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Abstract. In this note we present the first attack with feasible com-
plexity on the 13-round AES-256. The attack runs in the related-subkey
scenario with four related keys, in 276 time, data, and memory.

1 Introduction

The year 2009 saw significant improvements in the cryptanalysis of Advanced En-
cryption Standard. The following results were presented: practical distinguisher
for AES-256 in the chosen-key model[3], boomerang attacks on the full-round
AES-192 and AES-256 [2], practical complexity attacks on AES-256 with up to
10 rounds [1].

In this paper we consider related-key boomerang attacks in the secret-key
model and exploit the related-key weaknesses in AES, that were extensively
described in previous works.

We advance to the following results. First, we provide the first attack on a
13-round AES-256 with complexity feasible in the real world. The best feasible
attack so far was given on a 10-round version and hypothesized on a 11-round
version. Our attack has 276 time and data complexity, which is also significantly
lower than 299.5 complexity of the attack on the full 14-round AES-256.

Attack Rounds # keys Data Time Memory Source

Partial sums 9 256 285 2226 232 [4]

Related-key differential 10 2 244 245 233 [1]

Related-key differential 11 2 270 270 233 [1]

Related-key boomerang 13 4 276 276 276 This paper

Related-key differential 14 235 2131 2131 265 [3]

Related-key boomerang 14 4 299.5 299.5 277 [2]

Table 1. Best attacks on AES-256 in the secret-key model.



2 Attack on AES-256

In this section we present a related key boomerang attack on AES-256.

2.1 The trail

The boomerang trail is depicted in Figure 2, and the actual values are listed in
Tables 3 and 2. It consists of two subtrails: the first one covers rounds 1–8, and
the second one covers rounds 8–13. The switching state is the state A8 (internal
state after the SubBytes in round 8) and a special key state KS , which is the
concatenation of the last four columns of K4 and the first four columns of K5.
Although there is an active S-box in the first round of the key schedule, we do
not impose conditions on it. As a result, the difference in column 0 of K0 is
partly unknown.

Related keys We define the relation between four keys as follows (see Figure 1
for the illustration). For a secret key KA, which the attacker tries to find, com-
pute its second subkey K1

A and apply the difference ∆K1 to get a subkey K1
B ,

from which the key KB is computed. The switch into the keys KC ,KD happens
between the 3rd and the 4th subkeys in order to minimize the number of ac-
tive S-boxes in the key-schedule using the Ladder switch idea described above.
We compute subkeys K3 and K4 for both KA and KB . We add the difference
∇K3 to K3

A and compute the upper half (four columns) of K3
C . Then we add

the difference ∇K4 to K4
A and compute the lower half (four columns) of K4

C .
From these eight consecutive columns we compute the full KC . The key KD is
computed from KB in the same way.
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Fig. 1. Computing KB , KC , and KD from KA.

Finally, we point out that difference between KC and KD can be computed
in the backward direction deterministically since we apply the Feistel trick. The



secret key KA, and the three keys KB , KC , KD computed from KA as described
above form a proper related key quartet. Moreover, due to a slow diffusion in
the backward direction, as a bonus we can compute some values in ∇Ki even
for i = 0, 1, 2, 3 (Table 2). Hence given the byte value kl

i,j for KA we can partly
compute KB , KC and KD.

Internal state The plaintext difference is specified in 7 bytes. We require that
all the active S-boxes in the internal state should output the difference 0x1f so
that the active S-boxes are passed with probability 2−6. The only exception is
the first round where the input differences in four of seven active bytes are not
specified.

Let us start a boomerang attack with a random pair of plaintexts that fit the
trail after two rounds. Active S-boxes in rounds 3–7 are passed with probability
2−6 each so the overall probability is 2−18.

We switch the internal state in round 8 with the Ladder switch technique:
the row 1 is switched before the application of S-boxes, and the other rows are
switched after the S-box layer. As a result, we do not pay for the active S-boxes
at all in this round.

The second part of the boomerang trail is quite simple. Three S-boxes in
rounds 10–13 contribute to the probability, which is thus equal to 2−18. Finally, a
right pair after the second round produces a boomerang quartet with probability
2−18−18−18−18 = 2−72.

2.2 The attack

Repeat the following steps four times.

1. Prepare a structure of 272 plaintexts each
c

c

c

c
c

c

c .
2. Encrypt it on keys KA and KB and keep the resulting sets SA and SB in

memory.
3. XOR ∆C to all the ciphertexts in SA and decrypt the resulting ciphertexts

with KC . Denote the new set of plaintexts by SC .
4. Repeat previous step for the set SB and the key KD. Denote the set of

plaintexts by SD.
5. Compose from SC and SD all the possible pairs of plaintexts which are equal

in 56 bits
c

c

c

c
c

c

c .
6. For every remaining pair check if the difference in p0,0 is equal on both sides

of the boomerang quartet (8-bit filter). Note that ∇k0
1,7 = 0 so ∆k0

0,0 should
be equal for both key pairs (KA,KB) and (KC ,KD).

