
Towards a Theory of Trust Based Collaborative Search

Yacov Yacobi
Microsoft Research
One Microsoft Way

Redmond, WA, 98052, USA

ABSTRACT
We developed three new theoretical insights into the art of
hierarchical clustering in the context of web-search. A no-
table example where these results may be useful is Trust
Based Collaborative Search, where an active user consults
agents that in the past performed a similar search. We pro-
ceed with this as an example throughout the paper, even
though the results are more broadly applicable. The �rst
result is that under plausible conditions, trust converges to
the extremes, creating clusters of maximal trust. The trust
between any two agents, whose initial mutual trust is not
maximal, eventually vanishes. In practice there is uncer-
tainty about data, hence we have to approximate the �rst
result with less than maximal trust. We allow clustering
tolerance equal to the uncertainty at each stage. The sec-
ond result is that in the context of search, under plausible
assumptions, this uncertainty converges exponentially fast
as we descend the clustering tree. The third observation is
that Shannon�s cryptography may help estimate that uncer-
tainty.
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1. INTRODUCTION
We present a few new theoretical insights into general hier-
archical clustering. The results are relevant for example, to
collaborative �ltering, social web search, and general hier-
archical data clustering based on similarity. We use Trust
Based Collaborative Search, where an active user consults
agents that in the past performed a similar search as an
example throughout the paper, even though the results are
more broadly applicable.

The �rst result is that under plausible conditions that we
motivate, trust converges to the extremes, creating clusters
of maximal trust. The trust between any two agents, whose
initial mutual trust is not maximal, eventually vanishes.

In practice there is uncertainty about data, hence we have to
approximate the �rst result with less than maximal trust.
We allow clustering tolerance equal to the uncertainty at
each stage. The second result is that in the context of
search, under plausible assumptions, this uncertainty con-
verges exponentially fast as we descend the clustering tree.
This conclusion follows from a novel �Hindsight� thought
experiment, in which we compare the uncertainties of the
real hierarchical clustering process to an imaginary process
going in the opposite direction in the clustering tree (hence
�hindsight�). The uncertainties of the latter are not bigger
than those of the former. This leads to interesting bounds
on uncertainties and hence on clustering tolerances.

The third observation is that Shannon�s cryptography may
help estimate that uncertainty. A query plays the role of
a cryptogram, the search engine is the cryptanalyst, and
the user�s intention is the clear text. Shannon�s �unicity
distance�is the length of the search. It is needed to quantify
the clustering-tolerance.

Prior art: Our trust matrices are similar (but not identi-
cal) to those of [11] and even to PageRank [2]. A broader
exposition of trust-theory appears in our (yet unpublished)
paper [8] (but without its application in search). Clustering
using Information Theoretic entropy was done successfully
in [3]. It is worth noting that when using derivatives of con-
ditional entropy as a metric for clustering, in practice we
can use only computable entropies, as de�ned in [22]. We
do not use it here, but it is an option for future work in
this area (we use a simpler metric for now). [6] pointed to
the empirical signi�cance of having smaller clusters of rec-
ommenders who highly trust each others. [9] discusses trust



in the context of certi�cation chains. [12] discusses conver-
gence to consensus (our convergence is a simple case). The
connection to cryptography relies on insight from [18] and
[19].

The structure of the rest of this paper is as follows: Section
2 is a detailed overview of this work. Section 3, presents
the �rst result: that trust converges to the extremes. Sec-
tion 4 presents the �hindsight� thought experiment, that
help quantify the optimal clustering tolerances. Section 5
explains how to use the results of section 4 in a hierarchical
clustering algorithm.

2. OVERVIEW
2.1 Objects and their representations
Objects include pages, clusters of pages, queries, agents that
in the past performed a given query, and clusters of such
agents. An object is represented by a vector of probabilities
of attributes. These vectors are a �common denominator�
enabling the comparison of any object to any object. In this
paper, the gap between two objects is the angle between
the corresponding vectors . The angle is normalized to the
interval [0,1]. The similarity is one minus the gap. The
similarity between vectors i and j is denoted sij . We discuss
vectors of similarities (not to be confused with the vectors
representing objects).

