
Optimal Average Joint Hamming Weight
and Minimal Weight Conversion of d Integers

Vorapong Suppakitpaisarn1,2, Masato Edahiro1,3, and Hiroshi Imai1,2

1Graduate School of Information Science and Technology, the University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

2ERATO-SORST Quantum Computation and Information Project, JST
5-28-3 Hongo, Bunkyo-ku, Tokyo, Japan

3System IP Core Research Laboratories, NEC Corporation
1753 Shimonumabe, Nakahara-ku, Kawasaki, Japan

Abstract. In this paper, we propose the minimal joint Hamming weight
conversion for any binary expansions of d integers. With redundant rep-
resentations, we may represent a number by many expansions, and the
minimal joint Hamming weight conversion is the algorithm to select the
expansion that has the least joint Hamming weight. As the computation
time of the cryptosystem strongly depends on the joint Hamming weight,
the conversion can make the cryptosystem faster. Most of existing con-
versions are limited to some specific representations, and are difficult to
apply to other representations. On the other hand, our conversion is ap-
plicable to any binary expansions. The proposed can explore the minimal
average weights in a class of representation that have not been found.
One of the most interesting results is that, for the expansion of integer
pairs when the digit set is {0,±1,±3}, we show that the minimal average
joint Hamming weight is 0.3575. This improves the upper bound value,
0.3616, proposed by Dahmen, Okeya, and Takagi.

Key words: Elliptic Curve Cryptography, Minimal Weight Conversion,
Average Joint Hamming Weight, Digit Set Expansion

1 Introduction

The joint weight is known to affect the computation time of many operations
such as the multi-scalar point multiplication of the elliptic curve cryptography,

K =
d∑

i=1

riPi = r1P1 + · · ·+ rdPd,

when ri is a natural number, and Pi is a point on the elliptic curve. With
redundant representations, we can represent each ri in more than one ways,
each way, called expansion, has a different value of Hamming weight. The lower
weight expansion tends to make the operation faster. Then, there are many works
have explored the lower weight expansion on many specific representations [1–7].

2 Suppakitpaisarn, Edahiro, and Imai

These include the work by Solinas [1], which proposes the minimal joint weight
expansion on an integer pair when the digit set is {0,±1}. Also, the work by
Heuberger and Muir [2, 3] presents the expansions for the digit set

{−l,−(l − 1), . . . ,−1, 0, 1, . . . , u− 1, u}

for any natural number l, and positive integer u.
However, the minimal weight conversions of many digit sets have not been

found in the literature. This causes by the fact that most of the previous works
used the mathematical construction of the representation, which is hard to be
found in many digit sets, for finding the conversion and the average weight.

On the other hand, we propose the conversion and the algorithm to find the
average weight without concerning that mathematical construction. This enables
us to find the conversions and the average weight of many interesting digit sets,
in which the mathematical construction is complex. For instance, {0,±1,±3}
[8], that uses the same amount of memory to store the pre-computed points as
{0,±1,±2}, but is proved to has lower minimal average weight when d = 2.

As our conversion is proposed for any digit sets, it might not be as fast as
most of the algorithms for the specific digit set in the literatures. But, we believe
that the implementer can use our algorithm as a framework, and produce more
efficient algorithm for their specific digit set.

Then, we propose the algorithm to construct the Markov chain for analyzing
the average joint Hamming weight from the minimal weight conversion. The
Markov chain can be used for finding the minimal average weight of d integers,
when

{0,±1,±Λ} ⊆ Ds,
if Ds is the digit set, and Λ = maxDs.

One of the most interesting is the expansion when the digit set is {0,±1,±3},
and d = 2. For this digit set, many previous works have proposed the construc-
tion, the conversion, and the analysis. They can find the upper bound for the
minimal average joint Hamming weight. We can find the minimal average joint
Hamming weight for this digit set, which is 0.3575. This improves the lowest
upper bound in the literatures proposed by Dahmen, Okeya, and Takagi [5, 6],
that is 0.3616.

To conclude, our contribution is this paper are:

1. We use the dynamic programming technique to propose the minimal weight
conversion that can be applied to any digit sets, and we prove the optimality
of the algorithm in Appendix B.

2. We propose the algorithm to find the minimal average joint hamming weight
for a class of digit sets, and we prove the minimality of the value in Appendix
C.

The remainder of this paper is organized as follows: We discuss the back-
ground knowledge of this research in Section 2. In Section 3, we propose the
minimal weight conversion algorithm, with the explanation and the example.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 3

In Section 4, we present the algorithm to construct the Markov chain used for
analyzing the digit set expansion from the conversion in Section 3. Then, we use
that Markov chain to find the minimal average joint Hamming weight. Last, we
conclude the paper in Section 5.

2 Definition

Let Ds be the digit set mentioned in Section 1, n, d be a positive integer,
E{Ds, d} be a function from Zd to (Dsn)d such that if

E{Ds, d}(r1, . . . , rd) = 〈(e1,n−1 e1,n−2 . . . e1,0), . . . , (ed,n−1 ed,n−2 . . . ed,0)〉
= 〈(ei,t)n−1

t=0 〉di=1,

where
n−1∑
t=0

ei,t2t = ri,

where ri ∈ Z and ei,t ∈ Ds for all 1 ≤ i ≤ d. We call E{Ds, d} as the conver-
sion, and we call 〈(ei,t)n−1

t=0 〉di=1 as the expansion of r1, . . . , rd by the conversion
E{Ds, d}. As a special case, let Eb{d} be the binary conversion changing the
integer to its binary representation where Ds = {0, 1}.

Eb{1}(12) = 〈(1100)〉,

Eb{2}(12, 21) = 〈(01100), (10101)〉.
We also define a tuple of t-th bit of ri as,

Eb{d}(r1, . . . , rd)|t = 〈e1,t, . . . , ed,t〉.

Next, we define the joint Hamming weight function of integer r1, . . . rd rep-
resented by the conversion E{Ds, d}, JWE{Ds,d}(r1, . . . , rd), that is

wt =
{

0 if E{Ds, d}(r1, . . . , rd)|t = 〈0〉,
1 otherwise ,

JWE{Ds,d}(r1, . . . , rd) =
n−1∑
t=0

wt.

For instances, JWEb{1}(12) = 2, JWEb{2}(12, 21) = 4.
The computation time of the scalar point multiplication in Section 1 depends

on the joint Hamming weight. This is because we deploy the double-and-add
method, that is

K =
d∑

i=0

riPi = 2(. . . (2(2Kn−1 +Kn−2)) . . .) +K0,

4 Suppakitpaisarn, Edahiro, and Imai

where

Kt =
d∑

i=0

ei,tPi.

To complete this, we need n−1 point doubles, and n−1 point additions. However,
if E{Ds, d}(r1, . . . , rd)|t = 〈0〉, Kt = O. And, we need not to perform point
addition on that case, as K + O = K. Thus, the number of point additions is
JWE{Ds,d}(r1, . . . , rd)− 1. For instances, if

K = 12P1 + 21P2,

we can compute K as

K = 2(2(2(2P2 + P1) +D)) + P2,

if D = P1 + P2, that has already been precomputed before the computation
begins. We need 4 point doubles and 3 point additions to find the result.

If {0, 1} ⊂ Ds, we are able to represent some number ri ∈ Z in more than
one ways. For instances, if Ds = {0,±1},

12 = (01100) = (101̄00) = (11̄100) = . . . ,

when 1̄ = −1.
Let Em{Ds, d} be the minimal weight conversion where

Em{Ds, d}(r1, . . . , rd) = 〈ei,n−1 . . . ei,0〉ti=1

is the expansion such that for any 〈e′i,n−1 . . . e
′
i,0〉ti=1 where

n−1∑
t=0

ei,t2t =
n−1∑
t=0

e′i,t2
t,

for all 1 ≤ i ≤ d,
n−1∑
t=0

w′t ≥ JWEm{Ds,d}(r1, . . . , rd),

and

w′t =
{

0 if 〈e′1,t, . . . , e′d,t〉 = 〈0〉,
1 otherwise ,

For instances,

Em{{0,±1}, 2}(12, 21) = 〈(101̄00), (10101)〉,

JWEm{{0,±1},2}(12, 21) = 3.

Then, the number of point additions needed is 2. Also, we call Em{Ds, d}(r1, . . . , rd)
as the minimal weight expansion of r1, . . . , rd using the digit set Ds.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 5

If Ds2 ⊆ Ds1, it is obvious that

JWEm{Ds2,d}(r1, . . . , rd) ≥ JWEm{Ds1,d}(r1, . . . , rd).

Thus, we can increase the efficiency of the scalar-point multiplication by increase
the size of Ds. However, the bigger Ds need more precomputation tasks. If d = 2,
we need one precomputed point when Ds = {0, 1}, but we need 12 precomputed
points when Ds = {0,±1,±3}.

Then, one of the contribution of this paper is to evaluate the digit set Ds.
We use the average joint hamming weight defined as

AJW (E{Ds, d}) = lim
k→∞

2k−1∑
r1=0

· · ·
2k−1∑
rd=0

JWE{Ds,d}(r1, . . . , rd)
k2dk

.

