
Solving Generalized Small Inverse Problems

Noboru Kunihiro

The University of Tokyo, Japan
kunihiro@k.u-tokyo.ac.jp

Abstract. We introduce a “generalized small inverse problem (GSIP)”
and present an algorithm for solving this problem. GSIP is formulated
as finding small solutions of f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C =
0(mod M) for an n-variate polynomial h, non-zero integers C and M .
Our algorithm is based on lattice-based Coppersmith technique. We pro-
vide a strategy for construction of a lattice basis for solving f = 0, which
are systematically transformed from a lattice basis for solving h = 0.
Then, we derive an upper bound such that the target problem can be
solved in polynomial time in log M in an explicit form. Since GSIPs in-
clude some RSA-related problems, our algorithm is applicable to them.
For example, the small key attacks by Boneh and Durfee are re-found
automatically. This is a full version of [13].

Keywords: LLL algorithm, small inverse problem, RSA. lattice-based
cryptanalysis

1 Introduction

Since the seminal work of Coppersmith [3–5], many cryptanalysis have
been proposed by using his technique which is based on LLL algorithm.
The first typical application is a small secret exponent attack on RSA
proposed by Boneh and Durfee [2]. The second is a proof of deterministic
polynomial time equivalence between computing the RSA secret key and
factoring [6, 16].

In RSA [18], the small secret exponent d is commonly used to speed
up the decryption or signature generation. In 1990, Wiener showed that
when d ≤ 1

3N1/4, the RSA moduli N can be factored in polynomial
time [20]. Then, in 1999, Boneh and Durfee [2] improved the Wiener’s
bound to d ≤ N0.284. Furthermore, they proved that N can be factored
in polynomial time when d ≤ N0.292. In their attack, lattice reduction
algorithms such as LLL algorithm [14] play an important role. Let us
briefly describe their attack. First, they reduce small secret exponent
attack to solving a bivariate modular equation:

x(A + y) = 1 (mod e),

where A is a given integer and the solution (x, y) = (x̄, ȳ) satisfies |x̄| < eδ

and |ȳ| < e1/2. They referred this problem as “small inverse problem.”
Then, they proposed a polynomial time algorithm for solving this prob-
lem. They obtained the condition on δ such that the algorithm outputs
the solution. This leads to the weaker bound: d ≤ N0.284 and the stronger
bound: d ≤ N0.292. By extending their (weaker) algorithm, Durfee and
Nguyen showed cryptanalysis on some variants of RSA with short secret
exponent [7]. They proposed an algorithm for solving trivariate modu-
lar equation f(x, y, z) = x(A + y + z) + 1 = 0 (mod e) with constraint
yz = N in their analysis. It is crucial in their algorithm how to handle the
constraint yz = N . To do so, they introduced so-called “Durfee-Nguyen
technique.”

May (and Coron-May) proved that if the RSA secret key d is revealed,
the RSA moduli N can be factored in deterministic polynomial time [6,
16]. We will focus on the Coron-May’s proof [6] rather than May’s orig-
inal proof [16]. Consider a univariate modular equation: h(y) ≡ A + y =
0 (mod S), where S is an unknown divisor of a known positive inte-
ger U and A is a known positive integer. They showed a deterministic
polynomial time algorithm which solves the equation for S ≤ U1/2 to
prove that (balanced) RSA moduli N can be factored deterministically
when d is revealed. They extended their result to the unbalanced RSA
case [6]. They showed the condition that the bivariate modular equation:
h(y, z) ≡ A + y + z = 0 (mod S) with constraint yz = N , where S and
U are in the same setting as the balanced RSA.

1.1 Our Contribution

In this paper, we introduce “generalized small inverse problem (GSIP)”
for an n + 1-variate equation. Let f be an n + 1-variate polynomial by

f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C

for an n-variate polynomial h and a non-zero integer C. Let M be a pos-
itive integer whose prime factors are unknown. Suppose that the solution
of f = 0 (mod M) satisfies |x̄0| < X0, |x̄1| < X1, . . . , |x̄n| < Xn for fixed
positive integers X0, X1, . . . , Xn. Then, one wants to find the solution:
(x0, x1, . . . , xn) = (x̄0, x̄1, . . . , x̄n). Some cases may have constraints be-
tween variables x1, . . . , xn. When C = 1, the problem can be viewed as
follows: given a function h(x1, x2, . . . , xn), find small elements (x̄1, . . . , x̄n)
such that the inverse of −h(x̄1, x̄2, . . . , x̄n) modulo M is “small”. So, we
call this problem as generalized small inverse problem. Classical “small

2

inverse problem” [2] corresponds to n = 1, h(x1) = A + x1 and C = 1,
where A is a given integer. GSIP is not only a natural extension of classical
small inverse problem, but also is applicable to many RSA-related crypt-
analysis. In our paper, we are concerned with only modular equations not
integer equations.

Second, we propose a polynomial time algorithm for solving this prob-
lem. Our algorithm is based on Coppersmith’s approach [3] and has the
following property in the lattice basis construction:

1. First, construct a lattice basis for solving h(x1, . . . , xn) = 0 (mod p),
where p is an unknown divisor of known integer N .

2. Then, construct a lattice basis for f(x0, . . . , xn) = 0 (mod M) by
employing a lattice basis for h.

We introduce 4 restrictions for a lattice in solving h = 0. Since many
methods in the literature hold these restrictions, they are not too strong
restrictions. Then, we propose a simple but effective compiler which trans-
forms a lattice basis for h = 0 to that for f = x0h + C = 0 (Compiler).
Our compiler works if a lattice for h = 0 holds the 4 restrictions. It gives
a good insight in construction of a lattice basis for f .

Our compiler is applicable to many kinds of cryptanalysis. For ex-
ample, we can re-find Boneh-Durfee’s small secret exponent attack on
RSA [2] by using our compiler and the lattice employed in the proof
for deterministic polynomial time equivalence [6]. That is, our compiler
builds a bridge between these two works. It is the first time to point out
this kind of connection as far as we know. Our compiler is especially ef-
fective when one needs to construct a special type of lattice. Suppose that
some variables have constraint, ex. yz = N . In this case, it is well known
that Durfee-Nguyen technique is effective [7]. If one can construct a good
lattice for n-variate equation: h = 0 built Durfee-Nguyen technique into,
one has also a good lattice for n + 1-variate equation: f built Durfee-
Nguyen technique into. In general, the more variables are involved, the
harder the construction of a good lattice is. If one uses our compiler, one
just constructs a lattice basis for h not for f . Hence, one can more easily
construct a good lattice basis for f .