2.2 Hierarchical clustering
A collaborative browsing process involves two stages of clus-
tering: The ordinary hierarchical clustering of pages (stage-
2) and hierarchical clustering of agents that performed a
given query in the past, based on their subsequent brows-
ing navigation histories (stage-1). The active user navigates
the hierarchical clustering of agents (that performed �her�
query in the past), ending in a cluster of pages that she then
likewise navigates to a result. The path that the active user
navigates is also an object. We engineer each of stage-1 and
stage-2 to be a tree. The seam between the stages is not
a forest; two distinct agents can go to the same cluster of
pages. Within a tree, we identify a path leading from the
root to any node with that node, and represent it by the
vector of probabilities of attributes of that node.

In each node in the hierarchical clustering, there are two
stages in the computation of similarity, sij . In both phases
the gap between vectors representing objects is the angle
between the vectors. In the local phase, it is computed in-
dependent of other vectors. It is followed by a transitive-
averaging phase (see section 3 ), where the �opinions� of
peers are taken into account. This is done iteratively using
(similarity) matrix multiplications. These iterations should
not be confused with layers (=levels) in the hierarchical
trees.

2.3 A Theory of similarity
In general trust-theory [8], behavior is a random variable,
and the gap between two behaviors is (a simple derivative
of) their (Shannon�s) conditional entropy. The relevant be-
havior for collaborative browsing, given initial query, is past
navigations of the trees de�ned by the query. We therefore
equate trust between agents with similarity of the vectors

that represent them, and use the results of trust-theory di-
rectly [8]. However, here we use a di¤erent metric for the
gap between vectors. Whereas in [8] we used conditional
entropy, here we use the angle between vectors. The re-
sult of [8] is independent of the metric. For the sake of self
containment we give the main result of [8] in section 3.

There is empirical evidence [6] that in trust-based reputation
model for virtual communities, it pays to restrict the clusters
of agents to small sets with high mutual trust. We propose
and motivate a mathematical model, where this phenom-
enon emerges naturally. In our model, we separate trust
values from their weights. We engineer the weight matrix
to be stochastic (that is the natural de�nition of normalized
weighted averaging), but unlike others (e.g. [11]), we do not
demand that the overall trust matrix be stochastic. Each
trust value can have any value in the Real interval [0,1]. We
motivate this separation using real examples, and show that
in this model, trust converges to the extremes, agreeing with
and accentuating the observed phenomenon. Speci�cally, in
our model, cliques1 of agents of maximal mutual trust are
formed, and the trust between any two agents that do not
maximally trust each other, converges to zero. We o¤er ini-
tial practical relaxations to the model that preserve some of
the theoretical �avor.

2.4 Uncertainties and tolerances
At each stage we accept members who are less than perfectly
matched to other members. The gap in similarity that we
allow equals our uncertainty about the data.

There are two sources of uncertainty. Result uncertainty
and measurement uncertainty . There is uncertainty about
results because a partially navigated path allows many op-
tional results. Measure uncertainty is due to inaccurate and
imprecise2 probabilistic data.

2.5 Propagation of uncertainty
We distinguish gradual from instantaneous cluster buildup.
Each of these methods may be used to create hierarchical
clustering. In the former, cluster members that were already
accepted, are not judged again under new data. They �in-
terview� candidates under new data. In the instantaneous
cluster buildup, everybody is judged at once under the cur-
rent data. It is easy to see that uncertainty about similarity
propagates in the gradual process. We show (in section 4.4)
that under certain assumptions, there are relations between
uncertainties of distinct layers in the hierarchical tree even
when using instantaneous cluster buildup.

We estimate uncertainties under the following assumptions:
(i) similarities between cluster members are close to 1 (it fol-
lows from general Trust Theory of section 3 that these are
the interesting cases). (ii) The multiplication of two uncer-
tainties is negligible. (iii) The gap metric is such that the
uncertainty about the gap between two vectors is roughly

1We use the term "clique" in the theoretical part, and the
term "cluster" in the practical part, where we allow toler-
ances >0.
2Accuracy relates to the gap between the expected measured
value and the true value. Precision relates to the variance
in the measured values.



the sum of the uncertainties in the directions of each of these
vectors3 .

2.6 The Hindsight Thought Experiment
Consider a hierarchical clustering search tree. It can be
either stage-2 (hierarchical clustering of pages), or stage-1
(hierarchical clustering of agents). Uncertainty declines as
we descend the tree (as usual, leaves are assumed at the
bottom). This is certainly true about result-uncertainty:
the actively navigated path becomes more speci�ed as we
descend. However, it is plausible that measurement uncer-
tainty does not increase either, and may decrease.

This suggests that the best approach is to do instantaneous
clustering at each level in the tree. We compare this real
process, where we descend the tree, to an imaginary process
ascending the tree. Since data quality does not deteriorate
as we descend the tree, the best approach for the imaginary
process is to use gradual cluster buildup.

