
A Security Weakness in a Generic Construction of a

Group Key Exchange Protocol

Junghyun Nam†

April 22, 2010

Abstract

Protocols for group key exchange are cryptographic algorithms that allow a
group of parties communicating over a public network to come up with a common
secret key. One of the interesting results of research on group key exchange is
the protocol compiler presented by Abdalla et al. in TCC ’07. Abdalla et al.’s
compiler shows how one can transform any authenticated 2-party key exchange
protocol into an authenticated group key exchange protocol with 2 more rounds
of communication. This compiler certainly is elegant in its genericness, sym-
metricity, simplicity and efficiency. However, the situation completely changes
when it comes to security. In this work, we reveal a major security weakness
in Abdalla et al.’s compiler and show how to address it. The security weakness
uncovered here implies that Abdalla et al.’s proof of security for their compiler
is invalid.

Keywords: Cryptography, Group key exchange, Protocol compiler, Implicit key
authentication, Key confirmation.

1 Introduction

The primary goal of cryptography is to provide a means for communicating confiden-
tially and with integrity over a public channel. In practice, this goal is often achieved
with key exchange protocols which allow the parties communicating over an insecure
network to establish a common secret key called a session key. Typically, the commu-
nicating parties, who want confidentiality and integrity, first generate a session key
by running an appropriate key exchange protocol and then use this key together with
standard cryptographic algorithms for message encryption and authentication. Thus,
the problem of establishing confidential and integrity-preserving communication is
commonly reduced to the problem of getting a right protocol for session key genera-
tion. Needless to say, the initial work of Diffie and Hellman [2] has been followed by a

†Department of Computer Science, Konkuk University, 322 Danwol-dong, Chungju-si,
Chungcheongbuk-do 380-701, Republic of Korea.
E-mail: jhnam@kku.ac.kr

1



tremendous amount of research effort aimed at designing and analyzing key exchange
protocols.

The highest priority in designing a key exchange protocol is placed on the security
of session keys to be established by the protocol. Roughly speaking, establishing a
session key securely means that the key is being known only to the intended parties
at the end of the protocol run. Even if it is computationally infeasible to break the
cryptographic algorithms used, the whole system becomes vulnerable to all manner
of attacks if the keys are not securely established. But unfortunately, the experience
has shown that the design of secure key exchange protocols is notoriously difficult. In
particular, the difficulty is greatly increased in the group setting where a session key
is to be established among an arbitrary number of parties. Indeed, there is a long
history of protocols for this domain being proposed and years later found to be flawed
(e.g., [5, 6, 4]). Thus, group key exchange protocols must be subjected to a thorough
and systematic scrutiny before they are deployed into a public network, which might
be controlled by an adversary.

The complexity of designing a group key exchange protocol has prompted mod-
ular approaches where the whole design process is broken down into simpler, more
manageable steps. One such approach is 2-to-n protocol compilers, which assume an
arbitrary 2-party key exchange protocol and use it as a key component in building a
group key exchange protocol. 2-to-n compilers are certainly useful in that an n-party
solution can be generically constructed from any existing 2-party solution. Of course,
such generic construction may become meaningless if the compiler is not secure. A
secure compiler would mean, informally, that it yields a secure n-party solution as
long as the given 2-party solution is secure.

In 2007, Abdalla et al. [1] presented an interesting 2-to-n compiler. One of the
attractive features of Abdalla et al.’s compiler is that it requires no further long-term
secrets for authentication than those used in the underlying 2-party protocol. This
feature implies that if the given 2-party protocol is password-only authenticated, then
the group key exchange protocol output by the compiler is password-only authenti-
cated as well. Moreover, Abdalla et al.’s compiler is quite efficient in terms of both
computation and communication costs. Applying the compiler to a 2-party protocol
increases the amount of computation per user by a factor of O(n) and the number
of communication rounds only by a factor of 2. From a practical point of view, the
O(n) increase of computation overhead is not that significant because the increase is
purely due to exclusive-or (XOR) operations, which can be implemented efficiently in
hardware and/or software. However, we found that Abdalla et al.’s compiler is not
satisfactory with respect to security. Despite the claim of provable security, the group
key exchange protocol constructed by the compiler from a 2-party protocol exhibits
insecurity in the face of an active adversary. In this work, we report this security
problem with Abdalla et al.’s compiler and figure out how to solve it. As will be
discussed in Section 3, our result invalidates Abdalla et al.’s proof of security for the
compiler.

