoints are small and selective applications of checkpoints will
affect all algorithms in the positive direction, its effecton the final comparison of algorithms
will be minimal. On the other hand, consideration of the checkpoint technique would add
another layer of complication to our analysis. Hence, the analysis given in the current pa-
per does not consider the use checkpoints. However, we are not claiming that the use of
checkpoints should not be considered in practice.

3 Applying Time Memory Tradeoff to Password Hashes

One usually states the objective of a tradeoff algorithm as the inversion of a one-way func-
tion. A closer look reveals that there are two versions of theinversion problem and we will
explain how one of these corresponds to the applications of the tradeoff technique to pass-
word hash systems. Issues concerning the use of random functions in the theoretic analysis
of tradeoff algorithms are also discussed in this section.

In this section, we refer to the one-way function image as thepassword hashand the
input as thepassword.

3.1 Password hash

Let us briefly explain how the security features of many file formats that rely on passwords
for access control work in its very basic form.

The designer of the system chooses and fixes a one-way function H. This one-way func-
tion is a part of the file format specification and is usually considered to be public. In fact,
the one-way function definition can be extracted from the related software even if it was not
originally made public. When the owner of a file following this format wants access control
to be applied to the file, the user supplies a passwordx. An encryption key is derived from
the password, and the main content of the file is replaced by its encryption under this key.
Then the imagey = H(x) of the user password, under the one-way function specified for
the file format, is added to the file. Finally, any record of theencryption key and the raw
password supplied by the user is destroyed.

Later, when authentication is required for file access, the supporting software asks for
a password. The one-way function imageH(x′) of the newly supplied passwordx′ is com-
puted by the software and is compared with the correspondinginformationy stored within
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the file. If a perfect matchy = H(x′) is found, equalityx = x′ is assumed, the main body of
the file is decrypted using the key derived from the passwordx′, and access to the decrypted
content is granted. Note that the one-way function imagey of the correct password is stored
within the file without any protection and is accessible to anyone that has obtained the file.

User authentication procedure for computer system logins works in much the same way.
At the time of initial user registration to the system, the one-way function image of the
password supplied by the user is recorded in a file that is stored within the system. In this
case, access to the one-way function images may be harder forthe attacker than the above
case, but this information is often sent over the network in the clear to a group of computers,
so that each of these computers may allow authenticated logins to a user that has registered
at a central server.

3.2 Uniqueness of the pre-image to a password hash

Out of theoretic curiosity, we first ask whether a password hash uniquely determines the
password. This should seem obvious in any practical usages of the password hash systems.

Proposition 1 Let H : P → H be the random function. Given any passwordx ∈ P, the
number of inputs that H maps to the password hash H(x) is expected to be1+ |P |−1

|H | .

Proof SinceH is the random function, we can first assign a randomly chosen value ofH
to H(x) and then define all the other function values. The probability for any one of the
later assignments to strikeH(x), which is an explicitly fixed value inP, is 1

|H | . Each later
assignment is independent of all other assignments, and we can expect the number of later
assignments toH(x) to be |P |−1

|H | . ⊓⊔

Readers should not misinterpret the above proposition as giving the pre-image size of
a randomy ∈ H under a randomH. For the random functionH, the distribution onH
produced byH(x) is the uniform distribution for each fixedx ∈ P, and everyy ∈ H is

expected to have|P |
|H | -many pre-images, rather than 1+ |P |−1

|H | . This is not in contradiction
with the proposition, as the proposition deals with the distribution onH produced from
random inputs by the specificH that has been constructed, and this is different from the
uniform distribution onH . Those points ofH that lie outsideH(P), for the specifically
constructedH, do not have any chance of appearing.

One can also ask for the pre-image size of a random password hash y ∈ H(P). Note
that this question can only be asked after the random function H has fully been constructed.
The corresponding answer will depend on the size ofH(P), but, when|P| = |H |, this
should be close to

|P|
E(|H(P)|) ≈

1

1− 1
e

≈ 1.582.

Once again, this question is not related to the content of theabove proposition. It deals
with the uniform distribution onH(P), which is different from the distribution onH(P)
given by the fully specifiedH. Those points with larger pre-image sets will have a larger
probability of appearing than those with smaller pre-imagesets.

Consider an application of the tradeoff technique to a blockcipher whose key length is
equal to its block length. In such a case, one is working with|P|= |H | and Proposition 1
states that there will be approximately two keys, on average, that map to a given target
ciphertext. This is probably larger than what many would have naively expected. Of course,
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in practice, one usually assumes the use of a second ciphertext to almost uniquely identify
the key. In fact, if one interprets the key to two-ciphertexts mapping as a new one-way
function, then Proposition 1 claims that the key is almost uniquely determined from the two
ciphertexts.

Let us next discuss what Proposition 1 implies for systems that rely on passwords for
access control. These systems are usually designed so that the spaceH of potential hash
values is significantly larger than the spaceP of admissible passwords. A typical password
hash would be a bit string of at least 128 bits in length and thenumber of alphanumeric
passwords consisting of ten characters is only 6210 ≈ 259.5. In such a case, Proposition 1
shows that a password hashH(x), produced from a passwordx, will almost always identifyx
uniquely.

Furthermore, in practice, the set of all passwords admissible by the security system is not
of much importance. Since human generated passwords are notuniformly distributed within
the complete admissible password space, the tradeoff attacker first fixes a manageable sub-
setP ′ ⊂ P from the set of all passwords and decides to be satisfied with recovering only
those passwords that lie inP ′. The size of this subset is determined by the computational
power that the attacker can allocate to the pre-computationphase and should preferably
cover the passwords that are most likely to be used. In fact, it has been shown [22] that
human-memorable passwords can be enumerated efficiently. Under such a setting the pass-
word hash setH is immensely larger than the set of passwordsP ′ that is being considered
and hence the password hash determines the password uniquely.

For the remainder of this paper, we assume that the target system for the application of
the tradeoff technique is such that|P| ≪ |H |, implying that the password hash uniquely
determines the password.

3.3 The reduction function

The tradeoff technique requires the one-way function to be iterated. Since the codomainH
of the one-way functionH : P → H is usually larger than the domainP, iteration is
achieved by utilizing areduction function R: H → P. One role of the reduction function
is to let a password hash be interpreted as another password.As any theoretic treatment of
the tradeoff technique assumesR◦H to be a random function, let us check whether this is
appropriate.

Proposition 2 Let |P| be a divisor of|H |, so that |H |
|P | is an integer. Let R: H → P

be any fixed function that is pre-image uniform in the sense that it is exactly |H |
|P | -to-1. If

H : P → H is a random function, then R◦H : P → P is a random function.

Proof In more precise terms, we want to show that the distribution on PP , produced from
the uniform distribution onH P , through the mappingH 7→ R◦H, is the uniform distribu-
tion.

Let F0 : P → P be any specific function. It suffices to show that, after random con-
struction of a functionH : P → H , we will find R◦H = F0 with probability 1

|P ||P | . Note

that {R−1(z)}z∈P is a partition ofH into cells of size|H |
|P | . The eventF0 = R◦H will

happen if and only if the value assigned asH(x) belongs to the cellR−1
(

F0(x)
)

, for every

x ∈ P. Since the size ofR−1
(

F0(x)
)

is always |H |
|P | , and since the assignment toH(x) is
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independent and random for everyx, the probability of arriving atF0 = R◦H is

( |H |/|P|
|H |

)|P |
=

1

|P||P | ,

as claimed. ⊓⊔

Every application of the time memory tradeoff technique to asecurity system involves a
specific one-way functionH : P → H and there is no strictly logical reason to believe that
the specificH will display the properties expected of a random function. Hence we need
to discuss if predicting the behavior of an explicit tradeoff implementation with arguments
concerning random functions can be justified in practice.

There can be two ways to resolve this problem. The first is to appeal to our intuition.
When one ignores his knowledge of the inner working of the given specific function, it
will seem as if the function is returning independently and randomly generated values to
each given input. Hence, viewed from the outside, it looks asif the specific function is the
random function in the construction sense. The second argument, which seems slightly more
plausible, is that the one-way function used in the securitysystem is in fact a function that
has been selected from the pool of all functions. Unless we had chosen the one-way function
in an unusual way, any property exhibited by a specific function will be close to the property
averaged over all functions. Further discussion related tothis second argument may be found
in Appendix B.

We have thus partly justified the use of random functions in place of specific one-way
functionsH : P → H when analyzing the behavior of time memory tradeoffs. What we
have shown through Proposition 2 is that if we may treat the specific one-way functionH
as a random function, then the same can be done with the function R◦H : P → P. Hence,
throughout this paper, while analyzing the behavior of timememory tradeoffs, we shall work
with a random functionF : N → N whose domain and codomain coincide.

3.4 Two versions of the inversion problem

Discussions of this subsection should be read with the Hellman tradeoff in mind. However,
the content can easily be translated to language that is appropriate for any other tradeoff
algorithm.

We have already mentioned that we shall work in the situationH : P → H where
the sets satisfy|P| ≪ |H |, so that a password hash almost always determines a unique
password. We also know that any analysis of time memory tradeoff behavior is usually done
with a random functionF : N → N , whose image does not uniquely determine the input.
In actual implementations, reduction functionsRk : H → P are defined and the online
phase algorithm works with the colored iterating functionsHk = Rk ◦H : P → P.

The unique passwordx corresponding to inversion targety = H(x) is obtained through
the tradeoff algorithm as follows. The online phase algorithm is giveny andRk(y) = Hk(x)
is passed onto its sub-algorithm that processes thek-th table. The best the sub-algorithm can
do is return inputsx∈P satisfyingHk(x) = Hk(x). Since this relation is weaker thanx= x,
the parent algorithm must verify whether the password candidatex is the correct passwordx
by testing the relationH(x) = y.

Let us discuss how often during the online phase such candidate checks need to be
performed. Assume that the pre-computation algorithm required ε |P| iterations ofH to
complete. We will haveε =Θ(1) in practice. For exactly the same reason given in the proof
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of Proposition 1, the expectation for the number ofx appearing in thek-th Hellman matrix
that maps toHk(x) underHk, combined over allk, is upper bounded byε +1, which is a
small number. Hence, the cost of such candidate checks may safely be ignored.

During a tradeoff algorithm analysis, one does not mention anything aboutH or R, the
source of the inversion problem, and simply assumes that theinversion targety = F(x)
is given, for some functionF : N → N . Note that in this setting, the password hashy
does not uniquely determine the passwordx. However, the goal of the tradeoff algorithm in
this paper will be to findthe correct passwordx that was used to createy, rather thanany
passwordx that corresponds to the giveny throughF(x) = y. Theanyversion may be useful
when working to find the pre-image of a cryptographic hash function, but thethe version
is suitable when looking for the correct password to an access control mechanism. A clear
distinction between these two inversion problems was first made in [15].

Since it is logically impossible to distinguish between themany pre-images with only
they ∈ N information, our analysis will focus on whetherx is among the possibly multiple
pre-images toy, returned by the tradeoff algorithm. The determination of whether each
returned value isthecorrect password is assumed to be done outside the tradeoff algorithm.

The difference between looking forthepre-image versusanypre-image implies that the
tradeoff algorithm will succeed under different circumstances. Thetheversion succeeds if
and only if the correct passwordx had appeared as aninput to the one-way functionF during
the pre-computation phase, i.e., ifx is among the pre-computation matrix entries excluding
the ending points. On the other hand, theany version succeeds if and only if the image
y = F(x) had appeared as the functionoutputduring the pre-computation phase, i.e., ify is
among the pre-computation matrix entries excluding the starting points. The two approaches
will show differences in properties such as success probability and online running time.

Let us add a final word of caution that both inversion problemswe have discussed re-
quire the targety = F(x) to be fixed through a random choice of theinput x. One should
distinguish this from the case where the inversion target isdirectly chosen at random from
either the image space or the codomain. These variants do notseem to fit any naturally
occurring real-world situation.

4 DP Tradeoff

A complexity analysis of the DP tradeoff is given in this section. We present a formula for
computing the probability of success for the non-perfect DPalgorithm and provide a tradeoff
curve which takes the effects of false alarms into account. We also discuss the number of
bits required to efficiently store the starting point and ending point pairs.

In this work, to simplify some of our proofs, we assume that the starting points are
always chosen among non-DPs. Hence, in a pre-computed DP chain, every point preceding
the ending point, including the starting point, is a non-DP.A rigorous treatment that allows
starting points to be DPs can be done, but differences between results from such an analysis
and those presented in this work will be negligible.

Recall the probability for a random chain to become a DP chainwithin the chain length
bound t̂, given by (9). Rather than requiring each table to contain exactly m entries, we
assume that each pre-computation DP matrix is always generated from

m0 =
m

1−e−t̂/t
(13)

distinct starting points. Then we can expect to collect approximatelymchains that terminate
at DPs.
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All of our tradeoff algorithm analyses are done under the assumption that the one-way
function is the random function. In particular, many expectations mentioned hereinafter are
to be understood as averages made over the choice of all functions. Most of our arguments
will be made over a single table, so we remove the display of dependence on the reduction
functions from all notation.

4.1 Probability of success

Let us discuss the probability of success for a DP tradeoff under a given set of parameters.
We first present a general formula connecting pre-computation and probability of success
and then show how to compute these for specific parameters. Our first lemma is quite trivial.

Lemma 3 The number of one-way function invocations required in either creating a DP
chain or stopping at thêt-th iteration without having reached a DP is expected to be

t (1−e−t̂/t).

Proof It suffices to add the probabilities of having to compute the successive iterations.
Since the next iteration is computed if and only if a DP has notyet been reached, the expected
one-way function invocation count is

t̂

∑
i=1

(

1− 1
t

)i−1

= t
{

1−
(

1− 1
t

)t̂}

,

which we can approximate to what is stated. ⊓⊔
In the above proof, we have implicitly assumed the one-way function to be a random func-
tion and computed the probability for the firsti assignments to be non-DPs. A more exact
analysis would additionally consider the possibility for the next assignment to produce a
previously assigned value. We have not done so because the above was good enough as an
approximation.

Clearly, the success rate of a tradeoff algorithm is intimately connected to the amount of
pre-computation. So, let us present a way to write down the pre-computation.

Proposition 4 The pre-computation phase of the DP tradeoff is expected to require mtℓ
one-way function invocations.

Proof We know from Lemma 3 that each attempt at a DP chain creation isexpected to
requiret(1− e−t̂/t) one-way function invocations. Recall that the creation of asingle DP
table is to start withm0 =

m
1−e−t̂/t chains. Together, these imply that the creation of a single

DP table is expected to consumemt one-way function invocations. Hence, the total pre-
computation requirement may be written asmtℓ. ⊓⊔

This proposition is trivially true when the chain length bound is not set, but what we
have shown is that the pre-computation cost does not depend on the chain length bound.
We define thepre-computation coefficientfor the DP tradeoff to beDpc =

mtℓ
N

so that the
pre-computation cost of a DP tradeoff isDpcN.

The coverage rateDcr of a DP table, is defined to be the expected number of distinct
nodes that appear among the DP chains as inputs to the one-wayfunction, divided bymt.
Since our starting points are always non-DPs, all of the nodes that are counted will be non-
DPs. The mentioned expectation is an average over the choiceof one-way functions. In
other words, the coverage rate is a certain expected value for the random function. Our next
statement reduces the search for success rate to the computation of the coverage rate.
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Proposition 5 The success probability of the DP tradeoff is

Dps= 1−e−DcrDpc.

Proof If we are giveny = F(x) as the inversion target, the DP tradeoff will succeed in
recovering the correct answerx, if and only if x had appeared as one of the inputs to the
one-way function during the creation of the DP table. As was discussed in Section 3.4, this
is not equivalent to asking for the appearance ofy among the output values. The objective of
recoveringthe correct, rather thanany inverse, corresponds to findingx among the one-way
function inputs.

By definition of the coverage rate, a single DP matrix is expected to containDcrmt dis-
tinct nodes that were used as inputs to the one-way function.Hence the processing of a
single table will fail in returning the correct answer with probability

(

1− Dcrmt
N

)

. The suc-
cess probability of the complete DP tradeoff process is given by

Dps= 1−
(

1− Dcrmt
N

)ℓ
≈ 1−exp

(

−Dcr
mtℓ
N

)

= 1−e−DcrDpc,

assuming that the multiple tables are independent. ⊓⊔

We confide that our treatment in the proof of separate tables as being independent does not
strictly conform to the assumption ofF being asinglerandom function.