It is obvious that AJW (Eb{d}) = 1 − 1
2d

. In this paper, we find the value
AJW (Em{Ds, d}) of some Ds and d. Some of these values have been found in
the literatures such as

AJW (Em{{0,±1,±3, . . . ,±(2p − 1)}, 1}) =
1

p+ 1
[4].

Also,
AJW (Em{{−l,−(l − 1), . . . ,−1, 0, 1, u− 1, u}, d})

for any positive number d,u, and natural number l, have been found by Heuberger
and Muir [2, 3].

3 Minimal Weight Conversion

In this section, we propose the minimal weight conversion. It is based on the
dynamic programming scheme. The input is 〈r1, . . . , rd〉, and the output is
Em{Ds, d}(r1, . . . , rd), which is the minimal weight expansion of the input using
the digit set Ds. The algorithm begins from the most significant bit (bit n− 1),

Rn−1 = Eb{d}(r1, . . . , rd)|t=n−1 = 〈e1,n−1, . . . , ed,n−1〉,

and processes left-to-right to the least significant bit (bit 0),

R0 = Eb{d}(r1, . . . , rd)|t=0 = 〈e1,0, . . . , ed,0〉.

For each t (n > t ≤ 0), we calculate minimal weight expansions of the first
n− t bits of the input r1, . . . , rd (

⌊
r1
2t

⌋
, . . . ,

⌊
rd
2t

⌋
) for all carry Gt defined below.

We define components in our algorithm as follows:

– The carry array Gt is the array occured by changing the input

Rt = Eb{d}(r1, . . . , rd)|t = 〈e1,t, . . . , ed,t〉

6 Suppakitpaisarn, Edahiro, and Imai

to each possible output

R∗t = 〈e∗1,t, . . . , e∗d,t〉 ∈ Dsd.

Let
Ct = 〈c1,t, . . . , cd,t〉

be the carry from bit t− 1 to bit t, i.e. C0 = 〈0〉 and Cn = 〈0〉. For each t,
1 ≤ t ≤ n− 1, the array Ct satifies the relation

Rt + Ct = R∗t + 2Ct+1.

For instance, let the input be 1. If −1 ∈ Ds, we can output −1 in this bit,
and carry 1 to more significant bit, because

1 = 1× 2 + (−1).

If 3 ∈ Ds, we can carry −1 to more significant bit and output 3, as

1 = −1× 2 + 3.

We define the carry set Cs as the set of possible carry. When the digit set
Ds = {0,±1,±3}, the carry set is Cs = {0,±1,±2,±3}. We propose the
algorithm to find the set Cs in Appendix A.

– The minimal weight array wt is the array of the positive integer wt,Gt for
any Gt ∈ Csd. The integer wt,Gt is the minimal joint weight of the first n− t
bits of the input r1, . . . , rd (

⌊
r1
2t

⌋
, . . . ,

⌊
rd
2t

⌋
) when we carry Gt = 〈gi,t〉di=1,

e.g.
wt,Gt = JWEm{Ds,d}(

⌊r1

2t
⌋

+ g1,t, . . . ,
⌊rd

2t
⌋

+ gd,t).

– The subsolution array Qt is the array of the string Qt,〈i,Gt〉 for any 1 ≤ i ≤ d
and Gt ∈ Csd. Each Qt,〈i,Gt〉 represents the minimal weight expansion of the
first n− t bits of the input r1, . . . , rd when we carry Gt = 〈gi,t〉di=1, e.g.

wt,Gt = Em{Ds, d}(
⌊r1

2t
⌋

+ g1,t, . . . ,
⌊rd

2t
⌋

+ gd,t).

We note that the length of the string Qt,〈i,Gt〉 is n− t, and wt,Gt is the joint
Hamming weight of the string Qt,〈1,Gt〉, . . . , Qt,〈d,Gt〉. There may exist some
gi,t ∈ Ds such that

⌊
r1
2t

⌋
+gi,t can not be represented using the string length

n − t of Ds. In that case, we represent Qt,〈i,Gt〉 with the null string, and
assign wt,Gt to ∞.

When we process the bit t, we find the minimal weight array wt and the
subsolution array Qt from the input

Rt = Eb{d}(r1, . . . , rd)|t = 〈e1,t, . . . , ed,t〉

and the minimal weight array wt+1 , and the subsolution array Qt+1.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 7

We define the function

MW : Z|Cs
d| × ((Dsn−t)d)|Cs

d| × {0, 1}d × Csd → Z× ((Dsn−t+1)d)

such that
(wt,Gt , Qt,Gt) = MW (wt+1, Qt+1, Rt, Gt),

where wt+1 is the minimal weight array from bit n − 1 to bit t + 1, and wt is
the minimal weight array from bit n− 1 to bit t. Qt+1 is the subsolution string
from bit n− 1 to bit t+ 1, and Qt is the subsolution string from bit n− 1 to bit
t. Since wt = 〈wt,Gt〉Gt∈Csd and Qt = 〈Qt,Gt〉Gt∈Csd , we also define

(wt, Qt) = MW (wt+1, Qt+1, Rt).

It is important to note that wt is only depend on wt+1 and Rt, we use only
2 arrays w and lw to represent wt and wt+1 to reduce memory consumption.
Similarly, we store Qt and Qt+1 by Q and lQ.

When we implement this idea, we use 2 arrays to represent wt and wt+1,
called w and lw respectively. We store the array wt+1 in lw and use the array to
compute the array w, which is used for representing wt. After that, we replace
the array lw with w, decrease t by 1, and continue calculating the subsolution
for less significant bits. Similarly, we store Qt and Qt+1 by Q and lQ.

Example 1. Compute the minimal weight expansion of 3 and 7 when the digit set
is {0,±1,±3}, Em{{0,±1,±3}, 2}(3, 7). Note that Eb{2}(3, 7) = 〈(011), (111)〉.
– Step 1 Consider the most significant bit, the input

R2 = Eb{2}(3, 7)|t=2 = 〈0, 1〉.

There is the carry from less significant bit. Table 1 shows the Hamming
weight of the most significant bit for each carry G2 ∈ Cs2, lwG2 . To sum-
marize the result from the table, if G2 = 〈0,−1〉, the input with the carry
from less significant bit,

R2 +G2 = 〈0, 1〉+ 〈0,−1〉 = 〈0, 0〉,

and the Hamming weight w2,〈0,−1〉 = 0.
If G2 = 〈1, 0〉, the input with the carry,

R2 +G2 = 〈0, 1〉+ 〈1, 0〉 = 〈1, 1〉,

and w2,〈1,0〉 = 1. The Hamming weight w2,G is 1 for any G, such that

R2 +G2 ∈ Dsd − {〈0〉}.

If G2 = 〈0, 1〉,
R2 +G2 = 〈0, 1〉+ 〈0, 1〉 = 〈0, 2〉,

8 Suppakitpaisarn, Edahiro, and Imai

and w2,〈0,1〉 = ∞. The Hamming weight w2,G is ∞ for any G2, such that
R2 +G2 /∈ Dsd.
As we want to keep the length of the bit string unchanged, we do not generate
the carry from the most significant bit. Then, we need to represent the input
with the carry, R2+G2 using the single bit. As a result, the hamming weight,
w2,G is 0 if R2 + G2 = 〈0〉. w2,G is ∞ if R2 + G2 /∈ Dsd. And, w2,G is 1
otherwise.

– Step 2 Next, we consider bit 1. In this bit,

R1 = Eb{2}(3, 7)|t=1 = 〈1, 1〉.
Consider the case when the carry from the least significant bit G1 = 〈1, 0〉.
Then,R1+G1 = 〈2, 1〉. There are 4 ways to write 〈2, 1〉 in the form 2Gt+1+R∗t
where Gt+1 ∈ Csd is the carry to the most significant bit and R∗t ∈ Dsd is
the candidate for the output. That is

〈2, 1〉 = 2 × 〈1, 0〉 + 〈0, 1〉
= 2 × 〈1,−1〉 + 〈0, 3〉
= 2 × 〈1, 1〉 + 〈0,−1〉
= 2 × 〈1, 2〉 + 〈0,−3〉

If we output R∗t for this bit, the Hamming weight is

wt,Gt = min
Gt+1,R∗t

[wt+1,Gt+1 + JW (R∗t)],

when JW (D) = 0 if D = 〈0〉, JW (D) = 1 otherwise. From Table 1,

w2,〈1,0〉 = w2,〈1,−1〉 = w2,〈1,2〉 = 1,

w2,〈1,1〉 =∞.
And,

JW (〈1, 0〉) = JW (〈0, 3〉) = JW (〈0,−1〉) = JW (〈0,−3〉) = 1.

Then,
w1,〈1,0〉 = min

G2,R∗t
[w2,G2 + JW (R∗1)] = 1 + 1 = 2.