Next, we obtain the upper bound of the solution such that the equa-
tion: f(x0, x1, . . . , xn) = 0 (mod M) is solvable in polynomial time in
log M (but not in n) (Lemma 5 and Theorem 2). That means, letting the
solution be (x̄0, . . . , x̄n) and positive integers X0, . . . , Xn, when |x̄i| < Xi

for each i, one can solve the problem in polynomial time. In deriving Xi,
one needs not tedious computation. In particular, when X1, . . . , Xn are
fixed, one can easily obtain the upper bound of solution X0.

3

In Boneh-Durfee’s [2] and Durfee-Nguyen’s analyses [7], tedious com-
putations are needed. Furthermore, their computations are not applica-
ble to the other kind of attacks. We generalize this kind of calculation
to obtain the evaluation formula, which is easy to use and covers many
kind of cryptanalysis including Boneh-Durfee’s. Hence, we provide an-
other type of “toolkit” for (especially RSA-related) cryptanalysis from
that of Blömer-May [1].

Our Strategies vs. General Strategies for Construction of Lattice
Basis It is well known that the shape of Newton polytope of a polynomial
to be solved is important. This is suggested by Coppersmith [4] and fully
explained by Blömer and May in the case of bivariate integer equation [1].
For general polynomials, Jochemsz and May proposed general methods
for construction of optimal lattice basis [11]. Although their method is
general and effective, it cannot handle constrained variables case. Actu-
ally, when Durfee-Nguyen technique is involved, their method could not
generate a good lattice. Using our compiler, Durfee-Nguyen technique is
automatically involved in constructing the lattice for f if it is involved in
the lattice for h. Our compiler is especially effective for specific type of
equations and is applicable to many kinds of RSA-related cryptanalysis.

1.2 Organization

Section 2 gives preliminaries. In Section 3, we show how to solve the
“generalized small inverse problems.” First, we introduce 4 restrictions
for a lattice in solving h = 0. Then, we give a compiler which transforms
a lattice basis for h(x1, . . . , xn) = 0 into that for f(x0, x1, . . . , xn) =
x0h(x1, . . . , xn) + C = 0. In Section 4, we evaluate the volume of lattice
for f and derive the condition among upper bounds of solutions. In Sec-
tion 5, we argue application of our compiler to GSIP and give details of an
application: the small secret exponent attack to RSA, which shows the ef-
fectiveness of our compiler. Section 6 concludes the paper. Some of proofs
are given in Appendix A. Some of examples are given in Appendix B.

2 Preliminaries

2.1 Small Secret Exponent Attack on RSA [2]

Let (N, e) be a public key in RSA cryptosystem, where N = pq is the
product of two distinct primes. For simplicity, we assume that gcd(p −

4

1, q − 1) = 2. A secret key d satisfies that ed = 1 mod (p − 1)(q − 1)/2.
Hence, there exists an integer k such that ed+k((N+1)/2−(p+q)/2) = 1.
Writing s = −(p+q)/2 and A = (N+1)/2, we have k(A+s) = 1 (mod e).

We set f(x, y) = x(A + y) + 1. If one can solve a bivariate modular
equation: f(x, y) = x(A+y)+1 = 0 (mod e), one has k and s and knows
the prime factors p and q of N . Suppose that the secret key satisfies
d ≤ N δ. Further assume that e ≈ N . To summarize, the secret key
will be recovered by finding the solution (x, y) = (x̄, ȳ) of the equation:
x(A + y) = 1 (mod e), where x ≤ eδ and |y| ≤ e1/2. They referred this as
the small inverse problem.

Boneh and Durfee gave an algorithm for solving this problem and
obtained the condition on δ so that the algorithm works in polynomial
time. Concretely, they showed that if d ≤ N0.284, N can be factored in
polynomial time. Furthermore, they improved the bound to d ≤ N0.292.

2.2 LLL Algorithm and Howgrave-Graham’s Lemma

For a vector b, ||b|| denotes the Euclidean norm of b. For a n-variate
polynomial h(x1, . . . , xn) =

∑
hj1,...,jnxj1

1 · · ·xjn
n , define the norm of a

polynomial as ||h(x1, . . . , xn)|| =
√∑

h2
j1,...,jn

. That is, ||h(x1, . . . , xn)||
denotes the Euclidean norm of the vector which consists of coefficients of
h(x1, . . . , xn).

Let B = {aij} be a w×w′ matrix of integers. The rows of B generate
a lattice L, a collection of vectors closed under addition and subtrac-
tion; in fact the rows forms a basis of L. The lattice L is also repre-
sented as follows. Letting ai = (ai1, ai2, . . . , aiw′), the lattice L spanned
by 〈a1, . . . , aw〉 consists of all integral linear combinations of a1, . . . , aw,
that is: L = {

∑w
i=1 niai|ni ∈ ZZ}. The volume of lattice is defined by

vol (L) =
√

det(BtB), where tB is a transposed matrix of B. In particu-
lar, vol (L) = |det(B)| if B is full-rank.

LLL algorithm outputs short vectors in the lattice L.

Proposition 1 (LLL). Let B = {aij} be a non-singular w×w′ matrix of
integers. The rows of B generates a lattice L. Given B, the LLL algorithm
outputs a reduced basis {b1, . . . , bw} with

||bi|| ≤ 2w(w−1)/(4(w+1−i))(vol (L))1/(w+1−i)

in time polynomial in (w, max log2 |aij |).

The following lemma is used when a modular equation is reduced into
integer equation.

5

Lemma 1 (Howgrave-Graham [8]). Let ĥ(x1, . . . , xn) ∈ ZZ[x1, . . . , xn]
be a polynomial, which is a sum of at most w′ monomials. Let m and φ be
positive integers and X1, . . . , Xn be some positive integers. Suppose that

1. ĥ(x̄1, . . . , x̄n) = 0 mod φm, where |x̄1| < X1, . . . |x̄n| < Xn and
2. ||ĥ(x1X1, . . . , xnXn)|| < φm/

√
w′.

Then ĥ(x̄1, . . . , x̄n) = 0 holds over integers.

3 How to Solve Generalized Small Inverse Problem

For a polynomial h(x1, . . . , xn), consider the following two problems: (I)
Given N(= pq), find a small solution of h(x1, . . . , xn) = 0(mod p). (II)
Given M , find a small solution of x0h(x1, . . . , xn) + C = 0(mod M).
Problem (II) corresponds to a generalized small inverse problem. We will
show a compiler which transforms a lattice basis for (I) to that for (II).