This lemma is almost identical to (4), which had already appeared in many works. We
wrote out the proof in detail, only because most previous works did not clarify whether the
inputs or outputs of the random functions were being counted. In fact, many of these did
not even clarify which version of the inversion problem was being considered, as it did not
matter for their intended rough analysis.

If the creator of the inversion targety = F(x) choosesx to be a DP, the online phase
will definitely fail. The success probability would be very low for such challenges even if
the starting points were allowed to be DPs. For our analysis to be applicable, the challengex
needs to be chosen without reference to the structure of the DP tradeoff table. Note that this
is not as strong a requirement as asking for the choice ofx to be random. In practice, since
distinguishing properties are defined with reference to thepassword hashes rather than the
passwords, such challenges do not cause any problem.

For the remainder of this subsection, all chains belonging to the DP matrix will be seen
as having been aligned at the starting points, rather than atthe ending points, and the starting
point column will be referred to as the 0-th column.

The above expression for probability of success can only be put to use if we know how
to compute the coverage rate. Our computation of the coverage rate will be done in two
steps. Of them0 chains generated, onlym will be DP chains, but we disregard this in the
first step and count the number of new nodes added by each column of the extended matrix.
The sum of these values is the total number of all distinct input entries. In the second step,
we will count the number of nodes that belonged to chains not ending at DPs and subtract
these from the total count.

Let us writemj for the number of new non-DP nodes added by thej-th column. The
numberm0 of distinct starting points, stated by (13), conforms to this notation.

Lemma 6 The number of new non-DP nodes added by each column satisfies the recurrence
relation

mj = N

{

1−exp
(

− mj−1

N

)}(

1− 1
t

)(

1− ∑ j−1
i=0 mi

N(1−1/t)

)

.



26

Proof Suppose a node positioned in the( j − 1)-th column is old, in the sense that it has
appeared in one of the 0-th through( j −2)-th columns. Application of the random function
to this node will not result in a random element ofN , but a node that had appeared in one
of the 1-st through( j −1)-th columns. Hence when counting new nodes of thej-th column
we need only consider the nodes of thej-th column that are assigned as images to new
nodes of the( j − 1)-th column. Recalling (1), we write this as theN

{

1− exp
(

− mj−1
N

)}

part appearing in the claimed equation.
Of the distinct entries that have appeared in thej-th column, that are not automatically

old, we want to filter out the DPs. The previous count is made tocorrespond to the non-DPs
by multiplying a

(

1− 1
t

)

factor.
Still, not all of these non-DPs are new nodes. Those that haveappeared in previous

columns are removed by multiplying
(

1− ∑i mi
N(1−1/t)

)

. Notice that we haveN
(

1− 1
t

)

, rather
thanN, in the denominator, as we are dealing only with non-DPs at this point. ⊓⊔

The next two lemmas are technical computation results. We first turn the recursive for-
mula formj into a difference equation concerning a certain sum ofmj .

Lemma 7 Let µi =
mi

N(1−1/t) andσ j = ∑ j−1
i=0 µi . Then,σ j satisfies the recursive formula

σ j+1−σ j =
m0

N
− 1

t
σ j −

1
2

σ 2
j with σ0 = 0,

which is accurate up to modulo O
(

1
t3

)

.

Proof It is straightforward to rewrite the recursive formula of Lemma 6 in terms of the
notationµ j .

µ j =
{

1−exp
(

−
(

1− 1
t

)

µ j−1

)}(

1−
j−1

∑
i=0

µi

)

.

This may be rewritten once again as

exp
(

−
(

1− 1
t

)

µ j−1

)

= 1− µ j

1−σ j
=

1−σ j+1

1−σ j
.

Now, by taking products of both sides overj = 1, . . . ,k, we can find

exp
(

−
(

1− 1
t

)

σk

)

=
1−σk+1

1−σ1
.

We have thus arrived at a relation involving only theσk notation.
By expanding the exponential function in its Taylor series,we obtain

σk+1 = 1− (1−σ1)
{

1−
(

1− 1
t

)

σk+
1
2

(

1− 1
t

)2

σ 2
k −·· ·

}

,

and we can modify the above into the difference equation

σk+1−σk = σ1−
(

σ1+
1
t
− σ1

t

)

σk−
1
2
(1−σ1)

(

1− 1
t

)2

σ 2
k + · · · .

Noting that the left-hand sideσk+1−σk = µk is of orderO
(

m
N

)

= O
(

1
t2

)

, we remove every

term on the right-hand side ofO
(

1
t3

)

order. This may easily be done after noting thatσ1 = µ0

is O
(

1
t2
)

and thatσk is O
(

mk
N

)

, which is at mostO
(

1
t

)

. The simplified equation is now

σk+1−σk = µ0−
1
t

σk−
1
2

σ 2
k +O

( 1
t3

)

.
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It is clear that the initial conditionσ1 = µ0 may be replaced byσ0 = 0, under this recursive
formula. As a final tweak, we subtractm0

N(t−1) , which is ofO
(

1
t3

)

order, from the constant

termµ0 =
m0

N(1−1/t) =
m0
N

(

1+ 1
t−1

)

, to arrive at the claimed formula. ⊓⊔

Now that we have a difference equation, we can obtainσk through an application of the
Euler method.

Lemma 8 For each non-negative integer k, we have

mk ≈ N
(

σ (k+1)−σ (k)
)

where

σ (k) =
Ξ 2−1

t

exp
(

Ξ k
t

)

−1

(Ξ +1)exp
(

Ξ k
t

)

+(Ξ −1)
with Ξ =

√

1+
2Dmsc

1−e−t̂/t
.

Proof Let a functionσ : R → R be the unique solution to the differential equation

d
dk

σ =
m0

N
− 1

t
σ − 1

2
σ 2 and σ (0) = 0. (14)

If one defines the sequence{σk}k≥0 through the corresponding difference equation

σk+1−σk =
m0

N
− 1

t
σk−

1
2

σ 2
k and σ0 = 0, (15)

then the Euler method tells us thatσ (k), the evaluation of the functionσ at the non-negative
integerk, may be approximated by the sequence valueσk. We may turn this the other way
around to present approximate values ofσk through the function evaluationsσ (k).

The unique solution to differential equation (14) is

σ (k) =
2m0t
N

exp
(

√

1+ 2m0t2

N

k
t

)

−1
(

√

1+ 2m0t2

N
+1

)

exp
(

√

1+ 2m0t2

N

k
t

)

+
(

√

1+ 2m0t2

N
−1

)

.

The form ofσ (k) stated by this lemma is obtained when (13) andmt2 = DmscN are substi-
tuted.

Since the definition ofσk given by (15) is identical to the approximate recursive relation
of Lemma 7, we have

σ (k)≈ σk =
k−1

∑
i=0

µi , where µi =
mi

N(1−1/t)
.

This allows us to write

mk ≈ N

(

1− 1
t

)

(

σ (k+1)−σ (k)
)

≈ N
(

σ (k+1)−σ (k)
)

,

where the1
t term removal is justifiable, as it is of strictly smaller order. ⊓⊔

This completes the first step of the coverage rate computation. The coverage rate cor-
responds to the number of distinct non-DP nodes contained injust the DP chains, but the
currently computedmk includes all points contained in even the non-DP chains. We need to
account for these nodes belonging to non-DP chain nodes. This is the second step to finding
the coverage rate.
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Proposition 9 The coverage rate of a single DP table is expected to be

Dcr =
2

et̂/t −1

∫ t̂/t

0

exp(Ξu)−1
(Ξ +1)exp(Ξu)+(Ξ −1)

exp(u) du,

whereΞ =
√

1+ 2Dmsc
1−e−t̂/t .

Proof To count the number of distinct non-DPs belonging to all DP chains, we need to
subtract the number of all new points belonging to non-DP chains from ∑t̂−1

i=0 mi . Before
doing this, we first need to consider whether any of these points may not also appear within
a DP chain and take the status of being a new point when the non-DP chain is removed.

It is clear that any new node belonging to a non-DP chain cannot have appeared in a
column previous to its position, as the node is supposed to benew. Furthermore, such a
node cannot appear within the DP chains in the same column or any future columns, since
it would then reach a DP before the chain length bound is exceeded. Hence new nodes
belonging to non-DP chains do not appear within any DP chains, and we may safely remove
all of these new points without worrying about their possible contribution to coverage by
DP chains.

Now, let us count how many points belong to non-DP chains, onecolumn at a time. We
start with the 0-th column. Among allm0 chains, even though we do not know ahead of time
which ones they would turn out to be, there will bem0(1− 1

t )
t̂ chains that do not reach a DP

even after̂t more iterations. Hencem0
(

1− 1
t )

t̂ nodes among them0 nodes belonging to the
0-th column need to be removed from the count of new nodes. As for the 1-st column, we
had focused onm1 chains, butm1

(

1− 1
t

)t̂−1
nodes among these will not reach a DP before

exceeding the chain length bound, and they need to be removed. The general term is now
clear.

The coverage rate of a single DP table can thus be stated as

1
mt

t̂−1

∑
k=0

mk

{

1−
(

1− 1
t

)t̂−k}

.

Using Lemma 8, we can approximate this to

1
mt

t̂−1

∑
k=0

N
(

σ (k+1)−σ (k)
)

{

1−
(

1− 1
t

)t̂−k}

=
N

mt
1
t

σ (t̂)+
N

mt

t̂−1

∑
k=0

σ (k)
(

1− 1
t

)t̂−k 1
t

≈ σ (t̂)
Dmsc

+
t

Dmsc
exp

(

− t̂
t

) t̂−1

∑
k=0

σ (k)exp
(k

t

)1
t
.

Since the coverage rate is ofO(1) order and the first termσ(t̂)
Dmsc

is of O
(

1
t

)

order, we simply
discard the first term, and the summation term can be approximated by the integral

t
Dmsc

e−t̂/t
∫ t̂/t

0
σ (tu)exp(u) du,

when 1
t is small. The claimed formula follows after substitution ofσ (tu), as given by

Lemma 8, and some simplifications. ⊓⊔
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We state the case wheret̂ is sufficiently large separately for later use.

Proposition 10 The expected coverage rate of a single DP table is approximately

Dcr =
2√

1+2Dmsc+1
,

when the chain length boundt̂ is sufficiently large.

Proof When the chain length bound̂t is sufficiently large, almost all of them0 ≈ m chains
that are generated will terminate with a DP, and hence the coverage rate may be computed
as 1

mt ∑t̂−1
i=0 mi .

Based on Lemma 8, we may write

Dcr ≈
∑t̂−1

i=0 mi

mt
=

Nσ (t̂)
mt

=
2

1−e−t̂/t

eΞ t̂/t −1

(Ξ +1)eΞ t̂/t +(Ξ −1)
,

whereΞ =
√

1+ 2Dmsc
1−e−t̂/t . Whent̂ is sufficiently larger thant, this is approximate to what is

claimed. ⊓⊔

A careful reading of this proof shows thatt̂
t does not need to be very large for the final

approximation to be accurate. A ratio betweent̂ and t of such a not too large order is all
we assume when we use the expressiont̂ is sufficiently large. We are not referring to the
limit t̂ → ∞. To the contrary, we wish to havêt andt of somewhat similar order so that the

approximation
(

1− 1
t

)t̂ ≈ e−t̂/t remains valid.

4.2 Time memory tradeoff curve

Our next goal is to summarize the ability of the DP tradeoff algorithm in balancing storage
against online time into a single tradeoff equation.

This subsection is easier to follow if one visualizes the chains of the DP matrix as having
been aligned at the ending points. The online iterations forthe processing of a single DP
table are counted starting from the 1-st iteration. That is,checking whethery = F(x) is
among the DPs in the DP table is referred to as the 1-st iteration.

Our first task is to find the probability for merges to occur between DP chains.

Lemma 11 Fix a random function F: N → N and suppose that we are given a pre-
computed DP chain of length j≤ t̂ , generated with F from a random non-DP starting point.
If a second chain is generated with F from a random starting point, the probability for it to
become a DP chain of length i and merge with the given pre-computed chain is

t
N

{

exp
(min{i, j}

t

)

−1
}

exp
(

− i
t

)

.

Proof Within this proof, let us refer to the event of the second chain becoming a DP chain
of lengthi and merging with the pre-computed chain simply asthe event.

We first restrict ourselves to thei ≤ j case and fix notation for the two chains as follows.

x0 → ·· ·→ x j−i → x j−i+1 → x j−i+2 → ·· · → x j−1 → x j

z0 → z1 → z2 → ·· · → zi−1 → zi
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The nodesx0, . . . ,x j−1 are non-DPs andx j is a DP.
Let us consider all possible scenarios by which the event canoccur. If the randomly

chosen starting pointz0 happens to be equal tox j−i , then the second chain will follow the
first chain and the event surely will occur. On the other hand,if either z0 is one of the points
x0, . . . ,x j−i−1, x j−i+1, . . . ,x j−1, or is a DP, then the event cannot occur. In the remaining
case, i.e. whenz0 is neither a DP nor any one of the pointsx0, . . . ,x j−1, then the possibility
of the event occurring remains. Furthermore, in this last case, we may freely setF(z0) to a
randomly chosen point ofN .

The above argument may now be repeated. If the randomly chosen z1 = F(z0) is equal
to x j−i+1, then the event occurs. Ifz1 is either a DP or one of the pointsx0, . . . ,x j−i , x j−i+2,
. . . ,x j−1, then the event cannot occur. And ifz1 is neither a DP nor one of the pointsx0, . . . ,
x j−1, then the event occurrence is yet undecided and we are free todefinez2 = F(z1) to a
random point ofN .

Hence, wheni ≤ j, the probability for the event to occur may be written as

1
N
+
(

1− 1
t
− j

N

) 1
N
+
(

1− 1
t
− j

N

)2 1
N
+ · · ·+

(

1− 1
t
− j

N

)i 1
N
,

which is equal to

1
N

1−
(

1− 1
t −

j
N

)i+1

1−
(

1− 1
t −

j
N

) .

Noting that j
N
≪ 1

t and using
(

1− 1
t

)i+1 ≈
(

1− 1
t

)i ≈ exp
(

− i
t

)

, we can approximate this
to

t
N

{

1−exp
(

− i
t

)}

.

We can similarly work with thei ≥ j case. The event can occur only if the beginning
random choicesz0, . . . , zi− j−1 are made among non-DPs that are different fromx0, . . . ,
x j−1. The probability for the event to occur is

(

1− 1
t
− j

N

)i− j 1
N
+
(

1− 1
t
− j

N

)i− j+1 1
N
+ · · ·+

(

1− 1
t
− j

N

)i 1
N
,

which is approximately

t
N

{

exp
(

− i − j
t

)

−exp
(

− i
t

)}

.

The results for the casesi ≤ j andi ≥ j can be combined and stated as claimed. ⊓⊔

With the probability of alarms in our hands, we can compute the cost induced by false
alarms.

Lemma 12 The number of extra one-way function invocations induced byalarms is ex-
pected to be

t
Dmsc

1−e−t̂/t

{

2−8e−t̂/2t +
(

5+3(t̂/t)− 1
2
(t̂/t)2)e−t̂/t +e−2t̂/t

}

,

for each DP table.
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Proof When the chains are generated fromm0 non-DP starting points as given by (13), one
can expect to collect

m

1−e−t̂/t

(

1− 1
t

) j−1 1
t
≈

m
t

1−e−t̂/t
exp

(

− j
t

)

(16)

DP chains of lengthj.
The probability of collision between the online chain and any one of these DP chains

of length j, at thei-th iteration of the online phase, is given by Lemma 11. Here,the 1-st
iteration deals with an online chain of length one, rather than zero, that starts at the unknown
correct answer and ends at the inversion target.

The third component is the work required at each collision. If we take advantage of
the fact that there is a chain length bound, in most cases, thenumber of iterations required
to deal with a collision between a pre-computed chain of length j and an online chain of
length i will be min{t̂ − i +1, j}. The only exception is when a pre-image to the inversion
target is found, which is rare enough to be ignored.

