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Abstract

In PKC 2010, Matsuda, Nishimaki and Tanaka proposed a bidirectional proxy re-
encryption (PRE) scheme without bilinear maps, and claimed that their scheme is chosen-
ciphertext secure in the standard model. However, by giving a concrete attack, in this
paper we indicate that their PRE scheme fails to achieve the chosen-ciphertext security.
The purpose of this paper is to clarify the fact that, it is still an open problem to come
up with a chosen-ciphertext secure PRE scheme without bilinear maps in the standard
model.
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1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer and Strauss [3] in Eurocrypt’98,
allows a semi-trust proxy to translate a ciphertext intended for Alice into another ciphertext
intended for Bob. The proxy, however, can not learn anything about the underlying messages.
According to the direction of transformation, PRE can be categorized into bidirectional PRE,
in which the proxy can transform from Alice to Bob and vice versa, and unidirectional PRE,
in which the proxy cannot transform ciphertexts in the opposite direction. PRE can also be
categorized into multi-hop PRE, in which the ciphertexts can be transformed from Alice to
Bob and then to Charlie and so on, and single-hop PRE, in which the ciphertexts can only
be transformed once.

In their seminal paper, Blaze et al. [3] proposed the first bidirectional PRE scheme.
Ateniese et al. [1, 2] presented unidirectional PRE schemes from bilinear maps. All of these
schemes are only secure against chosen-plaintext attack (CPA). However, applications often
require security against chosen-ciphertext attacks (CCA).

To fill this gap, Canetti and Hohenberger [6] presented the first CCA-secure bidirectional
multi-hop PRE scheme in the standard model. Libert and Vergnaud [10, 11] proposed a
unidirectional single-hop PRE scheme, which is replayable CCA-secure [7] in the standard
model. Recently, Weng et al. [14] presented a unidirectional single-hop PRE scheme, which is
CCA-secure against adaptive corruption of users in the standard model. The above schemes
rely on bilinear maps. In spite of the recent advances in implementation technique, compared
with standard operations such as modular exponentiation in finite fields, the bilinear map
computation is still considered as a rather expensive operation. It would be desirable for
cryptosystems to be constructed without relying on pairings, especially in computation re-
source limited settings. Thus, how to construct a CCA-secure PRE scheme without bilinear
maps is left as an open problem in [6].
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Deng et al. [9] presented a bidirectional single-hop PRE scheme without bilinear maps,
and proved its CCA-security in the random oracle model. Shao and Cao presented a uni-
directional single-hop PRE scheme without bilinear maps, and claimed that their scheme
is CCA-secure in the random oracle model. However, Sherman, Weng and Yang et al. [8]
present a concrete attack, and indicated that Shao and Cao’s PRE scheme is not CCA-
secure. They further presented a CCA-secure unidirectional single-hop PRE scheme without
bilinear maps, again in the random oracle model. It is well-known [4, 5] that a proof in the
random oracle model can only serve as an argument, which does not imply the security for
real implementations. Thus, it is more desirable to come up with a CCA-secure PRE scheme
without bilinear maps in the standard model.

In PKC 2010, Matsuda, Nishimaki and Tanaka proposed a bidirectional multi-hop proxy
re-encryption (PRE) scheme without bilinear maps, and claimed that their scheme is CCA-
secure in the standard model. However, in this paper, we present a concrete attack, and
indicate that their PRE scheme fails to achieve the CCA-security. Thus it is still an open
problem to come up with a CCA-secure PRE scheme without bilinear maps in the standard
model.

2 Preliminaries

Matsuda-Nishimaki-Tanaka PRE scheme involves the primitives of all-but-one trapdoor func-
tion and re-applicable (n, k) lossy trapdoor functions (LTDFs). Thus in this section, we shall
review the definitions of these two primitives (for more details, the reader is referred to [12]
and [13]). We shall also review the definition and security notion for bidirectional multi-hop
PRE.

