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Abstract. This paper discusses a novel direction for multicore crypto-
graphic software, namely the use of multicore to protect a design against
side-channel attacks. We present a technique which is based on the princi-
ple of dual-rail pre-charge, but which can be completely implemented in
software. The resulting protected software is called a Virtual Secure Cir-
cuit (VSC). Similar to the dual-rail pre-charge technique, a VSC executes
as two complementary programs on two identical processor cores. Our
key contributions include (1) the analysis of the security properties of a
VSC, (2) the construction of a VSC AES prototype on a dual-PowerPC ar-
chitecture, (3) the demonstration of VSC’s protection effectiveness with
real side-channel attack experiments. The attack results showed that the
VSC protected AES needs 80 times more measurements than the unpro-
tected AES to find the first correct key byte. Even one million measure-
ments were not sufficient to fully break VSC protected AES, while un-
protected AES was broken using only 40000 measurements. We conclude
that VSC can provide a similar side-channel resistance as WDDL, the ded-
icated hardware equivalent of dual-rail pre-charge. However, in contrast
to WDDL, VSC is a software technique, and therefore it is flexible.

1 Introduction

Improving the performance and the security of cryptographic software has al-
ways been an important research topic, in particular because of the broad us-
age of software cryptography. In recent years, as the underlying computing
platform switches from single-core to multi-core processors, cryptographic en-
gineers face new challenges. While we see a lot of effort on parallel implemen-
tations of cryptography for better performance, we have not started to explore
the potential of multicore for better security. In this paper, we focus on the secu-
rity issues and present our work on protecting cryptographic software against
power-based Side-Channel Attacks (SCA) [1] on multi-core platforms.

Existing software SCA countermeasures are usually based on the principle
of randomization. These countermeasures either randomize the processed in-
termediate data [2, 3], or the execution delay [4, 5], or the execution path [6, 7].
The purpose of randomization is to make the power consumption statistically
independent of the intermediate processed values. A common threat to this
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randomization is the higher-order attack [8], which exploits the side-channel
leakage by jointly observing multiple intermediate values in the cryptographic
device [9]. A higher-order attack can be thwarted using higher-order random-
ization [10], but the complexity of such higher-order randomization techniques
increase exponentially with the order number [11].

Besides randomization, hiding is another popular SCA countermeasure. It
protects the cryptographic devices by reducing the signal-to-noise ratio of the
side-channel leakage. In hardware, hiding can be implemented using Dual-Rail
Pre-charge (DRP) circuits [12]. By implementing a true and a complementary
form for each logic function in the cryptography, DRP circuits exhibit constant
power-consumption, which thwarts SCA.

In contrast to randomization techniques, so far the DRP technique hasn’t
been used in software countermeasures. The reason is that it needs simultane-
ous execution of true and complementary logic functions, which cannot be real-
ized in single-core processors. However, as multi-core platforms are becoming
ubiquitous in PCs and embedded systems, implementing the DRP technique in
software becomes a viable solution. In this paper, we propose a design method
that can protect cryptographic software with the DRP technique. We will show
that our method creates the software equivalent of a DRP secure circuit, and
hence we call the protected software a Virtual Secure Circuit (VSC).

The key contributions of this paper are as follows. First, we perform se-
curity analysis on VSC and explain why a software-based DRP technique can
withstand side-channel power attacks. Second, we construct a VSC proteced
AES prototype on a dual-PowerPC computing platform. Third, we successfully
demonstrate VSC’s protection effectiveness by means of a set of real power
based side-channel attacks on the prototype. Attack results show that VSC of-
fers a considerable improvement on the security by increasing the Measure-
ments To Disclosure (MTD) at least 80 times. Even 1 million traces are not suf-
ficient for a successful full attack.