2



2 Abdalla et al.’s Group Key Exchange

This section reviews Abdalla et al.’s compiler [1] that aims to construct an authenti-
cated group key exchange protocol GKEP from any authenticated 2-party key exchange
protocol 2KEP. Let U be a polynomial-sized set of all users who are potentially inter-
ested in participating in the protocol GKEP. The users in any subset of U may run
GKEP at any point in time to establish a common session key. A user Ui ∈ U may
have several instances involved in distinct, possibly concurrent, executions of GKEP.
The network where the users interact is fully controlled by an active adversary who
may read, intercept, delay and fabricate any messages at will.

During a trusted initialization phase which occurs before GKEP is ever executed,
the users in U generate their long-term (low- or high-entropy) secrets needed for
authentication. Those long-term secrets are solely for use in 2KEP because the trans-
formation itself, from 2KEP to GKEP, requires no long-term secrets. Thus, any initial
setup assumptions for authentication of 2-party key exchange can be made for the
authentication of GKEP, including the following typical ones:

• Authentication is based on public-key cryptography: each user Ui ∈ U owns a
pair of private/public (or, signing/verification) keys. The private key is kept
secret while the public key is made publicly available.

• Authentication is based on symmetric cryptography: each pair of users Ui, Uj ∈
U shares a high-entropy symmetric key.

• Authentication is based on passwords: each pair of users Ui, Uj ∈ U shares a
low-entropy password.

If authentication is based on shared secrets, GKEP also works in the setting where
the complete set of protocol participants shares one common secret. But we exclude
this case from the consideration since our security analysis on GKEP does not hold
for the case (for more discussion on this point, see Remark 1 at the end of the next
section). We instead assume that any one of the three typical setups listed above is
configured in the initialization phase of GKEP. But this assumption is not necessary for
our result and is made only for clarity. Indeed, as will be apparent in the next section,
our result still holds under the weaker assumption that all concurrent instances of a
user use the same long-term secret(s).

The cryptographic tools used in the construction of GKEP are:

• a collision-resistant pseudorandom function family F = {F `}`∈N with
F ` = {F `

s}s∈{0,1}L . Informally, collision-resistance means that there exists a
value v such that no efficient adversary can find two different indices s, s′ ∈
{0, 1}L such that Fs(v) = Fs′(v). The compiler assumes two publicly known
values v0 and v1 that satisfies the collision-resistance condition.

3



• a hash function H selected from a family of universal hash functions. H
outputs an L-bit string and is used to select an index within the aforementioned
collision-resistant pseudorandom function family.

• a non-interactive non-malleable commitment scheme C that satisfies the
following requirements:

1. it must be perfectly binding, i.e., every commitment c defines at most one
value decommit(c);

2. it must achieve non-malleability for multiple commitments — if an adver-
sary receives commitments to a (polynomial sized) set of values ν, she must
not be able to output commitments to a (polynomial sized) set of values µ
related to ν in a known way.

The underlying 2-party protocol 2KEP, upon input of two users Ui, Uj ∈ U (or
rather their identities), returns either a secret key κ ∈ {0, 1}k or a special symbol
> (indicating failure of the key establishment). If 2KEP requires d rounds of com-
munications, then GKEP takes d + 2 rounds. Let G = {U1, . . . , Un} be the set of n
users wishing to establish a session key among themselves. Then GKEP proceeds as
follows (throughout the protocol description, all indices are to be taken in a cycle,
i.e., Un+1 = U1, etc.):

Round 1 ∼ d: Each neighboring pair of users Ui and Ui+1, for i = 1, . . . , n, generates
a pairwise key Ki,i+1 by running the 2-party protocol 2KEP. (Accordingly, each
Ui holds two pairwise keys Ki−1,i and Ki,i+1 shared respectively with Ui−1 and
Ui+1.)