Multiplying the three components and summing over all possible indicesi and j, the
expected number of iteration can be expressed as

t̂

∑
i=1

t̂

∑
j=1

m
t

1−e−t̂/t
exp

(

− j
t

)

· t
N

{

exp
(min{i, j}

t

)

−1
}

exp
(

− i
t

)

·min{t̂ − i +1, j}.

Replacingi
t with u and j

t with v, the above can be approximated by the integral

mt2
N

t

1−e−t̂/t

∫ t̂/t

0

∫ t̂/t

0
exp(−u)exp(−v)

{

exp
(

min{u,v}
)

−1
}

min
{ t̂

t
−u,v

}

dvdu,

when 1
t is small. The claimed value appears when this definite integral is computed. ⊓⊔

Finally, we write the tradeoff curve for the DP tradeoff in a way that takes the extra cost
of alarm resolving into account.

Theorem 13 The time memory tradeoff curve for the DP tradeoff is TM2 = DtcN
2, where

the tradeoff coefficient is

Dtc =
{

(2Dmsc+1)− 8Dmsc

et̂/2t
+

(5+ 3t̂
t − t̂2

2t2
)Dmsc−2

et̂/t
+

Dmsc+1

e2t̂/t

}

Dps
{

ln(1−Dps)
}2

(1−e−t̂/t)D3
cr Dmsc

.

Proof The i-th DP table is processed if and only if all previous tables did not return the

correct answer. The probability of such a failure is
(

1− Dcrmt
N

)i−1
. The time required in pro-

cessing a single table is the sum of one-way function invocation counts given by Lemma 3
and Lemma 12. Hence the expected total running time of the DP tradeoff may be written as

T =
ℓ

∑
i=1

(

1− Dcrmt
N

)i−1{
(

1−e−t̂/t)+
Dmsc

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}

t.

The summation indexi appears only in the first multiplicative factor, and we can easily
check that

ℓ

∑
i=1

(

1− Dcrmt
N

)i−1
=

N

Dcrmt

{

1−
(

1− Dcrmt
N

)ℓ}

=
Dps

DcrDmsc
t, (17)
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where the second equality follows from Proposition 5. The running time can now be rewrit-
ten as

T =
Dps

DcrDmsc

{

(

1−e−t̂/t)+
Dmsc

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}

t2. (18)

Since the storage isM = mℓ, we have

TM2 =
Dps

DcrDmsc

{

(

1−e−t̂/t)+
Dmsc

1−e−t̂/t

(

2− 8

et̂/2t
+

5+ 3t̂
t − t̂2

2t2

et̂/t
+

1

e2t̂/t

)}

(mtℓ)2

=
{

(2Dmsc+1)− 8Dmsc

et̂/2t
+

(5+ 3t̂
t − t̂2

2t2
)Dmsc−2

et̂/t
+

Dmsc+1

e2t̂/t

}

DpsD
2
pcN

2

(

1−e−t̂/t
)

DcrDmsc
.

The claim is reached by observing that

D
2
pc =

(DcrDpc)
2

D2
cr

=

{

ln(1−Dps)
}2

D2
cr

,

where the second equality is again an application of Proposition 5. ⊓⊔

Let us emphasize that the tradeoff coefficientDtc is an expected value rather than a
bound. The tradeoff curve was computed without restrictingto the worst case, in which
the algorithms fails after processing all tables. The following statement is an immediate
consequence of the above theorem.

Corollary 14 The time memory tradeoff curve for the DP tradeoff is TM2 = DtcN
2 with

Dtc =
(

2+
1

Dmsc

) 1
D3

cr
Dps

{

ln(1−Dps)
}2

,

when the chain length boundt̂ is sufficiently large.

We make the number of table lookups explicit for later use.

Lemma 15 The online processing of the DP tradeoff, that use the parameters m, t,ℓ, andt̂
is expected to require tDps

DcrDmsc
lookups to the DP tables.

Proof Thei-th DP table is processed if and only if all previous tables have failed in returning
the correct answer and processing of each table requires a single table lookups. Hence, the
expected total number of table lookups is given by (17), as claimed. ⊓⊔

The dependence of this result on the chain length boundt̂ is hidden inside theDcr term.

4.3 Efficient use of storage

The storage sizeM appearing in any tradeoff curve refers to the total number ofstarting
point and ending point pairs that need to be stored in the tradeoff tables. As explained in
Section 2.7, the number of bits required to store a single starting and ending point pair will
be different for each tradeoff algorithm. The focus of this section is in analyzing the ending
point truncation technique explained in Section 2.7.4 for the DP tradeoffs.
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It seems that the intensions of the works [4, 6] while using ending point truncation was
to keep slightly more than logm bits of each ending point so that each ending point within
a DP table could be identified almost uniquely. However, thiswould also imply that almost
every lookup to the pre-computation table will generate a match of truncated points.

Let us start with a rough preliminary analysis of the situation where logmbits are stored
for each ending point. The online chain creation during processing of a table requiresΘ(t)
iterations of the one-way function and will generate a single lookup to the table. The alarm
that is almost surely generated by the lookup will requireΘ(t) additional one-way function
iterations to resolve. Hence, the total cost per table processing remains atΘ(t) even with
ending points truncated to logmbits and the truncation to logmbits seem reasonable. Trun-
cation to smaller than logm bits will result in the return of multiple collisions at the single
table lookup and will quickly become problematic.

Although one is guaranteed not to see a radical change in the online time complexity
after truncating ending points to logmbits, the above analysis does not provide implementers
with the information on how close to logmbits one may venture without experiencing visible
side effects to the online time complexity. For now, implementers can only repeatedly tweak
and make test runs to decide on the appropriate degree of truncation.

Consider an ending point truncation method for which two random points ofN , trun-
cated in the specified manner, will have probability1

r of matching with each other. We shall
express such a situation as having1

r probability of truncated match. For example, if logt bits
from the ending points were truncated withDmsc= 1, so that(logm+ logt) bits remain, then
the truncated matches would happen with probability1

mt . When truncating ending point DPs,
one should truncate the random-looking part, rather than the distinguished part. Removal of
the distinguished part can always be undone, and does not cause any loss of ending point
information.

Lemma 16 Assume the use of ending point truncation with the truncatedmatch probability
set to 1

r . The number of extra one-way function invocations induced by truncation related
alarms is expected to be

t
1−2(t̂/t) e−t̂/t −e−2t̂/t

1−e−t̂/t

mt
r
,

for each DP table.

Proof Consider a random functionF : N → N and suppose that the first chain, generated
with F and a random non-DP starting point, became a DP chain of length j ≤ t̂. Now,
suppose a second chain is generated withF from a random non-DP starting point. Let us
compute the probability for the second chain to become a DP chain of lengthi and not merge
with the first chain, but have the same truncated ending pointas the first chain.

The firsti nodes of the second chain must be chosen among non-DPs that are different
from the j pre-ending points of the first chain. Thei-th node chosen, when truncated, needs
to agree with the truncated ending point of the first chain. Note that this agreement already
requires the final point to be a DP. Thus the probability we aimed to write can be expressed
as

(

1− 1
t
− j

N

)i(1
r
− 1

N

)

≈ exp
(

− i
t

)1
r
. (19)

Now, we can combine the number of DP chains of lengthj, as given by (16), together
with the probability of non-merging truncated collision with such a chain, as given by (19),
to write the cost of truncation related false alarms as

t̂

∑
i=1

t̂

∑
j=1

m
t

1−e−t̂/t
exp

(

− j
t

)

·exp
(

− i
t

)1
r
·min{t̂ − i +1, j}.
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It now suffices to simplify this expression. Replacingi
t with u and j

t with v, the above can
be approximated by the definite integral

mt2

1−e−t̂/t

1
r

∫ t̂/t

0

∫ t̂/t

0
exp(−u)exp(−v)min

{ t̂
t
−u,v

}

dvdu,

when 1
t is small. We arrive at the claimed value when this is explicitly computed. ⊓⊔

Combining Lemma 3, Lemma 12, and Lemma 16, we know that the online processing
of a single DP table requires

t
(

1−e−t̂/t)

+ t
Dmsc

1−e−t̂/t

{

2−8e−t̂/2t +
(

5+3(t̂/t)− 1
2
(t̂/t)2)e−t̂/t +e−2t̂/t

}

+ t
1

1−e−t̂/t

{

1−2(t̂/t) e−t̂/t −e−2t̂/t
} mt

r
,

invocations of the one-way function. Whent̂ is sufficiently large, this simplifies to

t + t 2Dmsc+ t
mt
r
,

with each additive term corresponding to the three terms given before. The ratio of original
number of iterations to the number of extra iterations incurred by truncations is

(t + t 2Dmsc) : t
mt
r

= r :
mt

1+2Dmsc
.

The choice ofr = mt
1+2Dmsc

will give an implementation whose added cost of truncation re-
lated alarms increases the non-truncated original cost by 100%. Noting that a truncated
match probability of1r is achieved by leaving logr bits after truncation, we summarize what
we have discussed in the following statement.

Proposition 17 Fix a set of parameters for a DP tradeoff such that the chain length bound̂t
is sufficiently large. Suppose that the online phase of the DPtradeoff implementation that
stores each ending point in full requires T iterations of theone-way function to complete.
Then, an implementation that leaves

logm+ logt − log(1+2Dmsc)± ε

bits per ending point after truncation, whereε is a small non-negative integer, requires2∓ε T
additional iterations of the one-way function to complete.

Let us recall the contents of Section 2.7 and summarize how DPtable storage can be
optimized. Sequential use of starting points allows each starting point to be recorded in
approximately logm bits. One can truncate and leave slightly more than logm+ logt bits
in each ending point and experience minimal side effect on the online running time. The
decision on the exact degree of truncation can be made with the help of Proposition 17. Of
the remaining approximately logm+ logt bits of the ending point, we do not need to store
the logt bits that are fixed through the distinguishing property. Furthermore, the index table
technique allows us to remove almost logm more bits without any loss of information. In
all, logm bits are required to store each starting point and a very small number of bits are
required to store each ending point. We have thus confirmed the claims of [4, 6] theoretically.
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Example 18Consider an extremely large tradeoff implementation withN= 275 and assume
the typical parametersm≈ t ≈ ℓ ≈ N

1
3 = 225. Each starting point requires 25 bits. The

DP definition allows removal of 25 bits from each ending point. We assume removal of
23 further bits through the index table method. Let us approximate log(1+ 2Dmsc) ≈ 2.
Then, each table entry will require 25+ ε bits.

LetT be the number of one-way function iterations required for the online chain creation
and the resolving of alarms in the absence of ending point truncations. Whenε is changed
from 4 to 3, the storage decreases by29−28

29 ≈ 3.45% while the iterations increase by 5.88%
from (1+ 1

24 )T to (1+ 1
23 )T. This tradeoff is better than the tradeoff achievable through the

changes inm, t, andℓ. However, when similar calculations are made for the changeof ε
from 3 to 2, one can confirm that the increase in online time is not worth the decrease in
storage.

In summary, for the assumed rough range of parameters, it is advisable to allocate ap-
proximately 28 bits per table entry and accept the9

8T online time, even though this is visibly
different fromT.

5 Hellman Tradeoff

In this section, we gather facts about the complexity of the Hellman tradeoffs. As in the
previous section, reduction functions are kept hidden during analysis.

Our first statement is quite trivial.

Proposition 19 The pre-computation phase of the Hellman tradeoff requiresmtℓ one-way
function invocations.

We define thepre-computation coefficientfor the Hellman tradeoff to beHpc =
mtℓ
N

,
so that the pre-computation cost of a Hellman tradeoff isHpcN. The next proposition is a
restatement of (4).

Proposition 20 The success probability of the Hellman tradeoff is

Hps= 1−e−HcrHpc.

We next state the coverage rate, so that the above expressionfor probability of success
can be put to use. This is a trivial modification of statementsfrom [9, 19].

Proposition 21 The coverage rate of a single Hellman table is expected to be

Hcr =

√
2√

Hmsc

e
√

2Hmsc−1

e
√

2Hmsc+1
.

The tradeoff efficiency of the Hellman tradeoff is compactlyexpressed by the following
time memory tradeoff curve. This result takes the cost of resolving alarms into account, and,
unlike (8) that semi-corresponds to an upper bound on the efficiency, expresses the average
behavior.

Theorem 22 The time memory tradeoff curve for the Hellman tradeoff is TM2 = HtcN
2,

where the tradeoff coefficient is

Htc =
( 1
Hmsc

+
1
6

) 1
H3

cr
Hps

{

ln(1−Hps)
}2

.
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Proof The i-th Hellman table is processed if and only if all previous tables have failed in

returning the correct answer. The probability of such a failure is
(

1− Hcrmt
N

)i−1
. Recalling

the number of one-way function invocations required per Hellman table to resolve false
alarms (7), the number of all iterations required per table can be written as

(

1+ Hmsc
6

)

t. The
expected total running time of the Hellman tradeoff may be written as

T =
ℓ

∑
i=1

(

1− Hcrmt
N

)i−1(

1+
Hmsc

6

)

t. (20)

The summation indexi appears only in the first multiplicative factor, and we can easily
check that

ℓ

∑
i=1

(

1− Hcrmt
N

)i−1
=

N

Hcrmt

{

1−
(

1− Hcrmt
N

)ℓ}

=
Hps

HcrHmsc
t,

where the final equality follows from Proposition 20. Returning to (20), the execution time
can now be written as

T =
( 1
Hmsc

+
1
6

)

Hps

Hcr
t2. (21)

Since the storage size isM = mℓ, we have

TM2 =
( 1
Hmsc

+
1
6

)

Hps

Hcr
(mtℓ)2 =

( 1
Hmsc

+
1
6

)

Hps

Hcr
H

2
pcN

2

=
( 1
Hmsc

+
1
6

)

Hps(HcrHpc)
2

H3
cr

N
2 =

( 1
Hmsc

+
1
6

)

Hps
{

ln(1−Hps)
}2

H3
cr

N
2,

where the final equality again relies on Proposition 20. ⊓⊔

The timeT, stated during the above proof as (21), counts the number of one-way func-
tion computations, and includes the efforts for resolving alarms. Since the number of table
lookups will be smaller, we make this count explicit.

Lemma 23 The online processing of the Hellman tradeoff, that use the parameters m, t,
andℓ, is expected to require t2 Hps

HcrHmsc
lookups to the Hellman tables.

The proof to this lemma is almost identical to that of Lemma 15. The only difference is that
the processing of each table requirest lookups, rather than one.

After reading the proof to Theorem 22, one can easily write the expected cost of resolv-
ing alarms for the Hellman tradeoff asHps

6Hcr
t2, and by following through the relations

Hps

6Hcr
t2 =

1−e−HcrHpc

6Hcr
t2 ≤ 1− (1−HcrHpc)

6Hcr
t2 =

mtℓ
6N

t2 =
Hmsc

6
tℓ,

we can recover the old approximation (6). This shows that thebound (6) is far from being
tight, unlessHcrHpc ≪ 1.

We have so far secured access to the pre-computation cost, the success probability, and
the tradeoff efficiency of the Hellman tradeoff. It remains to discuss the use of storage. Three
of the approaches to storage reduction that were discussed in Section 2.7 are applicable to
the Hellman tradeoff and we provide an analysis of the endingpoint truncation method
below.

Let us start with a preliminary analysis. Assume that endingpoints are truncated so that
logm bits are stored for each ending point. Then the table entriesare uniquely identifiable,
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but each table lookup would return one truncated match on average. The cost of resolving
alarms becomet +(t −1)+ · · ·+1≈ t2

2 per table. This dominates the online chain creation
cost oft, so truncation to logm bits is not an acceptable method.

A more exact analysis of ending point truncation is given next. We reuse the concept
of truncated match probability, previously defined for the DP tradeoff, with the Hellman
tradeoff.

Lemma 24 Assume the use of ending point truncation with the truncatedmatch probability
set to 1

r . The number of extra one-way function invocations induced by truncation related
alarms is expected to be

t
mt
2r

,

for each Hellman table.