2 Dual-Rail Pre-charge (DRP) Technique

Power-based side-channel attacks obtain secret information from a cryptographic
device by observing data-dependent variations in the power dissipation. The
DRP technique aims to make the power dissipation constant so that no infor-
mation is leaked. This is achieved by combining two techniques: 1) dual-rail
(complementary) logic and 2) dynamic logic. The first of these makes the static
power dissipation of a constant. The combination of both also makes the dy-
namic power dissipation constant. So far, the DRP technique has only been used
in hardware, for example in SABL [12], in WDDL [13], and in MDPL [14].

Fig. 1 explains the operation of the DRP technique using a WDDL NAND
gate. In this example, we approximate static and dynamic power dissipation of
a logic gate through the Hamming Weight and Hamming Distance of its output
respectively. In the case of a single NAND gate (Fig. 1a), the static and dynamic
power dissipation depend on the input values of the gate. For example, if the
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Fig. 1. (a) A CMOS standard NAND has data-dependent power dissipation; (b) A
WDDL NAND gate has a data-independent power dissipation.

static power is 0, both inputs must be 1. This side-channel leakage is the basis
for SCA.

Fig. 1b shows the same test case on a WDDL NAND gate. In this case, the
circuit encodes each logic value with a complementary pair (Ap, Ap). Further-
more, each pair is pre-charged to (0,0) in each clock cycle before evaluation. As
a result, each clock cycle, every WDDL signal pair shows exactly one transition
from 0 to 1 and another one from 1 to 0. The resulting static and dynamic power
dissipation are now independent of the input values of the WDDL gate.

Despite the elegance of this concept, DRP circuits in hardware do have some
disadvantages. First, DRP circuits are at least two times larger than equivalent
standard CMOS circuits, and they have a much larger power dissipation. Sec-
ond, the constant-power argument, based on Hamming Weight or Hamming
Distance, does not hold when low-level electrical effects are taken into account.
Small asymmetries between the true and complementary paths of a signal pair
still may lead to residual side-channel leakage. Nevertheless, hardware DRP
circuits are able to increase the number of measurements for a successful SCA
to a prohibitive amount [15].

3 Virtual Secure Circuit (VSC)

In this section, we introduce the Virtual Secure Circuit (VSC), the software
equivalent of DRP circuits in hardware. We first clarify a few initial assump-
tions on the hardware. Next, we describe a multicore architecture that serves as
the target for VSC, and we present the design of a VSC by means of an exam-
ple. Finally, we show that a VSC is functionally equivalent to a DRP circuit in
hardware, with similar security properties.

3.1 Micro-Processor Assumptions and Side-channel Leakage

While a VSC is software, its ultimate objective is to reduce the side-channel
leakage originating from hardware, and more specifically from the microproces-
sors that execute the VSC. Because microprocessors exist in all shapes and sizes,
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we make the following assumptions regarding their implementation. First, we
assume that we can build the multi-core platform from small microprocessors
or micro-controllers, which have a well-defined instruction-execution pattern.
For example, we assume deterministic memory-access time (no cache), and we
assume there are no state-dependent processor features (no branch predictors).
Second, we assume that VSC can run as an atomic thread of control on the
multicore architecture. Thus, we assume that interrupts and exceptions can be
disabled for the duration of the complementary program execution. These two
assumptions ensure that it is feasible to maintain synchronization between the
cores. These assumptions do not mean that VSC will never be able to support
more complex architectures. In this paper, as the first step, we only focus on the
simple case. Even in its simplest form, we can still point out practical imple-
mentation scenarios for VSC. For example, tiled processors [16], an important
category of multicore processors, are usually built with small processing cores
and local memories. The local memories for 8 Synergistic Processing Elements
(SPE) in the Cell processor [17] are not cache either.

Given the above assumptions, we now analyze what parts of the micro-
processor are potential sources of side-channel leakage. For this purpose, we
analyze the flow of information within a microprocessor, as shown in Fig. 2a.
We can distinguish three different datapaths. The first datapath is the compu-
tational datapath. It starts from the register file, goes through the Arithmetic
Logic Unit (ALU), and returns to the register file. For memory-operations, there
are two additional datapaths. The memory-load datapath is used to transfer in-
formation from memory to the register file. The memory-store datapath is used
to transfer information from the register file to the memory.