Round d + 1:

Computation: Each Ui computes

Xi = Ki−1,i ⊕Ki,i+1

and chooses a random ri to compute a commitment Ci = C(i,Xi; ri).

Transmission: Each Ui broadcasts Comi = 〈Ui‖Ci〉.

Round d + 2:

Transmission: Each Ui broadcasts Xori = 〈Ui‖Xi‖ri〉.
Verification: Each Ui checks that X1⊕X2⊕ · · · ⊕Xn = 0 and the correctness

of the commitments. If any one of these checks fails, Ui terminates the
protocol execution (without computing a session key).

4



Computation: Using Ki−1,i and the XOR-values, each Ui computes

Ki−2,i−1 = Xi−1 ⊕Ki−1,i,

Ki−3,i−2 = Xi−2 ⊕Ki−2,i−1,

...
Ki,i+1 = Xi+1 ⊕Ki+1,i+2.

Then, Ui defines a master key

K = 〈Kn,1‖K1,2‖ . . . ‖Kn−1,n‖G〉,

and computes the session key SKi = FH(K)(v1) and the session identifier
SIDi = FH(K)(v0).

Notice above that each Xi is never disclosed until the commitment Cj of every
other Xj is received. This strategy, of course, prevents any potential attack where
the value of some Xj is determined depending on the values of other Xi’s. However,
it is not sufficient enough to prevent our attack discussed in the next section.

For the instantiation of 2KEP, any particular choice that is, informally speaking,
secure against an active adversary will do. If 2KEP is instantiated with the HMQV
protocol of Krawczyk [3], the resulting GKEP is a 3-round group key exchange protocol
where authentication is based on each user’s private/public key pair.

3 Violating Implicit Key Authentication

Implicit key authentication is the fundamental security property that any given key
exchange protocol is expected to achieve. Informally, this property means that no one
outside the group can gain access to the session key. More formally:

Definition 1 (implicit key authentication) Let G be a set of users who wish to
share a session key by running a key exchange protocol P. Let ski be the session key
computed by a user Ui ∈ G as a result of an execution of protocol P. We say that P
achieves implicit key authentication if each Ui ∈ G is assured that no Uk /∈ G can learn
the key ski unless helped by a dishonest Uj ∈ G.

A key exchange protocol achieving implicit key authentication is said to be au-
thenticated, and is a primitive of crucial importance in much of modern cryptography
and network security.

Our main result is that the GKEP protocol fails to achieve authenticated key ex-
change. We prove this result by giving an active attack that violates implicit key
authentication of GKEP. The adversary who mounts the attack is a legitimate user in
the sense that she is able to set up normal protocol sessions with other users. Consider

5



a protocol session S to be conducted by the users of group G = {U1, . . . , Un}. Now
suppose that Un−1 and Un accept the invitation by the adversary Un+1 to participate
in a new concurrent session S′, thus forming the group G′ = {Un−1, Un, Un+1}. Then,
our attack is mounted (by Un+1) against the session S, and leads to a serious conse-
quence; at the end of the attack, the users in G \{Un} compute a common session key
as per protocol specification and think that the session S is completed successfully,
when, in fact, their session key is also known to the adversary Un+1. Let US

i and US′
i

denote Ui’s instances participating respectively in S and S′. The idea of our attack
starts from the following observation:

Since two neighboring users Un−1 and Un participate in both sessions, they
will try to establish two pairwise keys between themselves, specifically one
between US

n−1 and US
n and one between US′

n−1 and US′
n . But, notice that the

adversary Un+1 can make US
n−1 establish a pairwise key with US′

n instead
of with US

n and make US′
n−1 establish a pairwise key with US

n instead of
with US′

n . A little thought will make it clear that no matter what 2-party
key exchange protocol is selected as 2KEP, it is always possible for an
active adversary to do so without being detected. All the adversary needs
to do is to redirect the messages sent in two runs of 2KEP(Un−1, Un) so
that the messages from US

n−1 (resp. US
n , US′

n−1, US′
n ) are delivered to US′

n

(resp. US′
n−1, US

n , US
n−1).

