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Abstract. In this paper we will study 2 security results “above the
birthday bound” related to secret key cryptographic problems.
1. The classical problem of the security of 4, 5, 6 rounds balanced Ran-
dom Feistel Schemes.
2. The problem of the security of unbalanced Feistel Schemes with con-
tracting functions from 2n bits to n bits. This problem was studied by
Naor and Reingold [14] and by [32] with a proof of security up to the
birthday bound.
These two problems are included here in the same paper since their anal-
ysis is closely related, as we will see. In problem 1 we will obtain security
result very near the information bound (in O( 2n

n
)) with improved proofs

and stronger explicit security bounds than previously known. In problem
2 we will cross the birthday bound of Naor and Reingold. For some of
our proofs we will use [2] submitted to Crypto 2010.

Key words: Luby-Rackoff constructions, Balanced random Feistel schemes, Un-
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1 Introduction

A balanced “random Feistel scheme”, also called a “Luby-Rackoff construction”
or “generic balanced Feistel scheme” is a balanced Feistel scheme where all the
internal round functions are random. We will denote by ψd the balanced ran-
dom Feistel scheme with d rounds. From d random functions on n bits, ψd

generates a random permutation on 2n bits. In their famous paper [8], M. Luby
and C.Rackoff proved in 1988 the CPA-2 security (Adaptive Chosen Plaintext
Attacks) of ψ3 and the CPCA-2 security (Adaptive Chosen Plaintext and Cho-
sen Cipher text Attacks) of ψ4 when the number of queries q satisfies q �

√
2n.

Instead of using truly random internal functions, it is also possible to use pseu-
dorandom functions. As pointed out in [8] the security is then obtained by a
triangular argument: the security will be good with pseudorandom functions if
the security is good with random functions and if the pseudorandomness of the
functions is good. Luby-Rackoff constructions, and more generally Luby-Rackoff



style analysis has inspired a considerable amount of research. One direction of re-
search was to improve the security bound q �

√
2n in these schemes, or in other

generic cryptographic constructions. This will be also the thema of this paper.
This bound q �

√
2n is called the birthday bound because since we use random

functions on n bits, we can avoid collisions on the outputs of these functions as
long as q �

√
2n. Another bound, called the information bound is of interest.

It is the bound on the number of queries such that an adversary with infinite
computer power would be able to find all the secret functions used. With secret
functions on n bits, the information bound is q � 2n. There is at present very
little hope to obtain proofs of security in the number of computations instead
of in the number of queries beyond the information bound since this will give
a proof of P 6= NP (or a slightly weaker version) the most famous problem in
theoretical computer science. However the number of computations to be per-
formed by an attacker is always at least the number of queries that he needs.
Moreover in some schemes it is possible do deal with the multiple collisions and
to obtain proofs of security beyond the birthday bound and smaller or equal
to the information bound. It was proved by Patarin [17], and independently by
Aiello and Verkatesan [1], that for ψ3 and ψ4 the birthday bound q � 2n is
the best possible bound. However, when the number of rounds increases, and in
other cryptographic constructions better security bounds can be proved. These
proofs “beyond the birthday bound” are generally not easy. Four very different
strategies have been used to obtain these proofs of security. We quickly present
here some of the papers based on these strategies.
Strategy 1
Aiello and Verkatesan ([1],[24]) have obtained a proof of security in q � 2n (the
information bound) for the Benes schemes, a non invertible analog of the Feistel
schemes. The main idea of the proof relies on the analysis of “circles” of equal-
ities. This is clever but unfortunately it seems to be relatively easy to use this
strategy only for some specific schemes such as Benes schemes.
Strategy 2
Maurer and Prietrzak [12] increased the number d of rounds in ψd in order to
prove a security that tends to the information bound when d tends to infinity.
Similarly Lucks [9] has proved that the Xor of d independent pseudorandom per-
mutations is indistinguishable from a random function on n bits with security

q � 2
d
d+1n. This bound tends to the information bound q � 2n when d tends to

infinity. From a practical point of view d = about 10 for Lucks and d = about
100 for Maurer and Prietrzak will give security bounds very near the information
bound.
Strategy 3
Bellare and Impagliazzo [3] have proved that for the problem of Lucks, even for
d = 2, the security is already in q � 2n, the information bound. Their proof
strategy is based on some probability theory theorems such as Azuma inequality
and Chernoff bounds. Unfortunately they did not present all the parts of their
proof in detail, and some o functions are introduced that are not given explicitly.
Strategy 4



Patarin [17, 22, 23] kept the number of rounds d relatively small, and near the
minimum for security above the birthday bound: d = 5, 6, or 7. He has succes-
sively imposed for these schemes the proved security bound. The last results [22,
23] gave the CPCA-2 security for ψ5 when q � 2n, i.e. the information bound for
the minimum number of rounds (5). Patarin strategy is based on transforming
the cryptographic security problem in the analysis of the number of solutions of
systems of linear equalities and linear non equalities. However, its last papers
on ψd schemes are often considered difficult to read, and they introduce some
O functions that are not given explicitly. More precisely, he has published an
explicit bound for q � 2

2
3n, q � 2

3
4n, for q � 2

4
5n and he has explained how to

get one in q � 2
k−1
k n for all integer k. Now since the coefficients in these bounds

do not grow faster than exponentially in k, he could claim q � 2n, but it was
difficult to obtain a precise general bound without O functions.

In this paper, we will also follow Patarin general strategy. However, we have
found some improvements in the proofs, some simplifications, and we will be able
to obtain explicit security bounds, with no non specified O functions. We will also
apply these techniques to random unbalanced Feistel schemes with contracting
functions (that we will denote Gdk). Since it is a bit long to speak of “the analysis
of the number of solutions of linear equalities and linear non equalities in finite
groups”, this theory has been called in [2] by a nickname: “mirror theory”. The
term “mirror” refers to the multiple induction properties that we have in this
theory, sometimes these inductions are obvious, sometimes they are not. We will
explain why we believe that this almost impossible to avoid Mirror Theory in
the analysis of random Feistel schemes or similar schemes near the information
bounds when the number of rounds is fixed. In some of his papers, Patarin calls
“coefficient H technique” his technique to transform a cryptographic security
problem in a Mirror theory problem. However, when this transformation is done,
we have to evaluate the Mirror theory problem.

Unbalanced Feistel Schemes
Let Gdk be the unbalanced Feistel scheme that use random functions from kn
bits to n bits in order to obtain a pseudorandom permutation from (k+ 1)n bits
to (k + 1)n bits. (For example: ψd = Gd1). Here since we use random functions

from kn bits to n bits, the birthday bound is q �
√

2kn, and the information
bound is q � 2kn. It is not easy to evaluate the security of Gdk schemes, k ≥ 2,
even beyond the birthday bound. It is however a very interesting problem from
a practical point of view since, as pointed out by Naor and Reingold [14] it
would allow to design secure permutations with relatively small length. In [14]
a very beautiful idea was used to prove the birthday bound security of schemes
similar to Gdk: they have introduced 2-wise independent permutations. 2-wise
permutations are very simple, such as y = ax + b, a and b secret in a finite
field. In [14], they proved CPA-2 security up to the birthday bound for Gdk ◦ g
where g is a secret 2-wise permutation when d ≥ k + 1, and CPCA-1 security
up to the birthday bound for h−1 ◦Gdk ◦ g where g and h are two secret 2-wise
permutations when d ≥ k + 1. Thanks to this clever idea to introduce these
simple 2-wise permutations, the proof of security became magically simple, but



is however limited to the birthday bound. Recently Yun,Park and Lee [32] have
proved the birthday bound tor Gdk schemes when d ≥ 2k+ 1 in CPA-2 and when
d ≥ 3k + 1 for CPCA-2. At the end of this paper we will improve these bounds
and obtain proof of security for Gdk schemes above the birthday bound. For G6

2

for example, the birthday bound is in q � 2n while we will prove in this paper
security for q � 21.5n. Here the information bound is q � 22n.

