A SECURITY WEAKNESS IN COMPOSITE-ORDER PAIRING-BASED PROTOCOLS WITH IMBEDDING DEGREE k > 2

NEAL KOBLITZ

ABSTRACT. In this note we describe a security weakness in pairingbased protocols when the group order is composite and the imbedding degree k is greater than 2.

In pairing-based protocols, as in elliptic curve cryptography more generally, one usually works in a prime-order subgroup of an elliptic curve $E(\mathbb{F}_q)$. However, starting in 2005 with work of Boneh, Goh, and Nissim [1], composite-order groups have been used in pairing-based protocols to achieve certain cryptographic objectives in such areas as traitor tracing [3] and group signatures [4, 5].

Let $N = \prod_{i=1}^{r} p_i^{\alpha_i}$ be an odd composite number whose factorization needs to be kept secret. Suppose that N is the order of the group \mathbb{G} in a pairingbased protocol with imbedding degree k > 2, and let E be the elliptic curve over \mathbb{F}_q that is being used to implement the protocol. With no loss of generality we suppose that g.c.d.(q, N) = 1. It is well-known (see, for example, Remark 4.5 of [2]) that one needs q to have exact multiplicative order k not only modulo N, but also modulo $p_i^{\alpha_i}$ for each i in order to avoid a simple attack that factors N; in particular, this means that $p_i \equiv 1 \pmod{k}$ for $i = 1, 2, \ldots, r$.

Theorem 1. In the above setting, an attacker who observes two independent implementations (with the same N and k but different E and q) has probability at least $1 - \phi(k)^{1-r} \ge 1 - 2^{1-r}$ of factoring N, where $r \ge 2$ is the number of distinct prime factors of N.

Proof. Let \mathbb{F}_{q_1} and \mathbb{F}_{q_2} be the finite fields in the two implementations. Because each q_j must have exact order k modulo $p_i^{\alpha_i}$ for each $i = 1, \ldots, r$, it follows from the Chinese Remainder Theorem that, given q_1 , there are $\phi(k)^r$ possible values of $q_2 \mod N$. Of the $\phi(k)^r$ possible values of $q_2 \mod N$, there are $\phi(k)$ that are in the multiplicative group mod N generated by q_1 . Suppose that $q_2 \mod N$ is *not* in the group generated by q_1 . Then there is some value of j, $1 \le j < k$ with g.c.d.(j, k) = 1, such that q_2 agrees with $q_1^j \mod p_1^{\alpha_1}$ (because q_1 and q_2 generate the same group mod $p_1^{\alpha_1}$) but

Date: April 22, 2010.

Key words and phrases. public key cryptography, pairing-based protocol, imbedding degree.

not mod N. Thus, one can factor N by computing g.c.d. $(N, q_2 - q_1^j)$ for $1 \leq j < k$ for which g.c.d.(j, k) = 1. Hence, the probability of factoring N is at least $(\phi(k)^r - \phi(k))/\phi(k)^r = 1 - \phi(k)^{1-r}$, as claimed.

Example 1. Suppose that $N = p_1p_2$ is an RSA-modulus and k = 3. Then, given q_1 , there are 4 possibilities for $q_2 \mod N$. In two cases q_1 and q_2 are either equal or the squares of one another mod N. In the other two cases $g.c.d.(N, q_1 - q_2)$ is either p_1 or p_2 .

Remark 1. Since k is always quite small, the number of g.c.d.'s the attacker needs to compute is also small.

Remark 2. The same argument shows that, more generally, if the two implementations have different imbedding degrees k_1 and k_2 , and if $k_0 = \text{g.c.d.}(k_1, k_2) > 2$, then the attacker has probability at least $1 - \phi(k_0)^{1-r}$ of factoring N.

Remark 3. In pairing-based protocols with prime-order group \mathbb{G} it would be very undesirable to have to restrict to imbedding degree k = 1 or 2. The reason is that one usually wants to choose k so that the running time for squareroot discrete log algorithms in \mathbb{G} is comparable to the running time for the number field or function field sieve in $\mathbb{F}_{q^k}^{\times}$, and this certainly means that k > 2. However, if \mathbb{G} has composite order N and one needs to protect the factorization of N, then one wants the running time for the number field sieve for factoring N to be comparable to the running time for the number field or function field sieve in $\mathbb{F}_{q^k}^{\times}$. Since N has roughly the same order as q, it is thus reasonable to choose k = 1 (or k = 2).

In conclusion, it is prudent to use imbedding degree 1 or 2 when a pairingbased protocol needs to hide the factorization of a composite group order.

References

- D. Boneh, E.-J. Goh, and K. Nissim, Evaluating 2-DNF formulas on ciphertexts, in J. Kilian, ed., Proc. Second Theory of Cryptography Conference, TCC 2005, LNCS 3378, Springer-Verlag, 2005, 325-341.
- [2] D. Boneh, K. Rubin, and A. Silverberg, Finding composite order ordinary elliptic curves using the Cocks-Pinch method, ro appear in J. Number Theory, available at http://eprint.iacr.org/2009/533.pdf
- [3] D. Boneh, A. Sahai, and B. Waters, Full collusion resistant traitor tracing with short ciphertexts and private keys, in S. Vaudenay, ed., Advances in Cryptology – Eurocrypt 2006, LNCS 4004, Springer-Verlag, 2006, 573-592.
- [4] X. Boyen and B. Waters, Compact group signatures without random oracles, in S. Vaudenay, ed., Advances in Cryptology – Eurocrypt 2006, LNCS 4004, Springer-Verlag, 2006, 427-444.
- [5] X. Boyen and B. Waters, Full-domain subgroup hiding and constant-size group signatures, in T. Okamoto and X. Wang, eds., *Public Key Cryptography*, *PKC 2007*, LNCS 4450, Springer-Verlag, 2007, 1-15.

DEPARTMENT OF MATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEAT-TLE, WA 98195 U.S.A.

E-mail address: koblitz@math.washington.edu