3.1 Lattice-Based Algorithm for (I)

The problem (I) can be solved by combining the LLL algorithm and
Lemma 1 as follows. Let X1, . . . , Xn be positive integers of Lemma 1.
Define a polynomial as

h[j1,...,jn,k](x1, . . . , xn) := xj1
1 · · ·xjn

n h(x1, . . . , xn)k

for non-negative integers j1, . . . , jn, k. Let u be a non-negative integer.
Using h[j1,...,jn,k], we define a shift-polynomial

h
(u)
[j1,...,jn,k](x1, . . . , xn) := h[j1,...,jn,k](x1, . . . , xn)Nu−k. (1)

Let a solution of h = 0 (mod p) be (x1, . . . , xn) = (x̄1, . . . , x̄n). It is easy
to see that

h
(u)
[j1,...,jn,k](x̄1, . . . , x̄n) = 0 (mod pu)

for any (j1, . . . , jn, k).
Fix a set H(u) of [j1, . . . , jn, k] for each u. We construct a lattice L

(u)
h

spanned by a set of the coefficient vector of h
(u)
[j1,...,jn,k](x1X1, . . . , xnXn)

for [j1, . . . , jn, k] ∈ H(u). Then, we apply the LLL algorithm to this lattice.
The LLL algorithm yields small vectors of this lattice. Finally, we can
obtain polynomial ĥ satisfying the condition of Lemma 1 from this small
vector. How to choose H(u) for each u depends on h(x1, . . . , xn).

6

First, we define the set M(h[j1,...,jn,k]) of monomials

M(h[j1,...,jn,k]) ≡ {xi1
1 · · ·xin

n |xi1
1 · · ·xin

n is a monomial of h[j1,...,jn,k](x1, . . . , xn)}.

Next, we define the set M(H(u)) of monomials

M(H(u)) ≡
∪

[j1,...,jn,k]∈H(u)

M(h[j1,...,jn,k]).

We will introduce 4 restrictions for a lattice in solving h = 0 and con-
sider only a set H(u) of [j1, . . . , jn, k] for each u which holds 4 restrictions.

Restriction 1 For any positive integer u, there exist two sets A =
{[j1i, . . . , jni]}1≤i≤#A and B = {[j∗1i, . . . , j

∗
ni]}1≤i≤#B such that A ⊆ B

and H(u) is given by

H(u) =
u−1∪
k=0

{[j1i, . . . , jni, k]}1≤i≤#A ∪ {[j∗1i, . . . , j
∗
ni, u]}1≤i≤#B. (2)

We call (A,B) a generator.
Restriction 2 For any u, L

(u)
h is full rank.

Restriction 3 A generator B is parametrized by some optimizing pa-
rameters t = (t1, . . . , tk). If needed, we use notation: B(t).

Restriction 4 The volume of L
(u)
h does not depend on coefficients of h.

That is, it is given by

vol L
(u)
h = NγU Xγ1

1 Xγ2
2 · · ·Xγn

n . (3)

Let w be the dimension of the lattice. Here, γU , γ1, . . . , γn and w are
functions of u and t. Moreover, each total degree of γU , γ1, . . . , γn and
uw is 2. If needed, we use vol L

(u;t)
h , γU (u; t), γi(u; t) for 1 ≤ i ≤ n.

Lattices derived in many previous method [6, 9, 12, 17] holds Restric-
tions 1–4 as described in Table 1.

Restriction 1 implies that if [j1, . . . , jn, k] ∈ H(u) and k ≥ 1, then
[j1, . . . , jn, k − 1] ∈ H(u−1), which is crucial for our compiler. For con-
venience, we use the following notation: for a set A and k ∈ ZZ≥0, a
set [A, k] is defined by {[j1, . . . , jn, k]|[j1, . . . , jn] ∈ A}. If this notation is
used, we can rewrite Eq. (2) as

H(u) =
u−1∪
k=0

[A, k] ∪ [B, u].

7

Restriction 2 implies that #H(u) = #M(H(u)). The polynomial order
of H(u) and monomial order of M(H(u)) should be adequately defined
so as to be linearly ordered. Let B

(u)
h (A,B) denote a #H(u) × #H(u)

square matrix, where each row of B
(u)
h (A,B) is the coefficient vector of

h
(u)
[j1,...,jn,k](x1X1, . . . , xnXn) when A and B is used as a generator. If A

and B are clear from the context, we often omit A,B and simply write
B

(u)
h . Since L

(u)
h is full-rank, vol L

(u)
h = |det B

(u)
h |.

3.2 How to Solve (II)

We show how to solve the problem (II). First, we overview our algorithm
and then focus on Step 1-2.

Input: n + 1-variate equation f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C =
0 (mod M) with small roots

Output: All small roots (x̄0, . . . , x̄n) of f(x0, x1, . . . , xn) = 0 (mod M)
Step1 Construct a lattice for f .

Step1-1 Construct a lattice L
(u)
h for h or choose a generator A and

B for h.
Step1-2 Construct a lattice Lf for f by employing the lattice for

L
(u)
h or A and B.

Step2 Run LLL algorithm for input Lf to obtain n + 1 polynomials
r1, r2, . . . , rn+1 ∈ ZZ[x0, x1, . . . , xn] over the integers, where they are
non-zero integer combination of f[i,j1,...,jn,k](x0X0, x1X1, . . . , xnXn) with
small coefficients.

Step3 Compute a resultant for ri to obtain a univariate integer equation.
Then, solve the equation by using standard technique.

We point out some remarks. Our algorithm cannot always guarantee
to output correct solutions. So, our algorithm is heuristic. We assume the
following as same as [11].

Assumption 1 The resultant computations for polynomials ri yield non-
zero polynomials.

Experiments are needed for specific cases to justify the assumption.
We move on to the discussion of Step 1-2. Letting m be a positive

integer, we define shift-polynomials for f(x0, x1, . . . , xn) as

f[i,j1,...,jn,k](x0, x1, . . . , xn) := xi
0x

j1
1 · · ·xjn

n f(x0, x1, . . . , xn)kMm−k.