This observation holds true as long as the two instances of Un−1 (and of Un) use
the same long-term secret(s) for authentication, which is the case for all of the three
initial setups mentioned in the previous section.

We are now ready to describe the attack. It goes as follows:

1. As two sessions start, the adversary Un+1 interferes with the pairwise key estab-
lishments between Un−1 and Un as in the observation above. Let KSS′

n−1,n (resp.
KS′S

n−1,n) be the pairwise key shared between US
n−1 and US′

n (resp. between US′
n−1

and US
n ). All other pairwise keys of both sessions are generated without any

interruption by Un+1. Fig. 1 shows a snapshot of two sessions after all pairwise
key establishments have been completed. Notice at this point that Un+1 holds
two pairwise keys Kn,n+1 and Kn+1,n−1 shared respectively with US′

n−1 and US′
n .

2. For the rest of session S′, Un+1 honestly interacts with US′
n−1 and US′

n . Let XS′
n−1

(resp. XS′
n ) denote Xn−1 (resp. Xn) sent by US′

n−1 (resp. US′
n ). Then clearly,

XS′
n−1 = Kn+1,n−1 ⊕KS′S

n−1,n and XS′
n = KSS′

n−1,n ⊕Kn,n+1. Upon receiving XS′
n−1

and XS′
n , Un+1 computes the two pairwise keys

KS′S
n−1,n = XS′

n−1 ⊕Kn+1,n−1,

KSS′
n−1,n = XS′

n ⊕Kn,n+1.

6



n
U

1: { , , }
n

S U U 1 1: { , , }
n n n

S U U U

1n
U

1n
U

n
U

1n
U

2n
U

1U

'
1,

SS

n n
K

'
1,

S S

n n
K

1, 1n n
K

, 1n n
K

,1n
K

1,2K

2, 1n n
K

3, 2n n
K

Figure 1: Two protocol sessions running concurrently in the presence of an active
adversary Un+1.

Of course, since XS′
n−1 ⊕XS′

n ⊕Xn+1 6= 0, US′
n−1 and US′

n will abort the protocol
without computing a session key.

3. As the rest of session S proceeds, Un+1 intercepts US
n ’s first message ComS

n

= 〈Un‖CS
n 〉. So, ComS

n is blocked from reaching its intended recipients. But, all
other first messages (sent by U1, . . . , Un−2, U

S
n−1) are transmitted without any

interruption by Un+1. As a result, US
n will receive all the n − 1 first messages

that are required to send its second message XorS
n = 〈Un‖XS

n ‖rS
n〉. As soon as

XorS
n is sent out, Un+1 intercepts it and computes

X
S
n = XS

n ⊕KS′S
n−1,n ⊕KSS′

n−1,n

= KSS′
n−1,n ⊕Kn,1,

C
S
n = C(n, X

S
n ; rS

n).

Immediately after this computation is over, Un+1 sends Com
S
n = 〈Un‖CS

n〉 to
U1, . . . , Un−2, U

S
n−1 as the replacement for ComS

n . Upon receiving Com
S
n , the

users U1, . . . , Un−2, U
S
n−1 will send their second message. Un+1 eavesdrops these

second messages while sending Xor
S
n = 〈Un‖XS

n‖rS
n〉 as the replacement for

XorS
n .

4. Since X1 ⊕ · · · ⊕ Xn−2 ⊕ XS
n−1 ⊕ XS

n 6= 0, US
n will abort the protocol without

computing a session key. But since X1 ⊕ · · · ⊕Xn−2 ⊕XS
n−1 ⊕X

S
n = 0 and C

S
n

is the correct commitment of X
S
n , the fake messages Com

S
n and Xor

S
n will pass

the verification tests by U1, . . . , Un−2, U
S
n−1. Hence, the users U1, . . . , Un−2, U

S
n−1

will compute their session key as per the protocol specification. Notice that these

7



users should compute their Kn−1,n as

Kn−1,n = X
S
n ⊕Kn,1

= KSS′
n−1,n ⊕Kn,1 ⊕Kn,1

= KSS′
n−1,n.