2 Balanced Feistel Schemes

Definition of Ψk

We recall the definition of the balanced Feistel Schemes, i.e. the classical Feistel
schemes. Let n be an integer. In = {0, 1}n. Let Fn be the set of all applications
from In to In. Let Bn be the set of all permutations from In to In. Let f1 be a
function of Fn. Let L, R, S and T be four n-bit strings in In. Let Ψ(f1) denotes
the permutation of B2n such that:

Ψ(f1)[L,R] = [S, T ] def⇔
{
S = R
T = L⊕ f1(R)

More generally if f1, f2, . . . , fk are k are functions of Fn, let Ψk(f1, . . . , fk) de-
notes the permutation of B2n such that:

Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦ Ψ(f2) ◦ Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called a ‘balanced Feistel scheme with k
rounds’ or shortly Ψk. When f1, . . . , fk are randomly and independently cho-
sen in Fn, then Ψk(f1, . . . , fk) is called a ‘random Feistel scheme with k rounds’
or a ‘Luby-Rackoff construction with k rounds’.

Notations for 4 rounds

• We will denote by [Li, Ri], 1 ≤ i ≤ q, the q cleartexts. These cleartexts can
be assumed to be pairwise distinct, i.e. i 6= j ⇒ Li 6= Lj or Ri 6= Rj .
• [Ri, Xi] is the output after one round, i.e.

∀i, 1 ≤ i ≤ q,Xi = Li ⊕ f1(Ri).

• [Xi, Yi] is the output after two rounds, i.e.

∀i, 1 ≤ i ≤ q, Yi = Ri ⊕ f2(Xi) = Ri ⊕ f2(Li ⊕ f1(Ri)).

• [Yi, Si] is the output after three rounds, i.e.

∀i, 1 ≤ i ≤ q, Si = Xi ⊕ f3(Yi) = Li ⊕ f1(Ri)⊕ f3(Yi).

• [Si, Ti] is the output after 4 rounds, i.e.

∀i, 1 ≤ i ≤ q, Ti = Yi ⊕ f4(Si).



When we will study Ψ5 we will keep a central Ψ4 but add one more round at
the beginning. When we will study Ψ6 we will keep a central Ψ4 but add one
more round at the beginning, and one more round at the end. Our aim is to
present proofs of security in KPA (Known Plaintext Attacks) for Ψ4, in CPA-2
for Ψ5, and in CPCA-2 for Ψ6 when the number of queries satisfies q � 2n

n , with

a simple explicit bound for q (not just the undefined q � 2n

n ). It is possible to

improve the coefficient 2n

n and to have q � 2n instead of q � 2n

n , and it is also

possible to prove CPCA-2 for Ψ5 instead of Ψ6 when q � 2n

n but we will not
consider these refinements here, we will concentrate on getting simple explicit
bounds.
Hints about these refinements:
• q � 2n√

n
instead of q � 2n

n can be obtained by noticing that the value of α of

the Theorem Pi ⊕ Pj of [2] is α = O( q
2

2n ).

• q � 2n instead of q � 2n

n can be obtained by noticing that most of the
frameworks F with ξmax ≥ n also have many very small blocks with 2 or 3
variables for example. However in this paper we look for bounds in q � 2n

n .

• CPCA-2 security for Ψ5 instead of Ψ6 can be proved for q � 2n

n by using
Theorem 14 of Appendix A. and by distinguishing direct and inverse queries.
However in this paper we will analyze CPCA-1 security for Ψ6 and not Ψ5.
Definition of H for Ψk

When [Li, Ri], [Si, Ti], 1 ≤ i ≤ q, is a given sequence of 2q values of I2n, we
will denote by Hk(L,R, S, T ) or in short by Hk, or simply by H, the number of
k-tuples of functions (f1, . . . fk) of F kn such that:

∀i, 1 ≤ i ≤ q, Ψk(f1, . . . , fp)[Li, Ri] = [Si, Ti].

We will analyze the properties of these H values in order to obtain our security
results.
Frameworks for Ψk

Definition.
For 4 rounds, Ψ4, let us define a “framework” as a set of equations Xi = Xj or
Yi = Yj . We will say that two frameworks are equal if they imply exactly the
same set of equalities in X and Y .
Definition
Let F be a framework. We will denote by Weight (F) the number of variables
(Xi, Yi), 1 ≤ i ≤ q, Xi ∈ In, Yi ∈ In, that satisfy F , i.e. such that the equalities
Xi = Xj or Yi = Yi are exactly those in F .

Theorem 1 If we denote by x the number of independent equalities Xi = Xj

of a framework F and by y the number of independent equalities of F , we have:
Weight (F) = Jq−x · Jq−y where Ji denotes Ji = 2n(2n − 1) . . . (2n − i+ 1).

Proof. We have fixed x valuesXi from the other values, and all the other variables
Xj must be pairwise distinct. Therefore for (X1, X2, . . . , Xq) we have exactly
Jq−x possibilities. Similarly for (Y1, Y2, . . . , Yq) we have exactly Jq−y possibilities.
An exact formula for H and Ψ4 with “frameworks”



Let [Li, Ri], [Si, Ti], 1 ≤ i ≤ q be a given sequence of 2q values of I2n. Let r be
the number of independent equalities Ri = Rj , i 6= j, and let s be the number
of independent equalities Si = Sj , i 6= j. As above, let x be the number of
independent equalities Xi = Xj for a framework F , and by y be the number of
independent equalities Yi = Yj in F .

Theorem 2 The exact formula for H4 (i.e. for Ψ4) is:

H4 =
|Fn|4 · 2n(r+s)

24nq

∑
all frameworks F

2n(x+y)[ Number of Xi satisfying (C1)]

·[ Number of Yi satisfying (C2)]

where

(C1) :

Ri = Rj ⇒ Xi ⊕Xj = Li ⊕ Lj
Yi = Yj is in F ⇒ Xi ⊕Xj = Si ⊕ Sj
The only equations Xi = Xj , i < j, are exactly those implied by F .

(C2) :

Si = Sj ⇒ Yi ⊕ Yj = Ti ⊕ Tj
Xi = Xj is in F ⇒ Yi ⊕ Yj = Ri ⊕Rj
The only equations Yi = Yj , i < j, are exactly those implied by F .

Proof. Let (D) be these conditions:
1. ∀i, 1 ≤ i ≤ q, Ri = Si.
2. ∀i, j, 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ri = Rj ⇒ Ti ⊕ Li = Tj ⊕ Lj
For one round Feistel, Ψ1, it is easy to see that if (D) is not satisfied then H1 = 0,

and if (D) is satisfied, then H1 = |Fn|·2nr
2nq . This is an exact formula for H1. By

composing two Ψ1 we get like this an exact formula for H2, then H3 and finally
(by looking for all possible intermediate variables Xi, Yi) for H4 the formula of
Theorem 2. We do not give all the details here because this proof is not difficult,
and also because Theorem 2 is not new: it was already mentioned in [22].

3 KPA security for Ψ4

Our results on Ψ4 for proving KPA security will be based on this Theorem.

Theorem 3 For random values [Li, Ri], [Si, Ti], 1 ≤ i ≤ q such that [Li, Ri],
1 ≤ i ≤ q are pairwise distinct, with probability ≥ 1− β we have:
1. The number H of (f1, f2, f3, f4) ∈ F 4

n such that Ψ4(f1, f2, f3, f4)[Li, Ri] =

[Si, Ti] satisfies H ≥ |F
4
n|

2nq (1− α)

2. α and β can be chosen � 1 when q � 2n

n . (Moreover we will obtain explicit

values for α and β: α = 2q
2n , β = 2q

2n when q ≤ 2n

67 ).