2.1 All-But-One Trapdoor Function

Let B = {Bλ}λ∈N be a collection of sets whose elements represents the branches. A collection
of (n, k)-all-but-one trapdoor functions is a tuple of probabilistic polynomial time (PPT)
algorithms (Gabo,Fabo,F

−1
abo) having the following properties:

• All-but-one property: Given a lossy branch b∗ ∈ Bλ, the algorithm Gabo(1
λ, b∗)

outputs a pair (s, td), where s is a function index and td is its trapdoor. For any b ∈
Bλ\{b∗}, the algorithm Fabo(s, b, ·) computes an injective function fs,b(·) over {0, 1}n,
and F−1

abo(td, b, ·) computes f−1
s,b (·). For the lossy branch b∗, Fabo(s, b

∗, ·) computes a

lossy function fs,b∗(·) over the domain {0, 1}n, where |fs,b∗({0, 1}n)| ≤ 2n−k.

• Indistinguishability: For every b∗1 and b∗2 ∈ Bλ, the first output s0 of Gabo(1
λ, b∗0)

and the first output s1 of Gabo(1
λ, b∗1) are computationally indistinguishable.

2.2 Re-Applicable (n, k)-Lossy Trapdoor Functions

A collection of re-applicable (n, k)-lossy trapdoor functions (LTDFs) with respect to function
indices is a tuple of PPT algorithms (ParGen, LossyGen, LossyEval, LossyInv,ReIndex,ReEval,
PrivReEval,Trans,FakeKey) such that:

Injectivity: For every public parameter par ← ParGen(1λ) and every tag τ ∈ T \{τlos},
LossyGen(τ) outputs a pair of a function index and its trapdoor (s, td), LossyEval(s, ·)
computes an injective function fs,τ (·) over {0, 1}n, and LossyInv(td, τ, ·) computes
f−1
s,τ (·). (We represent the function fs,τ , not fs, in order to clarify a tag τ . If we
do not need to clarify a tag, we represent a function as fs,⋆.)
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Lossiness: For every public parameter par ← ParGen(1λ), the algorithm LossyGen(τlos)
outputs (s,⊥) and LossyEval(s, ·) computes a function fs,τlos(·) over {0, 1}n, where
|fs,τlos({0, 1}n)| ≤ 2n−k.

Indistinguishability between injective and lossy indices: Let Xλ denote the distri-
bution of (par, sinj, τ), and let Yλ denote the distribution of (par, slos, τ

′), where par is a
public parameter from ParGen(1λ), τ and τ ′ are random elements in T , and the function
indices sinj and slos are the first element output from LossyGen(τ) and LossyGen(τlos)
respectively. Then, {Xλ} and {Yλ} are computationally indistinguishable.

Re-applying with respect to function indices: Let τi and τj be any tags with τi ̸= τlos
and τj ̸= τlos. The algorithm ReIndex(tdi, tdj) outputs si↔j , where tdi and tdj are
the second elements of LossyGen(τi) and LossyGen(τj). Then, for every x ∈ {0, 1}n,
x = LossyInv(tdj , τi,ReEval(si↔j , LossyEval(si, x))). Note that LossyInv takes τi as one
of the inputs, not τj .

Generating proper outputs: Let c be an output from ReEval(si↔j , LossyEval(si, x)), where
si↔j and si have the same meaning as that in the above paragraph. Then, PrivReEval(x, τi, τj , sj)
outputs the same c, where x, τi, τj , and sj have the same meaning as that in the above
paragraph. That is, ReEval(si↔j , LossyEval(si, ·)) and PrivReEval(·, τi, τj , sj) are equiv-
alent as a function (i.e. any output of ReEval(si↔j , LossyEval(si, ·)) is independent of
si).

Transitivity: Let (si, tdi), (sj , tdj) and (sk, tdk) be outputs from LossyGen(τi), LossyGen(τj),
and LossyGen(τk), and let si↔j and si↔k be the outputs from ReIndex(tdi, tdj) and
ReIndex(tdi, tdk), respectively. Then, Trans(si↔j , si↔k) outputs sj↔k which is the same
output from ReIndex(tdj , tdk).

Statistical indistinguishability of the fake key: The algorithm FakeKey(si, τi) outputs
(s′j , s

′
i↔j , τ

′
j), where si is the first element of an output from LossyGen(τi). Let Xλ

denote the distribution of (par, si, sj , si↔j , τi, τj), and let Yλ denote the distribution of
(par, si, s

′
j , s

′
i↔j , τi, τ

′
j), where each par, sj , si↔j , and τj has the same meaning as that

in the above paragraph. Then, {Xλ} and {Yλ} are statistically indistinguishable.