Proof Fix a random functionF : N → N and suppose that we are given a pre-computed
chain of lengtht, generated withF from a random starting point. Now consider a second
chain generated withF from a random starting point. The probability for it to produce an
alarm related to truncation, i.e., a truncated ending pointmatch without a merge with the
first chain, on thei-th iteration, is

(

1− 1
N

)i(1
r
− 1

N

)

≈
(

1− i
N

)(1
r
− 1

N

)

≈ 1
r
.

This is because the firsti nodes of the second chain must be chosen among nodes that are
different from thet pre-ending points of the first chain.

Taking account of allmpre-computed chains, the cost induced by the truncation related
alarms can now be written as

t

∑
i=1

m
r
(t − i +1) ≈ mt2

r

t

∑
i=1

(

1− i
t

) 1
t
.

When 1
t is small, by replacingi

t with u, the above can be approximated with the definite
integral

mt2

r

∫ 1

0
(1−u)du,

which computes tomt2
2r , as claimed. ⊓⊔

Combining this with what we saw during the proof of Theorem 22, the total online time
required to deal with a single Hellman table can be stated as

t + t
Hmsc

6
+ t

mt
2r

.

Arguing as we did in the previous section concerning ending point truncations for the DP
tradeoffs, we can come to the following conclusion.

Proposition 25 Fix a set of parameters for the Hellman tradeoff and suppose that its imple-
mentation which stores full ending point information requires T iterations of the one-way
function to complete the online phase. Then, an implementation that leaves

logm+ logt − log
(

2+
Hmsc

3

)

± ε

bits per ending point after truncation, whereε is a small non-negative integer, requires2∓ε T
additional iterations of the one-way function to complete.
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We can summarize how Hellman table storage can be optimized after recalling the con-
tents of Section 2.7. Each starting point requires logm bits. Ending points may be truncated
so that slightly more than logm+ logt bits remain without experiencing visible side effects
on the online running time. The decision on the exact degree of truncation can be made with
the help of Proposition 25. Using the index table technique,almost logmadditional bits can
be removed without any loss of information. In all, logm bits are required for each start-
ing point and slightly more than logt bits are required for each ending point. This is very
different from the conclusions for the DP tradeoff.

Example 26Let us reuse the parameters of Example 18. Assuming that the index table
allows removal of 23 bits and accepting the approximation log

(

2+ Hmsc
3

)

≈ 1, each table
entry is seen to require 25+26+ ε bits.

With T equal to the non-truncated iterations, whenε is changed from 5 to 4, the storage
decreases by56−55

56 ≈ 1.79% while the iterations increase by{(1+ 1
24 )T−(1+ 1

25 )T}/{(1+
1
25 )T} ≈ 3.03%. This is an acceptable tradeoff. However, the change ofε from 4 to 3, results
in 1.82% decrease in storage, which cannot justify the corresponding 5.88% increase in
online time.

In summary, for the assumed rough range of parameters, it is advisable to allocate ap-
proximately 55 bits per table entry and accept the17

16T online time, which is slightly higher
thanT.

6 Rainbow Tradeoff

In this section, we gather facts about the rainbow tradeoff.Recall that multiple rainbow
tables are to be processed in parallel. The 1-st iteration ofa rainbow tradeoff online phase
will refer to the ℓ-many searchings ofyk,1

t = Ft,k(x) among the ending points of thek-th
rainbow table with the indexk running from 1 toℓ. The j-th iteration will require( j −1) · ℓ
invocations of the one-way function andℓ lookups to different tables.

Our first claim is a direct consequence of the relationmt= RmscN that defines the nota-
tion Rmsc.

Proposition 27 The pre-computation phase of the Rainbow tradeoff requiresRpcN one-way
function invocations, where the pre-computation coefficient isRpc = Rmscℓ.

Contents of the following lemma for theℓ= 1 case was already used in certain compu-
tations of [15], but let us restate it here in a more readily accessible form. The first statement
of this lemma is a trivial extension of the past result (10).

Lemma 28 The probability for the first k iterations of the online phaseto fail is

k

∏
i=1

(

1− mt−i

N

)ℓ
,

where m0 = m andmi+1
N

= 1−exp
(

− mi
N

)

. This product may be approximated by

(

1− Rmsc

2+Rmsc

k+1
t

)2ℓ
.
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Proof The second statement is based on the approximation

mi

N
≈ 1

N/m+ i/2
,

which appears in [15]. This is a very small generalization ofa result from [1], which treated
them= N case. After rewriting this as

1− mt−i

N
≈ 2N+m(t − i −2)

2N+m(t − i)
,

the sequential cancelations within the product become visible, and we arrive at

k

∏
i=1

(

1− mt−i

N

)ℓ
≈

{2N+m(t −k−1)
2N+m(t −1)

2N+m(t −k−2)
2N+m(t −2)

}ℓ
≈

{

1− Rmsc
k+1

t

2+Rmsc

}2ℓ
,

which is the claimed approximation. ⊓⊔

We can arrive at the next claim by substitutingk= t into the above lemma and ignoring
an insignificant term.

Proposition 29 The success probability of the rainbow tradeoff is

Rps= 1−
( 2

2+Rmsc

)2ℓ
.

The tradeoff efficiency of the rainbow tradeoff is compactlyexpressed by the following
theorem. The average efficiency, rather than the worst case situation, is expressed by this
result, and the effects of false alarms have been taken into account.

Theorem 30 The time memory tradeoff curve for the rainbow tradeoff is TM2 = RtcN
2,

where the tradeoff coefficient is

Rtc =
ℓ3

(2ℓ+1)(2ℓ+2)(2ℓ+3)
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Proof Substitutingk = i − 1 into Lemma 28, we know that thei-th iteration is processed
with probability

(

1− Rmsc
2+Rmsc

i
t

)2ℓ
. The probability of alarm occurrence associated with a

single chain in a single rainbow matrix at thei-th iteration may be inferred from [15] to
be i+1

N
. The reasoning behind this second statement is identical tothe proof that lead to the

older results (6) and (7).
Hence, the expected total running time of the rainbow tradeoff, with the cost of resolving

alarms associated with allm rows taken into account, may be written as

T =
t

∑
i=1

ℓ
{

(i −1)+(t − i +1)
m(i +1)

N

}(

1− Rmsc

2+Rmsc

i
t

)2ℓ

≈ t2ℓ
t

∑
i=1

{ i
t
+
(

1− i
t

)

Rmsc
i
t

}(

1− Rmsc

2+Rmsc

i
t

)2ℓ 1
t
.

This may be approximated by the definite integral

T = t2ℓ

∫ 1

0
u
{

1+Rmsc(1−u)
}

(

1− Rmsc

2+Rmsc
u
)2ℓ

du,
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which computes to

T = t2ℓ
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(2ℓ+1)(2ℓ+2)(2ℓ+3)R2
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(22)

It now suffices to combine this with the storage sizeM = mℓ and simplify to arrive at the
claim. ⊓⊔

The timeT appearing in the above tradeoff curve gives the count of one-way function
invocations and ignores table lookups.

Lemma 31 The online processing of the rainbow tradeoff is expected torequire

t ℓ
2+Rmsc−2

(

2
2+Rmsc

)2ℓ

(2ℓ+1)Rmsc

lookups to the rainbow tables.

Proof At the start of the proof to Theorem 30, we saw that thei-th iteration is processed
with probability

(

1− Rmsc
2+Rmsc

i
t

)2ℓ
. Since each iteration requiresℓ table lookups, it suffices to

compute
t

∑
i=1

ℓ
(

1− Rmsc

2+Rmsc

i
t

)2ℓ
≈ t ℓ

∫ 1

0

(

1− Rmsc

2+Rmsc
u
)2ℓ

du,

to arrive at the expected number of table lookups. ⊓⊔

We now turn to the issue of efficient storage use. The number ofonline iterations, which
is of Θ(t2ℓ) order, is much larger than the number of table lookups, givenby the above
lemma as being ofΘ(tℓ) order. This indicates that truncation to slightly more thanlogmbits,
which allows unique identification of table entries, shouldbe reasonable. A more accurate
analysis is given below. We reuse the concept of truncated match probability, defined for the
DP tradeoffs, also in the rainbow tradeoff case.

Lemma 32 Assume the use of ending point truncation with the truncatedmatch probability
set to1

r . The number of additional one-way function invocations induced by alarms related
to ending point truncations is expected to be

t2ℓ
m
r

(−2+(2ℓ+1)Rmsc)(2+Rmsc)+4
(

2
2+Rmsc

)2ℓ

(2ℓ+1)(2ℓ+2)R2
msc

.

Proof For exactly the same reason given in the proof of Lemma 24, theprobability for a
randomly generated second chain to produce a truncation induced alarm without merging
with the first chain is

(

1− 1
N

)i(1
r
− 1

N

)

≈
(

1− i
N

)(1
r
− 1

N

)

≈ 1
r
.

After recalling Lemma 28, the probability for thei-th iteration to be processed, and taking
all themℓ pre-computed chains into account, the expected online costcan be written as

t

∑
i=1

(t− i +1)
mℓ

r

(

1− Rmsc

2+Rmsc

i
t

)2ℓ
.
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Replacingi
t with u, the above can be approximated by the definite integral

mt2ℓ
r

∫ 1

0
(1−u)

(

1− Rmsc

2+Rmsc
u
)2ℓ

du,

when 1
t is small, and the claimed value appears when this is computed. ⊓⊔

After reviewing the arguments concerning ending point truncation made for the DP and
Hellman tradeoffs, we can combine (22) and Lemma 32 to write the effects of ending point
truncation in terms of the number of bits remaining.

Proposition 33 Fix a set of parameters for the rainbow tradeoff and suppose that its imple-
mentation which stores full ending point information is expected to require T iterations of
the one-way function for the online phase. Then, an implementation that leaves

logm+ log
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± ε

bits per ending point after truncation, whereε is a small non-negative integer, requires2∓ε T
additional iterations of the one-way function to complete.

Referencing Section 2.7, let us summarize the number of bitsrequired to store each
starting point and ending point pair. Each starting point requires logm bits. Ending points
may be truncated so that slightly more than logm bits remain without visible side effects
on the online running time. The index table method allows most of the remaining logm bits
to be removed from the ending point without any loss of information. In all, logm bits are
required for each starting point and only a very small numberof bits are required for each
ending point. We have thus confirmed the claims of [4, 6].

Example 34The parameters for a rainbow tradeoff that roughly correspond to those used in
Example 18 and Example 26 arem= 250, t = 225, andℓ = 1. Assume that the index table
allows removal of 48 bits. The middle term appearing in the equation of Proposition 33 for
the parameters being used is log215

228 ≈ 0. Each table entry will require 50+2+ ε bits.
Let T be the number of iterations expected of a non-truncated implementation. Whenε

is changed from 6 to 5, the storage decreases by58−57
58 ≈ 1.72% while the iterations increase

by {(1+ 1
25 )T−(1+ 1

26 )T}/{(1+ 1
26 )T} ≈ 1.54%. This is an acceptable tradeoff. However,

the change ofε from 5 to 4 results in a 1.75% decrease in storage, which cannot justify the
corresponding 3.03% increase in online time.

In summary, for the assumed rough range of parameters, it is advisable to allocate ap-
proximately 55 bits per table entry and accept the33

32T online time, which is only slightly
higher thanT.

7 Optimal Tradeoff Parameters

In this section, we find the optimal set of parameters for the three tradeoff algorithms. The
notion of optimality in this section ignores the cost of pre-computation.
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Let us present our initial arguments in terms of the Hellman tradeoff. The balance be-
tween time and memory achievable by the Hellman tradeoff is expressed by the tradeoff
curve TM2 = HtcN

2. It is clear that the Hellman algorithm at parametersm, t, andℓ that
bring about a smaller tradeoff coefficientHtc will require less resources to run. In other
words, tradeoff coefficientHtc is a measure of the tradeoff efficiency, with a smaller value
representing a more desirable balancing of storage and online time.

The tradeoff coefficientHtc is fully determined by the parametersm, t, andℓ. It should
first be noticed that a better tradeoff coefficient should always be achievable, if one decides
to sacrifice the success probability of finding the correct answer. Hence, any comparison
between two Hellman tradeoff coefficients, achievable through two different sets of param-
eters, should be done under the condition that they produce the same success probability.

Arguments similar to the above may be made for the DP and rainbow tradeoffs. Hence,
for each of the three algorithms, we will work to find the smallest tradeoff coefficient achiev-
able under a fixed requirement on the success rate.

The smallest possible tradeoff coefficient value for a tradeoff algorithm is referred to
as thetradeoff characteristicin [1], where it is used to compare the perfect version of the
rainbow table method against other algorithms. However, wewish for the optimal trade-
off coefficients given in this work to be understood separately for each algorithm. Using
it to argue superiority of one algorithm over another may seem plausible, but is of limited
value in practice. Parameters achieving better tradeoff efficiency may require more pre-
computation, and with large scale implementations of the tradeoff technique, lowering the
pre-computation cost may be significantly more valuable than achieving better tradeoff effi-
ciency. Our purpose of locating the optimal tradeoff parameters is so that they may be used
in the next section to bound the range of parameters, when making fair comparisons between
different algorithms.

7.1 DP tradeoff

The parameter sets that achieve the optimal DP tradeoff efficiency, under a fixed requirement
on the probability of success, is given below.

Proposition 35 Let 0< Dps < 1 be any fixed value. The DP tradeoff, under any set of pa-
rameters m, t,ℓ, andt̂, that are subject to the relations

mt2 = 1.26453N, ℓ= 1.28007
{

− ln(1−Dps)
}

t, and t̂ = 2.59169t,

attains the given valueDps as its probability of success, and exhibits tradeoff performance
corresponding to

Dtc = 5.49370Dps
{

ln(1−Dps)
}2

,

as the four parameters are varied. Under any such choice of parameters, the number of
one-way function invocations required for the pre-computation phase is

DpcN= 1.61869
{

− ln(1−Dps)
}

N.

The three relations restricting the parameter choices giveoptimal parameters in the sense
that no choice of m, t,ℓ, andt̂ can lead to a tradeoff coefficient smaller than the above while
achievingDps as its probability of success.
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Proof The relation of Proposition 5 may equivalently be stated as

ℓ=
N

Dcr mt

{

− ln(1−Dps)
}

=
1

Dcr Dmsc

{

− ln(1−Dps)
}

t. (23)

Now, referencing Proposition 9, we know that the DP coveragerateDcr = Dcr[Dmsc, t̂/t] may
be treated as a function of the two variablesDmscand t̂

t . Hence, given anym, t, t̂, andDps, if

we setDmsc=
mt2
N

andDcr = Dcr[Dmsc, t̂/t], and also fixℓ through the relation (23), then the
DP tradeoff with these parameters will always achieve the success probability ofDps. We
remark thatℓ must be set to an integer, but since the right-hand side of (23) is rather large,
the error to the success probability, introduced by taking the nearest integer to the right-hand
side value, will be very small.

Keeping in mind that we may freely choosem, t, andt̂, and still obtain any requested
success probability, we now work to minimize the DP tradeoffcoefficientDtc, as given by
Theorem 13. We drop from the expression forDtc any part that depends only onDps and
consider

Dtmp

[

Dmsc,
t̂
t

]

=
(2Dmsc+1)− 8Dmsc

et̂/2t +
(5+ 3t̂

t − t̂2

2t2
)Dmsc−2

et̂/t + Dmsc+1
e2t̂/t

(

1−e−t̂/t
)

Dcr
[

Dmsc,
t̂
t

]3
Dmsc

, (24)

which is a function of the two variablesDmsc and t̂
t . It is clear that, when the probability

of success requirement is fixed, minimizingDtc is equivalent to minimizingDtmp[Dmsc, t̂/t].

Note that, even thoughDmsc=
mt2
N

andt̂/t share the parametert, since we are free to setm,
t, andt̂ to any value, there are enough degree of freedom, and we may treatDmsc andt̂/t as
independent variables when looking for the minimum ofDtmp[Dmsc, t̂/t].

After Dcr[Dmsc, t̂/t], as given by Proposition 9, is substituted into the right-hand side
of (24), we can use numerical methods to find its minimum. One discovers that the minimum
value of Dtmp = 5.49370 is obtained atDmsc= 1.25453 andt̂/t = 2.59169. The claimed
relation betweenℓ andt follows from (23). The final claim concerning the pre-computation
cost is obtained by combining Proposition 4 with the first tworelations stated by the claim.