Each of the above datapaths is a potential source of side-channel leakage.
For example, Fig. 2b shows the execution of an and operation, which configures
the computational datapath as an array of AND gates. Clearly, this operation
leads to data-dependent power dissipation which must be avoided. Therefore, if
we can protect each of these three datapaths, the microprocessor instructions that only
make use of these datapaths will also be secure. In the following section, we explain
how this is done in VSC.
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Fig. 3. A system architecture to implement a Virtual Secure Circuit.

3.2 Multi-core Architecture for VSC

Fig. 3 illustrates the system architecture used for a VSC. In a multi-core archi-
tecture, two structurally identical cores are selected. Both cores execute com-
plementary versions of the same program: core 1 executes Program, while core
2 executes Program. The rules for creating the instructions of Program and
Program follow the principles of the DRP technique. For each instruction in
Program, there is a complementary instruction in Program. A complementary
instruction pair maps complementary input data into complementary output
data. Section 5 will describe such instruction pairs in more detail.

During the execution of these complementary programs, both cores main-
tain cycle-accurate synchronization, which is achieved by means of a synchro-
nization interface. This ensures that both cores execute complementary instruc-
tion pairs in the same clock cycle. As a result of executing complementary
instructions, both cores also handle complementary data stored in their reg-
ister file as well as in their local memory. To extend the DRP technique into
storage, the register file and the local memory are both pre-charged whenever
new data is stored. In this way, any data-dependent power consumption in
core 1 is matched by a complementary data-dependent power consumption in
core 2, so that the overall power consumption of the multi-core system is data-
independent.

To implement the above concept, we need 1) to convert the ordinary soft-
ware into the complementary Program and Program, and 2) to design a dual-
core system where two cores can be synchronized with clock-cycle accuracy. In
this section, we only discuss the program conversion while including processor
synchronization to the Appendix.

3.3 Creating Program and Program

A case study is used to explain how the program conversion looks like. Fig. 4
shows the conversion of part of the AES encryption round. In Fig. 4a, the AES
AddRoundKey and SubByte operations are implemented with two lines of C
code (shown in bold typeface). The assembly code consists of a xor operation, a
memory load operation, and a memory store operation. After VSC conversion,
two complementary programs are shown in Fig. 4c. The conversion includes
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; r6 = in

; r7 = key

; r3 = sbox = 0xXX00

; r4 = &out

...

xor   r8, r7, r6 ; add key

lbzx  r3, r5, r8 ; sbox lookup

stb   r3, 0(r4) ; store out

...

; r6 = in, r7 = key,

; r0 = 0,  r11 = 0xff,

; r12 = 0xXX00, 

; (r12) = 0

; xor conversion

1. xor  r9,r0,r0  

2. xor  r9,r7,r11  

3. xor  r10,r0,r0  

4. xor  r10,r6,r11  

5. and  r11,r0,r0

6. and  r11,r9,r6

7. and  r9,r0,r0

8. and  r9,r10,r7

9. or   r8,r0,r0

10. or   r8,r9,r11

; lbzx conversion

11. lwzx r3,r12,r0

12. lbzx r3,r5,r8

13. lwzx r9,r12,r0

; stb conversion

14. stwx r9,r4,r0

15. stb  r3,0(r4)

16. stwx r9,r12,r0

17. lwzx r9,r12,r0

Program ProgramOriginal C program

Transform

Compile

; r6 = in, r7 = key,

; r0 = 0,  r11 = 0xff,

; r12 = 0xXX00, 

; (r12) = 0.