To prove Theorem 3, we will evaluate H from the formula given by Theorem 2,
i.e. with the sum on all frameworks F . When a framework F is fixed, 5 cases
can occur:
Case 1. A contradiction appears by linearity in the equations generated by
(C1). In this case we will say that we have a “circle” of equalities in R, YF that
generates a “circle” of equalities in X by (C1).
Case 2. A contradiction appears by linearity in the equations generated by
(C2). In this case we will say that we have a “circle” of equalities in S,XF that
generates a “circle” of equations in Y by (C2).
Case 3. No contradiction occurs by linearity but ξXq is not � 2n

n , where ξX
denotes the maximum number of Xj variables fixed in the equations (C1) when
one variable Xi is fixed. In this case we will say that we have a big “line” of
equalities R, YF that generates a big “line” of equalities in X by (C1).
Case 4. No contradiction occurs by linearity but ξY q is not � 2n

n , where ξY
denotes the maximum number of Yj variables fixed in the equations (C1) when
one variable Yi is fixed. In this case we will say that we have a big “line” of
equalities S,XF that generates a big “line” of equalities in Y by (C2).
Case 5. No contradiction occurs by linearity and ξXq � 2n

n and ξY q � 2n

n .
In order to prove Theorem 3 we will first prove that Cases 1, 2, 3, 4 appear with
a negligible probability when the values [Li, Ri], [Si, Ti] are randomly chosen,
and when F is randomly chosen with a distribution of probability proportional
to Weight(F). That is what is done in Appendix B

Theorem 4 If q ≤ 2n

67n , then for every KPA with q (random) known plaintexts

we have: AdvPRF ≤ 4q
2n where Adv denotes the advantage to distinguish Ψ4 from

a random function f ∈R F2n, and AdvPRP ≤ 4q
2n + q2

2·22n where AdvPRP denotes
the advantage to distinguish Ψ4 from a random permutation f ∈R B2n.

Proof. This comes immediately from Theorem 10 of Appendix A, Theorem 3
and the classical pseudorandom function/ pseudorandom permutation switching
lemma (i.e. First property in the proof of Lemma 3).

4 CPA-2 security for Ψ5

Theorem 5 If q ≤ 2n

67n , then for every CPA-2 with q adaptive chosen plaintexts,

we have: AdvPRF ≤ 5q
2n and AdvPRR ≤ 5q

2n + q2

2·22n . Where AvdPRF denotes the
advantage to distinguish Ψ5 from f ∈R F2n, and AdvPRP denotes the advantage
to distinguish Ψ5 from f ∈R B2n.

Proof. See appendix C.

5 CPCA-2 security for Ψ6

Of course, from our CPA-2 security for Ψ5 by using [12] we obtain a CPCA-2
proof of security for Ψ10, with a precise bound for Ψ10 since we have a pre-
cise bound for Ψ5. I.e. the composition of two CPA-1 schemes (and therefore



of two CPA-2 schemes also) with independent keys gives a CPCA-2 scheme:
AdvCPCA−2F◦G−1 ≤ AdvCPA−1F + AdvCPA−1G . It is also possible to write Ψ6 = Ψ1 ◦
Ψ4 ◦ Ψ1, and to proceed with the [Si, Ti] values of Ψ6 exactly as we did in the
previous sections with the [Li, Ri] values of Ψ5. Then for Ψ6 we obtain:

Theorem 6 For all pairwise distinct [Li, Ri], 1 ≤ i ≤ q and for all pairwise
distinct [Si, Ti], 1 ≤ i ≤ q the number H of (f1, f2, f3, f4, f5, f6) ∈ F 6

n such that
∀i, 1 ≤ i ≤ q,

Ψ6(f1, f2, f3, f4, f5, f6)[Li, Ri] = [Si, Ti]

satisfies H ≥ |Fn|6
22nq (1 − α) where α can be chosen � 1 when q � 2n

n . More

precisely, we can choose α = 8q
2n if q ≤ 2n

67n .

Proof. We write Ψ6 = Ψ1 ◦ Ψ4 ◦ Ψ1. We use these notation:
Cleartexts: [Li, Ri], 1 ≤ i ≤ q
1 round: [Ri, X

′
i] with X ′i = Li ⊕ f1(Ri)

2 rounds: [X ′i, Xi]
3 rounds: [Xi, Yi]
4 rounds: [Yi, Y

′
i ] with Y ′i = Ti ⊕ f6(Si)

5 rounds: [Y ′i , Si]
6 rounds: [Si, Ti]
The analysis of the circle and lines in Y ′, XF ca now be done exactly as we did the
analysis of the circles end lines in X ′, YF for Ψ5 (symmetry of the hypothesis).
Therefore, if q ≤ 2n

64 , for all pairwise distinct values [Li, Ri], 1 ≤ i ≤ q and for
all pairwise distinct values [Si, Ti], 1 ≤ i ≤ q:∑
f1∈Fn

∑
f6∈Fn

∑
all frameworks F of Case 5

Weight(F) ≥ |Fn|2 · 22qn(1− 8q

2n
) (1)

(same proof as for Lemma 12). Thus, if q ≤ 2n

67n , we can use the theorem Pi⊕Pj
with ξmax ≤ n i.e. Theorem 6 of [2], and (1) gives Theorem 6 with α = 8q

2n .

Theorem 7 If q ≤ 2n

128n , then for every CPCA-2 with q adaptive chosen plain-

texts or chosen ciphertexts, we have: AdvPRP ≤ 8q
2n + q2

2·22n where AdvPRP denote
the advantage to distinguish Ψ6 from f ∈R B2n.

Proof. This comes immediately from Theorem 14 (or the variant given) of Ap-
pendix A, and Theorem 6.

6 Unbalanced Feistel schemes with Contracting Functions

The balanced Feistel schemes Ψk that we have seen were permutation from 2n
bits to 2n bits generated by k functions from n bits to n bits. They were obtained
by composition of the scheme Ψ1 such that

Ψ(f1)[L,R] = [S, T ] def⇔
{
S = R
T = L⊕ f1(R)



Similarly, let consider the scheme G1
3 defined by

∀[I1, I2, I3] ∈ I3n, ∀[S1, S2, S3] ∈ I3n,

G1
3(f1)[I1, I2, I3] = [S1, S2, S3] def⇔

S1 = I2

S2 = I3

S3 = I1 ⊕ f1([I2, I3])

where f1 is a function from 2n bits to n bits. And let Gd3(f1, . . . , fd) = G1
3(fd) ◦

. . . ◦G1
3(f2) ◦G1

3(f1). Gd3 schemes are permutations from 3n bits to 3n bits gen-
erated from d functions from 2n bits to n bits. More general Gdk schemes can be
defined, with any k integer, k ≥ 2, as permutation from kn bits to kn bits gen-
erated from functions from (k− 1)n bits to n bits, and many different design of
unbalanced Feistel schemes exist. In this paper, however, we will only study Gd3
schemes as unbalanced Feistel schemes. Similar security results above the birth-
day bound can be obtained on more general unbalanced Feistel schemes, but we
will not study these generalizations. We know from [28] that CPA-1 attacks on
G5

3 exist with complexity about 2n. On these Gd3 schemes, since we use internal
functions from 2n bits to n bits, the birthday bound is 2n, and the information
bound is 22n. Recently, Yun, Park and Lee [32] have proved the CPA-2 security
of Gdk schemes when d ≥ 2k+ 1 and the CPCA-2 security when d ≥ 3k+ 1 up to
the birthday bound. For k = 3, this means CPA-2 security when q � 2n for G7

3

and CPCA-2 security when q � 2n for G10
3 . Noar and Reingold, as explained in

the introduction of this paper, have also obtained the birthday bound security
on small transformations of the Gdk schemes. Our aim in the paper is to obtain

a proof of security for q � 2
3n
2 , i.e. beyond the birthday bound, but not yet the

information bound. We know that in CPA-1 we will need at least 6 rounds. In
fact G6

