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Abstract. We analyze how fast we can solve general systems of multivariate
equations of various low degrees over [Fo; this is a well known hard problem
which is important both in itself and as part of many types of algebraic crypt-
analysis. Compared to the standard exhaustive-search technique, our improved
approach is more efficient both asymptotically and practically. We implemented
several optimized versions of our techniques on CPUs and GPUs. Modern graphic
cards allows our technique to run more than 10 times faster than the most pow-
erful CPU available. Today, we can solve 48+ quadratic equations in 48 binary
variables on a NVIDIA GTX 295 video card (USD 500) in 21 minutes. With this
level of performance, solving systems of equations supposed to ensure a security
level of 64 bits turns out to be feasible in practice with a modest budget. This is a
clear demonstration of the power of GPUs in solving many types of combinatorial
and cryptanalytic problems.
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1 Introduction

Solving a system of m nonlinear polynomial equations in n variables over I is a natural
mathematical problem that has been given much attention by various research groups
including the cryptographic community. The interest of the latter in this problem has
two sources. On the one hand, since the problem is NP-complete (and random instances
seem hard), it could be used to design cryptographic primitives. This led to the devel-
opment of multivariate cryptography in the last few decades, using one-way trapdoor
functions such as HFE, SFLLASH, and QUARTZ [10, 18, 19], as well as stream ciphers
such as QUAD [4]. On the other hand, it often seems appealing to try to break a cryp-
tographic primitive by expressing the secret to be found as the solution to a system of
multivariate polynomial equations. This failed to break the AES block cipher, but suc-
ceeded against other block ciphers such as KeelLoq [9], and yielded a faster collision
attack on 58 rounds of SHA-1 [22].

Since pioneering work by Buchberger [8], Grobner-basis techniques have been the
most prominent tool for this problem, especially after the emergence of faster algo-
rithms such as F4 or F'5 [13, 14], which broke the first HFE challenge [15]. The crypto-
graphic community independently rediscovered some of the ideas underlying efficient
Grobner-basis algorithms as of the XL algorithm [11] and its variants. They also intro-
duced techniques to deal with special cases, particularly that of sparse systems [1,21].



In this paper we take a different path, namely improving the standard and well-
understood exhaustive search algorithm. When the system consists of n randomly cho-
sen quadratic equations in n variables, all the known solution techniques have exponen-
tial complexity. In particular, Grobner-basis methods have an advantage on very overde-
termined systems (with many more equations than unknowns) and systems with certain
algebraic “weaknesses”, but were shown to be exponential on “generic” enough sys-
tems in [2, 3]. In addition, the computation of a Grobner basis is often a memory-bound
process; since memory is more expensive than time, such sophisticated techniques can
be inferior in practice when compared to simple testing of all the possible solutions
which uses almost no memory.

For “generic” quadratic systems, experts believe [2,23] that Grobner basis methods
will go up to degree Dy, which is the minimum possible D where the coefficient of t”
in (1+t)"(1+t2)~™ goes negative, and then require the solution of a system of linear
equations with 7" 2> ( DO”_I) variables. This will take at least poly(n) -T2 bit-operations
if we assume the existence of sufficiently large memory and that we can solve such a
linear system of equations with non-negligible probability in O(N?+°(1)) time for N
variables. For example, assume that we can operate a Wiedemann solverona 1" x T’
submatrix of the extended Macaulay matrix of the original system, then the polynomial
is 3n(n — 1)/2. When m = n = 200, Dy = 25, the value of T exceeds 2'%2, and thus
we may deduce that Grobner-basis methods would never outperform exhaustive search
in the practically interesting range of m = n < 200.

The questions we address are therefore: how far can we go, on both the theoretical
and practical side, by pushing exhaustive search further? Is it possible to design more
efficient exhaustive search algorithms? Can we get better performance using different
hardware such as GPUs? Is it possible to solve in practice, with a modest budget, a sys-
tem of 64 equations in 64 unknowns over [Fo? Less than 15 years ago, this was consid-
ered so difficult that it even underlied the security of a particular signature scheme [17].
Intuitively, some people may consider an algebraic attack that reduces a cryptosystem to
64 equations of degree 4 in 64 [F5-variables to be a successful practical attack. However,
the matter is not that easily settled because the complexity of a naive exhaustive-search
algorithm would actually be much higher than 2%4: Simply testing all the solutions in
a naive way results in 2 - (%) - 264 ~ 2% logical operations, which would make the
attack hardly feasible even on today’s best available hardware.

Our Contribution. Our contribution is twofold. On the theoretical side, we present a
new type of exhaustive search algorithm which is both asymptotically and practically
faster than existing techniques. In particular, we show that finding all the zeroes of a
single degree-d polynomial in n variables requires just d- 2™ bit operations. We then ex-
tend this technique and show how to find all the common zeroes of m random quadratic
polynomials in log, n - 2”2 bit operations, which is only slightly higher. Surprisingly,
this complexity is independent of the number of equations m.

On the practical side, we implemented our new algorithms on x86 CPUs and on
nVidia GPUs. While our CPU implementation is fairly optimized using SIMD instruc-
tions, our GPU implementation running on one single nVidia GTX 295 graphics card
runs up to 13 times faster than the CPU implementation using all the cores of an Intel
quad-code Core 17 at 3 GHz, one of the fastest CPUs currently available. Today, we
can solve 48+ quadratic equations in 48 binary variables using just an nVidia GTX 295



video card in 21 minutes. This device is available for about $500. It would be 36 min-
utes for cubic equations and two hours for quartics. The 64-bit signature challenge [17]
mentioned above can thus be broken with 10 such cards in 3 months, using a budget of
$5000. Even taking into account Moore’s law, this is still quite an achievement.