; xor conversion

1. xor  r9,r0,r0  

2. xor  r9,r7,r11  

3. xor  r10,r0,r0  

4. xor  r10,r6,r11  

5. or   r11,r0,r0

6. or   r11,r9,r6

7. or   r9,r0,r0

8. or   r9,r10,r7

9. and  r8,r0,r0

10. and  r8,r9,r11

; lbzx conversion

11. lwzx r3,r12,r0

12. lbzx r3,r5,r8

13. lwzx r9,r12,r0

; stb conversion

14. stwx r9,r4,r0

15. stb  r3,0(r4)

16. stwx r9,r12,r0

17. lwzx r9,r12,r0

unsigned char in, key;

unsigned char out;

unsigned temp;

unsigned char sbox[256] = {0x63, ...};

...

temp = in ^ key;

out = sbox[temp];

...

Original Assembly

(a)

(b) (c)

don’t care

Fig. 4. An example of Virtual Secure Circuit: (a) KeyAddition and SubByte operations
in C code; (b) Compiled assembly code; (c) Converted VSC assembly code.

two steps. The first step is to create complementary instruction pairs. The sec-
ond step is to integrate the pre-charge operations.

Step 1: Complementary instruction pairs are shown in bold typeface in
Fig. 4c. We first consider the conversion of the xor operation. Its complemen-
tary instruction, xnor, is unavailable on the PowerPC instruction set used here.
Therefore the original logic function r8 = r7 ⊕ r6 is expanded into r8 = r7 ·
r6 + r6 · r7 in Program and into r8 = (r7 + r6) · (r6 + r7) in Program. In
Fig. 4c, the converted code uses 5 steps to complete the new equations with the
help of 3 temporary registers r9, r10, and r11. The remaining xor operations,
on line 2 and line 4, are used to invert the lowest byte and do not violate the
complementary rule. Finally, since the memory-load (lbzx) and memory-store
(stb) instructions do not change their operands’ value, their complementary
instructions are themselves.

Step 2: The instructions in regular typeface in Fig. 4c are used for pre-charge.
They do not affect the computation results. Instead, they reset the execution
circuits and storage, between the computational instructions. Most instructions
in Fig. 4c (namely, those in the computational datapath) use a single pre-charge
instruction. Memory-load and Memory-store instructions may need more than
a single pre-charge instruction, depending on the presence of sensitive data in
the address or data of the memory-access operation. Section 5 will discuss these
in more detail.

VSC is not a free lunch. Converting ordinary programs to VSC increases the
software footprint and the execution time. The penalty of VSC will be shown in
Section 4.
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6. or   r11,r9,r6
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8. or   r9,r10,r7

9. and  r8,r0,r0

10. and  r8,r9,r11

; lbzx conversion

11. lwzx r3,r12,r0

12. lbzx r3,r5,r8

13. lwzx r9,r12,r0
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Fig. 5. Mapping from software dataflow to secure circuit: by instantiating the each pro-
cessor’s active datapath at different time, we obtain a DRP secure circuit.

3.4 A VSC Is Equivalent to A DRP Circuit

Finally, we demonstrate that a VSC is functionally equal to a DRP circuit. Fig. 5
shows the example of the previous section, together with an equivalent DRP
circuit. Each active (bold) instruction of Program or Program corresponds to a
single logic gate (or function) in the circuit. The numbers annotated within the
logic gates correspond to line numbers in the programs. In between each logic
gate, a register is inserted. The pre-charge operation will reset that register be-
fore loading it with sensitive data. Program and Program execute in lockstep,
and for each tuple of instructions, exactly two complementary gates of the cir-
cuit will evaluate. Hence, we conclude that a VSC is a sequentialized version
of a DRP. Therefore, the VSC may inherit the properties of a DRP. In the next
section, we describe a prototype implementation of AES as a VSC, followed by
real side-channel attacks.

4 VSC AES Prototype Resists SCA

In the previous section we introduced the concept of a VSC. In this section we
construct a VSC AES prototype and demonstrate that VSC works in reality.