3 will play a central role in our proof on Gdk securities, in a similar way
as Ψ4 has played a central role in our proof on Ψd securities, and we will first
study the KPA security of G6

3. Our first step is to obtain an exact value for H
for Gd3. We will obtain first such formulas for G1

3, then G2
3 etc... until G6

3. Due to
the lack of space, we present here only the formulas for G1

3 and G6
3 (it is however

not difficult to find them). We denote by Fn,2 the set of all applications from
I2n to In. Therefore |Fn,2| = 2n.2

n

.
1 Round

Theorem 8 Let H1 be the number of f1 ∈ Fn,2 such that

∀i, 1 ≤ i ≤ q, [S1
i , S

2
i , S

3
i ] = G1

3[I1i , I
2
i , I

3
i ]

i.e. such that [S1
i , S

2
i , S

3
i ] = [I2i , I

3
i , I

1
i ⊕ f1([I2i , I

3
i ])]

Let (D) be these conditions:

(D) :

{
∀i, 1 ≤ i ≤ q, (I2i = S1

i ) and (I3i = S2
i )

∀i, 1 ≤ i ≤ q, ∀j, 1 ≤ j ≤ q, [I2i , I
3
i ] = [I2j , I

3
j ]⇒ S3

i = S3
j

If (D) is not satisfied, then H1 = 0. If (D) is satisfied, then H1 =
|Fn,2|
2nq · 2

nr

where r is the number of independent equalities [I2i , I
3
i ] = [I2j , I

3
j ], i 6= j.



6 rounds
We will denote by X1, . . . , Xq, Y1, . . . , Yq, Z1, . . . , Zq the intermediate variables
that appear when we compute G6

3 from 6 compositions of G1
3.

0 round: [I1, I2, I3].
1 round: [I2, I3, X].
2 rounds: [I3, X, Y ].
3 rounds: [X,Y, Z].
4 rounds: [Y,Z, S1].
5 rounds: [Z, S1, S2].
6 rounds: [S1, S2, S3].
The inputs (i.e. the cleartext) for message i will be denoted [I1i , I

2
i , I

3
i ], and sim-

ilarly the output (i.e. the ciphertext) [S1
i , S

2
i , S

3
i ] and after 3 rounds [Xi, Yi, Zi].

A framework F , for G6
3, is a set of equalities of these types:

[I3i , Xi] = [I3j , Xj ], i 6= j, or [Xi, Yi] = [Xj , Yj ], i 6= j, or [Yi, Zi] = [Yj , Zj ], i 6= j,

or [Zi, S
1
i ] = [Zj , S

1
j ], i 6= j.

The number of such independent equalities in F will be denoted by f . We denote
by X the sequence (X1, . . . , Xq), by Y the sequence (Y1, . . . , Yq) and by Z the
sequence (Z1, . . . , Zq). With these notations we have:

Theorem 9 Let H6 be the number of (f1, . . . , f6) ∈ F 6
n,2 such that

∀i, 1 ≤ i ≤ q, [S1
i , S

2
i , S

3
i ] = G6

3[I1i , I
2
i , I

3
i ]

ThenH6 =
|Fn,2| · 2n(r+s)

26nq

∑
all frameworks F

2nf [ Number of X,Y, Z satisfying (C)]

• where r denotes the number of independent equations [I2i , I
3
i ] = [I2j , I

3
j ], i 6= j.

• s denotes the number of independent equations [S1
i , S

2
i ] = [S1

j , S
2
j ], i 6= j.

• f denotes, as seen above, the number of equalities in F .
and (C) denotes these relations: ∀i, 1 ≤ i ≤ q, ∀j, 1 ≤ j ≤ q, i 6= j:

(C) :



[I2i , I
3
i ] = [I2j , I

3
j ] ⇒ Xi ⊕Xj = I1i ⊕ I1j

[I3i , Xi] = [I3j , Xj ] ⇒ Yi ⊕ Yj = I2i ⊕ I2j
[Xi, Yi] = [Xj , Yj ] ⇒ Zi ⊕ Zj = I3i ⊕ I3j
[Yi, Zi] = [Yj , Zj ] ⇒ S1

i ⊕ S1
j = Xi ⊕Xj

[Zi, S
1
i ] = [Zj , S

1
j ] ⇒ S2

i ⊕ S2
j = Yi ⊕ Yj

[S1
i , S

2
i ] = [S1

j , S
2
j ]⇒ S3

i ⊕ S3
j = Zi ⊕ Zj

Proof. As explained above, Theorem 9, despite its length, can easily be proved
from Theorem 8.

7 Proof of security for G6
3, G

7
3 and G8

3

We present here only the main ideas, since the proofs are very similar to what
we have done for Ψ4, Ψ5, Ψ6. We start from the exact value H for G6

3 given in
Theorem 9, i.e. with the sum on all frameworks F . When a framework is fixed,



3 cases can occur:
Case 1. A contradiction appears by linearity in the equations generated by (C).
In this case we have in (C) a circle of the equations in X, or a circle in Y , or a
circle in Z. If we have a circle in X, it comes from a circle in [I2, I3], and [Y, Z]F .
If we have a circle in Y , it comes from a circle in [I3, X]F , and [Z, S1]F . If we
have a circle in Z, it comes from a circle in [X,Y ]F , and [S1, S2].
Case 2. No contradiction occurs by linearity but ξX > n, or ξY > n, or ξZ > n,
where ξX is the maximum number of Xj variables fixed in (C) when one Xi

variable is fixed (similar definition for ξY and ξX = Z).
Case 3. No contradiction occurs by linearity and ξX ≤ n, ξY ≤ n and ξZ ≤ n.
For a framework F , we define:Weight(F) = Number of sequences [X,Y, Z] that
satisfy exactly the equalities of F . (This means that the only equalities [I3i , Xi] =
[I3j , Xj ] are exactly those in F , and similarly for [Xi, Yi], [Yi, Zi] and [Zi, S

1
i ]

collisions). Therefore,
∑

all frameworks F Weight(F) = 23nq. We will prove
that if F is randomly chosen (i.e. with a distribution probability proportional
to Weight(F)), then Case 3 is dominant when α2 � 23n, in KPA for G6

3, in
CPA-2 for G7

3 and in CPCA-2 for G8
3 (1). In order to prove (1), we analyze the

probability of circles and lines of length ≥ n in a similar way as we did for Ψd.
More precisely, we will use this lemma (which is the analog of Lemma 6 for Ψd

schemes):

Lemma 1 For all sequences of pairwise distinct [I1i , I
2
i , I

3
i ], 1 ≤ i ≤ q, the

number N of (f1, i, j) such that X ′i = X ′j , i 6= j, satisfies N ≤ |Fn,2| · q(q−1)2n

where X ′i = I1i ⊕ f1([I2i , I
3
i ]) and X ′j = I1j ⊕ f1([I2j , I

3
j ])

Proof of lemma 1. The proof is analog to the proof of Lemma 7: X ′i = X ′j implies

[I2i , I
3
i ] 6= [I2j , I

3
j ] and then we have at most

|Fn,2|
2n functions f1 solutions when i, j

are fixed. We see that the analysis for G6
3 (in KPA), G7

3 (in CPA-2) and G8
3 (in

CPCA-2) can be done in a very similar way as we did for Ψ4, Ψ5, Ψ6, and we

will obtain proofs of security when q � 21.5n

n (more precisely when q ≤ 21.5n

67n ),

since we will then have H ≥ |Fn,2|d
23nq (1 − ε) with ε small in KPA for d = 6, in

CPA-2 for d = 7, and in CPCA-2 for d = 8.
Remark. A natural problem is to try to achieve security for α � 22n in-
stead of α � 21.5n. This is not easy since now we need to prove that H ≥

|Fn,2|d
23n(23n−1)...(23n−q+1) (1− ε) instead of H ≥ |Fn,2|

d

23nq (1− ε) with small ε.