Generation of injective functions from lossy functions: Let s be the first element of
an output from FakeKey(slos, τ), where τ is a tag and slos is the first element of an
output from LossyGen(τlos). Then, for every τ , LossyEval(s, ·) represents an injective
function fs,⋆ with overwhelming probability, where a random variable is the randomness
of FakeKey(slos, τ). (We do not require other properties of index s if fs,⋆ is injective.
The function fs,⋆ cannot have any trapdoor information.)

2.3 Realization of Re-applicable LTDFs

Based on Peikert and Waters’ LTDFs [13], Matsuda, Nishimaki and Tanaka [12] gave a
realization of re-applicable LTDFs, which is specified as below (for more details, the reader
is referred to [12]):

ParGen: This algorithm first generates a cyclic group G with prime order p, and then chooses
a random generator g ∈ G. Next, it selects random numbers r1, · · · , rn ∈R Zp, and
outputs the public parameters C1 as

C1 =

 c1
...
cn

 =

 gr1

...
grn

 .

LossyGen: Taking as input the public parameter C1 and a tag τ ∈ G (note that if τ is the
identity element e of G, it means execution of the lossy mode; otherwise, execution of
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the injective mode), this algorithm first selects random elements z1, z2, · · · , zn ∈R Zp,
and then computes a function index as

C2 =

 c1,1 · · · c1,n
...

. . .
...

cn,1 · · · cn,n

 =

 cz11 · τ · · · czn1
...

. . .
...

cz1n · · · cznn · τ

 =

{
ci,j = c

zj
i · τ, if i = j;

ci,j = c
zj
i , otherwise.

Finally, it outputs the function index s = (C1,C2) and the trapdoor td = z =
(z1, · · · , zn).

LossyEval: Taking as input a function index s = (C1, C2) and an n-bit input x = (x1, · · · , xn) ∈
{0, 1}n, this algorithm outputs (y1,y2) such that

y1 = xC1 =

n∏
i=1

cxi
i ,

y2 = xC2 =

(
n∏

i=1

cxi
i,1, · · · ,

n∏
i=1

cxi
i,n

)
=

(
(

n∏
i=1

cz1xi
i )τx1 , · · · , (

n∏
i=1

cznxi
i )τxn

)
.

LossyInv: Taking as input (td, τ, (y1,y2)), where the trapdoor information td consists of
z = (z1, · · · , zn), the tag τ is an element in G\{e}, and y2 = (y2,1, · · · , y2,n) ∈ G1×n,
this algorithm computes w = (y2,1 · y−z1

1 , y2,2 · y−z2
1 , · · · , y2,n · y−zn

1 ). Then, if j-th
element of w is the identity element of G, then it sets xj = 0; else if the j-th element of
w is τ then it sets xj = 1; otherwise, it outputs ⊥. Finally, it outputs x = (x1, · · · , xn).

ReIndex: Taking as input trapdoors tdi = (z1, · · · , zn) and tdj = (z′1, · · · , z′n), this algorithm
outputs si↔j = tdj − tdi = (z′1 − z1, · · · , z′n − zn) = (z1,i↔j , · · · , zn,i↔j).

ReEval: On input (si↔j , (y1,y2)), where si↔j = (z1,i↔j , z2,i↔j , · · · , zn,i↔j) and (y1,y2) =
(y1, (y2,1, y2,2, · · · , y2,n)), this algorithm computes y′

2 = (y′2,1, y
′
2,2, · · · , y′2,n) = (y2,1 ·

y
z1,i↔j

1 , y2,2 · y
z2,i↔j

1 , · · · , y2,n · y
zn,i↔j

1 ). Then it outputs (y1,y
′
2).

PrivReEval: Taking as input x, τi, τj and sj , where x = (x1, · · · , xn) is n-bit input, this
algorithm first computes (ŷ1, ŷ2)← LossyEval(sj ,x). Next, it makes ŷ′

2 from ŷ2 in the
following process: for each i ∈ [1, n], if xi = 1 then ŷ′2,i = ŷ2,iτ

−1
j τi; else ŷ′2,i = ŷ2,i,

where ŷ2,i and ŷ′2,i are the i-th elements of ŷ2 and ŷ′
2 respectively. Finally, it outputs

(ŷ1, ŷ
′
2).

Trans: Taking as input si↔j and si↔k, this algorithm outputs si↔k − si↔j = (tdk − tdi) −
(tdj − tdi) = tdk − tdj = si↔k.