In contrast, the implementation of F, in MAGMA-2 .16, often cited as the best
Grobner-basis solver available today, requires more than 64 GB of memory to solve
just 25 cubic equations in as many [Fs-variables. When it does not run out of memory,
it requires 2.5 hours to solve 20 cubic equations in 20 variables on one Opteron core
at 2.2 GHz, or half an hour for 45 quadratic equations with 30 variables, or 7 minutes
for 60 quadratic equations with 30 variables. Each of the above are solved in less than
a second using negligible memory via enumeration on the same CPU.

Implications. The new exhaustive search algorithm can be used as a black-box in
cryptanalysis that need to solve quadratic equations. This include for instance several
algorithms for the Isomorphism of Polynomials problem [6,20], and the attacks that
rely on such algorithms such as [7].

We also show with a concrete example that (relatively simple) computations requir-
ing 264 operations can be more and more easily be carried out in practice with readily
available hardware and a modest budget. Lastly, we highlight the fact that GPUs can
be used successfully by the cryptographic community to obtain very efficient imple-
mentations of combinatorial algorithms or cryptanalytic attacks, in addition to the more
numeric-flavored cryptanalysis algorithm demonstrated by the implementation of the
ECM factorization algorithm on GPUs [5].

Organization of the Paper. Some known or useful results on Gray Codes and Deriva-
tive of multivariate polynomials are shown in section 2, where a formal framework of
exhaustive search algorithms is also given. Known exhaustive-search algorithms are re-
viewed in section 3. Our algorithm to find the zeroes of a single polynomial of any
degree is given in section 4, and it is extended to find the common zeroes of a collection
of polynomials in section 5. Section 6 describes the two platforms on which we im-
plemented the algorithm, and section 7 describes the implementation and performance
evaluation results.

2 Generalities

In this paper, we will mostly be working over the finite vector-space (IF3)". The canon-
ical basis is denoted by (eq, ..., e,_1). We use @ to denote addition in (F2)", and +
to denote integer addition. We use @ < k (resp. ¢ > k) to denote binary left-shift (resp.
right shift) of the integer 7 by £ bits.

Gray Code. Gray Codes play a crucial role in all the algorithms presented in this paper.
Let us denote by by (%) the index of the k-th lowest-significant bit set to 1, or —1 if the
hamming weight of i is less than k. For example, bx(0) = —1, b1(1) = 0,61(2) = 1
and by(3) = 1.

Definition 1. GRAYCODE(i) =i @ (i > 1).

Lemma 1. Fori € N: GRAYCODE(7 + 1) = GRAYCODE(7) @ e, (;+1)-



Derivatives. Define the [F5 derivative % of a polynomial with respect to its ¢-th vari-
able as % :x — f(x+e;) + f(x). Then for any vector x, we have:

of

Foxct ) = F(x) + 5 () n

If f is of total degree d, then % is a polynomial of degree d — 1. In particular, if f

is quadratic, then % is an affine function. In this case, it is easy to isolate the constant
part (which is a constant in Fo) : ¢; = %(O) = f(e;) + f(0). Then, the function

X %(x) + ¢; 1s by definition a linear form, and can be represented by a vector

D; € (F3)". More precisely, we have D;[j] = f (e; +¢€;) + f (e;) + f (ej) + f(0).
Then equation (1) becomes:

f(x+e)=f(x)+D;-x+¢ (2)

Enumeration Algorithms. We are interested in enumeration algorithms, i.e., algo-
rithms that evaluate a polynomial f over all the points of (F2)" to find its zeroes. Such
an enumeration algorithm is composed of two functions: INIT and NEXT. INIT( f, z¢, ko)
returns a State containing all the information the enumeration algorithm needs for
the remaining operations. The resulting State is configured for the evaluation of f
over o @ (GRAYCODE(i) < ko), for increasing values of 7. NEXT(State) advance
to the next value and updates State. Three values can be directly read from the state:
State.x, State.y and State.i. The invariants shown in fig. 2(a) explicitly define the
relationships which link them at all times. Finding all the zeroes of f is then achieved
with the loop shown in figure 2(b).

Fig. 1. A Framework for Enumeration Algorithms.

i) State.y = f(State.x)
i1) State.x = o ® (GRAYCODE(State.i) < ko).
1i1) NEXT(State).i = State.i + 1.
(a) Invariants of an enumeration algorithm

1: procedure ZEROES(f)

2:  State « INIT(f,0,0)

3:  forifromOto2" — 1

4: if State.y = 0 then State.x is a zero of f
5: NEXT(State)

6: end for

7

end procedure
(b) Main loop.

3 Known Techniques for Quadratic Polynomials

We briefly discuss the enumeration techniques known to the authors.



Naive Evaluation. The simplest way to implement an enumeration algorithm is to
evaluate the polynomial f from scratch at each point of (IF3)". This requires two AND
per quadratic monomial, and (almost) as many XORs. Since the evaluation takes place
many times for the same f with different values of the variables, we will usually as-
sume that the polynomial can be hard-coded, i.e., that it is not necessary to include the
terms for which a;;j; = 0. Each call to NEXT would then require at most n(n + 1) bit
operations, half-AND and half-XOR (not counting the cost of enumerating (F2)", i.e.,
incrementing a counter). This can be improved a bit, by factoring out the monomials:

o0 =S e (S5 a4y ay) +e )

The bit-operation count falls down to n(n + 3)/2, and in general for degree-d polyno-
mials to a sum dominated by (Z) This method is simple but not without its advantages,
chiefly (a) insensitivity to the order in which the points of (F5)" are enumerated, and
(b) we can bit-slice and get a speed up of nearly w, where w is the maximum width of
the CPU logical instructions.