8

Let a solution of f = 0 (mod M) be (x0, . . . , xn) = (x̄0, . . . , x̄n). It is
easy to see that

f[i,j1,...,jn,k](x̄0, . . . , x̄n) = 0 (mod Mm)

for any (i, j1, . . . , jn, k).
Let F be a set of indexes [i, j1, . . . , jn, k]. We construct the lattice Lf

spanned by the coefficient vectors of f[i,j1,...,jn,k](x0X0, . . . , xnXn) with
[i, j1, . . . , jn, k] ∈ F . How does one choose a set of indexes F? This is
a difficult problem. The choice of F determines the performance of the
algorithm. Indeed, the volume of the lattice derived by F should be small.
Moreover, one must calculate or estimate the volume of lattice. If F is
badly chosen, it might be difficult to calculate (or even though estimate)
its volume. So, one must choose in a clever way the set F . We overcome
this problem by employing a lattice basis for solving h = 0. We propose
the following compiler, which transforms a set of shift-polynomial for
h = 0 into that for f = 0. In explanation, we use a notation: a set
[k1,A, k2] is defined by [k1,A, k2] = {[k1, j1, . . . , jn, k2]|[j1, . . . , jn] ∈ A}.
Compiler Fix a positive integer m. By using generators A and B for
h = 0, we construct a set F of shift-polynomials as follows. First, we set

F (u) ≡
u−1∪
k=0

[u − k,A, k] ∪ [0,B, u].

Then, we set

F ≡
m∪

u=0

F (u) =
m∪

u=0

{
u−1∪
k=0

[u − k,A, k] ∪ [0,B, u]

}
.

F is explicitly given by

F =
m∪

u=0

{
u−1∪
k=0

{[u − k, j1i, . . . , jni, k]}1≤i≤#A ∪ {[0, j∗1i, . . . , j
∗
ni, u]}1≤i≤#B

}
.

Obviously, #F (u) = #H(u). If we define polynomial and monomial or-
ders as follows, the polynomial set F and the monomial order are linearly
ordered.

monomial order: We define ≺ as xu
0xj1

1 · · ·xjn
n ≺ xu′

0 x
j′1
1 · · ·xj′n

n

if

{
u < u′ or
u = u′ and xj1

1 · · ·xjn
n ≺ x

j′1
1 · · ·xj′n

n in M(H(u)).

9

polynomial order We define ≺ as [i, j1, . . . , jn, k] ≺ [i′, j′1, . . . , j
′
n, k′]

if

{
i + k < i′ + k′ or
i + k = i′ + k′ and [j1, . . . , jn, k] ≺ [j′1, . . . , j

′
n, k′] in H(i+k)

Informally, letting f ′ ∈ F (u′) and f ′′ ∈ F (u′′), f ′ ≺ f ′′ if u′ < u′′.

Theorem 1. Suppose that F is set by our Compiler and H(u) holding
4 restrictions. Let B be a matrix, where each row of B is the coefficient
vectors of f[u−k,j1,...,jn,k](x0X0, . . . , xnXn) according to the order of F .
Then, the matrix B is square and blocked lower triangular.

For Theorem 1, B is written as

B =


B0 0

B1
...

. . .

* · · · Bm

 ,

where each Bu is a #H(u) × #H(u) matrix for 0 ≤ u ≤ m. Note that Bu

corresponds to #H(u) polynomials {f[i,j1,...,jn,k]|[i, j1, . . . , jn, k] ∈ F (u)}
and #H(u) monomials which are divisible by xu

0 . The determinant of B
is simply given by detB = det B0 det B1 · · · det Bm.

The application to small secret exponent attack will be given in Sec-
tion 5.1. Other examples are given in Section 5 and Appendix B.

3.3 Proof of Theorem 1

We define the set of monomials as

M(f[u−k,j1,...,jn,k]) ≡ {xi0
0 xi1

1 · · ·xin
n |xi0

0 xi1
1 · · ·xin

n is a monomial of f[u−k,j1,...,jn,k]}

and
M(F (u)) ≡

∪
J∈F(u)

M(fJ).

We use the notation: xi0
0 M ≡ {xi0

0 xi1
1 · · ·xin

n |xi1
1 · · ·xin

n ∈ M} for M =
{xi1

1 · · ·xin
n }.

First, we show the following two lemmas.

Lemma 2. If [u − k, j1, . . . , jn, k] ∈ F for k ≥ 1,it holds that

M(f[u−k,j1,...,jn,k−1]) ⊂ M(f[u−k,j1,...,jn,k]).

Furthermore, it holds that for k ≥ 1, M(f[u−k,j1,...,jn,k])\M(f[u−k,j1,...,jn,k−1])
= xu

0{x
i1
1 · · ·xin

n |xi1
1 · · ·xin

n is a monomial of h[j1,...,jn,k]}.

10

Lemma 3. It holds that

M(F (0)) ⊂ M(F (1)) ⊂ · · · ⊂ M(F (m)).

Furthermore, it holds that

M(F (u)) \ M(F (u−1)) = xu
0M(H(u)).

Proof (of Lemma 2). For k ≥ 1, if [u − k, j1, . . . , jn, k] ∈ F (u) , then [u −
k, j1, . . . , jn, k−1] ∈ F (u−1). The expansion of f[u−k,j1,...,jn,k](x0, x1, . . . , xn)
is given by

f[u−k,j1,...,jn,k](x0, x1, . . . , xn) = xu−k
0 xj1

1 · · ·xjn
n (x0h + C)kMm−k

= xu
0h[j1,...,jn,k]M

m−k +
k∑

i=1

(
k

i

)
CiMm−kxu−i

0 h[j1,...,jn,k−i].

The expansion of f[u−k,j1,...,jn,k−1](x0, x1, . . . , xn) is given by

f[u−k,j1,...,jn,k−1](x0, x1, . . . , xn) = xu−k+1
0 xj1

1 · · ·xjn
n (x0h + C)k−1Mm−k+1

=
k∑

i=1

(
k − 1
i − 1

)
Ci−1Mm−k+1xu−i

0 h[j1,...,jn,k−i].

Then, we have the lemma. ⊓⊔

For Lemma 3, the number of monomials firstly appearing in F (u) is
#(M(F (u))\M(F (u−1))) = #M(H(u)). For the construction of our Com-
piler, the number of polynomials in F (u) is #F (u) = #H(u). Restriction 2
implies that #H(u) = #M(H(u)). Then, #(M(F (u)) \ M(F (u−1))) =
#F (u). This implies that B is blocked lower triangular. ⊓⊔

3.4 Small Example of our Compiler

We show a small example which shows how our Compiler works. Let h(y)
be a univariate monic polynomial with degree 1: h(y) = A+y. In this case,
a target equation is f(x, y) = xh(y) + C = x(A + y) + C = 0 (mod M).