We show the array w1,G1 on this bit in Table 2.
– Step 3 On the least significant bit, the input R0 = 〈1, 1〉. The value w0,〈0,0〉

is the minimal Hamming weight, and we need not to compute w0,G0 for
G0 6= 〈0〉. When G0 = 〈0, 0〉 , R0 +G0 = 〈1, 1〉. Similar to bit 1, we find

w0,〈0,0〉 = min
G1,R∗0

[w1,G1 + JW (R∗0)],

such that 2×G1 +R∗0 = 〈1, 1〉, and G1 ∈ Csd, R∗0 ∈ Dsd. We show the value
of each possible G1, R

∗
0 with w1,G1 , JW (R∗0), and w1,G1 + JW (R∗0) in Table

3. Shown in the table, the minimal Hamming weight is

min
G1,R∗0

[w1,G1 + JW (R∗0)] = 2.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 9

Table 1. The minimal Hamming weight of the most significant bit, w = w2,G2 , when
the input bit R2 = 〈0, 1〉

G2 w G2 w G2 w G2 w G2 w G2 w G2 w

〈−3,−3〉 ∞ 〈−2,−3〉 ∞ 〈−1,−3〉 ∞ 〈0,−3〉 ∞ 〈1,−3〉 ∞ 〈2,−3〉 ∞ 〈3,−3〉 ∞
〈−3,−2〉 1 〈−2,−2〉 ∞ 〈−1,−2〉 1 〈0,−2〉 1 〈1,−2〉 1 〈2,−2〉 ∞ 〈3,−2〉 1
〈−3,−1〉 1 〈−2,−1〉 ∞ 〈−1,−1〉 1 〈0,−1〉 0 〈1,−1〉 1 〈2,−1〉 ∞ 〈3,−1〉 1
〈−3, 0〉 1 〈−2, 0〉 ∞ 〈−1, 0〉 1 〈0, 0〉 1 〈1, 0〉 1 〈2, 0〉 ∞ 〈3, 0〉 1
〈−3, 1〉 ∞ 〈−2, 1〉 ∞ 〈−1, 1〉 ∞ 〈0, 1〉 ∞ 〈1, 1〉 ∞ 〈2, 1〉 ∞ 〈3, 1〉 ∞
〈−3, 2〉 1 〈−2, 2〉 ∞ 〈−1, 2〉 1 〈0, 2〉 1 〈1, 2〉 1 〈2, 2〉 ∞ 〈3, 2〉 1
〈−3, 3〉 ∞ 〈−2, 3〉 ∞ 〈−1, 3〉 ∞ 〈0, 3〉 ∞ 〈1, 3〉 ∞ 〈2, 3〉 ∞ 〈3, 3〉 ∞

Table 2. The minimal Hamming weight of bit 1, w = w1,G1 , when the input bit
R1 = 〈1, 1〉, and the array w1,G1 of the most significant bit is shown in Table 1

G1 w G1 w G1 w G1 w G1 w G1 w G1 w

〈−3,−3〉 1 〈−2,−3〉 1 〈−1,−3〉 0 〈0,−3〉 1 〈1,−3〉 1 〈2,−3〉 1 〈3,−3〉 ∞
〈−3,−2〉 2 〈−2,−2〉 1 〈−1,−2〉 1 〈0,−2〉 1 〈1,−2〉 2 〈2,−2〉 1 〈3,−2〉 ∞
〈−3,−1〉 1 〈−2,−1〉 2 〈−1,−1〉 1 〈0,−1〉 2 〈1,−1〉 1 〈2,−1〉 2 〈3,−1〉 ∞
〈−3, 0〉 2 〈−2, 0〉 1 〈−1, 0〉 1 〈0, 0〉 1 〈1, 0〉 2 〈2, 0〉 1 〈3, 0〉 ∞
〈−3, 1〉 ∞ 〈−2, 1〉 ∞ 〈−1, 1〉 ∞ 〈0, 1〉 ∞ 〈1, 1〉 ∞ 〈2, 1〉 ∞ 〈3, 1〉 ∞
〈−3, 2〉 2 〈−2, 2〉 2 〈−1, 2〉 2 〈0, 2〉 2 〈1, 2〉 2 〈2, 2〉 2 〈3, 2〉 ∞
〈−3, 3〉 1 〈−2, 3〉 2 〈−1, 3〉 1 〈0, 3〉 2 〈1, 3〉 1 〈2, 3〉 2 〈3, 3〉 ∞

Table 3. List of possible G1, R
∗
0 such that 2 × G1 + R∗0 = 〈1, 1〉 and G1 ∈

{0,±1,±2,±3}2, R∗0 ∈ {0,±1,±3}2, with w1,G1 (refer to Table 2), JW (R∗0), w1,G1 +
JW (R∗0) of each G1,R∗0

G1 R∗0 w1,G1 JW (R∗0) w1,G1 + JW (R∗0)

〈−1,−1〉 〈3, 3〉 1 1 2
〈−1, 0〉 〈3, 1〉 1 1 2
〈−1, 1〉 〈3,−1〉 ∞ 1 ∞
〈−1, 2〉 〈3,−3〉 2 1 3
〈0,−1〉 〈1, 3〉 2 1 3
〈0, 0〉 〈1, 1〉 1 1 2
〈0, 1〉 〈1,−1〉 ∞ 1 ∞
〈0, 2〉 〈1,−3〉 2 1 3
〈1,−1〉 〈−1, 3〉 1 1 2
〈1, 0〉 〈−1, 1〉 2 1 3
〈1, 1〉 〈−1,−1〉 ∞ 1 ∞
〈1, 2〉 〈−1,−3〉 2 1 3
〈2,−1〉 〈−3, 3〉 2 1 3
〈2, 0〉 〈−3, 1〉 1 1 2
〈2, 1〉 〈−3,−1〉 ∞ 1 ∞
〈2, 2〉 〈−3,−3〉 2 1 3

10 Suppakitpaisarn, Edahiro, and Imai

We show the algorithm in detail Algorithm 1,2. The algorithm can be de-
scribed as follows:

– We set the array wn−1 = 〈wn−1,Gn−1〉Gn−1∈Csd in Algorithm 1 Line 2. We
set wn−1,〈0〉 ← 0 and wn−1,Gn−1 ← ∞ for any G 6= 〈0〉. The reason behind
this is that we do not carry any things from the most significant bit to keep
the length of the bit string unchanged.

– We define the array Qt = 〈Qt+1,〈i,G〉〉 for 1 ≤ i ≤ d, and G ∈ Csd in
Algorithm 1 Line 3. Obviously, all Qn−1,〈i,G〉 are set to the null string.

– The size of the array wt and Qt is equal to ||Cs||d and dn||Cs||d respectively.
That number makes the memory required by our algorithms larger than the
previous works. As this algorithm is generalized for any digit sets, further
optimization is difficult. We suggest implementers to make the array size
lower when they implement the method on their specific digit set.

– Shown in Algorithm 1 Lines 4-7, we run the algorithm from left to right (the
most significant bit to the least significant bit). Left-to-right algorithms is
said to be faster than right-to-left algorithms, as the more significant bits
usually arrive to the system before. However, Algorithm 1,2 is not online; as
it cannot produce the subsolution before all input bits arrive.

– The loop in Algorithm 2 explores all the possible values of the carry tuple
Gt ∈ Csd from less significant bits. As a result, we get we = 〈weR∗t 〉R∗t∈Dsd .
weE shows the minimal Hamming weight in the case that the carry tuple is
Gt = 〈gi,t〉di=1, and the output is R∗t = 〈r∗i,t〉di=1. Each weR∗t is assigned at
the loop in Algorithm 2 Lines 3-10. In Line 5, we compute the array Gt+1 as
the carry to more significant bits, in the case that we output R∗t . And in Line
6, weR∗t is assigned to wt+1,Gt+1 if R∗t = 〈0〉, and wt+1,Gt+1 + 1 otherwise.

– In Algorithm 2 Line 11, we select the output for each carry tuple Gt, which
produce the minimal weight substring. The output is EA = 〈eai〉di=1 ∈ Dsd
such that weEA has the minimal value among we. We define the array CE
as the carry to more significant bits, in the case that we output EA in Line
15. Obviously, the minimal weight of the suboutput wt,Gt is equal to weEA,
and the suboutput Qt,〈i,Gt〉 is the concatenation of the subsolution of more
significant bits when the carry is CE, Qt+1,〈i,CE〉, with EA.

– We define the solution in Algorithm 1 Line 8. Obviously, the solution is the
one from the least significant bit when the carry tuple is 〈0〉.

Example 2. Compute Em{{0,±1,±3}, 2}(23, 5) using Algorithm 1,2.

– Eb{2}(23, 5) = 〈(10111), (00101)〉.
– When Ds = {0,±1,±3}, Cs = {0,±1,±2,±3}.
– To simplify the explanation, we present it when the loop in Algorithm 1

Line 4-6 assigned t to 0, that is the last time on this loop. This means
we have computed w1 and Q1. In this example, wt = wt,Gt where Gt ∈
{0,±1,±2,±3}2. As w1, Q1 has 49 elements, we are not able to list them all.
To show some elements of w1, Q1,

w1,〈0,0〉 = 3, w1,〈1,0〉 = 2, w1,〈2,0〉 = 3.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 11

Algorithm 1 Minimum joint weight conversion to any digit sets Ds in the
binary expansion
Require: r1, . . . , rd

The desired digit set Ds
Ensure: Em{Ds, d}(r1, . . . , rd)
1: Let Cs be a carry set such that for all c ∈ Cs and d ∈ Ds, c+d

2
, c+d+1

2
∈ Cs.