Thought Experiment: Create a full real path (all the way to
a result) using instantaneous cluster buildup. Traverse the
path from the bottom up, doing gradual cluster buildup.
Analyze uncertainties for each of the processes at a given
node. Find the implications of the fact that the imaginary
uncertainty is not bigger than the real one.

From this we conclude an upper bound on the real uncer-
tainty. Speci�cally, we show in section 4 that the uncer-
tainty, and hence the clustering-tolerance, is at least divided
by a constant bigger than 1 at each layer in the tree, com-
pared to the layer immediately above it.

2.7 Connection to Shannon's cryptography
It turns out that to estimate the tolerance of a node we have
to know its height in the tree. Theoretically, we can build
the whole tree and measure it, but there may be a shortcut.
Shannon�s Cryptography may become useful in this process.
A query plays the role of a cryptogram, the search engine
is the cryptanalyst, and the user�s intention is the cleartext.
Shannon�s unicity distance is the length of the search. From
that length we can compute the height of a node.

3. TRANSITIVE TRUST
3.1 General:
We propose a slight modi�cation to existing mathematical
model [11]. In the new model (unlike the old) trust converges
to the extremes, agreeing with the empirical evidence ([6]).
We speculate, that this model can further improve the re-
sults. In [8] we de�ned the local trust using the conditional
entropy of the vectors representing the behaviors of users. In
this paper trust is synonymous with similarity between rep-
resentative vectors, where the metric is the absolute value
of the angle between vectors. The exposition in the rest of
this section is independent of how we de�ne the local trust.
It is quoted verbatim from our not yet published paper [8],
for the sake of self-containment of this paper.

3This assumption holds when the metric is the absolute
value of the angle between two independent vectors.

3.2 Trust Matrix:
Consider a set f1; 2; :::ng of agents. In a n�n trust matrix
T = (�ijtij); entry (i; j) is the trust of agent i in agent j;
denoted tij ; weighted by some weight factor 0 � �ij � 1;
where for all i;

Pn
i=1 �ij = 1: �ij can be interpreted as the

relative relevance of the opinion of a peer (for example, a
peer may be fully trusted but claim little con�dence about
some speci�c evaluation; the condition

Pn
i=1 �ij = 1 is

the usual meaning of normalized weighted average). Occa-
sionally we use the uniform weight 1=n as an example, but
our claims hold for any convex combination. When the dis-
crete time � = 1; 2; ::: is necessary for the explanation we
write tik(�) instead of tik: We assume that for all i and � ;
tii(�) = 1:

4 It is natural to normalize the trust values to the
interval 0 � tij � 1; since we expect 0 � tij(�)tjk(�) � 1:
This is similar to EigenTrust [11], but with important di¤er-
ence. We do not engineer T so that for all i;

Pn
j=1 �ijtij = 1

(there is no �budget�of trust; an agent who fully trusts one
agent can trust other agents as well) every tij can have any
value in the Real interval [0; 1]):

De�nition 1. A maximal trust matrix is a trust matrix
where every agent has trust=1 in every agent (i.e. for uni-
form weight, the matrix T is all 1=n).

Interpretation of right eigenvector of T : Consider the n�n
trust matrix, T of agents 1; 2; ::n. Assume a candidate 0
to this set. The agents 1; 2; :::n are existing set members.
Each of them �interviews�the candidate to determine a local
trust value. Interviewer i has local trust value ti0 in
candidate 0: Let t = (t10; t20; :::tn0)t : Right multiplying Tt
yields the transitive trust values after one iteration. The
right eigenvector, corresponding to eigenvalue 1, is the stable
transitive trust values of the existing set members in the
candidate.

Interpretation of left eigenvector of T : Row i represents
the trust of agent i in each of the set members, and column
j represents the trust of each set member in agent j: Let
t(�) denote a row vector whose entry j = 1; 2; :::n; is the
aggregate trust of existing set members in existing agent j
at discrete time � : Then t(� +1) = t(�) �T (�): Therefore a
left eigenvector that corresponds to eigenvalue 1, is a stable
trust vector representing the overall trust of the set in each
of its existing members5 .