FakeKey: Taking as input a function index si = (C1,C2) and a tag τi ∈ G, this algorithm
first chooses a random element t ∈ G. Next, it chooses random numbers si↔j =
(z1,i↔j , · · · , zn,i↔j) ∈R Zn

p . Then it makes a new matrix C′
2 as follows:

C′
2 =

 c1,1 · c
z1,i↔j

1 · t · · · c1,n · c
zn,i↔j

1
...

. . .
...

cn,1 · c
z1,i↔j
n · · · cn,n · c

zn,i↔j
n · t

 =

{
c′k,ℓ = ck,ℓ · c

zℓ,i↔j

k · t, if k = ℓ;

c′k,ℓ = ck,ℓ · c
zℓ,i↔j

k , otherwise,

where ck is the k entry of C1, and ck,ℓ is the (k, ℓ) entry of C2. Finally, it outputs
sj = (C1,C

′
2), si↔j = (z1,i↔j , · · · , zn,i↔j) and τj = τi · t.

3 Bidirectional Multi-Hop PRE

A bidirectional PRE scheme Π = (Setup,KeyGen,Enc,ReKeyGen,ReEnc,Dec) consists of the
following six algorithms:
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• Setup(1λ): Given a security parameter 1λ, this setup algorithm outputs a public pa-
rameter PP . Denote this by PP ← Setup(1λ).

• KeyGen(PP ): Given the public parameter PP , this key generation algorithm outputs
a public key pk and a secret key sk. Denote this by (pk, sk)← KeyGen(PP ).

• Enc(PP, pk,m): Given the public parameter PP , a public key pk and a message m in
the message spaceM, this encryption algorithm outputs a ciphertext C. Denote this
by C ← Enc(PP, pk,m).

• ReKeyGen(PP, ski, skj): Given the public parameter PP , a pair of secret keys ski and
skj where i ̸= j, this re-encryption key generation algorithm outputs a re-encryption
key rki↔j . Denote this by rki↔j ← ReKeyGen(PP, ski, skj).

• ReEnc(PP, rki↔j , Ci): Given the public parameter PP , a re-encryption key rki↔j and
a ciphertext Ci intended for user i, this re-encryption algorithm outputs another cipher-
text Cj for user j or the error symbol ⊥. Denote this by Cj ← ReEnc(PP, rki↔j , Ci).

• Dec(PP, sk, C): Given the public parameter PP , a public key sk and a ciphertext C,
this decryption algorithm outputs a message m or the error symbol ⊥.

Next, we review the definition of chosen-ciphertext security for bidirectional multi-hop
PRE scheme as defined in [6, 12]. Let λ be the security parameter, A be an oracle TM,
representing the adversary, and ΓU and ΓC be two lists which are initially empty. The game
consists of an execution of A with the following oracles, which can be invoked multiple times
in any order, subject to the constraints specified as below:

Setup Oracle: This oracle can be queried first in the game only once. This oracle generates
the public parameters PP ← Setup(1λ), and gives PP to A.

Uncorrupted key generation: This oracle first generates a new key pair by running
(pk, sk)← KeyGen(PP ). Next, it adds pk in ΓU , and gives pk to A.

Corrupted key generation: This oracle generates a new key pair by running (pk, sk) ←
KeyGen(PP ). Next, it adds pk in ΓC , and gives (pk, sk) to A.

Challenge oracle: This oracle can be queried only once. On input (pki∗ ,m0,m1), this
oracle randomly chooses a bit b ∈ {0, 1} and gives Ci∗ = Enc(PP, pki∗ ,mb) to A. Here
it is required that pki∗ ∈ ΓU . We call pki∗ the challenge key and Ci∗ the challenge
ciphertext.

Re-encryption key generation: On input (pki, pkj) from the adversary, this oracle gives
the re-encryption key rki↔j = ReKeyGen(PP, ski, skj) to A, where ski and skj are the
secret keys corresponding to pki and pkj , respectively. Here it is required that pki and
pkj are both in ΓC , or alternatively are both in ΓU .