2: Let wt be an array of wt,Gt for any Gt ∈ Csd.
wn,Gn ← 0 if Gn−1 = 〈0〉.
wn,Gn ←∞ otherwise.

3: Let Qt ← 〈Qt,〈i,Gt〉〉 for any 1 ≤ i ≤ d and Gt ∈ Csd.
All Qn,〈i,Gt〉 are initiated to a null string.

4: for t← n− 1 to 0 do
5: Rt ← Eb{d}(r1, . . . , rd)|t.
6: (wt, Qt)←MW (wt+1, Qt+1, Rt) (We define the function MW in Algorithm 2)
7: end for
8: Let Z ← 〈0〉.
Em{Ds, d}(r1, . . . , rd)← 〈Q0,〈i,Z〉〉di=1

Q1,〈1,〈0,0〉〉 = (1011), Q1,〈1,〈1,0〉〉 = (0300), Q1,〈1,〈2,0〉〉 = (0301).

Q1,〈2,〈0,0〉〉 = (0010), Q1,〈2,〈1,0〉〉 = (0010), Q1,〈2,〈2,0〉〉 = (0010).

– Although, the loop in Algorithm 2 examines all G0 ∈ Cs2, we focus our
interested the step where G0 = 〈0〉. Note that in this case

AE ← 〈1, 1〉+ 〈0, 0〉 = 〈1, 1〉.

– Now, we focus our interested to the loop in Algorithm 2 Line 3-10. If R∗0 =
〈0, 0〉, ae1 − r∗0,1 = 1 and 2 - (ae1 − r∗0,1). Then, we〈0,0〉 ←∞.

– If R∗0 = 〈1, 1〉,
G1 ← 〈

ae1 − r∗0,1
2

,
ae2 − r∗0,2

2
〉 = 〈0, 0〉.

As stated on the first paragraph, w1,〈0,0〉 = 3. Then, we〈1,1〉 ← 3 + 0 = 3 by
Line 6.

– If R∗0 = 〈−1,−3〉,

G1 ← 〈
ae1 − r∗0,2

2
,
ae1 − r∗0,2

2
〉 = 〈1, 2〉.

Then, we refer to w1,〈1,2〉 which is 1. Then, we〈−1,−3〉 ← 1 + 1 = 2.
– In Line 11, we select the least number among we, and the minimum value is
we〈−1,−3〉 = 2. Then, w0,〈0,0〉 = 2.

Q0,〈1,〈0,0〉〉 ← 〈Q1,〈1,〈1,2〉〉,−1〉 = (03001̄).

Q0,〈2,〈0,0〉〉 ← 〈Q1,〈2,〈1,2〉〉,−3〉 = (01003̄),

which is the output of the algorithm.

12 Suppakitpaisarn, Edahiro, and Imai

Algorithm 2 Function MW compute the subsolution for bit t given the subso-
lution of bit t+ 1 and the input in bit t
Require: The minimal weight array of more significant bits wt+1, the subsolution of

more significant bits Qt+1, and the input Rt
Ensure: The minimal weight array wt and the subsolution Qt
1: for all Gt = 〈gi,t〉di=1 ∈ Csd do
2: AE = 〈aei〉di=1 ← Rt +Gt
3: for all R∗t = 〈r∗i,t〉di=1 ∈ Dsd do
4: if 2|(aei − r∗i,t) for all 1 ≤ i ≤ d then

5: Gt+1 ← 〈aei−r
∗
i,t

2
〉di=1

6: weR∗t ← wt+1,Gt+1 if Gt+1 = 〈0〉.
weR∗t ← wt+1,Gt+1 + 1 otherwise.

7: else
8: weR∗t ←∞
9: end if

10: end for
11: Let weEA is the minimal value among we.
12: wt,Gt ← weEA
13: Let EA = 〈eai〉di=1.
14: CE = 〈cei〉di=1 ← 〈aei−eai2

〉di=1

15: Qt,〈i,Gt〉 ← 〈Qt+1,〈i,CE〉, eai〉 for all 1 ≤ i ≤ d
16: end for

4 Analysis

In this section, we propose the algorithm to analyze the average joint Hamming
weight for each digit set. For this purpose, we propose a Markov chain where
its states are minimal weight arrays w, and transition is function MW . As we
will focus on only the joint Hamming weight without regarding which bit we are
computing, we represent wt+1, wt with lw, w respectively. Also, we refer Gt as
G.

As we have seen in the previous section, we do not have to consider Q in
function MW when we are interested only the Hamming weight. Then, we can
redefine the function MW as

MW : Z|Cs
d| × {0, 1}d → Z|Cs

d|,

wy = MW (wx, R).

4.1 Analysis Method

From Algorithm 1,2, we propose Algorithm 3 to construct the Markov chain

A = (QA, Σ, σA, IA, PA),

where

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 13

– QA is a set of states,
– Σ is the alphabet,
– σA ⊆ QA ×Σ ×QA is a set of transitions,
– IA : QA → R+ is an initial-state probabilities for each state in QA,
– PA : σA → R+ is the transition probabilities for each transition in σA.

The algorithm is described as follows:

– We define the set QA as the set of equivalence classes of the possible value
of wt in Algorithm 1,2. Let wx = 〈wx,G〉G∈Csd and wx′ = 〈wx′,G〉G∈Csd be
the possible value of wt. We consider wx and wx′ equivalent if and only if

∃p∀G(wx,G + p = wx′,G)

when p ∈ Z and G ∈ Csd. In Appendix C, we show the proof that the
number of equivalence classes is finite when

{0,±1,±Λ} ⊆ Ds,

if Λ = maxDs.
– The number of states becomes very large when the digit set becomes larger.

For example, the number of states is 1, 216, 376 for d = 3 and

Ds = {0,±1,±3}.

This makes us unable to find the average joint Hamming weight in many
cases.

– To find the average joint Hamming weight, we need to find the possibility
that the Markov chain is on each equivalence class after we input a bit string
length n→∞. That is the stationary distribution of the Markov chain. We
consider the function MW , defined in Algorithm 2, as the transition from
the equivalence class of wx to the equivalence class of wy, where the input
of the transition is R. It is obvious that if wx is equivalent w′x and

wy = MW (wx, R),

wy′ = MW (w′x, R),

wα and wβ are equivalent. Then, the transition is well-defined. By this defi-
nition,

Σ = {0, 1}d,
as in Line 1 of Algorithm 3. Also, the set of transition σA is defined as

σA = {(wx, R,wy) ∈ QA ×Σ ×QA|wy = MW (wx, R)}.

– We initiate wt in Algorithm 1 Line 2. We refer the value initiated to wt as
wI , as shown in Line 3 of Algorithm 3. We set the value wI as the initial state
of the Markov chain. By the definition of IA, IA(wI) = 1, and IA(w) = 0 if
w 6= wI , as shown in Algorithm 3 Line 18.

14 Suppakitpaisarn, Edahiro, and Imai

– We generate the set of state QA using the algorithm based on the breadth-
first search scheme starting from wI . This is shown in Algorithm 3 Lines
5-17.

– Since the occurence possibility of all alphabets is equal, the transform prob-
ability PA(γ) = 1

|Σ| for all γ ∈ σA. This is shown in Algorithm 3 Line 11.

We illustrate how Algorithm 3 works with Example 3,4,5.

Algorithm 3 Construct the Markov chain used for finding the average minimal
weight
Require: the digit set Ds

The number of scalars d
Ensure: Markov chain A = (QA, Σ, σA, IA, PA)
1: Σ ← {0, 1}d, QA ← �, σA ← �
2: Cs : carry set for Ds
3: wI ← 〈wI,G〉G∈Csd , where
wI,〈0〉 ← 0 and wI,G ←∞ otherwise

4: Qu← {wI}
5: while Qu 6= � do
6: let π ∈ Qu
7: wx ← π, Qu← Qu− π
8: for all R ∈ Σ do
9: wy ←MW (wx, R)

10: σA ← σA ∪ {(wx, R,wy)}
11: PA(wx, R,wy)← 1

|Σ|
12: if wy /∈ QA and wy 6= wx then
13: Qu← Qu ∪ {wy}
14: end if
15: end for
16: QA ← QA ∪ {wx}
17: end while
18: IA(w)← 1 if w = wI , IA(w)← 0 otherwise.