⊓⊔

The parameter set that achieves the minimum tradeoff coefficient for the DP tradeoff is
visible through Figure 2. It plotsDtmp=

Dtc
Dps{ln(1−Dps)}2 , which is given by (24), as a function

of the variablesDmscandt̂/t.
The tradeoff curve reflected by this proposition allows us tosay more about the tradeoff

than the previously known rough curve (8). Suppose that, forsome fixed set of parame-
ters, the success rate of the DP tradeoff is not too small, andsuppose that one wishes to
increase the success rate, to the extent that the failure rate becomes the square of its cur-
rent value. Then, for optimal choice of parameters, theDps factor will change little and the
{ln(1−Dps)}2 factor will increase by a factor of four. Hence, one must allow an increase
in the online time by a factor of four or use twice the current storage. The proposition also
shows that one must endure twice the pre-computation cost toachieve this aim. Of course,
the simplest way of doing this would be to double the number oftables, while keeping all
other parameters the same.

While the above result gives the parameters that achieves the optimal tradeoff efficiency,
in practical applications, pre-computation is very costlyand one is more likely to choose a
sufficiently largêt, so as not to discard any of the pre-computed results.
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Proposition 36 Let 0< Dps< 1 be any fixed value. When the use of a sufficiently larget̂ is
assumed, the DP tradeoff, under any set of parameters m, t, and ℓ, that are subject to the
relations

mt2 = 0.562047N and ℓ= 2.18614
{

− ln(1−Dps)
}

t,

attains the given valueDps as its probability of success, and exhibits tradeoff performance
corresponding to

Dtc = 7.01057Dps
{

ln(1−Dps)
}2

,

as the three parameters are varied. Under any such choice of parameters, the number of
one-way function invocations required for the pre-computation phase is

DpcN= 1.22871
{

− ln(1−Dps)
}

N.

The two relations restricting the parameter choices give optimal parameters in the sense
that, whent̂ is sufficiently large, no choice of m, t, andℓ can lead to a tradeoff coefficient
smaller than the above while achievingDps as its probability of success.

Proof The proof is almost identical to that of Proposition 35. The only difference is that we
rely on Proposition 10 to viewDcr as a function ofDmsc and obtain the tradeoff coefficient
from Corollary 14, so that

Dtc =
(

2+
1

Dmsc

)(

√
1+2Dmsc+1

2

)3
Dps

{

ln(1−Dps)
}2

. (25)

It suffices to minimize

Dtmp[Dmsc] =
Dtc

Dps{ln(1−Dps)}2 =
(

2+
1

Dmsc

)(

√
1+2Dmsc+1

2

)3
,

which is a function of the single variableDmsc. ⊓⊔
In comparison to the previous optimal set of parameters thatutilizes t̂ as a free variable,

this version shows a less efficient tradeoff, but requires less pre-computation. The behavior
of the DP tradeoff coefficient with sufficiently largêt, under a fixed requirement for suc-
cess rate is given as the left-hand side graph of Figure 3. Thepoint of minimum tradeoff
coefficient is marked, together with the position corresponding to the more commonly used
matrix stopping rule ofDmsc= 1. The advantage of using a smaller matrix stopping constant
than usual is clearly visible.
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Fig. 3 Tradeoff coefficients at fixed probability of success for theDP tradeoff with a sufficiently largêt and
the Hellman tradeoff

7.2 Hellman tradeoff

We now turn to the Hellman tradeoffs. This is very similar to the DP tradeoff case that uses
a sufficiently largêt.

Proposition 37 Let 0< Hps< 1 be any fixed value. The Hellman tradeoff, under any set of
parameters m, t, andℓ, that are subject to the relations

mt2 = 2.25433N and ℓ= 0.598941
{

− ln(1−Hps)
}

t,

attains the givenHps as its probability of success, and exhibits the tradeoff performance
corresponding to

Htc = 1.50217Hps
{

ln(1−Hps)
}2

,

as the three parameters are varied. Under any such choice of parameters, the number of
one-way function invocations required for the pre-computation phase is

HpcN= 1.35021
{

− ln(1−Hps)
}

N.

The two relations restricting the parameter choices give optimal parameters in the sense
that no choice of m, t, andℓ can lead to a tradeoff coefficient smaller than the above while
achievingHps as its probability of success.

Proof The proof given here shall be concise, since it is similar to those of Proposition 35 and
Proposition 36. Based on Proposition 20, we may fixℓ= 1

Hcr Hmsc
{− ln(1−Hps)}t. Reference

to Proposition 21 shows that the Hellman coverage rateHcr = Hcr[Hmsc] may be seen as a

function ofHmsc=
mt2
N

. Hence, given anym, t, andHps, we can setℓ to an appropriate value
with which the Hellman tradeoff achieves success probability of Hps.

We now work to minimize the Hellman tradeoff coefficient. By combining Theorem 22
and Proposition 21, we obtain

Htc =
( 1
Hmsc

+
1
6

)(

√
Hmsc√

2

e
√

2Hmsc+1

e
√

2Hmsc−1

)3
Hps

{

ln(1−Hps)
}2

. (26)

For a fixed success probability, it suffices to minimize the part that depends only on the
single variableHmsc.

One can use numeric methods to identify the minimum value Htc
Hps{ln(1−Hps)}2 = 1.50217,

which is attained atHmsc= 2.25433. The two remaining constants appearing in the proposi-
tion may now be obtained through appropriate evaluations. ⊓⊔
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The most typical Hellman tradeoff, which is set to usemt2 =N andℓ= t attains a success
probability of 57.68% and the tradeoff curveTM2 = 0.7797N2, when the cost of resolving
alarms is taken into account. In comparison, the choice ofmt2 = 2.2543N andℓ= 0.5160t,
suggested by Proposition 37, givesTM2 = 0.6409N2, while achieving the same success
rate. This improvement in tradeoff efficiency is visible through the right-hand side graph of
Figure 3, where the two dots mark the two parameter choices wehave just discussed.

The price paid for this better tradeoff efficiency is the increase in pre-computation
from N to 1.1630N. Indeed, after combining Proposition 20 and Proposition 21into

Hpc =

√
Hmsc√

2

e
√

2Hmsc+1

e
√

2Hmsc−1

{

− ln(1−Hps)
}

, (27)

one can check that the pre-computationHpc[Hmsc] required under any fixed probability of
success is an increasing function ofHmsc. Hence, while any point that is situated to the
left of the minimal point in Figure 3 may not be optimal in viewof tradeoff efficiency, it
corresponds to less pre-computation. Depending on the available computational resources,
one may choose to lower pre-computation cost rather than increase the tradeoff efficiency.
On the other hand, increasingHmsc beyond the minimizing value 2.25433 will have bad
effects on both the pre-computation and the tradeoff efficiency and should be avoided.

Let us briefly return to the DP tradeoff that uses a sufficiently large t̂. By combining
Proposition 5 and Proposition 10, we can write

Dpc =

√
1+2Dmsc+1

2

{

− ln(1−Dps)
}

, (28)

and, as with the Hellman tradeoff, confirm thatDpc is an increasing function ofDmsc. Since
we know from Proposition 36 that the best performance is achieved atDmsc= 0.562047,
the choice ofDmsc≤ 0.562047 may be reasonable in view of lower pre-computation cost,
but usingDmsc> 0.562047 should be avoided. In particular, the use ofDmsc= 1 cannot be
justified.

7.3 Rainbow tradeoff

The analyses of optimal parameters for the DP and Hellman tradeoffs were very similar.
However, the rainbow tradeoff does not allow the same approach, because we have less
control over the parameterℓ. The number of tablesℓ used with the DP and Hellman tradeoffs
are quite large and we had treatedℓ as if it were a continuous variable. In the rainbow tradeoff
case, the table count is usually a small integer and we must keep in mind that it takes only
discrete values.

Let us start with a fixed number of tablesℓ. For any given requirement on the success
rate, we can rewrite Proposition 29 as

Rmsc= 2
{

(1−Rps)
− 1

2ℓ −1
}

(29)

and understand this as a lower bound onRmsc that can be used withℓ to achieveRps. It is
clear that increasingRmscunder a fixedℓ will increase the pre-computation costRmscℓN. One
can also work with the tradeoff coefficientRtc, as provided by Theorem 30, to confirm that
increasingRmscunder a fixedℓ will reduce the tradeoff efficiency. Hence, under any fixedℓ,
the exact value ofRmsc, suggested by (29), should be used to achieve the required success
rate.
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Table 1 Range of success probability requirements for which each table countℓ is optimal

ℓ Rps log2(1−Rps) log2Rtc Rmsc[Rps,ℓ ↑] Rmsc[Rps,ℓ ↓]
0 0 −∞ 0

1 0.734166 -1.91140 0.565848 1.87905 0.785335
2 0.886651 -3.14116 2.08082 1.44688 0.874929
3 0.946562 -4.22600 2.88968 1.25878 0.884357
4 0.973305 -5.22729 3.41666 1.14577 0.873341
5 0.986146 -6.17353 3.79818 1.06812 0.856920
6 0.992618 -7.08171 4.09387 1.01079 0.839893
7 0.995992 -7.96295 4.33425 0.966542 0.823891
8 0.997795 -8.82486 4.53663 0.931326 0.809415
9 0.998775 -9.67274 4.71157 0.902658 0.796529

10 0.999314 -10.5104 4.86585 0.878902 0.785129
11 0.999614 -11.3404 5.00406 0.858929 0.775059
12 0.999782 -12.1649 5.12941 0.841927 0.766150
13 0.999877 -12.9850 5.24421 0.827299 0.758246
14 0.999930 -13.8020 5.35019 0.814594 0.751208
15 0.999960 -14.6163 5.44869 0.803466 0.744914

We can now treatRmscas a function of the success rate requirementRps, for any fixedℓ.
After substitutingRmsc, as given by (29), into the tradeoff coefficient of Theorem 30, one
can rewrite it as

Rtc =
4 ℓ3

(2ℓ+1)(2ℓ+2)(2ℓ+3)

×















{

− (2ℓ+3)+2(2ℓ+1)(1−Rps)
− 1

2ℓ
}

(1−Rps)
− 1

ℓ

+
{

(2ℓ+1)2−2ℓ(2ℓ+3)(1−Rps)
− 1

2ℓ
}

(1−Rps)















.

(30)

For each fixedℓ, this is a function of the single variableRps. A plot of this is given as Figure 4
for table countsℓ = 1, 2, and 3. The the right-hand side box is a magnified partial view of
the left-hand side box in logarithmic scale.

Recalling that a smaller tradeoff coefficient implies better tradeoff efficiency, one can
clearly read from the figure that the use ofℓ= 1 is optimal when the requirement for success
rate is very low and that the use of successively higher number of tables becomes optimal
as the success rate requirement is made more stringent. We have numerically solved for the
explicit probabilities at which the transition to the next table count should be made and have
recorded this in Table 1.
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Let us briefly explain the content of the table with examples.Suppose one aims to
achieve the success probability of 99.9% with the rainbow tradeoff. Since 0.999 sits between
0.998775 and 0.999314, it is optimal to use ten tables. If one is requested toset the proba-
bility of failure to 1

27 , we locate−7 between−6.17353 and−7.08171 and conclude that six
tables would be optimal. To understand the other three columns of the table, let us focus on
the row that sits betweenℓ= 1 andℓ= 2. The use of a single table withRmsc= 1.87905, or
the use two tables atRmsc= 0.785335 will both result in the optimal tradeoff coefficient of
Rtc = 1.48026= 20.565848and success rate 73.4166%.

Note that any given success rate requirementRps makes a certain number of tablesℓ as
optimal, and theℓ value fixesRmscthrough (29). Since the tradeoff coefficient of Theorem 30
is already determined byℓ andRmsc, and since the relation (29) guaranteesRps success rate,
any parameter set satisfying the mentioned restriction will be optimal in view of the tradeoff
coefficient. Let us gather what we have discussed in a proposition.

Proposition 38 Let 0 < Rps < 1 be any given fixed value. Locate the table countℓ from
Table 1 that corresponds to the givenRps and compute

Rmsc= 2
{

(1−Rps)
− 1

2ℓ −1
}

.

Then the rainbow tradeoff that uses the locatedℓ and any parameters m and t satisfying the
relation

mt= RmscN

attains the given valueRps as its probability of success. The tradeoff performance corre-
sponding to

Rtc =
ℓ3

(2ℓ+1)(2ℓ+2)(2ℓ+3)











{

(2ℓ−1)+(2ℓ+1)Rmsc
}

(2+Rmsc)
2

−4
{

(2ℓ−1)+ ℓ(2ℓ+3)Rmsc
}

(1−Rps)











,

can be observed as m and t are varied under the restriction. With any such choice of param-
eters, the number of one-way function invocations requiredfor the pre-computation phase
is

RpcN= RmscℓN.

The choice ofℓ through Table 1 and the single relation concerning m and t lead to optimal
parameters in the sense that no choice of m, t, andℓ can result in a tradeoff coefficient
smaller than the above while achievingRps as its probability of success.

To be strictly logical, one must also consider the possibility that allowing the multiple
tables to be of different sizes may lead to better tradeoff coefficients. The case of three
tables with the most general table sizes is analyzed in [21] and the conclusion is made
that optimal tradeoff performance is achieved at equal sized tables. The method used can
probably be extended to larger number of tables, but the required computations will be
much more complicated than the computations done in this work. Since the examination
of the 3-table case showed that we are not likely to gain anything from the more general
analysis, we chose to work with equal sized tables. However,for the case of perfect rainbow
tables, we have reasons to believe that this extra flexibility will bring about better tradeoff
performance.

Finally, we want to provide an argument that is analogous to what was discussed at the
end of Section 7.2. One can check that

Rpc = Rmscℓ= 2ℓ
{

(1−Rps)
− 1

2ℓ −1
}

(31)
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is a decreasing function ofℓ, for each fixedRps. Hence, use of anℓ count that is larger than
what is suggested by Table 1 will decrease the pre-computation requirement at the cost of
reduced tradeoff efficiency. This may be preferable in some situations. On the other hand,
use of anℓ count that is smaller than the optimal count will have bad effects on both the
pre-computation cost and tradeoff efficiency, and should beavoided.

8 Comparison of Tradeoff Performances

All the ingredients required for a fair comparison of performances between the tradeoff
algorithms are now ready. Any discussion of the DP tradeoff in this section assumes that the
chain length bound̂t is sufficiently large.

8.1 Conversion of the tradeoff coefficients to a common unit

It is clear that for any comparison of tradeoff algorithms tobe fair, the algorithms must be
made to present the same probability of success. One must also consider the pre-computation
cost required by each algorithm, and this aspect will be considered later on in this section.
For now, we focus on the fact that the tradeoff coefficient is ameasure of tradeoff efficiency.
Let us assume that the DP, Hellman, and rainbow tradeoff algorithms display the respective
tradeoff curves

TDM
2
D = DtcN

2, THM
2
H = HtcN

2, and TRM
2
R = RtcN

2, (32)

at the same success rate. We will discuss how to interpret theratioDtc : Htc : Rtc of the tradeoff
coefficients as a ratio of tradeoff efficiencies.

8.1.1 Unit for storage

Let us first consider the storage variableM. For the moment, we will disregard any issues
concerning the time unit.

In all three tradeoff algorithms,M represents the number of starting point and ending
point pairs that need to be stored, but the actual number of bits required to store each ta-
ble entry will be different among the tradeoff algorithms. We saw through Proposition 17,
Proposition 25, and Proposition 33 that the number of bits required to store each table entry
is as follows for each tradeoff algorithm.

DP : slightly more than logmD bits

Hellman : slightly more than logmH+ logtH bits

rainbow : slightly more than logmR bits

Let us assume from this point on that the ending point truncations for the three algorithms
were done in such a way that their effects on the online time are minimal. In particular, we
assume that the contents of Corollary 14, Theorem 22, and Theorem 30 remain valid after
ending point truncation. We further assume that theslightly morebits mentioned above can
be ignored.