Re-encryption oracle: On input (pki, pkj , Ci), if pkj ∈ ΓC and (pki, Ci) is a deriva-
tive of (pki∗ , Ci∗), this oracle give A a special symbol ⊥, which is not in the do-
main of messages or ciphertext. Otherwise, it gives the re-encrypted ciphertext Cj =
ReEnc(PP,ReKeyGen(PP, ski, skj), Ci) to A. Derivatives of (pki∗ , Ci∗) are defined in-
ductively as follows:

• (pki∗ , Ci∗) is a derivative of itself.

• If (pk,C) is a derivative of (pki∗ , Ci∗), and (pk′, C ′) is a derivative of (pk, C), then
(pk′, C ′) is a derivative of (pki∗ , Ci∗).

• If A has queried the re-encryption oracle on input (pk, pk′, C) and obtained the
response C ′, then (pk′, C ′) is a derivative of (pk,C).

• If A has queried the re-encryption key generation oracle on input (pk, pk′) or
(pk′, pk), and C ′ = ReEnc(PP,ReKeyGen(PP, sk, sk′), C), then (pk′, C ′) is a deriva-
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tive of (pk, C), where sk and sk′ are the secret keys corresponding to pk and pk′,
respectively.

Decryption oracle: On input (pk, C), if the pair (pk, C) is a derivative of the challenge
key and ciphertext (pki∗ , Ci∗), or pk is not in ΓU ∪ ΓC , this oracle returns the special
symbol ⊥ to A. Otherwise, it returns the result of Dec(PP, sk, C) to A, where sk is
the secret key with respect to pk.

Decision oracle: This oracle can be queried at the end of the game. On input b′, if b′ = b
and the challenge key pki∗ ∈ ΓU , this algorithm output 1; else output 0.

We describe the output of the decision oracle in the above game as Exptbid-PRE-CCA
Π,A (λ) = b

for an adversary A and a scheme Π. We define the advantage of adversary A as

Advbid-PRE-CCA
Π,A (λ)

def
=

∣∣∣∣Pr[Exptbid-PRE-CCA
Π,A (λ) = 1]− 1

2

∣∣∣∣ ,
where the probability is over the random choices of A and oracles. We say that the scheme Π
is secure under the bidirectional PRE-CCA attack, if for any PPT adversary A, his advantage
Advbid-PRE-CCA

Π,A (λ) is negligible in the security parameter λ (for sufficiently large λ).

4 Review of Matsuda-Nishimaki-Tanaka PRE Scheme

In this section, we shall review Matsuda-Nishimaki-Tanaka bidirectional multi-hop PRE
Scheme.

Let λ be the security parameter, and let n, k, k′, k′′ and v be parameters depended on λ.
Let (SigGen,SigSign,SigVer) be a strongly unforgeable one-time signature scheme where the
verification keys are in {0, 1}v. Let (ParGen, LossyGen, LossyEval, LossyInv,ReEval,PrivReEval,
Trans,FakeKey) be a collection of re-applicable (n, k)-LTDFs and T be a set of tags. Let
(Gabo,Fabo,F

−1
abo) be a collection of (n, k′)-ABO trapdoor functions with branches Bλ =

{0, 1}v, which contains the set of signature verification keys. Let H be a family of pairwise
independent hash functions from {0, 1}n to {0, 1}k′′ . It is required that the above parameters
satisfy (k + k′) − (k′′ + n) ≥ δ = δ1 + δ2 for some δ1 = ω(log λ) and δ2 = ω(log λ). The
message space of the system is {0, 1}k′′ . The Matsuda-Nishimaki-Tanaka PRE scheme [12]
is specified by the following algorithms:

Setup(1λ): This algrithm first generates an index of all-but-one trapdoor functions with
lossy branch 0v: (sabo, tdabo)← Gabo(1

λ, 0v). Then, it generates a public parameter of
re-applicable LTDFs: par ← ParGen(1λ). Next, it chooses a hash function h from H.
Finally, it outputs a public parameter as PP = (sabo, par, h).
Note that the algorithm Setup erases the trapdoor tdabo because the following algo-
rithms do not use tdabo.

KeyGen(PP ): Taking as input the pubic parameters PP = (sabo, par, h), this algorithm first
chooses a tag τ ∈ T \{τlos} and generates an injective index of re-applicable LTDFs:
(srltdf, tdrltdf)← LossyGen(τ). Finally, it outputs the public key pk = (srltdf, τ) and the
secret key sk = (tdrltdf, srltdf, τ).