Let h
(u)
[j,k](y) := yjh(y)kNu−k. Suppose that we use a generator A =

{[0]} and B = {[0], [1], [2]}. Then, H(0) = {[0, 0], [1, 0], [2, 0]} and H(1) =
{[0, 0], [0, 1], [1, 1], [2, 1]}. Corresponding matrixes B

(0)
h and B

(1)
h are given

as follows.

B
(0)
h =

1 y y2

h
(0)

[0,0]
(= 1) 1 0 0

h
(0)

[1,0]
(= Y y) 0 Y 0

h
(0)

[2,0](= Y 2y2) 0 0 Y 2

, B
(1)
h =

1 y y2 y3

h
(1)

[0,0]
(= N) N 0 0 0

h
(1)

[0,1]
(= A + Y y) A Y 0 0

h
(1)

[1,1]
(= AY y + Y 2y2) 0 AY Y 2 0

h
(1)

[2,1]
(= AY 2y2 + Y 3y3) 0 0 AY 2 Y 3

11

For example, M(h[1,1]) = {y, y2} and M(H(1)) = {1, y, y2, y3}.
For a positive integer m, let f[i,j,k](x, y) := xiyjf(x, y)kMm−k. In the

example, we fix m = 1. Applying our compiler, we obtain F of f[i,j,k] for
solving f(x, y) = xh(y) + C = 0 (mod M) as follows:

F = {[0, 0, 0], [0, 1, 0], [0, 2, 0], [1, 0, 0], [0, 0, 1], [0, 1, 1], [0, 2, 1]}.

A matrix B generated by F is given as follows.

B =

1 y y2 x xy xy2 xy3

f[0,0,0](= M) M 0 0 0 0 0 0
f[0,1,0](= Y My) 0 Y M 0 0 0 0 0
f[0,2,0](= Y 2My2) 0 0 Y 2M 0 0 0 0

f[1,0,0](= XMx) 0 0 0 XM 0 0 0
f[0,0,1](= C + AXx + XY xy) C 0 0 AX XY 0 0
f[0,1,1](= CY y + AXY xy + XY 2xy2) 0 CY 0 0 AXY XY 2 0
f[0,2,1](= CY 2y2 + AXY 2xy2 + XY 3xy3) 0 0 CY 2 0 0 AXY 2 XY 3

Columns and rows are ordered by polynomial and monomial orders in
F . The determinant of B is given by the product of diagonal elements.
So, det B = M4X4Y 9.

4 Deriving a Condition for Solving GSIP

In the previous section, we show how to choose a set F . The next thing
to do is evaluation of a volume of the lattice Lf or the determinant of the
corresponding matrix B. Then, we will derive the condition for solving
the problem by combining the value of determinant and Lemma 1.

First, we derive a determinant of matrix B (or a volume of Lf) ob-
tained by our compiler.

Lemma 4. Let B
(u;t)
h be the corresponding matrix for h and w(u; t) be

the dimension of the lattice. Then, the determinant of B derived by our
Compiler is given by

det B = MmW
(

X0

M

)∑m

u=0
uw(u;t) m∏

u=0

det B
(u;t)
h (M), (4)

where W (=
∑m

u=0 w(u; t)) is the rank of B.

Next, we derive a condition that we can find all solutions of f =
0 (mod M).

12

Lemma 5. Suppose that the determinant of B
(u;t)
h is given as the same as

Lemma 4. Under Assumption 1, we can find all solutions of the equation
f = 0 (mod M) with |x0| < X0, |x1| < X1, . . . , |xn| < Xn if

m∏
u=0

det B
(u;t)
h (M) <

(
M

X0

)∑
uw(u;t)

=
m∏

u=0

(
M

X0

)uw(u;t)

. (5)

The time complexity is polynomial in log M and 2n.

In case of Maximizing X0 In many cryptanalysis, all the task is to
maximize X0 for fixed X1, X2, . . . , Xn. Hereafter, we focus on this situa-
tion. We introduce an operator: I : mk → 1

k+1mk+1. Obviously, the opera-
tor I is homomorphic. Hence, we can write

∑m
u=0 uw(u; t) = I(mw(m; t))

and
∑m

u=0 γi(u; t) = I(γi(m; t)). We rewrite Eq. (5) by using the oper-
ator I as: (X0/M)I(mw(m;t)) < M−I(γU (m;t))X

−I(γ1(m;t)
1 · · ·X−I(γn(m;t))

n .
Hence, we have

X0 < M/(M I(γU (m;t))X
I(γ1(m;t)
1 · · ·XI(γn(m;t))

n)1/I(mw(m;t)).

Let Ai be a fixed positive number such that Xi = MAi for 1 ≤ i ≤ n. We
can simplify the above as X0 < M/M (I(γU (m;t))+

∑n

i=1
AiI(γi(m;t)))/I(mw(m;t)).

Setting

l(m; t) ≡ I(γU (m; t)) +
∑n

i=1 AiI(γi(m; t))
I(mw(m; t))

=
I(γU (m; t) +

∑n
i=1 Aiγi(m; t))

I(mw(m; t))
, (6)

we have X0 < M1−l(m;t). The next thing to do is to obtain t minimizing
l(m; t) for fixed m. The values t minimizing l(m; t) is given by solving
simultaneous equations:

∂l(m; t)
∂t1

=
∂l(m; t)

∂t2
= · · · =

∂l(m; t)
∂tk

= 0.

Let t′ be the solution of the above equations if it exists. If we ignore
small terms1, each I(γU (m; t)), I(γ1(m; t)), . . . I(γn(m; t)), I(mw(m; t)))
consists of one term with the same total degree 3. Hence, each element
1 If we don’t ignore the small term, we can obtain the optimal value of m. But, we need

tedious computation in general. For small secret exponent attack case, Boneh-Durfee
gave the details analysis [2].

13

t′i of t′ is represented by t′i = τ ′
im for positive integers τi’s. Letting τ ′ =

(τ ′
1, . . . , τ

′
n), we have the condition for X0:

X0 ≤ max
t

M1−l(m;t) = M1−mint l(m;t) = M1−l(m;mτ ′), (7)

which does not depend on m.
Next, we will analyze the most simple case, that is, B is parametrized

by one parameter. In this case, we have an explicit formula of the upper
bound of X0.