Example 3. Let d = 2 and Ds = {0,±1,±3}, Cs = {0,±1,±2,±3} and

w = 〈w〉G∈Cs2
= 〈w〈−3,−3〉, w〈−3,−2〉, w〈−3,−1〉, w〈−3,0〉, w〈−3,1〉, w〈−3,2〉, w〈−3,3〉,
w〈−2,−3〉, w〈−2,−2〉, w〈−2,−1〉, w〈−2,0〉, w〈−2,1〉, w〈−2,2〉, w〈−2,3〉,
w〈−1,−3〉, w〈−1,−2〉, w〈−1,−1〉, w〈−1,0〉, w〈−1,1〉, w〈−1,2〉, w〈−1,3〉,
w〈0,−3〉, w〈0,−2〉, w〈0,−1〉, w〈0,0〉, w〈0,1〉, w〈0,2〉, w〈0,3〉,
w〈1,−3〉, w〈1,−2〉, w〈1,−1〉, w〈1,0〉, w〈1,1〉, w〈1,2〉, w〈1,3〉,
w〈2,−3〉, w〈2,−2〉, w〈2,−1〉, w〈2,0〉, w〈2,1〉, w〈2,2〉, w〈2,3〉,
w〈3,−3〉, w〈3,−2〉, w〈3,−1〉, w〈3,0〉, w〈3,1〉, w〈3,2〉, w〈3,3〉〉.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 15

Then, the initial state w = wI ∈ QA is

〈∞,∞,∞,∞,∞,∞, ∞,
∞, ∞,∞,∞,∞,∞, ∞,
∞, ∞,∞,∞,∞,∞, ∞,
∞, ∞,∞, 0, ∞,∞, ∞,
∞, ∞,∞,∞,∞,∞, ∞,
∞, ∞,∞,∞,∞,∞, ∞,
∞, ∞,∞,∞,∞,∞,∞〉.

Refered to Example 1, if wt+1 = wI and the input bit is 〈0, 1〉 (as seen in the
most significant bit of the example), Algorithm 2 output

wt = wB = 〈∞,∞,∞,∞,∞,∞, ∞,
1, ∞, 1, 1, 1, ∞, 1,
1, ∞, 1, 0, 1, ∞, 1,
1, ∞, 1, 1, 1, ∞, 1,
∞, ∞,∞,∞,∞,∞, ∞,
1, ∞, 1, 1, 1, ∞, 1,
∞, ∞,∞,∞,∞,∞,∞〉,

as shown in Table 1. wB ∈ QA, and (wI , 〈0, 1〉, wB) ∈ σA. Similarly, if the input
is wB and 〈1, 1〉 as seen in bit 1 of the example, the algorithm input

wC = 〈1, 1, 0, 1, 1, 1, ∞,
2, 1, 1, 1, 2, 1, ∞,
1, 2, 1, 2, 1, 2, ∞,
2, 1, 1, 1, 2, 1, ∞,
∞,∞,∞,∞,∞,∞, ∞,
2, 2, 2, 2, 2, 2, ∞,
1, 2, 1, 2, 1, 2, ∞〉,

as shown in Table 2. Also, wC ∈ QA, (wB , 〈1, 1〉, wC) ∈ σA.

Example 4. Construct the Markov chain A = (QA, Σ, σA, IA, PA) for finding
AJW (Em{{0,±1}, 1}).
– As Ds = {0,±1}, Cs = {0,±1}. Then,

w = 〈w〈−1〉, w〈0〉, w〈1〉〉.
The initial value of w, wI is

wI = 〈∞, 0,∞〉.
– Consider the loop in Lines 5-17. On the first iteration, wx = wI in Line 7. If
R is assigned to 〈0〉 in Line 8, the result of the function MW in Line 9, wy
is

wA = 〈1, 0, 1〉.

16 Suppakitpaisarn, Edahiro, and Imai

Then, we add α = 〈wI , 〈0〉, wA〉 to the set σA as shown in Line 10. The
probability of the transition α is 1

|Σ‖ = 1
|{0,1}| = 1

2 . Also, we add wA to the
set Qu.

– Similarly, if R = 〈1〉, wy is

wB = 〈0, 1,∞〉.

Then, wB ∈ QA, and 〈wI , 〈1〉, wB〉 ∈ σA.
– Next, we explore the state wA, as we explore the set QA by the breadth-first

search algorithm. If R = 〈0〉, wy is 〈1, 0, 1〉. And if R = 〈1〉, wy is 〈1, 1, 0〉.
Then,

〈〈1, 0, 1〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,
〈〈1, 0, 1〉, 〈1〉, 〈0, 1, 1〉〉 ∈ σA.

The first transition is the self-loop. Hence, we need not to explore it again.
– We explore the state wB , the result is

〈〈0, 1,∞〉, 〈0〉, 〈1, 1, 2〉〉 ∈ σA,

〈〈0, 1,∞〉, 〈1〉, 〈1, 2,∞〉〉 ∈ σA.
We note that 〈1, 1, 2〉 is equivalent to 〈0, 0, 1〉, and we denote it as 〈0, 0, 1〉.
Also, 〈1, 2,∞〉 is equivalent to 〈0, 1,∞〉. Then, the second transition is the
self-loop.

– Then, we explore the state 〈0, 1, 1〉. We get the condition

〈〈0, 1, 1〉, 〈0〉, 〈1, 1, 2〉〉 ∈ σA,

〈〈0, 1, 1〉, 〈1〉, 〈1, 2, 1〉〉 ∈ σA.
We denote 〈1, 1, 2〉 and 〈1, 2, 1〉 by 〈0, 0, 1〉, 〈0, 1, 0〉 respectively.

– We explore 〈0, 0, 1〉 and get the condition

〈〈0, 0, 1〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,

〈〈0, 0, 1〉, 〈1〉, 〈0, 1, 1〉〉 ∈ σA.
– Exploring 〈0, 1, 0〉 makes we get

〈〈0, 1, 0〉, 〈0〉, 〈1, 1, 1〉〉 ∈ σA,

〈〈0, 1, 0〉, 〈1〉, 〈1, 1, 0〉〉 ∈ σA.
We denote 〈1, 1, 1〉 as 〈0, 0, 0〉.

– From the state 〈0, 0, 0〉, we get

〈〈0, 0, 0〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,

〈〈0, 0, 0〉, 〈1〉, 〈0, 1, 0〉〉 ∈ σA.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 17

Fig. 1. The Markov chain constructed by Algorithm 3 used for finding
AJW (Em{{0,±1}, 1})

– From the state 〈1, 1, 0〉, we get

〈〈1, 1, 0〉, 〈0〉, 〈2, 1, 1〉〉 ∈ σA,
〈〈1, 1, 0〉, 〈1〉, 〈1, 1, 0〉〉 ∈ σA.

We denote 〈2, 1, 1〉 as 〈1, 0, 0〉.
– Last, from the state 〈1, 0, 0〉, we get

〈〈1, 0, 0〉, 〈0〉, 〈1, 0, 1〉〉 ∈ σA,
〈〈1, 0, 0〉, 〈1〉, 〈0, 1, 0〉〉 ∈ σA.

– We show the Markov chain in Figure 2.

Example 5. Construct the Markov chain A = (QA, Σ, σA, IA, PA) for finding
AJW (Em{{0,±1}, 2}).
– As Ds = {0,±1}, Cs = {0,±1}. Then,

w = 〈w〈−1,−1〉, w〈−1,0〉, w〈−1,1〉,
w〈0,−1〉, w〈0,0〉, w〈0,1〉,
w〈1,−1〉, w〈1,0〉, w〈1,1〉〉.

The initial value of w, wI is

wI = 〈∞,∞, ∞,
∞, 0, ∞,
∞, ∞,∞〉.

18 Suppakitpaisarn, Edahiro, and Imai

Fig. 2. The Markov chain constructed by Algorithm 3 after the second iteration of the
loop in Lines 8-17

– Consider the loop in Lines 5-17. On the first iteration, wx = wI in Line 7.
If R is assigned to 〈0, 0〉 in Line 8, the result of the function MW in Line 9,
wy is

wy = wA = 〈1, 1, 1,
1, 0, 1,
1, 1, 1〉.

Then, we add α = 〈wI , 〈0, 0〉, wA〉 to the set σA as shown in Line 10. The
probability of the transition α is 1

|Σ‖ = 1
|{0,1}2| = 1

4 . Also, we add wA to the
set Qu.

– The algorithm explores all R ∈ {0, 1}2. The result is shown in Figure 3.
– On the second iteration, wx = wA. If R is assigned to 〈0, 0〉, the result of

the function MW is wA itself. Therefore, the Markov chain consists of the
self-loop at the state corresponding to wA.

Let C be a number of states. We number each state d ∈ QA as dp where
1 ≤ p ≤ C. Let πT = (πTi) be a probabilistic distribution at time T , i.e. πTi
is the possibility that we are on state dp after received input length T . Let
P = (Ppq) ∈ R|QA|×|QA| be the transition matrix such that

Ppq =
∑

R∈Σ
PA(dp, R, dq).

Without loss of generality, assume d1 representing the state that corresponds
to the equivalence class of wI . Then, π0 = (1, 0, . . . , 0)t. From the equation
πT+1 = πTP , we find the stationary distribution such that πT+1 = πT by the

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 19

eigen decomposition. In Appendix C, we prove that the stationary distribution
always exists for any finite Markov chain generated from Algorithm 3.

The next step is to find the average weight from the stationary distribution
π. Define WK as a function from σA to the set of integer by

WK(τ) = wy,〈0〉 − wx,〈0〉,

when τ = (wx, G,wy) ∈ σA. The function can be described as the change of
the Hamming weight in the case that the carry tuple is 〈0〉. We compute the
average Hamming weight by the average value of the change in the Hamming
weight when n is increased by 1 in the stationary distribution formalized as

AJW (Em{Ds, d}) =
∑
τ∈σA

πf(τ)WK(τ)
|Σ| ,

when f(τ) = wx if τ = (wx, G,wy).