The Folklore Differential Technique. It was pointed out in section 2 that once f(x)

is known, computing f(x + e;) amounts to compute % (x), and this derivative happens
to be a linear function which can be efficiently evaluated by computing a vector-vector
product and a few scalar additions. This strongly suggests to evaluate f on (F3)" using
a Gray Code, i.e., an ordering of the elements of (F3)" such that two consecutive ele-
ments differ in only one bit (¢f. lemma 1). This leads to the algorithm shown in fig. 2.
We believe this technique to be folklore, and in any case it appears more or less explic-
itly in the existing litterature. Each call to NEXT requires n ANDs, as well as n + 2
XORs, which makes a total bit operation count of 2(n + 1). This is about n/4 times less
than the naive method. Note that when we describe an enumeration algorithm, the vari-
ables that appear inside NEXT are in fact implicit functions of State. The dependency
has been removed to lighten the notational burden.

Fig. 2. The Folklore Differential Enumeration

1: function NEXT(State)
1: function INIT(f,_, ) 2: g—1+1
2: 1+ 0 3 k= b1(7)
33 x«<0 4:  z < VECTORVECTORPRODUCT (Dy, X)
4.y« f(0) 50 y<—yodz
5: For all 0 < k < n — 1, initialize cx and Dy, 6: X —X® e
6: end function 7: end function

(a) Initialisation (b) Update

4 A Faster Recursive Algorithm for any Degree

We now describe one of the main contributions of this paper, which is a new algorithm
which is both asymptotically and practically faster than standard exhaustive search in



enumerating the solutions of one polynomial equation. Theorem 1 below summarizes
its features.

Theorem 1. All the zeroes of a single multivariate polynomial f in n variables of de-
gree d can be found in essentially d - 2" bit operations (plus a negligible overhead),
using n?=1 bits of read-write memory, and accessing n® bits of constants, after an
initialization phase of negligible complexity O (nzd).

Construction of the Recursive Enumeration Algorithm. We will construct an enu-
meration algorithm in two stages. First, if f is of degree 0, then the problem can be
trivially solved, as there is almost nothing to do, except to ensure that our definition of
an enumeration algorithm is fulfilled. This algorithm is shown in fig. 3.

Fig. 3. Enumeration in the constant case

1: function INIT(f, ko, x0) 1: function NEXT(State)
2 70 2: 1—1+1

33 x«+—xo 30 k=bi(v)

4: y — f(=zo) 4: x—xPeg

5: end function 5: end function

(a) Initialisation (b) Update

When f is of higher degree, we need a little more effort. The main idea is that in
the folklore differential algorithm of fig. 2, the computation of z essentially amounts to
evaluate % on something that looks like a Gray Code. We may then use the enumera-
tion algorithm recursively on %, since it is a polynomial of strictly smaller degree. The
resulting algorithm is shown fig. 5(a).

It is not difficult to see that the complexity of NEXT is O (d), where d is the degree
of f. The temporal complexity of INIT is n? times the time of evaluating f, which
is itself upper-bounded by n? and its spatial complexity is also of order O (nd). This
means that the complexity of the algorithm of fig. 2(b) is O (d -2" + nzd). When d =
2, this is about n times faster than the algorithm described in 2. The correctness of this
algorithm is proved in annex A.

Removing Useless Computation. In fact, NEXT performs lots of useless work, such
as maintaining x. Less obviously, we can also avoid maintaining .

Lemma 2. After line 3 of NEXT infig. 5(a), we have: i = 2¥+ Derivativelk].i x 2F+1,

Proof. Itisnot difficult to see that the /-th value of j such that by (j) = kis 284+£x2FF1,
The statement of the lemma is equivalent to saying that Derivative[k].i counts the
number of time where by (i) = k happened since the begining of the main loop (not
counting the current value of 7). This simply follows from the fact that Derivative[k].i
counts the number of times NEXT(Derivative[k]) has been called. 0



Next, we argue that:

. ~1 ifj=0
by (28 + - 28 1) = 4
2 (247 ) (k+1)+b1(j) otherwise )

Thus, after line 3 of NEXT, we have that by (Derivativelk].i) = ba(i) + (k4 1). In
fact, by (7) then gives precisely the index of the bit of Derivative[k].x that gets flipped.
The same reasoning carries over to Derivativelk]. Derivative[k'].i, (using b3 (7)) and
SO on.

Thus, it is possible to avoid storing the ¢ values, except in the main loop, by evalu-
ating by on the index of the main loop. These computations, although taking amortized
constant time, could be made negligible by unrolling. NEXT then essentially perform d
bit operations, and since it is in fact only necessary to store y. INIT creates an array of
n? bits of constants (the degree-d derivatives), and allocates n?~! bits of internal state
(corresponding the derivatives of smaller degree).

An Iterative Version. While the combination of algorithms 2(b), and 5(a) gives a
correct and complete algorithm, its recursive formulation is not the easiest way of ob-
taining an efficient implementation. Therefore, we explicitly unrolled recursive calls,
and packed all the sub-algorithms into a simpler one, algorithm 5(b). We also removed
all the useless computations (for instance, the 7 and the x fields of each State in fact do
not need to be maintained). The ¢; and D; notations are those of section 2. The critical
section of this code is the inner loop that starts at line 10. It performs two XORs and
one comparison. The cost of computing the 2-adic valuation can be made negligible by
partially unrolling this critical loop.

Fig. 4. Faster Enumeration.