4.1 VSC AES Prototype

We use SASEBO-G board as our multicore platform. The XC2VP30-5FG676C
FPGA on board contains two identical embedded hard PowerPC cores. Based
on that, we built a shared-memory dual-PowerPC processor. Other modules,
such as the buses, memories, synchronization unit (shown in the Appendix sec-
tion), and so on, are built with the FPGA resources. The design ran at 20MHz.
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AES under test uses a 128-bit key (16 key bytes from key[0] to key[15]). We
first implemented two version of AES: regular AES, and VSC AES, represented
by AES and VSC-AES respectively. The implementation of AES was based on
the standard AES algorithm description [19]. Based on that, we converted AES
to VSC-AES by using the DRP technique to protect the 3 datapaths in the Pow-
erPC processors. Some conversion technical details will be discussed in Section
5.

4.2 Side Channel Analysis Setup

We also built a SCA attack system, in which a computer was able to automati-
cally send random plaintexts to the FPGA, start the encryption, control the os-
cilloscope to sample current traces, and finally obtain the traces from the oscil-
loscope. The current flowing through the FPGA is measured as the side-channel
information. During each power attack, the AES key remained unchanged. The
KeyGeneration process only ran once. So our attack focused on the regular
encryption operations.

Correlation Power Attacks (CPA) [20] were mounted on the SubByte’s out-
put in the first AES round. Since the attackers could not figure out the exact
time when the sensitive data would appear before the analysis, the oscilloscope
sampled the current trace of the entire first round. Moreover, to save the space
of waveform and shorten the analysis time, the oscilloscope worked in the ‘av-
erage’ mode. Every current trace the computer obtained was the average of
32 normal traces (with the same plaintext). Hamming weight of the sensitive
data is used as the power model. Because of the pre-charge process, this power
model is the best for VSC-AES. Hamming distance may work better for AES, but
this requires the attackers to get access of the software, which cannot always be
fullfiled. Therefore, Hamming weight is also chosen for AES. The improvement
of VSC-AES over AES obtained based on this power model is a conservative
one.

4.3 Results

Fig. 6 shows an example of the attack results on one of AES’s key bytes (key[3]).
With only 256 measurements, we were able to find the first correctly attacked
key byte of AES. When the number of measurements increased to 40960, all the
16 key bytes were revealed.

Fig. 7 shows an example of the attack results on VSC-AES’s key[3]. In con-
trast to AES, even with 40960 measurements, none of the 16 key bytes were
revealed. Only after the measurements number increased to 81920, the first
uncovered key byte appeared. After increasing the measurements number to
1024000, only 6 key bytes were attackable. In addition, we also used the Ham-
ming weight of each bit of SubByte’s output as the power model. It turned out
that this power model worked better in our experiments. With the bit-based
power model, attacks were able to find the first revealed key byte with around
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Fig. 6. Attack result on unprotected AES: (a) Correlation between the sampled current
and the power estimations with 10240 measurements; (b) Correlation between the sam-
ple current and the power estimations at the point where the attacked key is identified.
Correct key’s trace is plotted in black, while all other key’s traces are in gray. The emerged black
trace means successful attack.
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Fig. 7. Attack result on protected VSC-AES: (a) Correlation between the sampled current
and the power estimations with 10240 measurements; (b) Correlation between the sam-
ple current and the power estimations at the point where the attacked key is identified.
Correct key’s trace is plotted in black, while all other key’s traces are in gray. The buried black
trace means unsuccessful attack.

20480 measurements. Further, even with 1024000 measurements, 3 key bytes
were still unattackable.

It is clear that, compared with AES, VSC-AES has obvious reduction of side-
channel leakage. We use the number of measurements to disclosure (MTD) to
quantify the resistance against power attacks. Disclosure here means that at
least one key byte is broken. Based on the byte-based Hamming weight model,
VSC-AES’s improvement on MTD over AES is 320 times. Based on the bit-based
Hamming weight model, VSC-AES’s improvement is 80 times. If we consider a
successful power attack as discovering all key bytes, then attacks with over 1M
measurements were not able to succeed.
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Table 1. Attack results summary.