So, their master key is defined as

K = 〈Kn,1‖K1,2‖ . . . ‖Kn−2,n−1‖KSS′
n−1,n‖G〉.

Finally, their common session key SK is computed as SK = FH(K)(v1). But
this session key is also available to the adversary Un+1 who can compute all the
pairwise keys required to derive the master key K.

At the end of the attack, each of U1, . . . , Un−2, U
S
n−1 believes that they have estab-

lished a secret key only with the rest of the group, while in fact the key has been shared
also with the adversary Un+1. This demonstrates that the GKEP protocol does not
guarantee implicit key authentication when two protocol sessions are running con-
currently with some joint participants. Implicit key authentication is the security
property that is defined against an outsider adversary. Obviously, the adversary Un+1

is an outsider from the perspective of the users in G.

Remark 1 The attack above does not work in the setting where the complete set
of protocol participants shares one common secret for authentication. To see this,
suppose for example that the shared secret is a password. Then since each protocol
session with different participants uses its respective password, the password shared
between US

n−1 and US
n is different (with overwhelming probability) from the one shared

between US′
n−1 and US′

n . This means that the adversary Un+1 can no longer make US
n−1

(resp. US′
n−1) establish a pairwise key with US′

n (resp. US
n ), and hence the attack fails.

The GKEP protocol carries a claimed proof of its security in a formal model of
communication and adversarial capabilities [1]. The proof model used for GKEP is
a typical one and allows the adversary A to access all the standard oracles: Send,
Execute, Reveal, Corrupt, and Test. Any key exchange protocol proven secure in such
a model should certainly achieve implicit key authentication. But as we have seen,
the GKEP protocol fails to achieve it. This implies that the security proof for GKEP is
invalid. Indeed, the existence of our attack means, in the context of the proof model,
that there exists an adversary A whose advantage in attacking protocol GKEP is 1, or
in other words, there exists an adversary A who can distinguish, with probability 1,
random keys from real session keys established by GKEP. The construction of such an
A is rather straightforward from the attack above, and its brief description follows:

Corruption: First, A obtains all the long-term secrets of Un+1 by querying Cor-
rupt(Un+1).

8



Initiation: Next, A asks Send queries required to initiate two protocol sessions S :
G = {U1, . . . , Un} and S′ : G′ = {Un−1, Un, Un+1}. For example, a query of
the form Send(Un−1, ∗, {Un, Un+1}) prompts an unused instance ∗ of Un−1 to
initiate the protocol with Un and Un+1. But, no instance of Un+1 needs to be
asked this form of Send query because A will simulate by itself the actions of
Un+1.

Run: Now, A runs the two sessions in the exact same way as Un+1 did in the above-
described attack. Note that A can perfectly simulate Un+1’s attack by asking
Send queries and by using the disclosed long-term secrets (of Un+1). Let US

i

be Ui’s instance participating in session S. Then, as in the attack above, the
instances US

1 , . . . , US
n−1 will eventually accept a session key SK which can be

also computed by A.

Test: Clearly, all of the instances US
1 , . . . , US

n−1 are fresh (for the definition of fresh-
ness, see Section 2.2 of [1]); no Corrupt query has been asked for any of U1, . . . , Un

and no Reveal query has ever been made for any instance. Thus, A may test
(i.e., ask a Test query against) any of the n − 1 instances. Since A knows the
value of SK, the probability that A guesses correctly the bit b used by the Test
oracle is 1 and so is the advantage of A in attacking GKEP.

4 Fixing the Protocol

Given the attack, it is quite apparent how to repair the GKEP protocol. Before each
user Ui sends Xi, they first have to make sure that their pairwise keys have been
established as originally intended. A simple way to ensure this is to let the users
carry out the following procedure for pairwise key confirmation.