Theorem 2. Suppose that a lattice for h = 0 holds Restrictions 1–4
holds and B is parametrized by one parameter t. For given positive inte-
gers A1, . . . , An, we set a2m

2 + a1mt + a0t
2 ≡ γU (m; t) +

∑n
i=1 Aiγi(m; t)

and w(m; t) = b2m + b1t. Suppose that a1b2 < a2b1. Under Assump-
tion 1, we can find all solutions of equation: f = 0 (mod M) with

|x0| < X0, |x1| < MA1 , . . . , |xn| < MAn if X0 < M
1− 4a0

b1
c′−a1

b1 , where
c′ = (

√
4a2

0b
2
2 − 3a0a1b1b2 + 3a0a2b2

1 − 2a0b2)/(3a0b1). In particular, if
b1 = b2, we simply have the condition as

X0 < M
1−

4
√

4a2
0
−3a0a1+3a0a2−8a0+3a1

3b1 . (8)

Time complexity is in polynomial in log M and 2n.

Remark 1. Eqs. (5) and (8) do not depend on the constant C.

5 Application of our Compiler to RSA-Related
Cryptanalysis

We show several examples of GSIP and argue applications of our compiler
to them. Table 1 summarizes some example of GSIP in the literature.
“Constraint” shows what kind of constraint variables have in both of
solving f = 0 and h = 0. “A” and “B” show what kind of generators we
use in both of solving f = 0 and h = 0.

We give more explanation for each cases and give details of Case 1.
More examples are given in Appendix B.

Case 1 Consider the small secret exponent attack on RSA by Boneh
and Durfee [2]. In their attack, they handled f(x, y) = x(y + A) +
1 = 0 (mod e). Hence, this problem corresponds to h(y) = y + A
and C = 1. By using our compiler, the lattice basis for f(x) = 0
is automatically obtained. Then, one can easily obtain the bound:
d ≤ N0.284. We’ll discuss the details later.

14

Table 1. Examples of GSIP

Case 1 Case 1’ Case 2 Case 3

Boneh-Durfee [2] May [15] Durfee-Nguyen [7] Itoh et al. [10]

f = xh + C x(A + y) + 1 x(y − N) + N x(A + y + z) + 1 x(y − 1)(z − 1) + 1

Constraint - - yz = N yrz = N

Howgrave-Graham [9] Coron-May [6] Kunihiro-Kurosawa [12]

h y + A y − N A + y + z (y − 1)(z − 1)

A {[0]} {[0, 0], [1, 0]} {[0, 0], [1, 0]} ∪
∪r−1

i=1
{[i, 1]}

B ∪t
i=0{[i]} ∪t1

i=0{[i, 0]} ∪
∪t2

j=1
{[0, j]} ∪t1

i=0{[i, 0]} ∪
∪r−1

k=0

∪t2
j=1

{[k, j]}

Case 1’ Consider the small CRT exponent attack on unbalanced RSA
by May [15]. In his attack, he handled f(x, y) = x(y − N) + N =
0 (mod e). Hence, this problem corresponds to h(y) = y − N and
C = N . By using our compiler, the lattice basis for f(x) = 0 is
automatically obtained. Furthermore, one can easily obtain the bound
dp ≤ e1−2(

√
β2+3β+β)/3, where q < eβ .

Case 2 Consider cryptanalysis on some variants of RSA with small se-
cret exponent by Durfee-Nguyen [7]. In their attack, they handled the
trivariate modular equation: f(x, y, z) = x(A+y+z)+1 = 0 (mod e)
with constraint yz = N . Hence, this problem corresponds to h(y, z) =
A + y + z and C = 1. By using our compiler, the lattice basis for
Durfee-Nguyen’s attack is automatically obtained.

Case 3 Consider the small secret exponent attacks on Takagi’s variant of
RSA [19] by Itoh et al. [10]. This attack can be obtained by our com-
piler and a lattice basis used in proving a deterministic polynomial
equivalence between factoring and computing the secret exponent in
that scheme [12]. Note that since Durfee-Nguyen technique is ade-
quately involved in a lattice basis for h, we can easily obtain that for
f . One can easily obtain the bound: d < N (7−2

√
7)/3(r+1).

5.1 Case 1: Transforming Howgrave-Graham’s Lattice Basis
to Boneh-Durfee’s Lattice Basis

Next, we move on to an actual cryptanalysis. We show that our compiler
builds a bridge between a lattice basis in [9] and that in [2]. We simply
write x, y,X, Y instead of x0, x1, X0 and X1.

15

Howgrave-Graham [9] provided an algorithm2 for solving h(y) = A +
y = 0 (mod S) for integers A and S, which is an unknown divisor of
an known integer U . Set shift-polynomials as h

(u)
[j,k](y) := h[j,k]N

u−k =
yjh(y)kNu−k. In his paper, he chose the set of the indexes of shift-
polynomials as H(u) =

∪u−1
k=0{[0, k]}∪

∪t
i=0{[i, u]}. We set a polynomial or-

der by this. Note that a generator is given by A = {[0]} and B = ∪t
i=0{[i]}.

Hence, H(u) holds Restrictions 1–3.
Let f(x, y) = x(A + y) + 1. We argue a lattice basis construction for

f . Since f(x, y) = xh(y) + 1, we can employ our Compiler to construct a
lattice basis for f . For a positive integer m, we define shift-polynomials for
f as f[i,j,k](x, y) = xiyjf(x, y)kMm−k. By our Compiler and Howgrave-
Graham’s lattice basis, we have a set F as

F =
m∪

u=0

{
u−1∪
k=0

{[u − k, 0, k]} ∪
t∪

i=0

{[0, i, u]}
}

for fixed t. We have explicitly

F = {[0, 0, 0], [0, 1, 0], . . . , [0, t, 0], [1, 0, 0], [0, 0, 1], [0, 1, 1], . . . , [0, t, 1],
[m, 0, 0], [m − 1, 0, 1], . . . , [0, 0,m], [0, 1,m], [0, 2,m], . . . , [0, t,m]}.

As you can easily verify, Boneh-Durfee’s set of shift-polynomials [2] and
ours are completely the same as a set (but, a polynomial order is different).
Then, they are the same as a lattice basis. So, we obtain the same lat-
tice with Boneh-Durfee’s by using our compiler and Howgrave-Graham’s
lattice basis [9].

Next, according to the discussion in Section 4, we will re-derive the
bound of the secret key d. In [6], γU and γY are given as γU (u; t) =
u(u+1)/2 and γY (u; t) = (u+t)(u+t+1)/2. And, the dimension is given
by w(u; t) = u+ t+1 and AY = loge Y = 1/2. In this case, we can obtain
the same bound very easily. Since deg(γU (u; t)) = deg(γY (u; t)) = 2 and
deg(w(u; t)) = 1, Restriction 4 holds. Then, we can use Theorem 2. By
ignoring small terms, we have a0 = 1/4, a1 = 1/2, a2 = 3/4, b1 = b2 = 1.
By plugging these values into Eq. (8), one can easily obtain the bound

X < e1− 4
√

4·1−3·1·2+3·1·3−8·1+3·2
3·4 = e(7−2

√
7)/6 ≈ N0.284,

which is exactly same as the Boneh-Durfee’s weaker bound.
2 By employing his algorithm, Coron and May gave the deterministic polynomial time

algorithm for factoring the RSA modulus under the condition that the secret key d
is given [6].