A fair comparison of tradeoff performances would express storages for the three algo-
rithms in terms of number of bits that are required for the pre-computation tables rather than
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the number of starting point and ending point pairs. Under the two assumptions made, one
is lead to focus on the ratio

(logmD)
2
Dtc : (logmH+ logtH)

2
Htc : (logmR)

2
Rtc, (33)

rather than the raw tradeoff coefficient ratioDtc : Htc : Rtc. The bit sizes per entry are mul-
tiplied in squares because any change in storage affects thetradeoff efficiency through a
square factor.

The implementation environment and tradeoff requirementswill place the choice of
suitable parameters into a certain range, and it is reasonable to assume that the parameters
that would be chosen for each algorithm would be related through

logtD ≈ logtH ≈ logtR, logmD ≈ logmH, and logmR ≈ logmH+ logtH. (34)

Some readers may object that our discussion on the number of bits required for each ta-
ble entry makesmD = 2mH more reasonable thanmD = mH, but this difference by a factor
of two is lost in the approximations when they are converted bit sizes, as is done in the
expression (34).

Assuming the rough correspondence (34) between parameters, the ratio (33) simplifies
to

( logmD

logmR

)2
Dtc : Htc : Rtc. (35)

When issues concerning time units are ignored, this is the correct ratio to focus on when
comparing the tradeoff efficiencies of different algorithms.

8.1.2 Unit for online time

Unification of the time unitT is now considered. Issues concerning the storage unit, which
we have already discussed, are ignored for the moment.

Recall that the time variableT used in the tradeoff curves counts the number of one-
way function iterations and ignores the table lookups. Hence, parameter sets which lead to
identical timeTD = TH = TR does not guarantee that the simultaneous executions of the three
algorithms will finish at the same time. For a fair interpretation of a tradeoff coefficient ratio
as a ratio of tradeoff efficiency, the difference in the time units used by the algorithms must
be taken into account.

It is reasonable to expect the time taken for a single one-wayfunction iteration by the
three algorithms to be quite similar. Let us fix notation and express this common time length
as |Itr|. We also fix notation|TL-D|, |TL-H|, and |TL-R| for the time required for lookups
to the DP, Hellman, and rainbow tables, respectively. Depending on the implementation
platform, it is possible to experience|TL-D| ≈ |TL-H| ≪ |TL-R|, even when equal sized
storages are allocated to the three algorithms, since the DPor Hellman tradeoffs utilize a
large number of small tables, whereas the rainbow tradeoff use a small number of large
tables.

Referencing Lemma 15, the real-world time required to process the online phase of
a DP tradeoff can be written asTD |Itr|+ tD

Dps
DcrDmsc

|TL-D|. Since we know from (18) that

TD = t2
D

Dps
DcrDmsc

(1+2Dmsc), the real-world online time for DP tradeoff can be expressedas

(

1+
1

1+2Dmsc

|TL-D|
tD |Itr|

)

TD |Itr|. (36)
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Similarly, gathering information from (21) and Lemma 23, the real-world execution time for
the Hellman online phase can be written as

(

1+
6

6+Hmsc

|TL-H|
|Itr|

)

TH |Itr|. (37)

The corresponding expression for the rainbow tradeoff, relying on (22) and Lemma 31 is
given by

(

1+Rtmp[ℓ,Rps]
|TL-R|
tR |Itr|

)

TR |Itr|, (38)

where

Rtmp[ℓ,Rps] =

(2ℓ+2)(2ℓ+3)















(1−Rps)
− 1

ℓ − (1−Rps)
− 1

2ℓ

− (1−Rps)
1− 1

2ℓ +(1−Rps)





























2(2ℓ+1)(1−Rps)
− 3

2ℓ − (2ℓ+3)(1−Rps)
− 1

ℓ

−2ℓ(2ℓ+3)(1−Rps)
1− 1

2ℓ +(2ℓ+1)2(1−Rps)















is of Θ(1) order. We have used (29) to remove all occurrences ofRmsc in the expression,
because our graphs for each fixedRps in the later part of this section are drawn usingℓ as a
parameter.

The three equations (36), (37), and (38) can be used to easilyfind the correct way to com-
pare tradeoff coefficients. For example, consider the simplest case where all table lookups
are negligible, i.e., when|TL-D|, |TL-H|, |TL-R|,≪ |Itr|. Then, all the second terms in the
three equations are negligible. Hence, the raw coefficient ratio Dtc : Htc : Rtc reflects the true
tradeoff efficiency ratio of the three algorithms.

Let us next consider the case where|Itr| ≪ |TL-D| ≈ |TL-H| ≤ |TL-R| ≪ tD|Itr| ≈ tR|Itr|.
This might be the situation experienced by a large implementation that requires disk accesses
for table lookups. The probable use of largetD andtR partially justifies the third inequality. In
this case, the second term of (37) dominates all other five terms of the three equations. The
Hellman tradeoff clearly cannot compete with the other two algorithms and the comparison
between the DP and rainbow tradeoffs can fairly be done withDtc : Rtc.

The final example we consider is when|Itr| ≈ |TL-D| ≈ |TL-H| ≤ |TL-R| ≪ tD|Itr| ≈
tR|Itr|. Then neither of the two terms of (37) dominates the other andneither can be ignored.
The appropriate ratio to study when comparing tradeoff algorithms would be

Dtc :
(

1+
6

6+Hmsc

|TL-H|
|Itr|

)

Htc : Rtc. (39)

There are many other cases to consider, but the correct way toadjust the tradeoff coef-
ficients so that they reflect the tradeoff efficiency ratio of the tradeoff algorithms can easily
be found from (36), (37), and (38).

This ends our discussion on the unit of time, but let us brieflydigress and discuss the
exceptional situation of|TL-R| ≫ tR|Itr| for the rainbow tradeoff. This could happen when
the pre-computation tables must be reached over the internet during the online phase. Then,
table lookups dominate the online phase, and we can combineTR =Θ(tℓ), MR =Θ(mℓ), and
ℓ =Θ(1) to conclude thatTRMR ∝ N. At first thought, this might seem to be a much better
tradeoff curve than the usualTM2 ∝ N

2 curve.
The counterintuitive conclusion hides the fact that the unit of time TR is now |TL-R|,

rather than|Itr|. Furthermore, unlessN is small, the assumption|TL-R| ≫ tR|Itr| cannot
continue to hold astR is increased, so that the tradeoff curve will eventually return to the
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usualTM2 ∝ N
2 after a certain point. The tradeoff curveTRMR ∝ N remains valid whentR

is moved in the decreasing direction, but havingTRMR constant is worse than havingTRM2
R

constant in that direction.
Similar arguments may be made for the DP tradeoff, but lookups to DP tables over slow

network are even less likely to be seen than with the rainbow tradeoffs. Since each individual
DP table is rather small, each could be stored on the node thatcomputes the online chain
corresponding to that table.

8.1.3 Combined unit conversion

The storage unit conversion and the time unit conversion areorthogonal, and the two con-
versions may simply be multiplied to give modified tradeoff coefficients that are appropriate
for comparisons of different tradeoff algorithms. For example, under the reasonable assump-
tion (34), we know that the storage conversion must follow (35). If the one-way function
computation and table lookup speeds satisfy|Itr| ≈ |TL-D| ≈ |TL-H| ≤ |TL-R| ≪ tD|Itr| ≈
tR|Itr|, the time unit conversion must follow (39). Combing the two,we know that compar-
isons of tradeoff algorithms must focus on

( logmD

logmR

)2
Dtc :

(

1+
6

6+Hmsc

|TL-H|
|Itr|

)

Htc : Rtc,

under the stated circumstances.
In our further discussions below, we will mainly restrict ourselves to parameter sets that

roughly satisfy

logmD ≈ logmH ≈ logtD ≈ logtH ≈ logtR ≈
1
3

logN and logmR ≈
2
3

logN

and mostly assume that the time required for a single table lookup is negligible in compar-
ison to that required for a single one-way function computation. Under these assumptions,
the ratio that needs to be studied when comparing tradeoff efficiencies is

1
4
Dtc : Htc : Rtc. (40)

We shall refer to the situation that has just been described as thetypical situation, as it often
appears during theoretic developments of the tradeoff technique. However, we do not claim
this to be typical in practical applications of the tradeofftechnique.

We emphasize that our further discussions given below concerning tradeoff performance
comparisons will only be valid under the typical situation assumption. If the environment
and tradeoff performance requirements make parameter choices such that logmD 6≈ logtD
more appropriate, or if the table lookup delays cannot be ignored, the algorithm comparison
conclusions will be different. Still, one will be able to usethe information explained in this
subsection to easily make the proper adjustments.

Even for the typical situation, the ratio (40) can be made more accurate for each explicit
situation. Based on Example 18, Example 26, and Example 34, we can state that

282 9
8
Dtc : 552 17

16
Htc : 552 33

32
Rtc = 1.00Dtc : 3.64Htc : 3.54Rtc,

is a more accurate version of (40), for the typical situationwith N= 275. This new ratio does
not ignore the extra one-way function invocations caused byending point truncations and
does not ignore theslightly morebits discussed at the start of Section 8.1.1.
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8.2 DP tradeoff versus Hellman tradeoff

As discussed in the previous subsection, it suffices to compare 1
4Dtc againstHtc for a fair

comparison between the DP and Hellman tradeoffs. We are assuming the typical situation
explained at the end of the previous subsection and any conclusions we make could be
different under different circumstances. The pre-computation effort is finally considered
during tradeoff comparison in this section.

The contents of Proposition 36 and Proposition 37 show that the optimal tradeoff effi-
ciencies of the two algorithms are given by

1
4
Dtc = 1.75264Dps

{

ln(1−Dps)
}2 and Htc = 1.50217Hps

{

ln(1−Hps)
}2

.

One may want to conclude that the Hellman tradeoff, with the smaller tradeoff coefficient,
is more efficient, but this is acceptable only when the pre-computation cost can be totally
ignored. In practice, pre-computation cost is the largest barrier to any large scale deployment
of tradeoff algorithms and is hard to ignore.

The pre-computation costs required to achieve the above tradeoff efficiencies are

Dpc = 1.22871
{

− ln(1−Dps)
}

and Hpc = 1.35021
{

− ln(1−Hps)
}

.

The pre-computation cost of the DP tradeoff is lower and we are faced with the problem of
comparing high efficiency at high cost against low efficiencyat low cost.

After a moment of thought one must admit that such a comparison cannot be done in an
objective manner. The comparison must reflect how valuable tradeoff efficiency is to the user
and how willing one is in investing more time and resources into the pre-computation phase.
There is no unit with which to express either of these unquantifiable values. Furthermore,
one must also question whether it is reasonable to compare the two tradeoffs at parame-
ters giving their respective optimal tradeoff efficiencies. Non-optimal parameters may be
preferable under many situations in view of lower pre-computation cost.

We can conclude that all we can do is present the range of choices that can be made with
each algorithm and allow the users to make their conclusionsbased on their explicit circum-
stances. The crucial information that must be displayed to allows easy judgement of which
tradeoff is more suitable is the relation between tradeoff efficiency and pre-computation
cost. This must be done at each fixed requirement for the inversion success rate.

As was previously noted through (28) and (27), when under a fixed probability of suc-
cess requirement, bothDpc andHpc are functions of their respectiveDmsc andHmsc values.
The tradeoff coefficientsDtc andHtc, under a fixed success rate requirement, were similarly
expressed as functions of the correspondingDmscandHmscvalues in (25) and (26).

For a comparison of the DP tradeoff against the Hellman tradeoff, it now suffices to
present the graphs

{

(Dpc[Dmsc],
1
4
Dtc[Dmsc]) | Dmsc≤ 0.562047

}

(41)

and
{

(Hpc[Hmsc],Htc[Hmsc]) | Hmsc≤ 2.25433
}

, (42)

where the bounds onDmscandHmscwere placed in accordance with the discussion at the end
of Section 7.2. These graphs are given in Figure 5. Since the two graphs are to be compared
at identical success rate requirementsDps = Hps, we have removed the common parts that
depend on the success probability from both of the cases before plotting the graphs. Hence,
the graphs do not depend on the success rate and are valid for all success rate requirements.
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Fig. 5 The tradeoff coefficient14Dtc (dotted) andHtc (dashed) in relation to their respective pre-computation
cost

Both graphs extend further upwards, but the right ends, corresponding to the optimal tradeoff
performances, are clearly marked with dots.

The two graphs are very close to each other. Even though slightly better tradeoff effi-
ciency can be obtained with the Hellman tradeoff at higher pre-computation cost, in practice,
unless parameters far from the typicalm≈ t ≈N

1
3 region are to be used, the DP tradeoff will

be favored in view of less number of table lookups. For example, if the table lookup time
makes1

5Dtc : Htc a more appropriate measure of tradeoff performance ratio than the current
1
4Dtc : Htc, the dotted curve for the DP tradeoff would move down and present itself as a more
advantageous algorithm.

If table lookup time is absolutely negligible in comparisonto the one-way function com-
putation time, there is a short range of parameter sets with which the Hellman tradeoff can
slightly outperform the DP tradeoff using the same amount ofpre-computation. If table
lookup time is negligible and pre-computation is not to be considered, the Hellman tradeoff
can be slightly better.

8.3 Rainbow tradeoff versus DP and Hellman tradeoffs

We now include the rainbow tradeoff into the comparison graphs. As was discussed in Sec-
tion 8.1, we assume the typical situation concerning the approximate range of parameters
and table lookup time, and consider comparisons between1

4Dtc, Htc, andRtc to be fair.
In addition to the graphs (41) and (42), we need to plot all possible(Rpc,Rtc) points. We

can first check through (31) thatRpc can be seen as a function of the table countℓ, when
success rate requirementRps is fixed. As for the tradeoff coefficient, equation (30) presents
it as a function of justℓ, whenRps is fixed. Given any requirement on the success rateRps, it
is now possible to draw the graph

{

(Rpc[ℓ],Rtc[ℓ]) | ℓ≥ optimal table count forRps
}

, (43)

where the optimal table count can be obtained from Table 1. Note that this is no longer a
continuous graph, but a discrete set of points. In the strictsense, previous graphs for the DP
and Hellman tradeoffs were also discrete set of points, but unlessN is very small, the points
are extremely close to each other.

Unlike our comparison between DP and Hellman tradeoffs, theparts that depend onRps

appearing in the expressions (31) and (30) are not identicalto those appearing in the cor-
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Fig. 6 Tradeoff coefficient14Dtc (dotted),Htc (dashed), andRtc (large dots) in relation to their respective pre-
computation cost at success rates 25%, 50%, 75%, 90%, 95%, and 99% (X-axis:Dpc, Hpc, andRpc; Y-axis:
1
4Dtc, Htc, andRtc)

responding expressions (28), (27), (25), and (26). Hence, separate graphs need to be drawn
for each success rate. This is given in Figure 6 for some success rates.

In all of the graphs, one can see that the curve for the rainbowtradeoff sits closer to
the origin than the curves for DP and Hellman tradeoffs. Notethat a graph sitting lower
shows better tradeoff efficiency and being positioned more to the left implies lower pre-
computation cost. In all the cases except for the ones corresponding to 25% and 50% success
rates, given any position on the curve for either the DP or Hellman tradeoff there is a rainbow
tradeoff position that presents better tradeoff performance at a smaller pre-computation cost.
Use of the rainbow tradeoff is definitely advisable in these cases.

The existence of better rainbow position is also mostly truein the 50% case. The excep-
tion is marked with an⊗ on the curve for the Hellman tradeoff. This position is very slightly
to the left of the optimal rainbow position and hence corresponds to less pre-computation
than the optimal rainbow position. At the same time, it is positioned lower than the second
best rainbow position and hence shows better tradeoff efficiency than this second best posi-
tion. Hence, there can be no rainbow tradeoff parameter set that can replace the Hellman po-
sition marked with an⊗ without at least very slightly sacrificing either the pre-computation
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cost or the tradeoff efficiency. Still, anybody will agree that this exception is quite unrea-
sonable and one would normally choose to sacrifice the extremely small amount of either
the pre-computation cost or the tradeoff performance for a visibly better value of the other
factor.