1: function INIT(f, ko, zo)
2: 1 +— 0
3: X «— o
Ly — f(wo)
5: forifromOto2" — 1 I: y — f(0)
6: w}) — xo & GRAYCODE (2k+ko> 2: ify = O then O is a zero of f

of 3: z[0] < co
7: Derivativelk] < INIT ( vk +ko+1, mg) 4y —y & z[0]

Ok + ko 5: forufromlton —1
8:  end for 6: if y = 0 then GRAYCODE(2" — 1) is a zero of f
9: end function 7. z[u] — Dyju— 1] @ cy
8 ye—y®azly]
9: for v from 0 to 2“ — 2
1: function NEXT(State) 10: if y = 0 then GRAYCODE(2" + v) is a zero of f
2 i—i+1 11: E—b(2“+v+1)
33 k=0b1(3) 12: 0 —by(2% +v+1)
4 x—xOD etk 13: z|k] «— z[k] ® D[]
5.y «— y ® Derivative[k].y 14: y — ¥y & zlk]
6: NEXT(Derivativelk]) 15:  end for
7: end function 16: end for
(a) General Setting (b) Unrolled version for quadratic f



5 Common Zeroes of Several Multivariate Polynomials

We will use several time the following simple idea: all the techniques we discussed
above perform a sequence of operations that is independent of the coefficients of the
polynomials. Therefore, m instances of (say) algorithm 5(b) could be run in parallel on
fi,- -+, fm. All the parallel runs would execute the same instruction on different data,
which makes it easy to implement on vector or SIMD architectures. In each iteration of
the main loop, it is easy to check if all the polynomials vanished on the current point
of (F3)". Evaluating all the m polynomials in parallel using algorithm 5(b) would take
2m2™ bit operations. The point of this section is that it is possible to do much better
than this.

Note that for the sake of simplicity we limit our discussion to the case of quadratic
polynomials (this case being the most relevant in practice). Our objective is now to
show the following result.

Theorem 2. The common zeroes of m (random) quadratic polynomials in n variables
can be found after having performed in expectation log, n - 22 bit operations.

The remaining of this section is devoted to establish this theorem. Let us introduce
a useful notation. Given an ordered set U, we denote the common zeroes of f1, ..., fm
belonging to U by Z([f1,..., fm],U). Let us also denote Z, = (F3)", and Z; =
Z ([fil, Zi—1). It should be clear that Z = Z,, is the set of common zeroes of the
polynomials, and therefore the object we wish to obtain.

Early Aborting the Evaluation. A possible strategy is to compute the Z; recursively:
first Z1, then Z5, etc. However, while algorithm 5(b) can be used to compute 7, it
cannot be used to compute Zs from Z, because it intrinsically enumerate all (Fg)n In
practice, the best results are in fact obtained by computing Zj, for some well-chosen
value of k, using £ parallel runs of algorithm 5(b), and then computing Zy 1, ..., Zn,
one-by-one. Computing Z;, requires 2k2" bit op. It then remains to compute Z,,, from
Z, and to find the best possible value of k. Note that if m > n, then we can focus
on the first n equations, as they should have a constant number of solutions, which can
in turn be checked against the remaining equations efficiently. If m < n, then we can
specialize m — n variables, and solve the m equations in m variables for any possible
values of the specialized variables. All-in-all, the interesting case is when m = n. Also
note that often £ should be chosen to fit the hardware platform (e.g., k = 32 if we can
only address registers in 32-bit or longer chunks).

Early-abort + Naive Evaluation. We compute Z;,; from Z; using the early-abort
strategy with naive evaluation, for k£ < ¢ < n—1. Itis clear that the expected cardinality
of Z; is 2", Computing Z; 1 then takes n(n + 3)2" "1 bit ops. The expected cost
of computing Z is then approximately n(n + 3)2" % bit operations. Minimizing the
global cost means solving the equation 2k - 2" = n(n + 3) - 2. Expressing the
solution in terms of the Laurent W function, and using known asymptotic results [12]
when n — oo gives:

k = 2log, n — log, logy n + o(log logn)

and the complexity of the whole procedure is then about 8log, n - 2". In general, for
degree-d systems, the same reasoning would get 4d - log, 1 - 2".



Early-Abort + Differential Folklore. We can efficiently evaluate Z;; from Z; us-
ing an easy consequence of equation (1): given f(x), computing f(x + A) takes
2|A| - n bit operations, where |A| denote the hamming weight of A. Let us write
Z; = {xﬁ, e xfh} (the elements are ordered using the usual lexicographic order),
and A% = x7 | © X].

Computing Z;, 1 therefore requires approximately 27 - ?;—11 |A;| bit operations.
This quantity is upper-bounded by 2n - 23:_11 ﬂog2 Aﬂ . Now, A; follows a geometric
distribution of parameter 2‘?, and thus has expectation 2¢. Computing Z; , therefore
requires in average 2n-i-2" " bit op. Finally, computing Z from Zj, requires on average
2n-2"- Z?:_kl i-27% < 4n-(k+1)-2"~* bit operations, hence an approximately optimal
value of k would then satisfy 2k - 2" = 4(k + 1) - n - 2% which is approximately

k = 1 +log, n. The complexity of the whole procedure is then log, n - 2" 2. However,
implementing this technique efficiently looks like a lot of work for at best a 2x gain.

Practical Considerations. Choosing the “optimal” value of k is not only of theoret-
ical interest, but may have a practical significance if a very ad hoc circuit were to be
designed from scratch. Even in the software implementations we are concerned with,
it provides a guideline. However, when implemented in software on processors with
registers, the logical operation width of the hardware becomes a determinant argument
in the actual choice of k. If operations are always performed on w-bit registers, then it
is likely that the most meaningful choice of k is precisely w. In all our implementations,
we used the “Early-abort + Naive Evaluation” strategy with £ = 32. This enables us to
make use of the full register width, while keeping the “naive evaluation” time negligi-
ble. However, this means that the enumeration process must store 32 times more data
in fast memory, compared to the evaluation of only one polynomial.

6 Brief Description of Platforms

6.1 Vector Units on x86-64

The most prevalent SIMD (single instruction, multiple data) instruction set today is
SSE2, available in all current Wintel-compatible CPUs today. SSE2 instructions operate
on 16 architectural xmm registers, each of which is 128-bit wide. There are floating point
operations that we don’t use, and integer operations treating xmm registers as vectors of
8-, 16-, 32- or 64-bit operands.

