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Abstract. In this note we describe a security weakness in pairing-
based protocols when the group order is composite and the imbedding
degree k is greater than 2.

In pairing-based protocols, as in elliptic curve cryptography more gen-
erally, one usually works in a prime-order subgroup of an elliptic curve
E(Fq). However, starting in 2005 with work of Boneh, Goh, and Nissim
[1], composite-order groups have been used in pairing-based protocols to
achieve certain cryptographic objectives in such areas as traitor tracing [3]
and group signatures [4, 5].

Let N =
∏r

i=1
pαi

i be an odd composite number whose factorization needs
to be kept secret. Suppose that N is the order of the group G in a pairing-
based protocol with imbedding degree k > 2, and let E be the elliptic
curve over Fq that is being used to implement the protocol. With no loss
of generality we suppose that g.c.d.(q,N) = 1. It is well-known (see, for
example, Remark 4.5 of [2]) that one needs q to have exact multiplicative
order k not only modulo N , but also modulo pαi

i for each i in order to avoid
a simple attack that factors N ; in particular, this means that pi ≡ 1 (mod
k) for i = 1, 2, . . . , r.

Theorem 1. In the above setting, an attacker who observes two indepen-
dent implementations (with the same N and k but different E and q) has
probability at least 1−φ(k)1−r ≥ 1−21−r of factoring N , where r ≥ 2 is the
number of distinct prime factors of N .

Proof. Let Fq1
and Fq2

be the finite fields in the two implementations.
Because each qj must have exact order k modulo pαi

i for each i = 1, . . . , r,
it follows from the Chinese Remainder Theorem that, given q1, there are
φ(k)r possible values of q2 mod N . Of the φ(k)r possible values of q2 mod
N , there are φ(k) that are in the multiplicative group mod N generated
by q1. Suppose that q2 mod N is not in the group generated by q1. Then
there is some value of j, 1 ≤ j < k with g.c.d.(j, k) = 1, such that q2 agrees

with qj
1

mod pα1

1
(because q1 and q2 generate the same group mod pα1

1
) but
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not mod N . Thus, one can factor N by computing g.c.d.(N, q2 − qj
1
) for

1 ≤ j < k for which g.c.d.(j, k) = 1. Hence, the probability of factoring N
is at least (φ(k)r − φ(k))/φ(k)r = 1 − φ(k)1−r, as claimed.

Example 1. Suppose that N = p1p2 is an RSA-modulus and k = 3. Then,
given q1, there are 4 possibilities for q2 mod N . In two cases q1 and q2 are
either equal or the squares of one another mod N . In the other two cases
g.c.d.(N, q1 − q2) is either p1 or p2.

Remark 1. Since k is always quite small, the number of g.c.d.’s the attacker
needs to compute is also small.

Remark 2. The same argument shows that, more generally, if the two
implementations have different imbedding degrees k1 and k2, and if k0 =
g.c.d.(k1, k2) > 2, then the attacker has probability at least 1 − φ(k0)

1−r of
factoring N .

Remark 3. In pairing-based protocols with prime-order group G it would
be very undesirable to have to restrict to imbedding degree k = 1 or 2. The
reason is that one usually wants to choose k so that the running time for
squareroot discrete log algorithms in G is comparable to the running time
for the number field or function field sieve in F

×

qk
, and this certainly means

that k > 2. However, if G has composite order N and one needs to protect
the factorization of N , then one wants the running time for the number field
sieve for factoring N to be comparable to the running time for the number
field or function field sieve in F

×

qk
. Since N has roughly the same order as

q, it is thus reasonable to choose k = 1 (or k = 2).

In conclusion, it is prudent to use imbedding degree 1 or 2 when a pairing-
based protocol needs to hide the factorization of a composite group order.
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