8 Conclusion

In this paper we have proved the security “beyond the birthday bound” for
Ψ4, Ψ5, Ψ6 (respectively in KPA, CPA-2, CPCA-2) when q � 2n

n and for G6
3,

G7
3, G8

3 (respectively in KPA, CPA-2, CPCA-2) when q � 23n/2

n , where q is
the number of queries, with explicit and relatively simple security bounds. The
general proof strategy used follows the general proof strategy of [23], but we
have found some improvements, simplifications, and extensions. For example



the interactions between the “frameworks of equalities” and the values called H
has been significantly simplified. This proof strategy, i.e. essentially to derive the
cryptographic security from “mirror theory” might look esoteric but we really
believe that it is in fact rather natural. This is because if the values called H
were, with a non negligible probability, significantly very different from their
average value H0, then some attacks could be created, i.e. this condition is
not only a sufficient condition for security, but also a necessary condition for
security. Moreover, Theorem 2 for Ψd, or Theorem 9 for Gd3 show that the values
H have an exact formulation (not just an evaluation, but an exact formulation)
in term of systems of linear equalities and non equalities. In fact what may
be surprising is why the analysis of these systems (“mirror theory”) was not
done by mathematicians before (since, as far as we know it was not done).
From a cryptographic point of view, in a way, after Theorem 2 (section 2) and
Theorem 9 (section 6), the problems become purely mathematical, and are not
cryptographic anymore. In fact, many proof strategy to obtain security “beyond
the birthday bound” try to avoid this “mirror theory” by various clever ways
(for example by increasing the number of rounds). What we show in this paper
is that we can deal with these systems of equalities and non equalities in order to
obtain good security bounds with a small number of rounds. We also believe that
these proof strategies will be used in the future on many other cryptographic
problems.
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A The “Coefficient H technique”

We present here the general theorems on KPA, CPA-2 and CPCA-2 that are
often used when we want to prove security of generic schemes from the number
H of secret keys that send some cleartexts on some ciphertexts. These Theorems
were proved in 1991 and named by J.Patarin the “coefficient H theorems”. The
general idea is not surprising: when H is very near the average value H0 for H
except for some “bad” and “rare” events, then we will get the wanted security.
The proofs are done by considering the set of all the transcripts of a distinguisher
D that gives the output 1 and by showing that the probability that D gives 1
will be larger or very near when D deals a generic construction compared to the
cases when D deals with a random permutation. Then by symmetry a similar
result is obtained when D gives the output 0. We do not give here more details
about the proofs since they are standard proofs now, used and proved again by
various authors, and since details about their proofs can be found for example
in [27]. Notice that we do not need H ' H0 except on rare events, by that
[(H ≥ H0) or (H ' H0)] except on rare events is enough.

Notation for this sections

– N is an integer. IN is {0, 1}N .
– FN is the set of all functions from IN to IN .
– BN is the set of all permutations from IN to IN .
– t and n are two integers.
– Ft,n is the set of all functions from t bits to n bits.
– K is a set of k-uples of functions of Ft,n. The elements of K will be called

“keys”.
– PRF means “Pseudorandom Functions”.
– PRP means “Pseudorandom Permutations”.



– G is an application of K → FN . Therefore G is a way to design a function
from FN from k-uples (f1, . . . fk) of functions of Ft,n of K.

– Let q be an integer (q will be the number of queries). Let (ai)1≤i≤q be a
sequence of pairwise distinct elements of IN . Let (bi)1≤i≤q be a sequence of
elements of IN . By definition, we will denote by H(a, b) or simply by H if
the context of the ai and biis clear, the number of (f1, . . . fk) ∈ K such that
∀i, 1 ≤ i ≤ q, G(f1, . . . , fk)(ai) = bi. Therefore H is the number of “keys”
(i.e. elements of K) that send all the ai inputs to the exact values bi.

Theorem 10 (KPA,PRF)
Let α and β be real numbers, α > 0 and β > 0.
If
(1) For random values ai, bi, 1 ≤ i ≤ q of IN such that the ai are pairwise

distinct , with probability ≥ 1− β, we have: H ≥ |K|
2Nq

(1− α).
Then
(2) For every KPA with q (random) known plaintexts we have: AdvPRF ≤
α + β where AdvPRF denotes the advantage to distinguish G(f1, . . . , fk) when
(f1, . . . , fk) ∈R K from a function f ∈R FN .
(By “advantage”, we mean as usual, for a distinguisher the absolute value of the
difference of the two probabilities to output 1).

Remark. We did not ask here for the bi values to be distinct.

Theorem 11 (KPA,PRP)
Let α and β be real numbers, α > 0 and β > 0.
If
(1) For random values ai, bi, 1 ≤ i ≤ q of IN such that the ai are pairwise
distinct and the bi are pairwise distinct, with probability ≥ 1 − β, we have:

H ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α).

Then
(2) For every KPA with q (random) known plaintexts we have: AdvPRP ≤
α + β where AdvPRP denotes the advantage to distinguish G(f1, . . . , fk) when
(f1, . . . , fk) ∈R K from a permutation f ∈R BN .

Remark. We have 2Nq(1− q(q−1)
2·2N ) ≤ 2N (2N−1) . . . (2N−q+1) ≤ 2Nq, therefore

if q �
√

2N we can use Theorem 10 or Theorem 11 and we will get similar
security results (i.e. we can “switch” between random permutations and random

functions as long as q �
√

2N ).

Theorem 12 (CPA-2,PRF)
Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of IN such
that |E| ≥ (1− β)2Nq.
If
(1) For all sequences ai, 1 ≤ i ≤ q of pairwise distinct elements of IN and for

all sequences bi, 1 ≤ i ≤ q of E we have H ≥ |K|
2Nq

(1− α).



Then
(2) For every CPA-2 with q chosen plaintexts we have: AdvPRF ≤ α+ β where
AdvPRF denotes the advantage to distinguish G(f1, . . . , fk) when (f1, . . . , fk) ∈R
K from a function f ∈R FN .

Theorem 13 (CPA-2,PRP)
Let α and β be real numbers, α > 0 and β > 0. Let E be a subset of IN such
that |E| ≥ (1− β)2N (2N − 1) . . . (2N − q + 1)
If
(1) For all sequences ai, 1 ≤ i ≤ q of pairwise distinct elements of IN and for

all sequences bi, 1 ≤ i ≤ q of E we have H ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α).

Then
(2) For every CPA-2 with q chosen plaintexts we have: AdvPRP ≤ α+ β where
AdvPRP denotes the advantage to distinguish G(f1, . . . , fk) when (f1, . . . , fk) ∈R
K from a permutation f ∈R BN .

Theorem 14 (CPCA-2,PRP)
Let α be a real number, α > 0.
If
(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for all
sequences of pairwise distinct elements bi, 1 ≤ i ≤ q, we have:

H ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α). Then

(2) For every CPCA-2 with q chosen plaintexts we have: AdvPRP ≤ α where
AdvPRP denotes the advantage to distinguish G(f1, . . . , fk) when (f1, . . . , fk) ∈R
K from a permutation f ∈R BN .

Variant of Theorem 14
We have 2Nq(1− q(q−1)

2·2N ) ≤ 2N (2N−1) . . . (2N−q+1) ≤ 2Nq. Therefore a variant

of Theorem 14 is to have H ≥ |K|
2Nq

(1 − α) in (1), and AdvPRP ≤ α + q(q−1)
2·2N in

(2). When q �
√

2N this variant is sufficient.