Parameter AES VSC-AES VSC-AES
nocomp

VSC-AES
noprch

VSC-AES
nosyncbyte-based bit-based

exec. time (µs) 357 1630 − − −
footprint (kB) 1.9 5.9*2=11.8 − − −
MTD1 256 81920 20480 256 1204 1280
key bytes NOT found

@ 102402 6 16 16 0 7 2
@ 409602 0 16 14 0 6 1

@ 10240002 0 10 3 0 0 0
1 To find the first uncovered key byte.
2 Number of measurements.

To further verify the correctness of VSC, we mounted attacks on variants of
VSC-AES: 1) only the true path of VSC-AES without the complementary path
(VSC-AES nocomp), 2) VSC-AES with the true path 1 clock cycle ahead of the
complementary path (VSC-AES nosync), and 3) VSC-AES without pre-charge
operations (VSC-AES noprch). All these designs could be broken much more
easily than VSC-AES as shown in Table 1.

Table 1 summarizes the results of the above attacks. VSC-AES pays 4.57
times of execution time and 6.21 times of footprint for a much higher capa-
bility of resisting power attacks. Also, complementary operations, pre-charge,
and synchronization are demonstrated to be three indispensable conditions for
protection.

In summary, though the experiments, VSC showed its effectiveness on pro-
tecting AES software. The side-channel resistance of VSC-AES is comparable
to the resistance offered by the WDDL prototype IC chip [15]. Compared with
the unprotected designs, their improvements in terms of MTD are both around
100. With 1 million measurements, both can prevent a full discovery of the en-
tire AES key.

5 Implementation Details on VSC-AES

This section lists some detailed design issues of VSC-AES to share our experi-
ences on the VSC programming techniques.

We first define two terms: ‘sensitive data’ and ‘related data’. Sensitive data is
the intermediate data of the software that is generated with the cryptographic
key, both directly and indirectly. Related data is the intermediate data that is not
sensitive but will affect some sensitive data. Obviously, sensitive data is what we
have to protect. Since related data will affect the sensitive data, during the VSC
conversion, we also have to convert them into complementary format.

AES uses three kinds of instructions to process sensitive data: 1) the logic
instructions, such as xor, and, or, and not; 2) the shift instructions; 3) the
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logic instruction shift instruction
and r1,r2,r3 slwi r1,r2,imm (imm<=16)

Program Program Program Program

li r0,0

and r1,r0,r0

and r1,r2,r3

li r0,0

or r1,r0,r0

or r1,r2,r3

li r9,0

slwi r11,r9,imm

slwi r11,r2,imm

li r10,0

xor r1,r9,r9

xor r1,r11,r10

li r9,0

slwi r1,r9,imm

slwi r1,r2,imm

li r10,2imm-1

xor r1,r9,r9

xor r1,r11,r10

data instructions
stb r1,imm(r2) lbzx r1,r2,r3 (access SBox)

Program Program Program Program

; (r12) = 0

; r0 = 0

li r9,0

stw r9,imm(r2)

stb r1,imm(r2)

stwx r9,r12,r0

lwzx r9,r12,r0

; (r12) = 0

; r0 = 0

li r9,0

stw r9,imm(r2)

stb r1,imm(r2)

stwx r9,r12,r0

lwzx r9,r12,r0

; (r12) = 0

; r12 = 0xXX00

; r2 = 0xXX00

; r0 = 0

li r9,0

lwzx r1,r12,r0

lbzx r1,r2,r3

lwzx r9,r12,r0

; (r12) = 0

; r12 = 0xXX00

; r2 = 0xXX00

; r0 = 0

li r9,0

lwzx r1,r12,r0

lbzx r1,r2,r3

lwzx r9,r12,r0

Fig. 8. Representative conversion examples.

data instructions, such as move, load and store; Different categories operate
differently in the processor. Accordingly, different conversion rules are needed.

Logic Instructions. Logic instructions are easy to complement. For example,
and and or are complementary. not complements itself. If a logic instruction
has no complement in the instruction set (such as xor), we can decompose it
into simpler logic operations and complement those. The rules for pre-charge
are easy as well, and simply evaluate all-0 inputs for the pre-charged instruc-
tions. Figure 8 shows an example.