3.3 Modes of clique build-up
In the theoretical part we use the term �cliques� and in
the practical part, where we allow tolerances bigger than
zero, we switch to the term �clusters.�Along the time axis,

4When trust is based on similarity, as is the case with trust-
based collaborative Web search, we do not have to assume
tii = 1: It follows from the de�nitions.
5 If T is a maximal trust matrix, then after one iteration
t(�) is necessarily a consensus. Since T 2 = T; T is also
a projection. It projects onto U along V; where U is
all the consensus vectors, and V is all the vectors whose
components add up to zero. The minimal polynomial of T is
x2�x; whose 2 roots are the eigenvalues �0 = 0 and �1 = 1:
Every consensus vector is an eigenvector corresponding to
�1.



the process is dynamic; cliques may grow, then split (when
facing new data).

De�nition 2. We use the term gradual clique build-up
when referring to a dynamic process, using right multiplica-
tion, t(�+1) = T (�)t(�); where current data applies to cur-
rent candidates to a clique, t(�); but existing clique mem-
bers, that were accepted under older data, are not judged
again under the newer data. If all the agents represented
by T (�) are evaluated using the data available at time � ;
then we call it instantaneous clique build-up.

So, T (�) has di¤erent interpretation, depending on the
mode of clique build-up. In the instantaneous clique build-
up, the data at time � is used in all the entries of the ma-
trix, and in the gradual mode of clique build-up, entries are
added gradually, and once added they are not re-evaluated
under newer data. the left (right) eigenvector correspond-
ing to eigenvalue 1 is the stable solution in the instantaneous
(gradual) clique build up.

Remark 1. In the gradual buildup the initial meaning of
the right vector is clear, leading to a unique eigenvector. In
the instantaneous buildup we de�ne the initial value of the
left vector as follows: s = (s10; s20; :::sn0); where for every
1 � j � n; sj0 is the similarity of agent j to the (path
leading to the) father node of the cluster that we currently
build. All initial values sij are obtained locally (i.e. by
evaluating similarity between vectors vi; vj ; regardless of
other vectors).

3.4 The Perron-Frobenius Theory
The part of the theory that we actually use here appears e.g.
in [17], Theorem 1.1, part (e). For a concise summary of the
theory see also Th. 1.3.1 in Andries Brouwer�s notes6 . The
books [20] and [21] are also useful. Let T be any matrix
over R (a vector is a special case). T > 0 means that
every entry of T is positive (the notation T � 0 should also
be interpreted likewise). A matrix T 2 Rn�n is primitive
if (9k)[T k > 0]: It is irreducible if (8i; j)(9k)[(T k)ij > 0]
(the corresponding digraph is strongly connected, i.e. 9 path
from any node i to any node j): We present here only the
part of the theory that we need now.

Theorem 1. (Perron-Frobenius): Let T 2 Rn�n be ir-
reducible. There exists �0 2 R such that �0 = �(T ) is
the spectral radius of T; and if 0 � S � T and � is any
eigenvalue of S then j�j � �0: Furthermore, j�j = �0 if and
only if S = T:

Remark 2. Let T represent a max-trust clique. As such
T is stochastic, hence its spectral radius is �(T ) = 1: For
any S < T; �(S) < 1 (by the above clause of the Perron-
Frobenius Theorem). So, limk!1 �(S

k) = 0: This is true
not only when using uniform weights 1/n, but for any convex
combination.

6http://www.win.tue.nl/~aeb/srgbk/node4.html

Remark 3. A trust matrix which is not max-trust has
only the zero vector as eigenvector.

Conclusion 1. Cliques of maximal trust are formed (they
may overlap). The trust between two agents that do not
maximally trust each other converges to zero (because any
matrix S that includes both, is S < T ):

3.5 Practical relaxation
In practice we have to do useful things with less than perfect
trust. We create near max trust clusters with clustering
tolerances that we analyze in the next section. We do this
initial crude analysis assuming just one iteration of the trust
matrix. The motivation is that a max-trust matrix reaches
a stable solution (eigen pair with eigen value 1) after one
iteration.

4. QUANTIFYING UNCERTAINTY
4.1 Preliminaries
As before, let sij denote the measured similarity between
vectors vi and vj : sij = aij+eij ; where aij is the true sim-
ilarity, and eij is the error (synonymous with uncertainty).
When the level (synonymous with layer), m; in the tree is
important we use the notation sij(m) (and likewise with
the other variables). The expected transitive uncertainty at
the output of level m is denoted �(m+1); and the expected
local uncertainty of levelm is denoted e(m): We distinguish
gradual from instantaneous transitive uncertainty, using e�()
for the former and �() for the latter.