Theorem 15 (CPCA-2,PRP with more general conditions)
Let α and β be real numbers, α > 0 and β > 0. Let P be the set of all sequences
(ai, bi), 1 ≤ i ≤ q such that all the ai are pairwise distinct and all the bi are
pairwise distinct. (Therefore |P | = (2N (2N − 1) . . . (2N − q + 1))2).
If
(1) There exists a subset E of P such that

(1a) For all (a, b) ∈ E, we have H ≥ |K|
2N (2N−1)...(2N−q+1)

(1− α).

(1b) For all CPCA-2 acting on a random permutation f of BN , the probability
that (a, b) ∈ E is ≥ 1− β where (a, b) denotes here the successive bi = f(ai) or
ai = f−1(bi), 1 ≤ i ≤ q that will appear.
Then



(2) For every CPCA-2 with q chosen plaintexts we have: AdvPRP ≤ α+β where
AdvPRP denotes the advantage to distinguish G(f1, . . . , fk) when (f1, . . . , fk) ∈R
K from a permutation f ∈R BN .

Variant of Theorem 15
As above, a variant of theorem 15 is to have H ≥ |K|

2Nq
(1 − α) in (1), and

AdvPRP ≤ α+ β + q(q−1)
2·2N in (2). When q �

√
2N this variant is sufficient.

B Proof of KPA security for Ψ4

Circles in R, YF
Definition
We will say that we have a ‘circle in R, YF ’ if there are k indices i1, . . . , ik with
k ≥ 3 and such that:
1. i1, i2, . . . , ik−1 are pairwise distinct and ik = i1.
2. ∀λ, 1 ≤ λ ≤ k − 2 we have at least one of these conditions: Riλ = Riλ+1

or
Yiλ = Yiλ+1

is one of the equalities of F .
Example. If R1 = R2 and Y1 = Y2 is one of the equalities of F , we have a circle
in R, YF .
Clearly, if we have a circle in R, YF , from it we can generate a “minimum circle”
in R, YF , i.e. keeping only one equation Ri1 = Ril per line of equations Ri1 =
Ri2 = Ri3 = . . . = Ril , and keeping only one equation Yi1 = Yil per line of
equations Yi1 = Yi2 = Yi3 = . . . = Yil . Therefore, we have a circle in R, YF if
and only if there is an even integer µ and there are µ pairwise distinct indices
i1, . . . , iµ with (Ri1 = Ri2), (Yi2 = Yi3 is in F), (Ri3 = Ri4) . . . (Yiµ = Yi1 is in
F). µ will be called the length of the circle.

Lemma 2 When the values [Li, Ri] are randomly chosen, pairwise distinct, and
when the framework F is randomly chosen, with a distribution of probability
proportional to Weight(F), then the probability to have a circle in R, YF is

≤ q2

22n(1− q2

2·22n
)
.

Proof of Lemma 2 When we will say that F is “randomly chosen” it will always
mean with a distribution of probability proportional to Weight(F)
First Property.

First, we can notice that with probability ≥ 1 − q2

2·22n we can assume that the
[Li, Ri] values, for 1 ≤ i ≤ q, are random, without considering the fact that they
are pairwise distinct, since the probability to distinguish these two distributions

is ≤ q2

2·22n . (This is the Functions/Permutations switching lemma on permuta-
tions on 2n bits.).
Circle of length 2
To have a circle of length 2, we must find two indices i and j, i < j such that

(Ri = Rj) and (Yi = Yj is in F). For (i, j), i < j, we have q(q−1)
2 possibilities.

Now when i and j are fixed, the probability to have Ri = Rj is 1
2n if the Ri



values are random, and the probability to have Yi = Yj is 1
2n since F is ran-

domly chosen (i.e. generated with a distribution proportional to Weight(F)).

Therefore the probability to have (Ri = Rj) and (Yi = Yj is in F is ≤ q(q−1)
2·2n if

the Ri values are randomly chosen.
Circles of length µ, µ even
To have a circle of length µ, we must find µ pairwise distinct indices i1, i2, . . . , iµ
such that (Ri1 = Ril), (Yi1 = Yi2 is in F), (Ri3 = Ri4) . . . (Yiµ = Yi1 is in F).
If the Ri values are randomly chosen, and if F ,is randomly chosen (i.e. with

Weight(F) distribution), then this probability is ≤ qµ

µ!2µn . Therefore, by using
the First property above, we see that the probability to have a circle in R, YF is

≤ q2

2·22n +
∑+∞
i=1

q2i

(2i)!22in ≤
q2

22n(1− q2

2·22n
)

as claimed.

Lines in R, YF
Definition
We will say that we have a “line in R, YF” of length θ if there are θ+ 1 pairwise
distinct indices i1, i2, . . . , iθ+1 such that ∀λ, 1 ≤ λ ≤ θ, we have at least one of
these two conditions: Riλ = Riλ+1

or (Yiλ = Yiλ+1
is one of the equalities of F).

Example. If R1 = R2, R2 = R3, (Y3 = Y4 is in F), and R4 = R5, then we have
a line of length 4 in R, YF .

Lemma 3 ∀θ ∈ N, when the values [Li, Ri] are randomly chosen, pairwise dis-
tinct, and when the framework F is randomly chosen (i.e. with a distribution
proportional to Weight(F)), then the probability to have a line of length ≥ θ in

R, YF is ≤ qθ+1·2θ
2nθ

+ q2

2·22n .

Proof of Lemma 3 The proof is easy, we proceed as we did for the circles. The
term qθ+1 comes from the possibilities for the θ + 1 indices i1, i2, . . . , iθ+1, the
term 2θ comes from the fact that from iλ to iλ+1 we can have 2 possibilities: one

equation in R, or one equation in Y , 1 ≤ λ ≤ θ, and the term q2

2·22n comes from
the property seen in the proof of Lemma 2.

Lemma 4 When the values [Li, Ri] are randomly chosen, pairwise distinct, the
values [Si, Ti] are randomly chosen, and F is randomly chosen (i.e. with a dis-
tribution of probability in Weight(F)), then the probability p to have a circle in
R, YF , or to have a circle in S,XF , or to have a line in R, YF of length ≥ θ, or
to have a line in S,XF f length ≥ θ satisfies:

p ≤ 3q2

22n(1− q2

2·22n )
+

2qθ+1 · 2θ

2nθ

Moreover, if θ ≥ n and 8 ≤ q ≤ 2n

8 , we have p ≤ 4q2

22n and 2qθ+1·2θ
2nθ

≤ 2q
22n .

(Therefore we can assume that we have no line of length ≥ n if q � 2n).

Proof of Lemma 4 The probability to have a circle in R, YF is ≤ q2

22n(1− q2

2·22n
)
. (cf

Lemma 2). Similarly, the probability to have a circle in S,XF is ≤ q2

22n(1− q2

2·22n
)
.

(symmetry of the hypothesis). The probability to have a line in R, YF of length



≥ θ is ≤ qθ+1·2θ
2nθ

+ q2

2·22n (cf Lemma 3). Similarly for a line in S,XF of length

≥ θ. Therefore p ≤ 3q2

22n(1− q2

2·22n
)

+ 2qθ+1·2θ
2nθ

as claimed. Moreover, if θ ≥ n and

q ≤ 2n

8 , we have 2qθ+1·2θ
2nθ

≤ 2q · ( 2q
2n )θ ≤ 2q( 1

4 )θ ≤ 2q
22n . Then p ≤ 3q2

22n(1− 1
128 )

+ 2q
22n

and this is ≤ 4q2

22n if q ≥ 8 as claimed.

From now on, we assume 8 ≤ q ≤ 2n

8 . We take θ = n, and we will say that a
framework F is in “Case 5” if F has no circle in R, YF , no circle in S,XF , no
line of length ≥ n in R, YF and no line of length ≥ n in S,XF . Then,

Lemma 5 When the values [Li, Ri] are randomly chosen, pairwise distinct, and
the values [Si, Ti] are randomly chosen, then the probability p that

[
∑

all frameworks F of Case 5

Weight(F) ≤ (22nq)(1− 2q

2n
)]

satisfy p ≤ 2q
2n .