16

5.2 Case 1’

By using the same lattice basis as Case1, we re-derive the small CRT-
exponent attack [15]. By just replacing AY = β, we can derive the condi-
tion: dp < e1−2(

√
β2+3β+β)/3, where q < eβ .

6 Concluding Remarks and Open Problems

We note that our conversion is not enough. As shown in Sec. 5.1, our
approach just achieves the Boneh-Durfee’s weaker bound. We need more
analysis to achieve the stronger bound: d ≤ N0.292. Actually, Boneh and
Durfee [2] deleted some bad lattice bases and introduced the concept Ge-
ometrically Progressive Matrix to evaluate the upper bound of the deter-
minant of the lattice. By these efforts, they achieved the stronger bound
d ≤ N0.292. We need to develop a general theory including such an im-
provement.

Acknowledgement

The author thanks Kaoru Kurosawa for helpful discussions.

References

1. J. Blömer and A. May, “A Tool Kit for Finding Small Roots of Bivariate Poly-
nomials over the Integers,” in Proc. of Eurocrypt2005, LNCS 3494, pp. 251–267,
2005.

2. D.Boneh and G.Durfee, “Cryptanalysis of RSA with private key d less than
N0.292,” IEEE Transactions on Information Theory 46(4): 1339 (2000). (Firstly
appeared in Eurocrypt’99).

3. D. Coppersmith, “Finding a Small Root of a Univariate Modular Equation,”in
Proc. of Eurocrypt’96, LNCS 1070, pp. 155–165, 1996.

4. D. Coppersmith, “Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known,” in Proc. of Eurocrypt’96, LNCS 1070, pp. 178–189, 1996.

5. D. Coppersmith, “Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities,” J. Cryptology 10(4): 233-260, 1997.

6. J.S. Coron and A.May, “Deterministic Polynomial Time Equivalence of Computing
the RSA Secret Key and Factoring,” Journal of Cryptology, Vol. 20, No. 1, pp.
39–50, 2007. (IACR ePrint Archive: Report 2004/208, 2004.)

7. G. Durfee and P. Nguyen, “Cryptanalysis of the RSA Schemes with Short Secret
Exponent from Asiacrypt’99,” in Proc. of Asiacrypt2000, LNCS 1976, pp. 14–29,
2000.

8. N. Howgrave-Graham, “Finding Small Roots of Univariate Modular Equations
Revisited,” IMA Int. Conf., pp.131–142 (1997)

9. N. Howgrave-Graham, “Approximate Integer Common Divisors,” in Proc. of Cryp-
tography and Lattice Conference (CaLC2001), LNCS 2146, pp. 51–66, 2001.

17

10. K. Itoh, N. Kunihiro and K. Kurosawa, “Small Secret Key Attack on a Variant of
RSA (due to Takagi),” In Proc. of CT-RSA2008, LNCS4964, pp. 387–406, 2008.

11. E. Jochemsz and A. May, “A Strategy for Finding Roots of Multivariate Polynomi-
als with New Applications in Attacking RSA Variants,” In Proc. of Asiacrypt2006,
LNCS4284, pp. 267–282, 2006.

12. N. Kunihiro and K. Kurosawa, “Deterministic Polynomial Time Equivalence be-
tween Factoring and Key-Recovery Attack on Takagi’s RSA,” In Proc. of PKC2007,
LNCS4450, pp. 412-425, 2007.

13. N. Kunihiro, “Solving Generalized Small Inverse Problems,” to appear in Proc. of
ACISP2010.

14. A.K. Lenstra, H.W. Lenstra, L. Lovász, “Factoring polynomials with rational co-
efficients,” Mathematische Annalen 261, pp.515–534, 1982.

15. A. May, “Cryptanalysis of Unbalanced RSA with Small CRT-Exponent,” in Proc.
of Crypto2002, LNCS 2442, pp. 242–256, 2002.

16. A. May, “Computing the RSA Secret Key Is Deterministic Polynomial Time Equiv-
alent to Factoring,” in Proc. of Crypto2004, LNCS 3152, pp. 213–219, 2004.

17. A. May, Chapter3.2 “The univariate case,” in “New RSA Vulnerabilities Using
Lattice Reduction Methods,” Ph.D thesis, University of Paderborn, 2003.

18. R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems,” Communications of the ACM, vol. 21(2), pp.
120–126, 1978.

19. T. Takagi, “Fast RSA-Type Cryptosystem Modulo pkq, ” in Proc. of Crypto’98,
LNCS 1462, pp.318–326, 1998.

20. M. Wiener, “Cryptanalysis of Short RSA Secret Exponents,” IEEE Transactions
on Information Theory, Vol. 36, pp. 553–558, 1990.

A Proofs

A.1 Proof of Lemma 4

The determinant of the submatrix Bu is given by

det Bu = M (m−u)wXuw
0 det B

(u)
h (M) = Mmw

(
X0

M

)uw

det B
(u)
h (M).

Since the determinant det B for f is given by detB =
∏m

u=0 det Bu, we
have the lemma. ⊓⊔

A.2 Proof of Lemma 5

For Lemma 1, if the norm of bn+1 is less than Mm/
√

w, we can reduce
the modular equations into integer equations. Combining Proposition 1,
this condition can be transformed into

det B < MmW /γ, (9)

18

where γ is a constant. Since this term is negligible compared to MmW ,
we can ignore this term. By substituting Eq. (4) into Eq. (9), we have

(X0/M)
∑

uw(u) <
m∏

u=0

(detB
(u)
h (M))−1. (10)

It is important that MmW in both hand sides are canceled. By transform-
ing this inequality, we have the above condition. ⊓⊔

A.3 Proof of Theorem 2

The function l(m; t) is given by

l(m; t) =
a0mt2 + a1m

2t/2 + a2m
3/3

b1m2t/2 + b2m3/3
. (11)

By replacing x = t/m, we have

l(x) ≡ l(m; mx) =
6a0x

2 + 3a1x + 2a2

3b1x + 2b2
.

The value x minimizing l(x) satisfies 3a0b1x
2+4a0b2x+(a1b2−a2b1) = 0.