Shift Instructions. Shift operations are usually implemented with several shift
levels of combinational multiplex logic. They are basically data movement op-
erations. So the complementary instruction are themselves. The same as logic
instructions, shift instructions are also implemented in ALU. So the pre-charge
method is the same as logic instructions. Besides that, special attention should
be paid to the related data generated by shift operations. A shift or rotate instruc-
tion may shift the non-sensitive bits into dataflow, for example inserting 0 to the
vacant bits. If these vacant bits are used to calculate the sensitive data, they be-
come related data. Therefore, these bits need to be 1 in Program. After the shift
instruction, we need to invert the shifted-in related data in Program while keep
them as they were in Program. Fig. 8 shows a representative example.

Data Instructions. Data instructions do not change the value of the data, so
Program and Program share the same data instruction. The pre-charge oper-
ations are more complex since they deal with the memory. This brings up the
problem of how to apply the DRP rules to the memory buses.
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There are two scenarios. First, only the data bus carries sensitive data. Sec-
ond, a special case happens when the processor tries to read an element from
the SBox in the SubByte step. During this process, not only the data buses carry
the sensitive SubByte result, the address buses are also sensitive since it is re-
lated to the AddRoundKey’s result. While the first case can easily be handled,
special efforts are needed for the second case. To make sure the data buses carry
complementary data, in Program, complementary SBox elements should be
stored in the complementary addresses. We define the SBox in the ordinary pro-
gram, Program and Program as SBox, SBoxc and SBoxc respectively. Their
relationship should be : SBox(i) = SBoxc(i) = bitnot(SBoxc(bitnot(i))). More-
over, the address buses should also be complementary. A possible problem is
as follows. Suppose the SBoxc and SBoxc’s base addresses are both 0x0001.
When Program loads SBoxc(0), Program loads SBoxc(255). The actual value
on the address bus is the sum of the base address and the element’s index,
namely the offset address. In the above case, the values on the address buses
are 0x0001 and 0x0100, which is obviously not complementary. Our solution is
to align both SBoxc and SBoxc to the 28-byte boudary (SBox’s base address is
0xXX00. XX means ‘do not care’ and can be different for SBoxc and SBoxc). In
this case, the values on the address buses of two cores are 0xXX00 and 0xXXFF.
The sensitive part of the address buses are complementary.

We reserve a word which stores 0 in the memory. The 0 value is used to
pre-charge the data buses. When the address buses contain sensitive data, the
address of the reserved word should also be aligned to the 28-byte boudary
(e.g. r12=0xXX00 in Fig. 4). When accessing this reserved address, the lowest
byte of the address bus is pre-charged to all 0. With the above preparation, the
pre-charge operations reset the memory bus and the storage in the way shown
in Fig. 8. Finally, if the value in the source register or memory is not used later,
we reset it to 0.

With the above techniques, we were able to convert the full AES software
into VSC protected AES.

6 Discussion

Based on the experimental results, we see that VSC supplies a good protec-
tion against the Side-Channel Power Attacks. Other attacks, such as Electro-
Magnetic (EM) Attacks and Timing Attacks, are out of the scope of this paper.
Due to the separate execution of the direct and complementary versions of the
application on different cores, it is possible that the current VSC is still vulnera-
ble in front of the EM attacks. However, on the one hand, we do not expect one
single countermeasure to resist all possible attacks. On the other hand, VSC
does not prevent the use of the randomization countermeasures which could
act against the EM attacks. According to the performance of the MDPL circuit,
we expect higher security level after combining these two countermeasure tech-
niques.
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Due to the special requirement on perfect synchronization between two
cores, we expect that the embedded multicore system can work in two modes:
‘normal mode’ and ‘secure mode’, which borrows the idea from the ARM Trust-
Zone [21]. In the ‘secure mode’ for VSC, cache, interrupts, and exceptions are
all disabled. The related work is one of our research topics in the future.