Proof of Lemma 5. This comes immediately from Lemma 4 and∑
all frameworks F

Weight(F) = Number of all sequences (Xi, Yi), 1 ≤ i ≤ q

= 22nq

We are now (at last) ready to prove Theorem 3, with explicit values for α et β.
Proof of Theorem 3. Let F be a framework of Case 5.We will use this Theorem
of [2].

Theorem 16 (“Theorem Pi ⊕ Pj” for any ξmax)
let (A) be a set of a equation Pi ⊕ Pj = λk with α variables such that:
1. We have no circle in P in the equations (A).
2. We have no more than ξmax indices in the same block.
3. By linearity from (A) we cannot generate an equation Pi = Pj with i 6=
j. (This means that if i and j are in the same block, then the expression in
λ1, λ2, . . . , λa for Pi ⊕ Pj is 6= 0.
Then: if ξmaxα � 2n, we have Hα ≥ Jα. More precisely the fuzzy condtion
ξmaxα� 2n can be written with the explicit bound: (ξmax − 1)α ≤ 2n

67 .

Then, from this Theorem 16 of [2], if (67q)n ≤ 2n, since ξX ≤ n, we have

at least
Jq−x

2n(r+y) solutions (X1, . . . , Xq) that satisfy (C1), and at least
Jq−y

2n(s+x)

solutions (Y1, . . . , Yq) that satisfy (C2). Since Weight(F) = Jq−x · Jq−y we see
that the number of (X1, . . . , Xq), (Y1, . . . , Yq) solutions of (C1) and (C2) is ≥
Weight(F)

2n(r+s)·2n(x+y) . Therefore, from Lemma 4 and Theorem 2 we obtain: if 8 ≤ q ≤
2n

128n , then when the [Li, Ri] are randomly chosen pairwise distinct, and when

the [Si, Ti] are randomly chosen, we have with a probability ≥ 1− 2q
2n that

H ≥ |Fn|
4

24nq

∑
all frameworks F of Case 5

Weight(F)



H ≥ |Fn|
4

22nq
(1− 2q

2n
)

Therefore we have proved Theorem 3 with α = 2q
2n , β = 2q

2n and 8 ≤ q ≤ 2n

67n .
Example. Let F be this framework of equalities: (Y2 = Y3) and (X2 = X4 =
X5). Let assume R1 = R2. Then for (C1) we have (cf Theorem 2):{

X1 ⊕X2 = L1 ⊕ L2

X2 ⊕X3 = S2 ⊕ S3

And for (C2) we have {
Y2 ⊕ Y4 = R2 ⊕R4

Y2 ⊕ Y5 = R2 ⊕R5

We have here≥ Jq−2

22n solutions forX1, . . . , Xq and≥ Jq−1

22n solutions for Y1, . . . , Yq,
and here r = 1, s = 0, x = 2, y = 1.

C Proof of CPA-2 security for Ψ5

Our results on Ψ5 for proving CPA-2 security will be based on this Theorem:

Theorem 17 There are some values α > 0 and β > 0 and there is a subset
E ⊂ Iq2n such that:
1. |E| ≥ (1− β)22nq

2. For all sequences [Li, Ri], 1 ≤ i ≤ q of pairwise distinct element of I2n

and for all sequences [Si, Ti], 1 ≤ i ≤ q, of E we have: H ≥ |Fn|5
22nq (1 − α)

where H denotes the number of (f1, f2, f3, f4, f5) ∈ F 5
n such that ∀i, 1 ≤ i ≤

q, Ψ5(f1, f2, f3, f4, f5)[Li, Ri] = [Si, Ti].
3. α and β can be chosen � 1 when q � 2n

n . (Moreover we will obtain explicit

values for α and β: α = 4q
2n , β = q

2n when q ≤ 2n

67n).

Remark. It is equivalent to speak of such a subset E, or to say that when
[Si, Ti], 1 ≤ i ≤ q are randomly chosen, the probability to have 2. is ≥ 1− β.
To prove Theorem 17, we will still use the formula given for H4 (i.e. for Ψ4) by
Theorem 2, but we will perform one more round at the beginning. More precisely,
we write Ψ5 = Ψ4 ◦ Ψ1.
The q chosen cleartexts are [Li, Ri], 1 ≤ i ≤ q.
After one round they become [Ri, X

′
i], 1 ≤ i ≤ q, with X ′i = Li ⊕ f1(Ri).

After two rounds they become [X ′i, Xi], 1 ≤ i ≤ q.
After three rounds they become [Xi, Yi], 1 ≤ i ≤ q.
After four rounds they become [Yi, Si], 1 ≤ i ≤ q.
Finally after 5 rounds they become [Si, Ti], 1 ≤ i ≤ q.
We have: H5([Li, Ri, Si, Ti], 1 ≤ i ≤ q) =

∑
f1∈Fn(H4([Ri, X

′
i, Si, Ti], 1 ≤ i ≤

q)) with ∀i, 1 ≤ i ≤ q, X ′i = Li ⊕ f1(Ri). When a framework F for Ψ4 is fixed
(in Ψ5 = Ψ4 ◦ Ψ1), 5 cases occur:
Case 1. A contradiction appears by linearity in the equations generated by (C1).
In this case we have a “circle” of equalities in X ′, YF that generates a “circle”



in X by (C1).
Case 2. A contradiction appears by linearity in the equations generated by (C2).
In this case we have a “circle” of equalities in S,XF that generates a “circle” in
Y by (C2).
Case 3. No contradiction appears by linearity but ξX > n. In this case we have
a line of equalities in X ′, YF of length > n that generates a line of equalities in
X by (C1) of length > n.
Case 4. No contradiction appears by linearity but ξY > n. In this case we have
a line of equalities in S,XF of length > n that generates a line of equalities in
Y by (C2) of length > n.
Case 5. No contradiction occurs by linearity and ξX ≤ n and ξY ≤ n
To prove Theorem 17 we will first prove that Cases 1, 2, 3, 4 appear with a
negligible probability when the [Si, Ti] variables are randomly chosen, when f1
is randomly chosen in Fn, and when F is randomly chosen (this means as usual
with a distribution of probability proportional to Weight(F)). This is what we
will do now.
Circles in X ′, YF

Lemma 6 ∀λ > 0, for all pairwise distinct [Li, Ri], 1 ≤ i ≤ q, when f1 is
randomly chosen in Fn we have with probability ≥ 1 − 1

λ that the number N of

(i, j), i 6= j such that X ′i = X ′j satisfies: N ≤ λq(q−1)
2n .

Proof. This comes immediately from this lemma:

Lemma 7 For all pairwise distinct [Li, Ri], 1 ≤ i ≤ q (of course pairwise
distinct means i 6= i ⇒ Li 6= Lj or Ri 6= Rj) the number of (f1, i, j) such that

X ′i = X ′j , i 6= j is ≤ |Fn| q(q−1)2n .

Proof of Lemma 7. X ′i = X ′j means Li ⊕ f1(Ri) = Lj ⊕ f1(Rj). This implies
Ri 6= Rj (because Li = Lj and Ri = Rj implies i = j). Thus, when (i, j) is fixed,

the number of f1 such that X ′i = X ′j is exactly |Fn|2n if Ri 6= Rj , and is exactly 0 if
Ri = Rj . Therefore, since we have at most q(q− 1) values (i, j), i 6= j, Ri 6= Rj ,

the total number of (f1, i, j) such that X ′i = X ′j is ≤ |Fn|q(q−1)2n as claimed.