If a1b2 − a2b1 < 0, this equation has a positive solution. By solving the
above equation, we have

x =

√
4a2

0b
2
2 − 3a0a1b1b2 + 3a0a2b2

1 − 2a0b2

3a0b1
.

Letting this value c′ and plugging c′ into Eq. (7), we have the following
condition for X0:

logM X0 < 1 − 4a0

b1
c′ − a1

b1
.

In particular, if b1 = b2, we have simply

c′ =

√
4a2

0 − 3a0a1 + 3a0a2

3a0
− 2

3
.

B More Examples

B.1 Application to Coron-May’s Lattice Basis to
Durfee-Nguyen’s Lattice basis

In this subsection, we simply write x, y, z,X, Y, Z instead of x0, x1, x2, X0, X1

and X2.

19

Coron and May gave the deterministic polynomial time algorithm for
factoring the unbalanced RSA modulus under the condition that the secret
key d is given [6]. In the proof, they provided an algorithm for solving
h(y, z) = A + y + z = 0 (mod S) for integers A and S, which is an
unknown divisor of an known integer U . Note that y and z have relation:
yz = N .

Set shift-polynomials as h
(u)
[j,k,l](y, z) := h[j,k,l]N

u−l = yjzkh(y, z)lNu−l.
In their paper, they chose the set of the indexes of shift-polynomials as

H(u) =
u−1∪
k=0

{[0, 0, k] ∪ [1, 0, k]} ∪
t1∪

i1=0

{[i1, 0, u]} ∪
t2∪

i2=0

{[0, i2, u]}.

Note that a generator is given by

A = {[0, 0], [1, 0]} and B = ∪t1
i1=0{[i1, 0]} ∪

t2∪
i2=1

{[0, i2]}.

Hence, H(u) holds Restrictions 1–3.
Let f(x, y, z) = x(A+y+z)+1 with constraint yz = N . We argue a lat-

tice basis construction for f . Since f(x, y, z) = xh(y, z)+1, we can employ
our Compiler to construct a lattice basis for f . For a positive integer m,
we define shift-polynomials for f as f[i,j,k,l](x, y) := xiyjzlf(x, y, z)lMm−l.
By our Compiler and Coron-May’s lattice basis, we have a set F as

F =
m∪

u=0


u−1∪
k=0

{[u − k, 0, 0, k] ∪ [u − k, 1, 0, k]} ∪
t1∪

i1=0

{[0, i1, 0, u]} ∪
t2∪

i2=0

{[0, 0, i2, u]}


for fixed t1 and t2. As you can easily verify, Durfee-Nguyen’s set of shift-
polynomials [7] and ours are completely the same as a set. Then, they are
the same as a lattice basis. So, we obtain the same lattice with Boneh-
Durfee’s by using our compiler and Coron-May’s lattice basis [6].

B.2 Application to Kunihiro-Kurosawa’s Lattice Basis to Itoh
et al.’s Lattice basis

In this subsection, we simply write x, y, z,X, Y, Z instead of x0, x1, x2, X0, X1

and X2.
Kunihiro and Kurosawa gave the deterministic polynomial time al-

gorithm for factoring the RSA modulus for the Takagi’s variant of RSA
under the condition that the secret key d is given [12]. In the proof, they
provided an algorithm for solving h(y, z) = (y − 1)(z − 1) = 0 (mod S)

20

for an integerS, which is an unknown divisor of an known integer U . Note
that y and z have relation: yrz = N .

Set shift-polynomials as h
(u)
[j,k,l](y, z) := h[j,k,l]N

u−l = yjzkh(y, z)lNu−l.
In their paper, they chose the set of the indexes of shift-polynomials as

H(u) =
u−1∪
k=0

{
[0, 0, k] ∪ [1, 0, k] ∪

r−1∪
i=1

{[i, 1, k]}
}

∪
t1∪

i1=0

{[i1, 0, u]} ∪
r−1∪
i3=0

t2∪
i2=1

{[i3, i2, u]}.

Note that a generator is given by

A = {[0, 0], [1, 0]} ∪
r−1∪
i=1

{[i, 1]} and B = ∪t1
i1=0{[i1, 0]} ∪

r−1∪
i3=0

t2∪
i2=1

{[i3, i2]}.

Hence, H(u) holds Restrictions 1–3.
Let f(x, y, z) = x(y − 1)(z − 1) + 1 with constraint yrz = N . We

argue a lattice basis construction for f . Since f(x, y, z) = xh(y, z) + 1,
we can employ our Compiler to construct a lattice basis for f . For a
positive integer m, we define shift-polynomials for f as f[i,j,k,l](x, y) :=
xiyjzlf(x, y, z)lMm−l. By our Compiler and Kunihiro-Kurosawa’s lattice
basis, we have a set F as

F (u) =
u−1∪
k=0

{
[u − k, 0, 0, k] ∪ [u − k, 1, 0, k] ∪

r−1∪
i=1

{[u − k, i, 1, k]}
}

∪
t1∪

i1=0

{[0, i1, 0, u]} ∪
r−1∪
i3=0

t2∪
i2=1

{[0, i3, i2, u]}.

and

F =
m∪

u=0

F (u)

for fixed t1 and t2. As you can easily verify, Itoh et. al’s set of shift-
polynomials [10] for weaker bound: d ≤ N (0.568/(r+1)) and ours are com-
pletely the same as a set. Then, they are the same as a lattice basis. So,
we obtain the same lattice with Itoh et al.’s by using our compiler and
Kunihiro-Kurosawa’s lattice basis [12].

21

B.3 Analysis for Non-linear h(y)

May [17] extended the Howgrave-Graham’s result [9] to analyze the case
for univariate polynomial with higher-degree. By using May’s lattice basis,
we analyze the case for the equation f(x, y) = xh(y) + C = 0 (mod M),
where h is a univariate monic polynomial with degree κ ≥ 1 and C
is a non-zero integer. May [17] gave the set of indexes in the explicit
form. A generator for h is given by A = ∪κ−1

i=0 {[i]} and B = ∪t
i=1{[i]}.

The determinant of B
(u)
h by detB

(u)
h = Nκu(u+1)/2Y w(w−1)/2, where w =

κu + t. By the similar analysis in Section 4, we have

X < M1− 2
√

(βκ)2+3βκ−βκ
3 ,

where β = logM Y . Letting M = e, β = 1/2 and κ = 1, one has again the
Boneh-Durfee’s weaker bound: δ < (7 − 2

√
7)/6.

22