The highly non-orthogonal SSE instruction set includes Loads and Stores (To/from
xmm registers, memory — both aligned and unaligned, and traditional registers), Pack-
ing/Unpacking/Shuffling, Logical Ops (AND, OR, NOT, XOR, Shifts Left, Right
Logical and Arithmetic — bit-wise on units and byte-wise on the entire xmm register),
and Arithmetic (add, substract, multiply, max-min) with some or all of the arithmetic
widths. The reader needs to refer to Intel and AMD’s manuals for the operation of the
instructions, and to references such as [16] for their throughput and latencies.



6.2 G2xx series Graphics Processing Units from nVidia

We choose nVidia’s G2xx GPUs as they have the least hostile GPU parallel program-
ming environment. In CUDA (Compute Unified Device Architecture), we program in
the familiar C/C++ programming language plus a small set of GPU extensions.

An nVidia GPU contains anywhere from 2-30 streaming multiprocessors (MPs).
There are 8 ALUs (streaming processors or SPs in market-speak) and two super func-
tion units (SFUs) on each MP. A top-end “GTX 295” card has two GPUs, each with 30
MPs, hence the claimed “480 cores”. The theoretical throughput of each SP per cycle is
one 32-bit int or float instruction (including add/subtract, multiply, bitwise and/or/xor,
and fused multiply-add), and that of an SFU 2 float multiplications or 1 special opera-
tion. The arithmetic units have 20+-stage pipelines.

Main memory is slow and a major bottleneck. The read bandwidth to main (device)
memory on the card from the GPU is only one 32-bit read per cycle per MP and has a
latency of > 200 cycles. To ameliorate this problem, the MP is equipped with a register
file of 64kB (16,384 registers, max. of 128 a thread), a 16-bank shared memory of 16kB,
and a 8kB cache for read-only access to a declared “constant region” of at most 64kB.
Every cycle, each MP can achieve one 32-bit read from each shared memory bank, and
one read from the constant cache which can broadcast to many thread at once.

Each MP contains a scheduling and dispatching unit that can handle a large number
of lightweight threads. However, the decoding unit can only decode once every 4 cycles.
This is typically 1 instruction, but certain common instructions are ‘“half-size”, so two
such instructions can be issued together if independent. Since there are 8§ SPs in an
MP, CUDA programming is always on a Single Program Multiple Data basis, where
a “warp” of threads (32) should be executing the same instruction. If there is a branch
which is taken by some thread in a warp but not others, we are said to have a “divergent”
warp; from then on only part of the threads will execute until all threads in that warp
are executing the same threads again. Further, as the latency of a typical instruction is
about 24 cycles, nVidia recommends a minimum of 6 warps on each MP, although it is
sometimes possible to get acceptable performance with 4 warps.

7 Implementations

We will describe here the parts of our code, the approximate cost structure, our design
choices and justifications. Our implementation code always consists of three stages:

Partial Evaluation: We substitute all possible possible values for s variables (x,,_s, . . .

out of n, and thus splitting the original system into 2° smaller systems, of w equa-
tions each in the remaining (n — s) variables (xq, ..., T,_s—_1), and output them
in a form that is suitable for ...
Enumeration Kernel: Run the algorithm of Fig. 5(a) to find all candidate vectors x
satisfying w equations out of m (= 2"~ " of them), which are handed over to ...
Candidate Checking: Checking possible solutions x in remaining m — w equations.

7.1 CPU Enumeration Kernel

Typical code fragments are seen in Fig. 5.
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Fig. S. Unrolled Inner Loop Snippets to Brute-Force Degree 2/3 [F2-Systems

(a) quadratics, C++ x86 instrinsics (b) quadratics, x86 assembly

... .L746:
diff0 "= deg2_block[ 1 1; movq 976 ($rsp), S%rax //
res "= diffo0; pxor ($rax), %$xmm2 // d_y "= C_yz
Mask = _mm_cmpeq_epil6(res, zero); pxor $xmm2, $xmml // res "= d_y
mask = _mm_movemask_epi8 (Mask) ; pxor $xmm0, %$xmmO //
if (mask) check (mask, idx, x"*155); pcmpegqw $xmml, $xmmO // cmp words for eq
pmovmskb $xmm0, %$eax // movemask
testw %$ax, %ax // set flag for branch
jne .L1266 // 1f needed, check and
.L747: // comes back here
.L1624:
movqg 2616 (%rsp), Srax // load C_yza
movdga 2976 (%rsp), %$xmm0 // load d_yz
pxXor ($rax), %xmmO // d_yz ~= C_yza
movdga $xmm0, 2976 (%rsp) // save d_yz
pxor 8176 (%rsp), %$xmm0 // d_y "= d_yz
pxor $xmm0, $xmml // res "= d_ ..
movdga $xmm0, 8176 (%rsp) // save d_y diff[0] ~= deg3_ptrl[0];
pxor $xmm0, %$xmmO // diff[325] ~= diff[0];
pcmpegw  $xmml, $xmmO // cmp words for eq res *= diff[325];
pmovmskb $xmm0, %$eax Mask = _mm_cmpeq _epil6(res, =zero);
testw %ax, %ax /] ... mask = _mm_movemask_epi8 (Mask) ;
Jjne .L2246 // branch to check if (mask) check (mask, idx, x"2);
.L1625: // and comes back

(c) cubics, x86 assembly (d) cubics, C++ x86 instrinsics

testing All zeroes in one byte, word, or dword in a XMM register can be tested cheaply
on x86-64. We hence wrote code to test 16 or 32 equations at a time. Strangely enough,
even though the code in Fig. 5 is for 16 bits, the code for checking 32/8 bits at the
same time is nearly identical, the only difference being that we would subtitute the
intrinsics _mm_cmpeq_epi32/8 for _mm_cmpeq_epil6 (leading to the SSE2 in-
struction pcmpeqgd/b instead of pcmpeqgw). Whenever one of the words (or double
words or bytes, if using another testing width) is non-zero, the program branches away
and queues the candidate solution for checking.

unrolling One common aspect of our CPU and GPU code is deep unrolling by upwards
of 1024 x to avoid the expensive bit-position indexing. To illustrate with quartics as an
example, instead of having to compute the positions of the four rightmost non-zero bits
in every integer, we only need to compute the first four rightmost non-zero bits in bit 10
or above, then fill in a few blanks. This avoids most any indexing calculations and all
involving the most commonly used differentials.