The 25% case also displays the rainbow tradeoff requiring less pre-computation than
the other two tradeoffs in achieving equal tradeoff efficiency, but the awkward exceptional
position discussed for the 50% can be found here as rather large segments. In addition, the
best tradeoff efficiency achievable by the rainbow tradeofffalls short of what is reachable by
the other two algorithms. Hence there will be situations where the DP or Hellman tradeoffs
is preferable over the rainbow tradeoff, when required to achieve 25% success rate.

The relative advantage of using rainbow tradeoff is clearlyseen to grow with the increase
in the success rate requirement. For the 99% success rate case, it seems almost safe to say
that the rainbow tradeoff performs approximately twice as better than the other two tradeoff
algorithms in any of their reasonable usages.

In conclusion, the use of rainbow tradeoff is advisable for high success rate requirements
and there may occasionally be low success rate applicationswith special situations where
the other two tradeoffs are preferable. We emphasize once more that this conclusion is only
valid under the typical situation assumption explained in Section 8.1. For example, if we
must work with parameters such that 2 logmD ≈ logtD and 2logmH ≈ logtH and table lookups
are negligible, then comparison of the coefficients1

9Dtc, Htc, andRtc would be appropriate.
This would bring the curve for the DP tradeoff lower and we would arrive at a different
conclusion.

8.4 Revisit to the preliminary tradeoff comparison

In Section 2.9, we recalled how [24] claimed the rainbow tradeoff to be more efficient than
the DP tradeoff by a factor of two. We also explained how [3, 4]pointed out that the two
algorithms require different number of bits to represent each table entry and argued that
the DP tradeoff was twice as efficient as the rainbow tradeoff. Since our conclusions of
Section 8.3 are once again supportive of the rainbow tradeoff, let us explain where in the
arguments of [3, 4] the inaccuracies were introduced. Details of the current paper, including
the proofs, need to be understood if the computations of thissection are to be followed.

According to Proposition 5, Proposition 10, and Corollary 14, the DP tradeoff perfor-
mance at parametersm= t = ℓ = N

1
3 and a sufficiently large chain length bound is given

by
Dps= 51.9%, Dtc = 2.13, Dpc = 1. (44)

In comparison, Proposition 29 and Theorem 30 allow us to state that the rainbow tradeoff at
the naturally corresponding parametersm= N

2
3 , t = N

1
3 , andℓ= 1 shows the performance

Rps= 55.6%, Rtc = 0.422, Rpc = 1. (45)

As claimed in [3, 4] and confirmed in Section 8, we must apply anadjustment factor to
compensate for the difference in bits required per table entry before comparing these two
sets of figures. Comparing14Dtc = 0.532 againstRtc = 0.422, we can conclude that, for the
same amount of physical storage, the rainbow tradeoff is both faster and succeeds more
often than the DP tradeoff. This disagrees with the claim of [3, 4] and does not go against
our conclusion, which stated that the rainbow tradeoff is slightly better than the DP tradeoff
at low success rates.
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The main argument of [3, 4] that the number of bits required tostore each entry of the
rainbow tradeoff is twice of that required for the DP tradeoff was certainly correct. The
primary source of their incorrect conclusion is the inaccurate estimations of running time
complexities for the two algorithms. The tradeoff coefficient for the DP was estimated at 1,
but in reality, it was a much largerDtc = 2.13.

After understanding the details of the proof to Theorem 13, one can compute that, out of
the value 2.13, the part that corresponds to the online chain computation is only 0.709. This
is smaller than 1, the estimate of [3, 4], but the remaining 1.42, which is due to the resolving
of alarms, was much larger. In the case of the rainbow tradeoff, the tradeoff coefficient was
estimated at 0.5 by [3, 4] and the actual valueRtc = 0.422 was smaller. Details of the proof
to Theorem 30 show that, out of the 0.422, the cost of online chain creation corresponds to
a mere 0.306 and the cost of resolving alarms corresponds to an even smaller 0.117.

The true online chain creation efforts for the two algorithms being smaller than the
initial rough estimates is a consequence of the algorithms terminating prematurely with the
discovery of the correct answer, and the upper bounds for thecost of online chain creation
given by the preliminary analysis [3, 4] were correct. Since1

4 ×0.709 is less than 0.306, a
comparison of the two algorithms based only on the online chain creation time would have
concluded that the DP tradeoff was superior. In fact, the ratio 0.709/4

0.306 ≈ 0.579 is somewhat
in agreement with the performance ratio of two that was claimed by [3, 4], based on their
rough upper bounds. However, when the costs of resolving alarms were taken into account,
the conclusions were quite the opposite. This is a clear indication that a careful analysis of
the cost associated with resolving of alarms was necessary for a fair comparison of tradeoff
algorithms.

Let us now discuss how sensitive a role the success rate playsin making algorithm
comparisons. Note that the parameters used in [3, 4] achieved success probabilitiesDps =
51.9% andRps= 55.6%. According to Proposition 36, the optimal tradeoff performances of
the DP tradeoff at the two success rates are

Dps= 51.9%, Dtc = 1.95, Dpc = 0.899, (46)

and
Dps= 55.6%, Dtc = 2.56, Dpc = 0.996. (47)

The figures of (46) show that the typical parametersm= t = ℓ = N
1
3 considered in [3,

4] should not be used. We can obtain the success probability of (44) at a better tradeoff
efficiency and with a smaller investment in pre-computation.

A comparison of (46) and (47) clearly shows that a small difference in success rate can
lead to a large difference in the optimal tradeoff coefficient. It can be seen from Proposi-
tion 36 that the optimal tradeoff coefficient will become even more sensitive to the success
probability as the demand on success rate is increased.

The figures we gave concerning the success rate difference were not as dramatic as
those concerning the alarm resolving cost in that no conclusion was overturned. However,
since performances of different algorithm are close to eachother, it is clear that the ability
to accurately predict the success probabilities of tradeoff algorithms is critical in making
comparisons of tradeoff algorithms.

9 Conclusion

In this work, we analyzed the running time complexities of the DP, Hellman, and rainbow
tradeoffs, and summarized their abilities to balance storage against online time as tradeoff
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curves that are correct up to small multiplicative factors.These results were used in the later
part of this work to compare the performances of tradeoff algorithms against each other. Our
comparison is different from previous attempts in that the efforts for pre-computation have
been taken into account.

Although we did provide explicit statements comparing the three tradeoff algorithms,
our conclusions are only true under certain assumptions concerning the tradeoff environ-
ment. We emphasize once more that one should not blindly extend our conclusions to other
situations. Rather, one should see this work as providing the tools and methodology for fair
comparisons of tradeoff algorithms and use these to arrive at their own final judgements
specific to their circumstances.

One conclusion we can provide about the relative performances of different tradeoff al-
gorithms is that their differences will be small. The practical inconvenience of having to
align each entry of the pre-computed table at a byte boundaryhas not been considered in
this work, and the performance differences between algorithms can be so small that such
obscure issues may be of equal importance in practice. This fact is disappointing to us as
authors of the current work, but should be relieving to practitioners of the tradeoff algo-
rithm that are not concerned with small performance differences. Nevertheless, even if one
decides to ignore small performance differences, comparison graphs of the previous section
show that meaningful reduction in pre-computation cost canbe achieved with only a small
sacrifice to tradeoff efficiency and being able to take advantage of this knowledge will be
of practical importance. Furthermore, with extremely large scale implementations, having
accurate access to the small differences will be of significant value.

Complexity analyses of perfect table versions of the tradeoff algorithms at the accu-
racy level treated in this paper and their inclusion into thetradeoff performance compari-
son picture remains to be done. Perfect table tradeoffs are expected to display better trade-
off efficiency and are certainly of interest, even though they require larger amount of pre-
computation.
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A Technical Approximation

The lemma below shows that the approximation
(

1− 1
b

)a ≈ e−
a

b , which we have used frequently in this
work, is very accurate for large integersa andb such thata= O(b).

Lemma 39 For positive integersa andb, we have
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Proof We start by writing exp
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)

in its Taylor series form and fully expanding the term(1− 1
b
)a.
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After noting that the beginning two pairs of terms cancel out, we collect corresponding pairs from the two
sequences of terms and bound the above by
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It is easy to see that

0≤ a
k
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for everyk ≥ 2, where the last inequality can be checked through induction onk. This shows that the terms
of (48) that appear inside the first set of braces is bounded by
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As for the second set of braces from (48), it is easy to see that

1
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exp

(
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)

can serve as its very rough bound. It now suffices to gather thetwo bounds to arrive at the claim. ⊓⊔

B Random Function Arguments

Any analysis of a tradeoff algorithm assumes the one-way function F to be a one-way function and most
results given in this work as equations are certain values expected of a random function. In other words, we
have been stating values that had been averaged over the choice of all functionsF : N →N . In this section,
we point out that many of the arguments made during these computations are not strictly correct and then try
to justify heuristically that the existing logical error may safely be ignored.

B.1 Existence of a logical gap

Recall the expected image size of a random function given by (1) and the expected iterated image sizes given
by (2). The claim that (1) implies (2) is acceptable in the realm of cryptology. In this subsection, we clarify
that there is a small logical gap in such a claim.

Let us rewrite (1) as an explicit self-contained statement which is precisely correct.

Lemma 40 Let F : N → N be the random function on a finite set of sizeN. If M ⊂ N is of size m0, then
the size of F(M ) is expected to be

m1 =N

{

1−
(

1− 1
N

)m0
}

.

The proof of this lemma is quite trivial. It suffices to consider the ratio of points amongN that remain un-
touched throughout the sequential assignments made to elements ofM for the random function construction.

We want to emphasize two things about this lemma. The first is that the value claimed by this lemma is
the exact expected value and does not involve any approximation. In fact, the largest reason for rewriting the
statement here was to remove the approximate expression. The second point we make is that the statement
of this lemma does not contain any averaging over input sets.The expected image size claim holds true for
every setM ⊂ N of sizem0.

Discussing just the double iteration case will be sufficientfor our purposes. Let us define

m1 =N

{

1−
(

1− 1
N

)m0
}

and m2 = N

{

1−
(

1− 1
N

)m1
}

, (49)
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for any givenm0. One might believe thatm2 is the expected size ofF2(M ), whenF : N →N is the random
function andM ⊂ N is of sizem0. Since Lemma 40 contains no approximation, some might expect (49)
to hold exactly. However, this reasonable prediction is notmet, at least in the strict sense, by the explicit
example given below.

The set of all functionsF : {0,1} → {0,1} can be visualized as follows.
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When the input setM is a single point, the image size expectation is clearly 1. This is in agreement with the

value 2
{

1−
(

1− 1
2

)1}
= 1, computed according to Lemma 40. When the input set is the complete domain

{0,1}, the image size expectation isEF
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]

= 1
4 ·1+ 1

4 ·2+ 1
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4 ·1= 3
2 , and this is also identical

to the valueEF
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= 2
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= 3

2 , computed according to Lemma 40. We have just verified
that Lemma 40, which had already been proved, holdsexactlyfor theN = {0,1} case, regardless of the input
set size and the choice of the set itself. Now, the four functionsF2 = F ◦F can be visualized as follows.

b

b

b

b

b

b

b

b

= b

b

b

b

b

b

b

b

b

b

b

b

= b

b

b

b

b

b

b

b

b

b

b

b

= b

b

b

b

b

b

b

b

b

b

b

b

= b

b

b

b

When the input setM is taken to be the complete domain, the expected image size ofthe double iteration is

EF
[

|F2({0,1})|
]

=
2
4
·1+ 2

4
·2=

3
2
. (50)

In comparison, the corresponding value computed through (49) is

2
{
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(
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)2{1−(1− 1
2 )

2}}
= 2
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2

) 3
2
}

≈ 1.293. (51)

The two values given above are clearly in disagreement.
A cryptographer would naturally attempt to rectify the current situation by relaxing the strict correlation

between the two functions that are being composed. LetF : N → N andG : N → N be two independent
random functions operating on a finite set of sizeN. One would like to claim that ifM ⊂ N is of sizem0,
then the size ofG

(

F(M )
)

is expected to be them2 value given by (49). This second version for the doubly
iterated image size expectation seems structurally much simpler to analyze than the previous attempt, and
one might be tempted to say that the modified claim is atrivial consequence of Lemma 40.

We again turn to the exampleF,G : {0,1} → {0,1}. The complete set of all possible double iterations
can be visualized as follows.
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When the input setM is the full domain{0,1}, after separately counting the number of functions with image
sizes one and two, the expected image size can be computed as

EF,G

[

∣

∣G
(
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]

=
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·1+ 4
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·2=
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4
. (52)

Once again, this disagrees with (51), which was computed through (49).
It is now clear that (2) does not directly follow from (1). Theclaims to the iterated image sizes are not

consequences of the single step image size, at least not without additional arguments. The logical gap persists
even when all iterations are allowed to be independent random functions.

B.2 Narrowing the logical gap

The failed attempt (49) at giving a doubly iterated image size expectation had substituted them1 value in the
place ofm0 in the single step result Lemma 40. This reuse of average value in the computation of another
average value was the source of our problem. In reality, as can be seen in the two counterexamples, inputs to
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the second step function are not all ofm1 size, but of varying sizes that only average tom1. After this simple
observation, we can state that, ifM0 is a set of sizem0 such that the image size|F(M0)| is exactlym1 for
every choice of functionF and the image size|F(M1)| is exactlym2 for every choice of functionF and
every input setM1 of sizem1, thenm2 is the exact expected size ofF2(M0). The assumptions included in
this statement cannot be met, but it is reasonable to expect the conclusion to hold approximately, when a
slight relaxation is given to the assumptions. We are thus justified in stating that, if for the vast majority of

the setsM ⊂ N and functionsF : N → N , the image size|F(M )| is very close toN
{

1−
(

1− 1
N

)|M |},
then them2 of (49) will be a good approximation for the doubly iterated image size expectation.

Therefore, we consider the images of a fixed setM under different functionsF and discuss how their
sizes|F(M )| are distributed around its average. Let us useµN,m andσN,m to denote the average and standard
deviation of the image set size|F(M )|. These are to be computed for a fixed input setM ⊂N of sizemand
with F : N → N running over all possible function choices. We already knowµN,m ≈N

{

1−exp
(

− m
N

)}

.
A proof of the following lemma is given in Appendix C.

Lemma 41 We have
σN,m
µN,m

< 2√
N

for all N and m.

According to Chebyshev’s inequality, at least 99% of theN
N image sizes will fall within the range

µN,m±10σN,m. The above lemma states that these deviation of sizes from the mean is bounded by
20µN,m√

N
.

Hence, the distribution or clustering of image sizes aroundthe expected valueµN,m will tighten, at least in
comparison to the expected value, asN is increased.

This observation can be restated in more plain terms as follows. Suppose we take some input set and
measure its image size under a single function, chosen at random, and take it to be an estimate of the true
average image size. We make it clear that the averaging over multiple measurements made with multiple
functions is not being performed here. In such a situation, we can expect each measurement to return a larger
numbersignificant digitsasN is increased. Let us briefly work with some explicit numbers.For parameters
N = 264 and m= 250 the average image size can be computed to beµN,m ≈ 1.13× 1016. For the same
parameters, the standard deviation is bounded byσN,m ≤ 5.24×105. Chebyshev’s inequality insures that at
least 99% of theNN image sizes will lie in the rangeµN,m±10σN,m, which is 1.13×1016±5.24×106 in the
current situation. For any practical purposes, we can believe that close to 10 significant digits from any single
measurement are highly likely to be identical to those of thetrue expected value.

Let us summarize the discussion of this subsection. For any function acting on a large set that was chosen
at random and any input set of sizem0, the image size of the first iteration will be very close to them1 value
given by (49). At the second iterated application of the samefunction, even though the input size was not
exactlym1, we can expect the output size to be very close to them2 value given by (49). Actually, the output
size could be different fromm2 even if the input size was exactlym1. In any case, the fact that the standard
deviation of the image sizes is very small relative to its expected value implies a tight clustering of image
sizes, and allows us to believe that the formula (2) will predict doubly iterated image sizes with accuracy, in
the sense that a large number of significant digits are returned. The heuristic arguments of this subsection has
added further justification to the already acceptable cryptographic argument that (1) implies (2).