4.2 Analysis Results

By using the analysis method proposed in Subsection 4.1, we can find many
interesting results on the average joint Hamming weight. We show some inter-
esting results in Table 4. Our results match many existing result [1, 4, 9, 7]. And,
we discover some results that have not been found in the literatures. We can
describe the results as follows:

– When d = 1, we can find the average joint Hamming weight of all digit
sets Ds = {0,±1,±3, . . . ,±(2h + 1)} when h ≤ 31. If h = 2p − 1 for some
p ∈ Z, our results match the existing results by Muir and Stinson [4]. And,
we observe from the result that there is a relation between h and the average
joint hamming weight. Let p be an integer such that

2p−1 − 1 < h < 2p − 1,

AJW ({0,±1,±3, . . . ,±(2h+ 1)}, 1) =
2p

(p+ 1)2p + (h+ 1)
.

– When d = 2, we can find the average joint Hamming weight of Ds =
{0,±1,±3, . . . ,±(2h + 1)} when h ≤ 5. And, when d = 3, we can find the
average joint hamming weight of Ds = {0,±1,±3}. The most interesting
results is the case when d = 2, and Ds = {0,±1,±3}. This problem open
by Solinas [1], and there are many works proposed the upper bound of the
minimal average joint Hamming weight in this case. We can find the minimal
average weight, and close this problem. We show our result compared with
the previous works in Table 5.

20 Suppakitpaisarn, Edahiro, and Imai

Table 4. The average joint Hamming weight, AJW (Em{Ds, d}), when Ds =
{0,±1,±3, . . . ,±(2h+ 1)} found by our analysis method, with the number of states in
the Markov chain on each case

h / d 1 2 3 4

1
3
≈ 0.3333 1

2
= 0.5 23

39
≈ 0.5897 115

179
≈ 0.6424

0 (Existing work [9]) (Existing work [1]) (Existing work [7]) (Existing work [7])
(9 states) (64 states) (941 states) (16782 states)

1
4

= 0.25 281
786
≈ 0.3575 20372513

49809043
≈ 0.4090

1 (Existing work [4]) (Improved result) (New result)
(38 states) (3189 states) (1216376 states)

2
9
≈ 0.2222 1496396

4826995
≈ 0.3100

2 (New result) (New result)
(70 states) (19310 states)

1
5

= 0.2 0.2660
3 (Existing work [4]) (New result)

(119 states) (121601 states)

4
21
≈ 0.1904 0.2574

4 (New result) (New result)
(160 states) (130262 states)

2
11
≈ 0.1818 0.2342

5 (New result) (New result)
(207 states) (525620 states)

Table 5. Comparing our result with the other preliminary researches when expand a
pair of integers using {0,±1,±3}

Research Average Joint Hamming Weight

Avanzi, 2002 [10] 3
8

= 0.3750
Kuang et al., 2004 [11] 121

326
≈ 0.3712

Moller, 2004 [12] 4
11
≈ 0.3636

Dahmen et al., 2007 [5] 239
661
≈ 0.3616

Our Result 281
786
≈ 0.3575[Optimal]

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 21

5 Conclusion

In this paper, we propose the generalized minimal weight conversion algorithm
for d integers. The algorithm can be applied to any finite digit set Ds. Then, we
propose the algorithm to construct a Markov chain which can be used for finding
the average joint Hamming weight automatically. As a result, we can discover
some minimal average joint Hamming weights automatically without the prior
knowledge of the structure of the digit set. This helps us able to explore the
average weight of the unstructured set. For example, we find that the minimal
average weight is 281

786 ≈ 0.3575 when d = 2 and Ds = {0,±1,±3}. This improves
the upper bound presented by Dahmen et al., that is 239

661 ≈ 0.3616.
However, there are some gaps to improve this work as follows:

– Compared to the algorithm for each specific digit set, the generalized algo-
rithm proposed in this paper is slower and consumes more memory. However,
the efficient minimal weight conversion algorithm on the digit set that have
never been explored might be able to derive from the algorithm.

– The number of the states in the Markov chain produced by Algorithm 3 is
comparatively large. More efficient algorithm to generate the Markov chain
will help us to be able to explore the average joint Hamming weight for the
larger set.

– Our method is able to apply on the double-based number system [13, 14]. We
have successfully proposing the minimal weight conversion for any d and Ds
on this number system. However, we cannot find the fast analysis method
from that conversion. In this state, we can improve the upper bound for the
minimal average weight when d = 2 and Ds = {0,±1} from 0.3945 [15] to
0.3883, but we still cannot find the exact value.

References

1. Solinas, J.A.: Low-weight binary representation for pairs of integers. Centre for
Applied Cryptographic Research, University of Waterloo, Combinatorics and Op-
timization Research Report CORR (2001)

2. Heuberger, C., Muir, J.A.: Minimal weight and colexicographically minimal integer
representation. Journal of Mathematical Cryptology 1 (2007) 297–328

3. Heuberger, C., Muir, J.A.: Unbalanced digit sets and the closest choice strategy for
minimal weight integer representations. Designs, Codes and Cryptography 52(2)
(August 2009) 185–208

4. Muir, J.A., Stinson, D.R.: New minimal weight representation for left-to-right win-
dow methods. Department of Combinatorics and Optimization, School of Com-
puter Science, University of Waterloo (2004)

5. Dahmen, E., Okeya, K., Takagi, T.: A new upper bound for the minimal density of
joint representations in elliptic curve cryptosystems. IEICE Trans. Fundamentals
E90-A(5) (May 2007) 952–959

6. Dahmen, E., Okeya, K., Takagi, T.: An advanced method for joint scalar multi-
plications on memory constraint devices. LNCS 3813 (2005) 189–204

7. Dahmen, E.: Efficient algorithms for multi-scalar multiplications. Diploma Thesis,
Department of Mathematics, Technical University of Darmstadt (November 2005)

22 Suppakitpaisarn, Edahiro, and Imai

8. Okeya, K.: Joint sparse forms with twelve precomputed points. Technical Report
of IEICE. ISEC 109(42) (May 2009) 43–50 In Japanese.

9. Egecioglu, O., Koc, C.K.: Exponentiation using canonical recoding. Theoretical
Computer Science 129 (1994) 407–417

10. Avanzi, R.: On multi-exponentiation in cryptography. Cryptology ePrint Archive
154 (2002)

11. Kuang, B., Zhu, Y., Zhang, Y.: An improved algorithm for uP + vQ using JSF1
3.

LNCS 3089 (2004) 467–478
12. Moller, B.: Fractional windows revisited: Improved signed-digit representations for

efficient exponentiation. LNCS 3506 (2005) 137–153
13. Dimitrov, V., Cooklev, T.V.: Two algorithms for modular exponentiation based on

nonstandard arithmetics. IEICE Trans. Fundamentals E78-A(1) (January 1995)
82–87 special issue on cryptography and information security.

14. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point
multiplication using double-base chains. In: Proc. of ASIACRYPT 2005. (2005)
59–78

15. Adikari, J., Dimitrov, V.S., Imbert, L.: Hybrid binary-ternary number system for
elliptic curve cryptosystems. In: Proc. of EUROCRYPT 2009. (2009) 76–83

16. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. on Information Theory IT-31 (1985) 469–472

17. Haggstrom, O.: Finite Markov Chains and Algorithmic Application. 1 edn. Vol-
ume 52 of London Mathematical Society, Student Texts. Cambride University,
Coventry, United Kingdom (2002)

18. Schmidt, V.: Markov Chains and Monte-Carlo Simulation. Department of Stochas-
tics, University Ulm (July 2006)

19. Suppakitpaisarn, V.: Optimal average joint hamming weight and digit set expan-
sion on integer pairs. Master’s thesis, The University of Tokyo (2009)

20. Suppakitpaisarn, V., Edahiro, M.: Fast scalar-point multiplication using enlarged
digit set on integer pairs. Proc. of SCIS 2009 (2009) 14

Appendix A: The Carry Set

In this section, we present the algorithm to find the carry set Cs in Algorithm
1,2. We show the method in Algorithm 4. It is based on breadth-first search
scheme. And, we find the upper bound of the cardinality of the carry set in
Lemma 1.

Lemma 1. Given the finite digit set Ds, Algorithm 3 always terminates. And,

||Cs|| ≤ maxDs−minDs+ 2,

when Cs is the output carry set.

Proof. Since

Cs = {c− d
2
∈ Z|d ∈ Ds ∧ c ∈ Cs} ∪ {c− d+ 1

2
∈ Z|d ∈ Ds ∧ c ∈ Cs},

minCs ≥ minCs−maxDs
2

.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 23

Algorithm 4 Find the carry set of the given digit set
Require: the digit set Ds
Ensure: the carry set Cs
1: Ct← {0}, Cs← �
2: while Ct 6= � do
3: let x ∈ Ct
4: Ct← Ct ∪ ({x+d

2
∈ Z|d ∈ Ds} − Cs− {x})

5: Ct← Ct ∪ ({x+d+1
2
∈ Z|d ∈ Ds} − Cs− {x})

6: Cs← Cs ∪ {x}
7: Ct← Ct− {x}
8: end while

Then,
minCs ≥ −maxDs.

Also,
maxCs ≤ −minDs+ 1.