We wrote similar Python scripts to generate unrolled loops in C and CUDA code.
Unrolling is even more critical with GPU, since branching and memory accesses are
inhibitively expensive.

7.2 GPU Enumeration Kernel

register usage Fast memory is precious on GPU and register usage critical for CUDA
programmers. Our algorithms’ memory use grows exponentially with the degree d,
which is a serious problem when implementing the algorithm for cubic and quartic
systems, compounded by the immaturity of nVidia’s nvcc compiler which tends to
allocate more registers than we expected.

Take quartic systems as an example. Recall that each thread needs to maintain third
derivatives, which we may call d;;; for 0 < ¢ < j < k < K, where K is the number of
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variables in each small system. For K = 10, there are 120 d,;;’s and we cannot waste
all our registers on them, especially as all differentials are not equal — d; ;. is accessed
with probability 2~ (F+1),

Our strategy for register use is simple: Pick a suitable bound u, and among third
differentials d; ;. (and first and second differentials d; and d;;), put the most frequently
used — 1.e., all indices less than © — in registers, and the rest in device memory (which
can be read every 8 instructions without choking). We can then control the number of
registers used and find the best u empirically.

fast conditional move We discovered during implementation an undocumented fea-
ture of CUDA for G2xx series GPUs, namely that nvcc reliably generates conditional
(predicated) move instructions, dispatched with exceptional adeptness. E.g., the code
in Tab. 6(b): According to our experimental results, the repetitive 4-line code segments
average less than three SP (stream-processor) cycles. However, after applying decuda
to our program, we found that each such code segment corresponds to at least 4 instruc-
tions including 2 XORs and 2 conditional moves [as marked in Fig. 6(a)]. One possible
explanation is that conditional moves can be dispatched by the SFUs (Special Function
Units) so that the total throughput can exceed 1 instruction per SP cycle.

Note that the annotated segment in Tab. 6(b) correspond to instructions far apart
because an nVidia GPU does opportunistic dispatching but is nevertheless a purely in-
order architecture, so properly scheduling must interleave instructions from different
parts of the code.

Fig. 6. CUDA and Cubin code fragments of Degree-2 GPU Implementation

xor.b32 $rl9, $rl1l9, c0[0x000c] // d_y*=d_yz diff0 "= deg2_block[ 3 1; // d_y*=d_yz
xor.b32 $pl|$r20, $rl7, $r20 res "= diff0; // res”=d_y
mov.b32 $r3, Srl if( res == ) vy = z; // cmov
mov.b32 $rl, s[Sofsl1+0x0038] if( res == 0 ) z = code233; // cmov
xor.b32 $r4, $r4, c0[0x0010] diffl *= deg2_block[ 4 ];

xor.b32 $p0]$r20, $rl9, $r20 // res’t=d_y res "= diffl;

@$pl.eq mov.b32 Sr3, Sril if( res == 0 ) y = z;

@Spl.eq mov.b32 S$rl, s[$ofsl+0x003c] if( res == 0 ) z = code234;

xor.b32 $rl19, $rl9, c0[0x0000] diff0 *= deg2_block[ 0 ];

xor.b32 $pl|$r20, S$rd, S$r20 res "= diff0;

@Sp0.eq mov.b32 S$r3, S$rl // cmov if( res == 0 ) y = z;

@$p0.eq mov.b32 S$rl, s[$ofsl+0x0040] // cmov if( res == 0 ) z = code235;

(a) decuda result from cubin (b) CUDA code for a inner loop fragment

testing The inner loop for GPUs differs from CPUs due to the fast conditional moves.

Here we evaluate 32 equations at a time using Gray code. The result is used to set a
flag if it happens to be all zeroes. We can now conditional move of the index based on
the flag to a register variable z, and at the end of the loop write z out to global memory.

However, how can we tell if there are too many (here, two) candidate solutions in
one small subsystem? Our answer to that is to use a buffer register variable y and a
second conditional move using the same flag. At the end of the thread, (y, z) is written
out to a specific location in device memory and sent back to the CPU.
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Now subsystems in which have all zero constant terms is automatically satisfied
by a vector of zeroes. Hence we note them down during the partial evaluation phase
include the zeros with the list of candidate solutions to be checked, and never have
to worry about for all-zero candidate solution. The CPU reads the two doublewords
corresponding to y and z for each thread, and:

0 means no candidate solutions, . .
0 but y==0 means exactly one candidate solution, and
0 means 2+ candidate solutions (necessitating a re-check).

w=

Z:
.z
y!

7.3 Checking Candidates

Checking candidate solutions is always done on CPU because the programming in-
volves branching and hence is difficult on a GPU even with that available. However, the
checking code for CPU enumeration and GPU enumeration is different.

CPU With the CPU, the check code receives a list of candidate solutions. Today the
maximum machine operation is 128-bit wide. Therefore we should collect solutions
into groups of 128 possible solutions. We would rearrange 128 inputs of n bits such that
they appear as n ___int 128’s, then evaluate one polynomial for 128 results in parallel
using 128-bit wide ANDs and XORs. After we finish all candidates for one equation,
go through the results and discard candidates that are no longer possible. Repeat the
result for the second and any further equations (cf. Sec. 3).