Pairwise key confirmation: Each Ui computes←−σ i = FH(Ui‖Ki−1,i‖G)(v0) and −→σ i =

FH(Ui‖Ki,i+1‖G)(v0), and sends
←−−−
Authi = 〈Ui‖←−σ i〉 and

−−−→
Authi = 〈Ui‖−→σ i〉 respec-

tively to Ui−1 and Ui+1. On receiving
−−−→
Authi−1 and

←−−−
Authi+1, Ui verifies the

correctness of both −→σ i−1 and ←−σ i+1 in the straightforward way. If either one of
the verifications fails, Ui aborts the protocol.

Adding the confirmation procedure above into the protocol does not necessarily
cause any additional round of communication. Since the pairwise key confirmation
should be done before sending the XOR-values and after establishing the pairwise
keys, we can simply integrate the confirmation procedure into the (d + 1)th round of
the protocol as follows:

Round d + 1 (revision):

9



Computation: Each Ui computes

Xi = Ki−1,i ⊕Ki,i+1

and chooses a random ri to compute a commitment Ci = C(i,Xi; ri). In ad-
dition, Ui computes←−σ i = FH(Ui‖Ki−1,i‖G)(v0) and−→σ i = FH(Ui‖Ki,i+1‖G)(v0).

Transmission: Each Ui broadcasts Comi = 〈Ui‖Ci〉, and sends
←−−−
Authi =

〈Ui‖←−σ i〉 and
−−−→
Authi = 〈Ui‖−→σ i〉 respectively to Ui−1 and Ui+1.

Verification: Upon receiving
−−−→
Authi−1 and

←−−−
Authi+1, Ui checks the correctness

of both −→σ i−1 and ←−σ i+1 in the straightforward way. If either one of the
checks fails, Ui aborts the protocol.

The other rounds of the protocol remain unchanged.
Our modification effectively prevents the attack. Notice in our pairwise key con-

firmation that the authenticators ←−σ i and −→σ i are computed by taking as input the set
of the identities of all group members. This way of computing authenticators plays a
critical role in preventing the attack. Suppose that the adversary Un+1 interferes with
the pairwise key establishments as described in the attack. Then, no authenticators
exchanged between the instances of Un−1 and Un can pass the verification step of the
revised (d + 1)th round. As soon as the verifications fail, the instances of Un−1 and
Un will abort the protocol without revealing their XOR-value of two pairwise keys.
Hence, the attack is not valid against the improved protocol.

Another way to prevent the attack is to modify the underlying 2-party protocol
2KEP so that the identities of all group members are included in computing every au-
thentication message of 2KEP. But then the construction would be no longer generic.

References

[1] M. Abdalla, J.-M. Bohli, M. Vasco, R. Steinwandt, (Password) authenticated key
establishment: from 2-party to group, in: Proceedings of the 4th Theory of Cryp-
tography Conference (TCC’07), Lecture Notes in Computer Science, vol. 4392,
2007, pp. 499–514.

[2] W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory 22 (6) (1976) 644–654.

[3] H. Krawczyk, HMQV: a high-performance secure Diffie-Hellman protocol, in:
Advances in Cryptology — CRYPTO ’05, Lecture Notes in Computer Science,
vol. 3621, 2005, pp. 546–566.

[4] J. Nam, J. Paik, U. Kim, D. Won, Security enhancement to a password-
authenticated group key exchange protocol for mobile ad-hoc networks, IEEE
Communications Letters, 12 (2) (2008) 127–129.

10



[5] O. Pereira, J.-J. Quisquater, A security analysis of the Cliques protocols suites,
in: Proceedings of the 14th IEEE Computer Security Foundations Workshop,
2001, pp. 73–81.

[6] K. Shim, S. Woo, Cryptanalysis of tripartite and multi-party authenticated key
agreement protocols, Information Sciences 177 (4) (2007) 1143–1151.

11