We conclude that if Ds is finite, Cs is also finite. And, Algorithm 3 always
terminates.

||Cs|| ≤ maxDs−minDs+ 2.

ut

Appendix B: The Optimality of Algorithm 1,2

In this subsection, we present the mathematical proof that Algorithm 1,2 pro-
posed in Section 3 is the minimal weight conversion.

Lemma 2. For any positive integer 0 ≤ t ≤ n − 1. Qt+1,〈i,Gt+1〉, which are
assigned in Line 7 of Algorithm 1, represent the minimal weight expansion of
the prefix string length n − t of the bit string Eb{d}(r1, . . . , rd), when the carry
from less significant bits to the prefix is G. And, wt+1,Gt+1 is the joint hamming
weight of Qt+1,〈1,Gt+1〉, . . . , Qt+1,〈d,Gt+1〉.

Proof. We use the mathematic induction for proving this lemma.
We begin the proof by the case when t = n−1. In this case, all Qn−1,〈i,Gn−1〉

have length (n− (n− 1)) = 1. The subsolution Qn−1,〈i,Gn−1〉 should satisfy

Qn−1,〈i,Gn−1〉 = 〈aei〉,

if AE ∈ Dsd, because it does not produce any carries to more significant bits.
Then, wn−1,Gn−1 = 0 when AE = 〈0〉 and wn−1,Gn−1 = 1 otherwise.

We initialize lw in Algorithm 1 Line 2 such that wn,Gn = 0 if G = 〈0〉, and
wn,Gn = ∞ otherwise. Then, weR∗n−1

, which is assigned in Algorithm 2 Line
6, is ∞ if Gn 6= 〈0〉. If there are some finite elements among we, weR∗n−1

will

24 Suppakitpaisarn, Edahiro, and Imai

not be the minimal element on Algorithm 2 Line 11 and will not be assigned to
Qn−1,〈i,G〉 in Algorithm 2 Line 15. Hence, all selected EA = 〈eai〉di=1 satisfy

cei =
aei − eai

2
= 0,

for all 1 ≤ i ≤ d. That means aei = eai, and we can conclude that Qn−1,〈i,G〉 =
〈aei〉. Also, we prove that wn−1,Gn−1 = 0 when Gn−1 = 〈0〉 and wn−1,Gn−1 = 1
otherwise by Algorithm 2. We prove the statement when T = n− 1.

It is left to show that if the lemma holds when t = K, it also holds when
t = K − 1, for any K ≥ 1.

Assume that when t = K, wK+1,GK+1 , QK+1,GK+1 are the optimal weight
and the optimal expansion of the prefix string length n −K for any G ∈ Csd.
We claim that wK,GK , QK,GK are also the prefix string length n−K + 1.

First, we prove that wK,GK is the joint Hamming weight of

QK,〈1,GK〉, . . . , QK,〈d,GK〉

for any GK ∈ Csd. It is obvious that weEA selected in Algorithm 2 Line 11
equals wK+1,CE , when EA = 〈0〉 and wK+1,CE + 1 otherwise, by Algorithm 2
Line 6 (CE is defined in Algorithm 2 Line 14). By the assignment in Algorithm
2 Line 15,

QK,〈i,GK〉 = 〈QK+1,〈i,CE〉, eai〉.
Since, the joint hamming weight of QK+1,〈1,CE〉, . . . , QK+1,〈d,CE〉 is equal to
wK+1,CE by induction, the property also holds for each QK,GK .

Next, we prove the optimality of QK,〈i,GK〉. Assume contradiction that there
are some string PK,〈i,GK〉 such that

PK,〈i,GK〉 6= QK,〈i,GK〉

for some 1 ≤ i ≤ d, and some GK ∈ Csd. And, the joint hamming weight of
PK,〈1,GK〉, . . . , PK,〈d,GK〉 is less than QK,〈1,GK〉, . . . , QK,〈d,GK〉. Let the last digit
of PK,〈i,GK〉 be lpi. If lpi = eai for all 1 ≤ i ≤ d, the carry is

〈aei − eai
2

〉di=1 = CE.

By induction, the joint Hamming weight QK+1,〈1,CE〉, . . . , QK+1,〈d,CE〉 is the
minimal joint Hamming weight. Then, the joint hamming weight of P is greater
or equal to Q. If lpi 6= eai for some 1 ≤ i ≤ d, the carry is

H = 〈hi〉di=1 = 〈aei − lpi
2

〉di=1.

By induction, QK+1,〈i,H〉 is the minimal weight expansion. Then,

JW (PK,〈1,H〉, . . . , PK,〈d,H〉) ≥ JW (QK+1,〈1,H〉, . . . , QK+1,〈d,H〉)+JW (〈lp1〉, . . . , 〈lpd〉),

when JW is the joint hamming weight function.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 25

By the definition of WE, it is clear that

JW (QK+1,〈1,H〉, . . . , QK+1,〈d,H〉) + JW (〈lp1〉, . . . , 〈lpd〉) = weI ,

when I = 〈lp1, . . . , lpd〉.
In Algorithm 2 Line 11, we select the minimal value of weEA. That is

weEA ≤ weI .

As
weEA = JW (QK,〈1,GK〉, . . . , QK,〈d,GK〉),

we can conclude that

JW (PK,〈1,GK〉, . . . , PK,〈d,GK〉) ≥ JW (QK,〈1,G〉, . . . , QK,〈d,G〉).

This contradicts our assumption. ut

Theorem 1. Let Z = 〈0〉. 〈Q0,〈i,Z〉〉di=1 in Algorithm 1 Line 9 is the minimal
joint weight expansion of r1, . . . , rd on digit set Ds.

Proof. 〈Q0,〈i,G〉〉di=1 are the optimal binary expansion of the least significant bit
by Lemma 2. Since there is no carry to the least significant bit, 〈Q0,〈i,{0}〉〉di=1 is
the optimal solution. ut

Appendix C: The Markov Chain from Algorithm 3

In this section, we prove that the set of states QA defined in Section 4 is finite.
We also show that the Markov chain automatically generated by Algorithm 3
has a unique stationary distribution.

Lemma 3. Let Λ be a largest integer of Ds, and {0,±1,±Λ} ⊆ Ds. For any
possible values of lw = 〈lw〉G∈Csd , there exists c ∈ Z such that

lwG1 − lwG2 < c,

for any G1, G2 ∈ Csd such that lwG1 , lwG2 is a finite integer.

Proof. Let l be the possible value of lw, and α1, . . . , αd are the prefix string
length β of the input that move the Markov chain to the state l. Let

ν = max(maxCs,−minCs),

and γ1, . . . , γd are the prefix string length β − ν. They move the Markov chain
to the state ll.

First, we show that for any G ∈ Csd

lG ≤ ll〈0〉 + ν + d.

26 Suppakitpaisarn, Edahiro, and Imai

We consider the case that the last bit of αε is 0, for all ε ∈ {1, . . . , d}, and
G ∈ {0,±1}d. Since {0,±1} ∈ Ds,

lG ≤ ll〈0〉 + µ ≤ ll〈0〉 + ν,

when µ is the joint Hamming weight of the substring of the input from the
(β − ν + 1)th significant bits to the βth significant bit, λ1, . . . , λd.

Assume the last bit of αε is 1, for some ε ∈ {1, . . . , d}. If Gε ∈ {0,−1},
aeε ∈ Ds. Next, we consider the case when Gε = 1, and aeε = 2. If 2 ∈ Ds, we
prove the case. If not, we need to carry something to more significant bit. That
carry can be dissolved if there exists 0 in some bit in λε. If all number in λε is
1, we might need to carry 1 into γε. If there exists 0 in γε, it might be changed
to 1, that increase the joint Hamming weight at most 1. If not, the carry must
be dissolved by changing some c1 ∈ Ds − {0} to c2 ∈ Ds − {0}, that does not
change the joint Hamming weight. Then, we prove the case.

Next, we prove the claim that

lG ≤ luH + 1,

when lu is the state of the Markov chain moved by the prefix string length β−1
of the input, and H is defined as

Hε =





Gε Gε ∈ {0,±1}
Gε
2 |Gε| ≥ 2 and |Gε| is even

Gε−1
2 |Gε| ≥ 2 and |Gε| is odd and last digit of αε is 0

Gε+1
2 otherwise .

By the above equation,

|Hε| ≤ |Gε| − 1 if |Gε| ≥ 2.

Then, by this claim
lG ≤ llH + ν,

when H ∈ {0,±1}d. Hence,

lG ≤ ll〈0〉 + ν + d.

In this paragraph, we show that the claim is correct. We consider Gε as the
carry to the bit, and Hε as the carry to more significant bit. Let ω be the βth

significant bit of rε. In case that 2|Gε, we can carry Gε
2 to more significant bits

and leave this bit to ω. If 2|(Gε+1) and ω is 0, we carry Gε−1
2 to more significant

bit, and leave 1. If the input is 1, we carry Gε+1
2 , and leave 0.