B.3 Other reuses of average values

The intension of this section was not in testing the validityof (2). In fact, although the authors of the current
paper are unfit to verify its correctness, a full proof is provided in [11] for at least the case whenM is the
full domain. What we have done so far in the current section isto first point out that average values have
erroneously been reused in the computation of other averagevalues and then argue heuristically that such
methods are still acceptable as long as the distribution of values that are being treated is tightly gathered
around the average. This reasoning does not have to be restricted to the discussion of iterated image sizes, or
even random function arguments.

There are many occasions in this paper where an average valuewas used during the computation of
another average value. It should now be clear that (10), stating the success probability of a single rainbow
matrix, is also slightly problematic, but acceptable. The different reduction functions at each rainbow matrix
column do not provide independence of the colored iteratingfunctions, and the exiting logical gap would not
be closed even if different columns were processed with independent random functions. However, the small
standard deviation of image sizes justifies (10) as a good approximation.

The success probability (4) of the DP and Hellman tradeoffs,computed from the average number of
points in a tradeoff matrix is another example of average value reuse. We have not checked if the standard
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deviation of the coverage rate is small, but know from experience that (4) predicts the correct value accurately,
so this should not be a problem. In fact, this situation is less problematic than the iterated image case, because
the arguments become strictly correct when independent random functions are used in different tables.

Readers may have noticed that we were more careful in reusingaverage values in Section 4.2. The
distribution of chain lengths in a DP matrix can be inferred from (16) and it is clear that the lengths are not at
all centered around the average lengtht. Hence, we were careful to work with the full range of possible chain
lengths, rather than treatt as being the typical pre-computation or online chain length. In particular, we did
not treat the DP matrix as consisting ofmchains of identical lengtht. This cautious handling of chains should
not be confused with our free use of the value (16) itself, which is an expected value, in other computations.

C Standard Deviation of Image Sizes

The purpose of the section is to provide a proof to Lemma 41 concerning the standard deviation of image
sizes. We first prepare a couple of technical lemmas.

Lemma 42 Let F : N →N be the random function. Fix a subsetM ⊂N of size m and lety1,y2 ∈N be
any two distinct points. The probability for F(M ) to contain bothy1 andy2 is
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To check this claim, it suffices to expand the first two pairs ofbraces. This expression can be rewritten in the
form stated by this lemma. ⊓⊔

Lemma 43 For positive integersN and m, we have
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(

1− 1
N−1

)m−1
.

Proof It suffices to check the following sequence of equalities andinequality.

(

1− 1
N

)m
−
(

1− 1
N−1

)m

=
{(

1− 1
N

)

−
(

1− 1
N−1

)}{(

1− 1
N

)m−1
+
(

1− 1
N

)m−2(

1− 1
N−1

)

+ · · ·+
(

1− 1
N−1

)m−1}

=
1

N(N−1)

{(

1− 1
N

)m−1
+
(

1− 1
N

)m−2(

1− 1
N−1

)

+ · · ·+
(

1− 1
N−1

)m−1}

≥ 1
N(N−1)

m
(

1− 1
N−1

)m−1
.

In fact, a similar upper bound is also easy to obtain. ⊓⊔
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In the remainder of this section,M ⊂ N will be a fixed set of sizem. For eachy ∈ N , let us define the
function χy : N N →{0,1} by

χy(F) =

{

1 if y ∈ F(M ),
0 if y 6∈ F(M ).

The dependence ofχy onM was not made explicit in the notation since we will keepM fixed for the rest of
this section. The size of the image ofM under any functionF : N → N can be expressed in terms of this
indicator function as

|F(M )|= ∑
y∈N

χy(F).

Using this observation, one can present

E
[

|F(M )|
]

= E
[

∑
y∈N

χy(F)
]

= ∑
y∈N

E
[

χy(F)
]

= NE
[

χy′ (F)
]

=N

{

1−
(

1− 1
N

)m}

, (53)

wherey′ is any fixed point ofN , as an alternative way of writing down the proof to Lemma 40.
Let us fix the notation

χ = ∑
y∈N

χy

and view this as a random variable defined on the spaceN N , which is given the uniform probability distri-
bution. It maps each elementF to the positive integer|F(M )|. Equation (53) is equivalent to

E[χ ] =N

{

1−
(

1− 1
N

)m}

(54)

and we need to work with the standard deviation

stdev(χ) =
√

E[χ2]− (E[χ ])2.

One can easily check that

E[χ2] = E
[

(

∑
y

χy
)2
]

= E
[

∑
y1,y2

χy1 χy2

]

= E
[

∑
y

χy + ∑
y1 6=y2

χy1 χy2

]

= E[χ ]+ ∑
y1 6=y2

E
[

χy1 χy2

]

= E[χ ]+N(N−1)E
[

χy′1
χy′2

]

,

wherey′1 andy′2 are any two distinct points ofN . The expectationE
[

χy′1
χy′2

]

is equal to the probability for

bothy′1 andy′2 to belong to the image space, and this is the content of Lemma 42. Referring also to (54) and
Lemma 43, we can compute a bound for the variance as follows.

{

stdev(χ)
}2

= E[χ2]− (E[χ ])2 = E[χ ]+N(N−1)E
[

χy′1
χy′2

]

− (E[χ ])2

= N

(

1− 1
N

)m






{

1−
(

1− 1
N

)m}

− (N−1)
{(

1− 1
N

)m
−
(

1− 1
N−1

)m}






≤ N







{

1−
(

1− 1
N

)m}

− m
N

(

1− 1
N−1

)m−1






≤ N

{m
N

− m
N

(

1− m−1
N−1

)}

=
m(m−1)
N−1

≤ m2

N
.

Here, the second inequality follows from the observation
(

1− 1
N

)m ≥ 1− m
N

, which holds wheneverm≥N.
The final expression allows us to state that stdev(χ)≤ m√

N
.

On the other hand, from the observation
(

1− 1
N

)m ≤ 1− m
N
+ m(m−1)

2N2 , which holds for everym≥N, we
know that

E[χ ]≥N

{m
N

− m(m−1)

2N2

}

>N

(m
N

− m
2N

)

=
m
2
.

Finally, by combining the two bounds, we can state that

stdev(χ)
E[χ ]

<
2√
N
.

This concludes the proof of Lemma 41.
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D Note on the Index Tables Method

The index table method can be seen as a special case of a more general and widely known data structure
calledhash tables. To storem starting point and ending point pairs, one first fixes ahash functionthat maps
elements ofN to logm-bit strings. This function need not be a cryptographic hashfunction, although the
same term is used. Instead of sorting the data, each startingpoint and ending point pair is recorded at the
position in the storage addressed by the hash value of the ending point. Collisions of addresses are inevitable,
but there are various ways to deal with this problem.

Table lookups to hash tables are performed by first hashing the ending point to be searched for in the table
and fetching the data located at the address pointed to by thehash value. Since the address holds logm bits
of information, even if almost logm bits from each ending point are removed before storage, we can reliably
determine whether or not a match has occurred.

One advantage of the hash table method, other than reducing storage and not requiring any sorting, is
that it provides constant time table lookups. In comparison, a lookup to a sorted table requires time that is
logarithmic in the table size.

If the hash function is set to return the first{(logm)− ε} bits of its input and buckets to hold approxi-
mately 2ε table entries are placed at the position pointed to by each hash value, then the hash table technique
reduces to the index table technique.

E Experiment Results

In this section we verify that the main parts of our argumentsagree well with experiment results. Experiments
are done to check the validity of our results concerning the coverage rate and the cost of false alarms for the
DP tradeoff. Analogous testings for the Hellman and rainbowtradeoffs are not provided, as these testings
were done in [15]. We also provide experimental evidence supporting our arguments surrounding the effects
of the ending point truncation method.

Since averaging over all functions defined on any reasonablylarge space is not at all possible, all our tests
were conducted with a very small subset of explicitly constructed one-way functions. The one-way function
used was always the encryption key to ciphertext mapping, under a fixed plaintext, computed with the block-
cipher AES-128. Different randomly chosen plaintexts wereused to provide multiple one-way functions. The
size of the input space was controlled by utilizing only a small number of key bits and padding the remain-
ing key bits with zeros. The output space size was controlledby masking the ciphertext to an appropriate bit
length. When working with the DP tradeoff, as discussed at the start of Section 4, we constructedm0 =

m
1−e−t̂/t

pre-computation chains and gathered every resulting DP chain, rather than incrementally generate additional
chains untilmDP chains were collected.

E.1 Coverage rate of DP tradeoffs

Experiment results supporting Proposition 9, which presents the coverage rate of a DP table, are given in
Table 2. The coverage rate was measured by simply storing allDP matrix entries while constructing the
DP chains and later counting the number of distinct matrix entries that were used as inputs to the one-way
function. Each test result value given in the table is an average over 100 experiments. Different randomly
generated plaintexts for AES were used for each of these experiment. All the tests were done on a space of
sizeN= 230. One can check that the test figures are very close to what the theory predicted.

E.2 Cost of resolving alarms for the DP tradeoff

Our next goal is to check the validity of our arguments concerning the time complexity that incorporates the
extra cost of false alarms. We could do this with the expression for time complexity stated during the proof
of Theorem 13, but such an approach would hide much of the inner workings. Hence, we decided to verify
the following lemma, which allows access to much finer detail.

Lemma 44 Consider the DP tradeoff. The expected number of chain collisions at the i-th iteration of the
online phase is

1
t

Dmsc

1−e−t̂/t

{

−e−t̂/t +e−t̂/t exp
(

− i
t

)

+
i
t

exp
(

− i
t

)}

.
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Table 2 Coverage rate of DP tradeoff (N= 230)

logm logt t̂/t Dmsc test theory
11 9 1/2 0.5 0.225357 0.224285
9 10 1/2 0.5 0.225368 0.224285

11 9 1 0.5 0.400071 0.399566
9 10 1 0.5 0.398824 0.399566

11 9 2 0.5 0.628349 0.627405
9 10 2 0.5 0.629802 0.627405

11 9 5 0.5 0.816415 0.814339
9 10 5 0.5 0.811530 0.814339

12 9 1/2 1.0 0.221190 0.219643
10 10 1/2 1.0 0.220655 0.219643
12 9 1 1.0 0.384839 0.383464
10 10 1 1.0 0.385049 0.383464
12 9 2 1.0 0.582370 0.581801
10 10 2 1.0 0.581019 0.581801
12 9 5 1.0 0.722192 0.723263
10 10 5 1.0 0.721465 0.723263
13 9 1/2 2.0 0.212476 0.211204
11 10 1/2 2.0 0.212538 0.211204
13 9 1 2.0 0.357424 0.356587
11 10 1 2.0 0.355287 0.356587
13 9 2 2.0 0.515214 0.515495
11 10 2 2.0 0.514631 0.515495
13 9 5 2.0 0.611834 0.612748
11 10 5 2.0 0.610616 0.612748

Proof The expected number of chain collisions is the sum over all rows of the DP matrix of the respective
probabilities for thei-th iteration to sound an alarm in association with that row.After reading the proof to
Lemma 12, it should be clear that the sum of probabilities we are looking for is

t̂

∑
j=1

m
t

1−e−t̂/t
exp

(

− j
t

)

· t
N

{

exp
(min{i, j}

t

)

−1
}

exp
(

− i
t

)

.

In integral form, this is approximately

1
t

mt2
N

1−e−t̂/t
exp

(

− i
t

)

∫ t̂/t

0
exp(−v)

{

exp
(

min
{ i

t
, v

})

−1
}

dv,

which simplifies to what is claimed. ⊓⊔

This lemma contains the core of our arguments given in the main text concerning the cost of alarms, and its
verification through experiments should provide good support for the correctness of our theory.

To test this lemma, we first initialized an array oft̂ counters to zeros. Next, we fixed a one-way func-
tion by randomly choosing a plaintext and constructed a DP table with the fixed function. Then, a random
password (= zero-padded encryption key) was generated and the password hash (= masked ciphertext) corre-
sponding to that password was computed. The online chain starting from the password hash was computed
until a DP was found or thêt-th iteration was reached. If the online chain terminated ata DP and it was
found to reside within the DP table, the counter corresponding to the current online iteration count was in-
cremented. The online chain generation was repeated multiple times with the same table, but with newly
generated random keys. Note that, since we are not using perfect tables, it is possible for the online chain to
collide simultaneously with more than one entry of the DP table. Care was taken to increment the counter
corresponding to the current iteration count as many times as the number of collisions found. The whole
process described after the counter initialization step was repeated multiple times, with each repetition using
a newly generated one-way function and a DP table.

The test results for four different parameter sets are presented in Figure 7. Each of these experiments
was done with 2000 tables and 5000 random online chains per table. In each of the four boxes, the barely
visible thin dashed line represent our theory as given by Lemma 44. There arêt-many tiny dots in each box
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Fig. 7 Expected number of collisions at each iteration of the DP tradeoff (dots: experiment; dashed line:
theory)

and these represent our experiment results. The height of the i-th dot, counting from the left, is the value of
the i-th iteration counter at the end of the experiment divided by2000×5000, the total number of chains that
were utilized. All the experiment results match our theory very well.

E.3 Ending point truncation

Finally, we test the validity of our arguments concerning the ending point truncation method for reducing
storage. The straightforward approach would be to simply test Lemma 16, Lemma 24, and Lemma 32 that
present the cost of truncation related alarms, but we decided to work with the probability of alarms related to
truncations, so as to expose more of our argument details to the tests.

Lemma 45 Consider the DP tradeoff that uses ending point truncation of 1
r truncated match probability. At

the i-th iteration of the online processing of a single DP table, the number ofpseudo-collisionsthat are due
to the ending point truncations, i.e., those that are not associated with any true chain collisions, is expected
to be m

r exp(− i
t ). The corresponding value for the Hellman tradeoff ism

r , and that for the rainbow tradeoff
is also m

r , if one decides to fully process a single rainbow table without terminating, even when the correct
answer is found.

Proof The proof to Lemma 16 shows that the claimed expected value for the DP tradeoff case can be com-
puted as

t̂

∑
j=1

m
t

1−e−t̂/t
exp

(

− j
t

)

·exp
(

− i
t

)1
r
≈ m

1−e−t̂/t

∫ t̂/t

0
exp(−v)dv exp

(

− i
t

)1
r
,

which simplifies to what is claimed. The statement for the Hellman tradeoff case follows immediately from
the proof of Lemma 24, and the rainbow tradeoff case can be inferred from the proof of Lemma 32. ⊓⊔

The three claims given by this lemma are at the core of our arguments concerning the ending point
truncation method, and experimental verification of these statements should provide confidence to the validity
of our arguments given in the main text.
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Fig. 8 Expected number of collisions, induced by ending point truncation, at each iteration of the DP tradeoff
(dots: experiment; dashed line: theory)
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Fig. 9 Expected number of collisions, induced by ending point truncation, at each iteration of the Hellman
tradeoff (dots: experiment; dashed line: theory)
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Fig. 10 Expected number of collisions, induced by ending point truncation, at each iteration of the rainbow
tradeoff (dots: experiment; dashed line: theory)

As in the previous section, we generated random tradeoff tables and tested with random online chains for
the occurrence of alarms induced from truncations. We stored the full ending points, together with the trun-
cated ending points, in the pre-computation table. The fullending point information was used to distinguish
between alarms that were caused by ending point truncationsand those that arose from true chain collisions.

The test results are given in Figure 8, Figure 9, and Figure 10. As before, the thin dashed lines are the
graphs claimed in Lemma 45 and the numerous tiny dots represent experiment data. All the test results are
in good agreement with the theory. Each of the two diagrams for the DP tradeoff was obtained by averaging
over 2000 tables and 5000 online chains per table. For the Hellman tradeoff we generated 2000 tables and
5000 inversion targets per table. The online chain was computed to the full lengtht for each inversion target
and truncated match with the table elements was searched forafter each one-way function iteration. In the
rainbow tradeoff case, each diagram is the result of 100 tables with 5000 inversion targets per table. Recall
that thek-th iteration for the rainbow tradeoff refers to a process that consists of(k− 1) invocations of the
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one-way function and one table lookup. Fullt iterations were tried for each inversion target and hence each
inversion target generatedt searches to the table for truncated matches.