Lemma 8 For all λ > 0, for all values [Li, Ri], 1 ≤ i ≤ q (no matter how clev-
erly chosen they are), when f1 ∈R Fn, and F is randomly chosen, the probability
p to have a circle in X ′, YF satisfies:

p ≤ 1

λ
+

q2

2 · 22n
+

λ2q4

24n(1− λq2

22n )

For λ = 2n

q this gives:

p ≤ q

2n
+

q2

2 · 22n
+

q2

22n(1− q
2n )

Therefore, if q ≤ 2n

4 , we have: p ≤ 2q
2n .



Proof.
Circles of length 2.
To have a circle of length 2, we must find two indices i and j, i < j, such that:

(X ′i = X ′j) and (Yi = Yj is in F). For (i, j), i < j, we have q(q−1)
2 possibilities.

Now when i and j are fixed, the probability to have X ′i = X ′j , i.e. to have

Li ⊕ f1(Ri) = Lj ⊕ f1(Rj), is 1
2n when f1 ∈R Fn, since here we must have

Ri 6= Rj (because Ri = Rj and Li = Lj imply i = j). Similarly, the probability
to have (Yi = Yj is in F) when F is randomly chosen (i.e. with a distribution in
Weight(F)) is 1

2n . Therefore the probability to have (X ′i = X ′j) and (Yi = Yj is

in F) is ≤ q(q−1)
2·22n .

Circles of length µ, µ ≥ 4, µ even
To have a circle of lengthµ, we must find µ pairwise distinct indices i1, i2, . . . , iµ
such that (X ′i1 = X ′i2), (Yi2 = Yi3 is in F), (X ′i3 = X ′i4), . . ., (Yiµ = Yi1 is in F).

From Lemma 6 we know that ∀λ > 0 we have a probability ≥ 1 − 1
λ that for

(i1, i2, . . . , iµ) we have at most
(
λq2

2n

)µ
2 possibilities, when f1 is randomly chosen

in Fn. Now when (i1, i2, . . . , iµ) are fixed, when F is randomly chosen, we have
a probability 1

2
µ
2
n

to have (Yi2 = Yi3 is in F), . . ., (Yiµ = Yi1 is in F). Therefore,

∀λ > 0 the probability to have a circle of length ≥ 4 is ≤ 1
λ +
∑=∞
µ=4, µ even

µ

λ2
qµ

2nµ ≤
1
λ + λ2q4

24n(1− λq2
22n

)
. Since we have seen that the probability to have a circle of length

2 is ≤ q2

2·22n we obtain Lemma 8.
Lines in X ′, YF

Lemma 9 ∀λ > 0, ∀k ∈ N∗, for all pairwise distinct [Li, Ri], 1 ≤ i ≤ q, when
f1 is randomly chosen in Fn we have a probability ≥ 1 − 1

λ that the number N
of (i1, i2, . . . , ik) such that (i1, i2, . . . , ik) are pairwise distinct and X ′i1 = X ′i2 =

. . . = X ′ik satisfies: N ≤ λqk

2(k−1)n .

Remark. Lemma 6 was a special case of Lemma 9 with k = 2.
Proof. This result comes essentially from this lemma:

Lemma 10 For all pairwise distinct [Li, Ri], 1 ≤ i ≤ q, the number of
(f1, i1, i2, . . . , ik) such that i1, i2, . . . , ik are pairwise distinct and

X ′i1 = X ′i2 = . . . = X ′ik is ≤ |Fn| qk

2(k−1)n .

Proof of Lemma 10X ′i1 = X ′i2 = . . . = X ′ik means Li1⊕f1(Ri1) = Li2⊕f1(Ri2) =
. . . = Lik⊕f1(Rik) (1). Since i1, i2, . . . , ik are pairwise distinct, this implies here
Ri1 , Ri2 , . . . Rik are pairwise distinct (because Li = Lj and Ri = Rj ⇒ i = j).
Thus, when i1, i2, . . . , ik are fixed, the number of f1 that satisfy (1) is exactly
|Fn|

2(k−1)n if Ri1 , Ri2 , . . . Rik are pairwise distinct and exactly 0 if Ri1 , Ri2 , . . . Rik
are not pairwise distinct. Since we have at most qk values (i1, i2, . . . , ik), we
obtain Lemma 10.

Lemma 11 ∀λ > 0, ∀θ ∈ N∗, for all values [Li, Ri], 1 ≤ i ≤ q (no matter
how cleverly chosen they are), when f1 ∈R Fn, and F is randomly chosen, the



probability p to have a line of length ≥ θ in X ′, YF satisfies:

p ≤ 1

λ
+ 2θ

λ
θ+1
2 qθ+1

2nθ

For λ = 2n

q , we see that if q ≤ 2n

64 , and θ ≥ n, we have: p ≤ 2q
2n .

Proof. The proof is easy from Lemma 9 since from Lemma 9, with λ ≥ 1, we see
that when θ is fixed the larger value for p is obtained when equalities in X ′ and
equalities in YF alternate: X ′i1 = X ′i2 , (Yi2 = Yi3 is in F) etc. The coefficient 2θ

comes from the fact that for each indice iλ, between iλ and iλ+1 we can have

either an equality inX ′, or an equality in YF . Now for λ = 2n

q , 1
λ +2θ λ

θ+1
2 qθ+1

2nθ
=

q
2n +

√
2n
√
q
( 2√q√

2n

)θ
. If q ≤ 2n

64 and θ ≥ n, this gives p ≤ q
2n +

√
2n
√
q

22n therefore

we can write with simply p ≤ 2q
2n as claimed.

From now on, we assume q ≤ 2n

64 . We take θ = n and we will say that a framework
F is in “Case 5” if F has no circle in X ′, YF , no circle in S,XF , no line of length
≥ n in X ′, YF and no line of length ≥ n in S,XF .

Lemma 12 If q ≤ 2n

64 , for all pairwise distinct values [Li, Ri], 1 ≤ i ≤ q when
the values [Si, Ti] are randomly chosen, 1 ≤ i ≤ q, the probability p that

[
∑
f1∈Fn

∑
all frameworks F of Case 5

Weight(F) ≤ |Fn| · 2nq(1−
4q

2n
)]

satisfies: p ≤ q
2n .

Proof. This comes from Lemma 9, Lemma 8 and Lemma 11. The term in p ≤
q
2n comes from Lemma 5, i.e. the circles and the lines in S,XF . These circles
and lines in S,XF are analyzed for Ψ5 exactly as we did for Ψ4 (only the first
round has changed, not the last round). The term |Fn| · 2nq(1 − 4q

2n ) comes

from Lemma 8 (with −2q
2n ) and Lemma 11 (another −2q2n ), and the fact that∑

all frameworks F Weight(F) = 22nq.
We are now ready to prove Theorem 17, with explicit values for α and β.
Proof of Theorem 17 From Lemma 12 and the theorem “Pi ⊕ Pj”, i.e. Theorem
6 of [2], we see that if q ≤ 2n

67n , then for all pairwise distinct [Li, Ri], 1 ≤ i ≤ q,

we have a probability ≥ 1− q
2n that H ≥ |Fn|

5

22nq (1− 4q
2n ) when the [Si, Ti] values,

1 ≤ i ≤ q, are randomly chosen. Therefore, we have proved Theorem 17 with
α = 4q

2n and β = q
2n when q ≤ 2n

67n .

Theorem 18 If q ≤ 2n

67n , then for every CPA-2 with q adaptive chosen plain-

texts, we have: AdvPRF ≤ 5q
2n and AdvPRR ≤ 5q

2n + q2

2·22n . Where AvdPRF denotes
the advantage to distinguish Ψ5 from f ∈R F2n, and AdvPRP denotes the ad-
vantage to distinguish Ψ5 from f ∈R B2n.

Proof. This comes immediately from Theorem 12 of Appendix A, Theorem 17,
and the classical pseudorandom functions / pseudorandom permutations switch-
ing lemma.