We need to transpose a bit-matrix to achieve the effect of a block of w inputs n-bit
long each, to n machine-words of w-bit long. This looks costly, however, there is an
SSE2 instruction PMOVMSKB (packed-move-mask-bytes) that packs the top bit of each
byte in an XMM register into a 16-bit general-purpose register with 1 cycle throughput.
We combine this with simultaneous shifts of bytes in an XMM and can, for example,
on a K10+ transpose a 128-batch of 32-bit vectors (0.5kB total) into 32 ___int128’s
in about 800 cycles, or an overhead of 6.25 cycles per 32-bit vector. In general the
transposition cost is at most a few cycles per byte of data, negligible for large systems.

GPU As explained above, for the GPU we receive a list with 3 kinds of entries:

1. The knowledge that there are two or more candidate solutions within that same
small system, with only the position of the last one in the Gray code order recorded.

2. A candidate solution (and no other within the same small system).

3. Marks to subsystems that have all zero constant terms.

For Case 1, we take the same small system that was passed into the GPU and run the
Enumerative Kernel subroutine in the CPU code and find all possible small systems.
Since most of the time, there are exactly two candidate solutions, we expected the Gray
code enumeration to go two-thirds of the way through the subsystem. Merge remaining
candidate solutions with those of Case 243, collate for checking in a larger subsystem
if needed, and pass off to the same routine as used in the CPU above. Not unexpectedly,
the runtime is dominated by the thread-check case, since those does millions of cycles
for two candidate solutions (most of the time).
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7.4 Partial Evaluation

The algorithm for Partial Evaluation is for the most part the same Gray Code algorithm
as used in the Enumeration Kernel. Also the highest degree coefficients remain constant,
need no evaluation and and can be shared across the entire Enumeration Kernel stage.
As has been mentioned in the GPU description, these will be stored in the constant
memory, which is reasonably cached on nVidia CUDA cards. The other coefficients
can be computed by Gray code enumeration, so for example for quadratics we have
(n — s) + 2 XOR per w bit-operations and per substitution. In all, the cost of the Partial

n—s

d—1
writes. The only difference in the code to the Enumerative Kernel is we write out the
result (smaller systems) to a buffer, and check for a zero constant term only (to find
all-zero candidate solutions).

Evaluation stage for w’ equations is ~ 2° %’ (( ) + (smaller terms)) byte memory

Peculiarities of GPUS Many warps of threads are required for GPUs to run at full
speed, hence we must split a kernel into many threads, the initial state of each small
system being provided by Partial Evaluation. In fact, for larger systems on GPUs, we
do two stages of partial evaluation because

1. there is a limit to how many threads can be spawned, and how many small systems
the device memory can hold, which bounds how small we can split; but

2. increasing s decreases the fast memory pressure; and

3. a small systems reporting two or more candidate solutions is costly, yet we can’t
run a batch check on a small system with only one candidate solution — hence, an
intermediate partial evaluation so we can batch check with fewer variables.

7.5 More Test Data and Discussion

Some minor points which the reader might find useful when he examines the data.

Candidate Checking In theory (cf. Sec. 3) evaluation should start with a script which
hard-wires a system of equations into C and compiling to an excutable, eliminating
half of the terms, and leading to (”gs) SSE2 (half XORs and half ANDs) operations
to check one equation for w = 128 inputs. The check code might become more than
an order of magnitude faster. We do not (yet) do so presently, because the check code
is but 6-10% of the entire runtime, and the compilation process may take more time
than the checking code. However, we should go this route for even larger systems, as
the overhead from testing for zero bits, re-collating the results, and wasting due to the
number of candidate solutions is not divisible by w would all go down proportionally.
Without hard-wiring, the running time of the candidate check is dominated by load-
ing coefficients. E.g., for quartics with 44 variables, 14 pre-evaluated, K10+ and Ci7
averages 4300 and 3300 cycles respectively per candidate. With each candidate averag-
ing 2 equations of (44_14) terms each, the 128-wide inner loop averages about 10 and

4
7.7 cycles respectively per term to accomplish 1 PXOR and 1 PAND.

Fartial Evaluation We point out that Partial Evaluation also reduces the complexity of
the Checking phase. The simplified description in Sec. 5 implies the cost of checking

each candidate solution to be ~ 1 (”) instructions. But we can get down to ~ + ("_S)
w \d w\ d
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instructions by partially evaluating w’ > w equations and storing the result for check-
ing. For example, when solving a quartic system with n = 48, m = 64, the best CPU
results are s = 18, and we cut the complexity of the checking phase by factor of at least

4x even if it was not the theoretical 7x (i.e., (Z) / (”;S)) due to overheads.

The Probability of Thread-Checking for GPUs If we have n variables, pre-evaluate
s, and check w equations via Gray Code, then the probability of a subsystem with

2"=¢ vectors including at least two candidates ~ (>, )(1 — 27)2" " (27%)? ~
1/22(stw=n)+1 provided that n < s-+w. As an example, forn = 48, s = 22, w = 32,
the thread-recheck probability is about 1 in 2!, and we must re-check about 2° threads
using Gray Code. This pushes up the optimal s for GPUs.

Architecture and Differences All our tests with a huge variety of machines and video
cards show that the kernel time in cycles per attempt is almost a constant of the archi-
tecture, and we can compute the time complexity given the architecture, the frequency,
and n. However, an Intel core can dispatch three XMM (SSE2) logical instructions
to AMD’s two and handle branch prediction and caching better, leading to a marked
performance difference.