7. For every remaining quartet try all 228 values for ∆B1 (214 for each related-
key pair):
– Compute both ∆A1. Check if ∆A1 is admissible for ∆P (one-bit condi-

tion for each of 16 positions).



– Given ∆A1 and ∆P , every plaintext row i proposes two candidates for
each of the two key bytes in both related-key pairs. Since the∇ difference
is equal in all the row bytes, this is an 8-bit equation on the key bytes.
Therefore, this is a 4-bit filter for each row, or a 16-bit filter in total. As
a result, we get a four-bit filter on the quartets and leave with the only
possible combination of ∆B1.

8. Each remaining quartet proposes an 8-byte key candidate for KA and, inde-
pendently, a 4-byte key candidate for KC .

Finally, choose the key candidate that is proposed by four quartets.
Each structure has all possible values in 9 bytes, and constant values in the

other bytes. Of 272 texts per structure we can compose 2144 ordered pairs. Of
these pairs 2144−8·9 = 272 pass the first round. Thus we expect one right quartet
per structure, or four right quartets in total.

Let us compute the number of candidate quartets. We can compose 2146

quartets from the initial structures, of which 280 quartets come out of step 6.
Then we apply a 4-bit filter so that there remains 276 candidates, each proposing
a 12-byte key candidate. It is highly likely that only the right quartets propose
the same candidate. We also point out, that each quartet propose two candi-
dates for k0

1,7, which defines ∆p0,0. The most time-consuming filtering part is
the processing of 280 candidate quartets, which is equivalent to about 274 AES
encryptions.

Therefore, we recover 71 key bits with 274 chosen plaintexts and ciphertexts,
and time equivalent to 276 encryptions. The remaining key bits can be found
using our partial knowledge of the key and using slightly different key relations.
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∆Ki

0

? 00 00 00 3e 3e 3e 3e
? 01 01 01 ? 1f 1f 1f
? 00 00 00 1f 1f 1f 1f
? 00 00 00 21 21 21 21

1

00 00 00 00 3e 00 3e 00
00 01 00 01 1f 00 1f 00
00 00 00 00 1f 00 1f 00
00 00 00 00 21 00 21 00

2

00 00 00 00 3e 3e 00 00
00 01 01 00 1f 1f 00 00
00 00 00 00 1f 1f 00 00
00 00 00 00 21 21 00 00

3

00 00 00 00 3e 00 00 00
00 01 00 00 1f 00 00 00
00 00 00 00 1f 00 00 00
00 00 00 00 21 00 00 00

4

01 01 01 01 ? ? ? ?
00 00 00 00 1f 1f 1f 1f
00 00 00 00 1f 1f 1f 1f
00 00 00 00 21 21 21 21

∇Ki

0

X X X X ? ? ? 00
Y Y Y Y 01 01 01 00
Z Z Z Z 01 01 01 00
T T T T 03 03 03 00

1

X ab X 00 ? ? 00 00
Y 00 Y 00 01 01 00 00
Z 00 Z 00 01 01 00 00
T 00 T 00 03 03 00 00

2

X X 00 00 ? 00 00 00
Y Y 00 00 01 00 00 00
Z Z 00 00 01 00 00 00
T T 00 00 03 00 00 00

3

X ab ab ab 02 02 02 02
Y 00 00 00 01 01 01 01
Z 00 00 00 01 01 01 01
T 00 00 00 03 03 03 03

4

ab 00 ab 00 02 00 02 00
00 00 00 00 01 00 01 00
00 00 00 00 01 00 01 00
00 00 00 00 03 00 03 00

5

ab ab 00 00 02 02 00 00
00 00 00 00 01 01 00 00
00 00 00 00 01 01 00 00
00 00 00 00 03 03 00 00

6

ab 00 00 00 02 00 00 00
00 00 00 00 01 00 00 00
00 00 00 00 01 00 00 00
00 00 00 00 03 00 00 00

7

ab ab ab ab ? ? ? ?
00 00 00 00 01 01 01 01
00 00 00 00 01 01 01 01
00 00 00 00 03 03 03 03

Table 2. Subkey difference in the 13-round trail.

∆P

? ? 3e ?
? 1f ? 1f

1f ? 1f ?
? 21 ? 21

∆A1

00 ? 00 ?
? 00 ? 00
00 ? 00 ?
? 00 ? 00

∆A2

00 00 00 00
00 1f 00 1f
00 00 00 00
00 00 00 00

∆A3

∆A5

∆A7

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆A4

00 00 00 00
00 1f 1f 00
00 00 00 00
00 00 00 00

∆A6

00 00 00 00
00 1f 00 00
00 00 00 00
00 00 00 00

∆A8

00 00 00 00
00 ? ? ?
00 00 00 00
00 00 00 00

∇A9

∇A11

∇A13

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A8

01 00 01 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A10

01 01 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∇A12

01 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

∆C

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Table 3. Internal state difference in the 13-round trail.
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Fig. 2. AES-256 E0 and E1 trails. Green ovals show an overlap between the two
trails where the switch happens.
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