7 Previous Works

A previous similar work, called MUTE-AES, was presented in 2008 [22]. Both
VSC and MUTE-AES follow the idea of running the direct and complementary
copies of a cryptographic algorithm on two identical cores to generate data-
independent power. Despite their similarity, there are significant differences
between our work and the previous work.

– VSC and MUTE-AES are at different level of abstraction. VSC deals with
the processor instructions, while MUTE-AES is based on modifying AES
algorithm. As a result, VSC is a general protection solution, like WDDL,
while MUTE-AES only applies to AES algorithm.

– Unlike VSC, MUTE-AES does not strictly follow the principles of the DRP
technique. There is no pre-charge operations in MUTE-AES. Based on our
experimental results in Table 1, without pre-charge (VSC-AES noprch), the
crypto-system can still be easily attacked.

– We not only show VSC’s improvement qualitatively but also quantify the
improvement with real Side Channel Attacks. For MUTE-AES, the exper-
iment was based on simulation and the improvement was not quantified.
Hence, there is no way to see how much better security that MUTE-AES can
supply.

– The method to perfectly synchronize two cores for MUTE-AES is to rec-
ognize the program pattern of the AES software’s assembly codes. This
method is potentially false positive, not to mention it is specific to a sin-
gle program. In contrast, as shown in the Appendix, VSC’s synchroniza-
tion method is simpler and more generic and is not false-positive nor true-
negative.

8 Conclusion

We have proposed VSC as a solution to protect software on multicore with the
DRP technique. Analysis showed that a VSC was equivalent to a DRP circuit. It
inherited the security features from the DRP circuits. To demonstrate this, a VSC
protected software full AES was implemented on a dual-PowerPC processor.
Experiments showed that the VSC protected AES software had a comparable
security performance as the WDDL based AES IC prototype. In conclusion, we
expect VSC an effective SCA countermeasure for software cryptography.
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Fig. 9. The synchronization scheme with an example.

Appendix: Processor Synchronization

The purpose of processor synchronization is to ensure that the complementary
instructions are executed at the same clock cycle. This requires that not only
the instructions but also the processor pipelines are synchronized. For paral-
lel programming, we already have a synchronization method barrier that
guarantees that any thread/process stops at this point and cannot proceed un-
til all other threads/processes reach this barrier. However, barrier does not
ensure the instructions right after it on different cores start at the same clock
cycle. Another synchronization scheme at a lower level is needed. We call it
pipeline sync.

Before presenting our solution, we first introduce a bus protocol used by
many processors. The peripheral bus usually has a ack signal which starts from
a memory peripheral to the processor. During every load operation, the pro-
cessor first uses the address bus and some control signals to send out a memory
access request. After that, the selected peripheral uses the ack signal to notify
the processor that the required data is ready on the data bus. If the selected pe-
ripheral is not able to offer the requested data right away, the ack signal will be
kept invalid for a while until the data is ready. When waiting for the ack signal
to be valid, the processor is in a fixed state (wait ack).

Our solution makes use of the above memory access protocol, shown in
Fig. 9. A Synchronization Unit (SU) is attached to both cores’ peripheral buses.
Whenever one core initiates a load operation on the SU, the ack signal on its
peripheral bus will be kept invalid. This means that every time a core tries to
read data from SU, it enters the wait ack state. When both cores are in the
wait ack state (several clock cycles after both of them initiate load opera-
tions on SU), ack signals become valid at the same time. So both cores jump
out the wait ack state at the same clock cycle and go on to process the fol-
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lowing instructions. Moreover, if the ack signal is kept invalid for too long the
processing cores consider this as an error and an exception will be launched. To
avoid this, we first use a parallel programming’s barrier to reduce the timing
difference of the two cores before doing the pipeline sync. This guarantees
no exception occurs. By now, two cores have been totally synchronized. We re-
peat the above process every time before running the protected cryptographic
software. In this way, the required synchronization is achieved.

The above synchronization scheme does not require any modification on
the processors. The SU is also very simple, so the cost is low. We tested it on
PowerPC and MicroBlaze processors. Both worked correctly.