On the second part of the proof, we show the upper bound of lw〈0〉. Let
α1, . . . , αd be a string length β, and γi be a prefix of αi length β − ν, for some
ν ∈ Z. αi moves the Markov chain to the state l and γi moves the Markov chain
to the state ll. We show that for any G ∈ Cd,

l〈0〉 ≤ llG + ρ,

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 27

when ll is induced by the substring of the string which induce l. Refer to Al-
gorithm 2, we select the best input in each output among Dsd, by carrying
CA ∈ Csd. But, we cannot output every possible Dsd by the condition in Line
8. Let D ⊆ Dsd be a set of possible output, and C ∈ Csd be a set of the possible
carry from the bit. It is obvious that

l〈0〉 ≤ llG + 1,

for any G ∈ C. Let Cin ⊆ Cs be a set of possible carry to the input bit I ∈ {0, 1}
and Cou ⊆ Cs is the possible carry produced by the bit and the set Cin. Define
a function ∆ : P (Cs)×{0, 1} → P (Cs) such that ∆(Ci, I) = Co. We claim that
if

αi /∈ {w|w ∈ (0+1+)|Cs|+1},
for some positive integer p, we can show that

Cs = ∆. . .∆(∆(〈0〉, Iβ−|Cs|), Iβ−|Cs|+1) . . . , Iβ),

when It is the tth significant bit of the string αi. Let Λ be an odd number. It is
clear that if c ∈ Cin and Cou = ∆(Cin, I),

{c+ I + 1
2

,
c+ I − 1

2
,
c+ I + Λ

2
,
c+ I − Λ

2
} ⊆ Cou,

when c+ I is odd, and

{c+ I

2
} ⊆ Cou,

when c+ I is even. We start with Cin = {0}. Since αi /∈ {w|w ∈ (0+1+)|Cs|+1},
there exist 1 in the bit string of αi. And,

∆({0}, 1) = {0, 1, Λ+ 1
2

,
−Λ+ 1

2
}.

The set ∆({0}, 1) contains both the odd and the even integer. Also, the set
{ c+I−Λ2 , c+I−1

2 , c+I+1
2 , c+I+Λ2 }, for any c ∈ Cs. If c + I 6= Λ, c+I+Λ

2 > c + I.
Then, the largest odd number of Cou is larger than the largest odd number of
Cin. Also, the smallest odd number of Cou is smaller than the smallest odd
number of Cou. Hence, if the largest or the smallest number is the odd number,
we get the bigger set. As we have c+I−1

2 , c+I+1
2 ∈ Cs, the numbers lying between

the smallest and the biggest number are filled with a small number of loop.
Last, we consider the case when αi is the string in the regular language

(0+1+)|Cs|+1. Since {0,±1} ⊆ Ds, we can represent αi by NAF. The Hamming
weight of representing the bit string αi by NAF is at most |Cs|+ 2.

ut

Theorem 2. The set QA is finite.

28 Suppakitpaisarn, Edahiro, and Imai

Proof. Let lwa = 〈lwaG〉G∈Csd be a possible value of lw such that

α = min
G∈Csd

lwaG.

Let lwn = 〈lwnG〉G∈Csd such that

lwnG = lwaG − α,

for any G ∈ Csd. It is obvious that lwn is equivalent to lwa, and they represent
the same class in QA. The minimal value of lwn is 0, and the maximal value is
c, as in Lemma 3. Then, there is (c + 1)||Cs||

d

possible classes of lw. And, the
number of the members of the set QA is bounded by that number. ut

Lemma 4. For any possible values of lw = 〈lw〉G∈Csd , there exists a sequence
of members of σA such that

〈(lw, 〈0〉, q1), (q1, 〈0〉, q2), . . . , (qβ , 〈0〉, lwc)〉,

where lw, q1, . . . , qβ , qC ∈ QA. lwc = 〈lwcG〉G∈Csd is the constant value such
that

lwcG = JW (Em{Ds, d}(g1, . . . , gd)),

where G = 〈gi〉di=1.

Proof. For any possible values of lw, lwa ∈ QA. Let the inputs r1, . . . , rd be as
follows:

– Let n = maxi(log2(ri)).
– The first n− α bits of the inputs,

Ebn− 1, d(r1, . . . , rd), . . . , Ebα, d(r1, . . . , rd),

make the Markov chain be on that state lwa. As lwa is the possible value of
lw, there always exists the bit string.

– The remaining of the bit string

Ebα− 1, d(r1, . . . , rd), . . . , Eb0, d(r1, . . . , rd)

are 〈0〉.
We claim that if α is large enough, the array lw is lwc when Algorithm 1 termi-
nates.

First, we prove that

lwcG = lwa〈0〉 + JW (〈g1〉, . . . , 〈gd〉),

if G ∈ Dsd. That means the carry to the αth significant bit is 〈0〉. We assume
contradiction that there exists any carry from the least significant bit K =

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 29

〈ki〉di=1 which make the joint weight lower. Let β be the joint Hamming weight
of the zero-input part of the bit string,

lwa〈0〉 + JW (Em{Ds, d}(g1, . . . , gd) < lwaL + β,

for some L ∈ Csd that can be carry to the αth when the carry from the least
significant bit is K. It is obvious that L 6= 〈0〉, as

β ≥ JW (Em{Ds, d}(g1, . . . , gd).

Similaryly, it is also obvious that the carry between the bit number t and t+ 1
is not 〈0〉.

Since Cs is a finite set, let

maxCs < 2γ .

And, let
α > (c+ 1) · γ + ε,

when ε is the length of the shortest string that can represent

Em{Ds, d}(g1, . . . , gd).

Let the first n − α bits of r1, . . . , rd can be converted to the integer as
rf1, . . . , rfd. Carrying L = 〈li〉di=1 makes us have to represent the number

rf1 · 2α + l1, . . . , rf2 · 2α + ld

using the prefix length n− 1 of the solution. Since li is less than 2γ , we cannot
make the string that is all zeros between the bit number γ+ 1 to 1 represent the
value. This means the joint Hamming weight of the sub-solution between the bit
number γ + 1 to 1 has to be more than 0.

Since the carry to the bit number α cannot be 〈0〉, the carry from the bit
number γ+1 is not 〈0〉. As a result, the joint Hamming weight of the sub-solution
between the bit number 2γ + 2 to γ + 2 has to be more than 0. Similarly, the
joint Hamming weight of the sub-solution between the bit number α to the bit
number 1 is more than c+ 1.

From Lemma 3,
lwaL − lwa〈0〉 < c.

As β ≥ c+ 1, and JW (Em{Ds, d}(g1, . . . , gd) ≤ 1, this contradicts our assump-
tion that

lwa〈0〉 + JW (Em{Ds, d}(g1, . . . , gd) < lwaL + β.

When, G /∈ Dsd, we start with the bit number ε, and use the same method
to prove this lemma. ut
Lemma 5. The Markov chain constructed by Algorithm 3 always has one sink
component.

30 Suppakitpaisarn, Edahiro, and Imai

Proof. The component in the Markov chain the set S ⊆ QA such that for all
p, q ∈ S, there exists a path from p to q and from q to p.

The sink component is the component such that there are no edge from the
component to the remaining part of the Markov chain.

From Lemma 4, we can conclude that there always exists a state that is
reachable from every states in the Markov chain. And, all states that are reach-
able from that state form a component. The component is the sink component.
If there exists a path from some nodes in the component, the inbound of the
path should also be included in the component.

Since there always exists the path from all nodes to that sink component, it
is impossible that the Markov chain has more than one sink components. ut
Lemma 6. Let lwc = 〈lwcG〉G∈Csd such that

lwcG = JW (Em{Ds, d}(g1, . . . , gd)).

Then,
(lwc, 〈0〉, lwc) ∈ σA.

Proof. In the proof of Lemma 4, we show that if

α > (c+ 1) · γ + ε,

the Markov chain will be at the state lwc. We use the similar way to prove that
this property also holds when

α > (c+ 1) · γ + ε+ 1.

This imply that
(lwc, 〈0〉, lwc) ∈ σA.

ut
Proposition 1. (Corollary 2.5 of [18]) If the Markov chain is irreducible, all
states have the same period.

Proposition 2. (Theorem 5.3 of [17]) Any irreducible and aperiodic Markov
chain has exactly one stationary distribution.

Theorem 3. The Markov chain A generated by Algorithm 3 has exactly one
stationary distribution.

Proof. Let S be a sink component of the Markov chain A. Lemma 5 shows that
S is unique. As the remaining part of the Markov chain A− S has paths to the
sink component with the positive probability, and there is no path from the sink
component by the definition. It is obvious that in the stationary distribution of
all states in A− S is zero.

Then, it is left to prove that S has exactly one stationary distribution. By
Proposition 2, we need to show that S is irreducible and aperiodic.

Optimal Average Joint Hamming Weight and Minimal Weight Conversion 31

As S is a component, S is irreducible by the definition.
Let si ∈ S. Assume that start the Markov chain at si in time 0, and let the

Markov chain come back to si in time {t0, t1, . . . , tk, . . . } with probability more
than 0. The period of si , pe(si) is defined as

pe(si) = gcd(t0, t1, . . . , tk, . . .).

The Markov chain is aperiodic if and only if all si ∈ S have the period equals to
1.

By Lemma 6, there exists a node s ∈ S that have a self loop. This node
has the period equals to 1. And by Proposition 1, all states in S have the same
period. Then, we can conclude that S is aperiodic. ut