Assumptions: (i) eij � ei + ej (this holds when the met-
ric is the absolute value of the angle between independent
vectors); (ii) eiej � 0; (iii) aij � sij � 1; (iv) For large n;
1
n

Pn
j=1 ej(m) � 0:

4.2 Gradual buildup
Let agent 0 be the candidate, and let i be and �interviewer.�
For 1 � i � n :

si0(m+ 1) =
1

n

nX
j=1

sij(m)sj0(m):

In this expression, sij is the similarity between vectors
vi and vj : The uncertainty related to variable vj ; 1 �
j � n; vanishes for large n; but constant uncertainties
related to vi and v0 stick out. One can easily observe that
E[ei0(m+1)] � E[e0(m)]+E[ei(m)]: Here e(m) = E[e0(m)]
is local error, and E[ei(m)] comes from the previous layer.
So errors accumulate. A sequence of errors like this grows
faster than a Fibonacci sequence, i.e. it grows exponentially
fast in m: So, e�(m) = �(exp(m))
4.3 Instantaneous buildup
We compute expression which is similar to the one computed
above for gradual buildup, with the di¤erence that all the
data is local (current), hence there is no accumulation of
errors from previous layers. This implies that the error at
the output is �(m) = �(e(m)):



4.4 The Hindsight Thought Experiment
For a general description see the overview in 2.6. We pro-
ceed to compare the real instantaneous process indexed by
� ; to the imaginary gradual process going in the opposite
direction, and indexed by m: When the two processes point
to the same cluster, m + � = h; where h is the height of
the hierarchical clustering tree, i.e. the length of the search.
However, it is more convenient to use the same index m for
both (going in the imaginary direction).

Lemma 2. Going in the real direction (opposite to m);
uncertainty declines (at least) exponentially fast7 .

Proof. e�(m+1) = �(exp(m)); and �(m+1) = �(e(m)):e�(m+ 1) � �(m+ 1) implies e(m) = o(exp(m)):

Let �; � > 1; 
 be constants s.t. e(m) = e(1) � � � �m; and
�(m) = 
 � e(m): Suppose we measure result-uncertainty us-
ing entropy, and leaves are equiprobable. If a parent cluster
has n leaves, and its child cluster has m < n leaves, then
Hn = logn: If uncertainty declines by a factor � after
each layer then Hm

Hn
= ��1: It means that the logarithm of

number of leaves is divided by � > 1. This is an extremely
fast convergence. It may explain empirical evidence about
search convergence (it happens very fast or not at all).

4.5 Shannon's Theory
We know by now that e(m) = e(1) � � � �m; but we do not
know m: The height of the tree is h = m+� ; where � is the
(known) length of the path that the active user navigated so
far. If we could �nd h; we would know m: An estimation
of h could be gleaned by creating the whole tree and com-
puting an average distance from the leaves, but this seems
impractical. Alternatively we may be able to use Shannon�s
theory [19]. We view the query as a cryptogram, the search
engine as the cryptanalyst, and the user�s intention as the
cleartext. By �query� we mean extended query, which in-
cludes the initial query and the path that the active user
navigated so far. Shannon de�ned �unicity-distance�as the
amount of cryptogram needed until there is a unique solu-
tion. This is h:

5. USINGTHETOLERANCES INTHECLUS-
TERING ALGORITHM

The (real) algorithm involves only instantaneous clustering.
At each layer of the tree, each node is built in two stages:
local and transitive-averaging. For the current non-detailed
description, we will only specify the clustering tolerances for
each of them. Let �L(m) and �T (m) denote the local and
transitive tolerances, respectively, at layer m:

Local clustering tolerance: As in the previous section, we
use e(m) to denote the expected local uncertainty at level
m: We set �L(m) = e(m):

7Recall that the notation f(x) = �(g(x)) means that for
large enough x; the function f(x) is both upper and lower
bounded by g(x) times some constants.

Transitive clustering tolerance: We use the notations of
section 4.3. In order to get improved sieving compared to
the local phase we need to set �T (m) < 
 �e(m): How much
smaller, is an open problem (most likely to be determined
empirically).

At each layer, the hierarchical-clustering algorithm does lo-
cal then transitive clustering with the above tolerances. Upon
descending a tree from one layer to the next, it divides the
clustering tolerance by � > 1:

6. CONCLUSIONS
We presented a few theoretical insights into the art of web
Search. More work is needed to quantify key parameters
(�; �; 
 of section 4.4). Experimentation is needed to de-
termine the usefulness of this theory.
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