The Cell The platform received a lot of attention recently. In particular, the Sony
Playstation 3 running Linux, is said to be very cost-effective for parallel processing
in various kinds of cryptanalytic work. We will briefly discuss how well can a PS3
do in theory. The model that received much press exposure has available to the user 6
synergetic processing elements (SPEs), each of which can do one 128-bit wide logical
operation per 3.2GHz cycle in its main pipeline, with a secondary pipeline to handle
address calculation, loads and the like.

Since the Cell is fairly memory-poor, we expect to use the Cell like a GPU, and
project that it will take also seven 128-bit operations in its inner loop for quadratics,
including the two XORs, one compare for equality in each limb, and four more to test
and extract the potential solution. Given that a Cell would then average about 7/6 cycles
per iteration, and a K10+ takes about 4.5 cycles per iteration per core, we may estimate
a Cell at peak speed to perform very close to a quad-core K10+3.2GHz (PhenomlII x4
965) in exhaustive searching quadratic systems. While unfortunately we do not have a
Cell system to test, the above discussion should also show that a PS3 should not be able
to match the hundreds of cores on an nVidia G200 series GPU.

As the Degree d increases We plot how many cycles is taken by the inner loop (which
is 8 vectors per core for CPUs and 1 vector per SP for GPUs) on different architectures
in Fig. 7. As we can see, all except two architectures have inner loop cycle counts that
are increasing roughly linearly with the degree. These are the AMD K10 and nVidia
G200 architectures, which is in line with the lack of caches on the nVidia GPUs and
fact that K10 has the least cache among the CPU architectures.
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A Correctness Proof of the Algorithm Presented in Section 4

At first glance, it may not seem trivial that the combination of algorithms 2(b) and 5(a)
results in a method for finding all the zeroes of f. In this section, we justify why it is
indeed the case. We first state a lemma about Gray Codes.

Lemma 3. For j € N:

GRAYCODE(2*) @ (GRAYCODE(j) < (k + 1)
GRAYCODE(2%) @ (GRAYCODE(j) < (k + 1)) @ ey,

~—

GRAYCODE(2"+5-2F11) = {

Proof. It should be clear that 2% + j-25*! and 2% @ j-2%*1 in fact denote the same num-
ber. Also, GRAYCODE is a linear function on (IF3)". Thus it remains to establish that

GRAYCODE(j-28*1) = GRAYCODE(j) < k + 1 (resp. e, ®(GRAYCODE(j) < k + 1))

when j is even (resp. odd). Again, j - 2°T! = j < (k + 1), and by definition we have:

if J is evel
if 7 is odd

GRAYCODE(j-2871) = GRAYCODE(j < (k+1)) = (j < (k+1)&((j < (k+1)) > 1)

Now, we have :

> <k+1 when j is even

. k 1 1:
<k+1)> {((j>>1)<<k+1)@ek when j is odd

and the result follows. O

We prove by induction on the degree of f that the INIT and NEXT functions de-
scribed in fig. 5(a) maintain and preserve the three invariants of enumeration algorithms,
described in section 2. The base case is when f is a constant polynomial (i.e., of de-
gree zero). we hope that the reader will be convinced that the “constant enumeration”
algorithm of fig. 3 works correctly .

In higher degree, it is not difficult to check that the three invariants are enforced at
the end of INIT. Let us now assume that f has degree d > 1. Let us assume that we are in
the middle of the main loop, and that the invariants defining our enumeration algorithm
hold at the begining of NEXT(). Our objective is to show that they still hold at the end,
and that the state has been updated correctly. Let us then focus on the NEXT() part of
algorithm 5(a). Invariant 7:¢ is easily seen to be enforced by line 2, while invariant 7z
follows from line 4, and from lemma 1. The non-trivial part is to show that invariant ¢
holds. The two following lemma are devoted to this task.
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Lemma 4. After line 3, we have: Derivative[k|.x = x or Derivative[k].x = x +
Chk+kg-

Proof. By assuming that invariant ¢ holds for the current state at the entry of NEXT,
we have x = x9 @ (GRAYCODE(i) < ko). Because after line 3 k is set to by (i + 1), it
follows from lemma 1 that:

X =20 D eprr, D (GRAYCODE(: + 1) < ko)
Then, because of lemma 2, we obtain:
X = T ® x4k, ® (GRAYCODE (2k + Derivative[k].i X 2k+1) < ko)

Additionally, by induction hypothesis on Derivative[k], invariant ii grants:
Derivative[k].x = 2o®GRAYCODE (25770 @ (GRAYCODE (Derivativelk].i) < k:—l—ko—H)
Then because of lemma 3 applied to x, we have:

Derivative[k].x & ( GRAYCODE (2¥) < ko ) ® GRAYCODE (2+%0) @ ey yr,  if Deri
X =
Derivative[k].x ® ( GRAYCODE (2%) < ko ) & GRAYCODE (2F+#0) if Deri

Now, if & > 0 then GRAYCODE (2*) < ko = GRAYCODE (2""*0), and the
lemma is established. In the case where & = 0, we have in fact:

. — Derivative|0].x ® GRAYCODE (2*) if Derivative[0].i is even
| Derivative[0].x & GRAYCODE (20) @ ey,  if Derivative[0].i is odd

and the lemma is established again. O

Lemma 5. Let X' and y’ denote the values of x and 'y after line 4. Then we have

y' = f(x).

Proof. By induction hypothesis on Derivative[k], invariant ¢ and the previous lemma

grant us that Derivative[k].y = ak‘szo (x) or Derivativelk].y = 81«8{1@0 (X + €tk )-
However, since for all i, %(m +e;) = % (x), then we have in all cases:
of
Derivativelk|.y = X
ey = 5 )

So, this yields (using lemma 1):

of
ok + ko

y' = f(x)+ (%) = f(Xx + €epyny) = f(X)
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