Enc(PP, pk,m): Taking as input the public parameters PP = (sabo, par, h), public key pk =
(srltdf, τ) and a message m ∈ {0, 1}k′′ , this encryption algorithm first chooses x ∈
{0, 1}n uniformly at random. Next it generates a key-pair for the one-time signature
scheme: (vk, skσ)← SigGen(1λ), and computes

c1 = LossyEval(srltdf, x), c2 = Fabo(sabo, vk, x), c3 = h(x)⊕m.

Then it signs a tuple (c2, c3, τ) as σ ← SigSign(skσ, (c2, c3, τ)). Finally, it outputs the
ciphertext C = (vk, c1, c2, c3, τ, σ).
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ReKeyGen(PP, ski, skj): Taking as input the public parameter PP = (sabo, par, h), the
secret keys ski = (tdi, si, τi) and skj = (tdj , sj , τj), this algorithm computes si↔j ←
ReIndex(tdi, tdj), and then outputs a re-encryption key rki↔j = si↔j .

ReEnc(PP, rki↔j , Ci): Taking as input the public parameter PP = (sabo, par, h), the re-
encryption key rki↔j = si↔j and a ciphertext Ci = (vk, c1,i, c2, c3, τ, σ), this algorithm
computes c1,j ← ReEval(si↔j , c1,i). It then outputs Cj = (vk, c1,j , c2, c3, τ, σ) as a new
ciphertex for the user with skj .

Dec(PP, sk, C): Taking as input the public parameter PP = (sabo, par, h), a secret key sk =
(tdrltdf, srltdf, τ) and a ciphertext C = (vk, c1, c2, c3, τ

′, σ), this decryption algorithm
acts as follows:

1. Check whether SigVer(vk, (c2, c3, τ
′), σ) = 1 holds. If not, output ⊥.

2. Compute x = LossyInv(tdrltdf, τ
′, c1). If τ = τ ′, it checks LossyEval(srltdf, x) = c1;

else it checks PrivReEval(x, τ ′, τ, srltdf) = c1. If not, it outputs ⊥. It also checks
Fabo(sabo, vk, x) = c2. If not, it outputs ⊥.

3. Finally, output m = c3 ⊕ h(x).

5 Attack

In this section, we shall present a concrete CCA-attack against Matsuda-Nishimaki-Tanaka
PRE scheme. Before presenting the attack, we would like mention a fundamental princi-
ple for designing CCA-secure PRE schemes, i.e., the validity of all the ciphertext compo-
nents in the original ciphertext should be able to be verified by the proxy. Unfortunately,
Matsuda-Nishimaki-Tanaka PRE scheme violates this principle. Indeed, for a ciphertext
Ci = (vk, c1,i, c2, c3, τ, σ), the validity of vk, c2, c3, τ and σ can be ensured by checking
whether SigVer(vk, (c2, c3, τ

′), σ) = 1 holds1. However, it is impossible for the proxy to
verify the validity of component c1,i: observe that in the encryption algorithm, component
c1,i is not included in the generation of the one-time signature, and it will be transformed
into c1,j in the re-encryption algorithm. Thus, Matsuda-Nishimaki-Tanaka PRE scheme
inevitably suffers from a chosen-ciphertext attack.

Roughly speaking, an adversary can break the CCA-security of Matsuda-Nishimaki-
Tanaka PRE scheme as follows: Given the challenge ciphertext Ci∗ = (vk, c1,i∗ , c2, c3, τ, σ),
the adversary can first modify the ciphertext component c1,i∗ to obtain a new (ill-formed)
ciphertext C ′

i∗ and then ask the re-encryption oracle to re-encrypt C ′
i∗ into another cipher-

text C ′
j for a corrupted user j (note that according to the security model, it is legal for the

adversary to issue such a query); next, the adversary can modify C ′
j to obtain the right re-

encrypted ciphertext Cj of the challenge ciphertext, and thus he can obtain the underlying
plaintext by decrypting Cj with user j’s secret key.

Below we give the attack details. For an easy explanation of how the adversary can
modify C ′

j to obtain the right transformed ciphertext Cj , when describing the underlying re-
applicable LTDFs we shall take Matsuda-Nishimaki-Tanaka’s concrete realization (recalled
in Section 2.3) as the example. Concretely, the adversary works as follows:

1. The adversary first obtains the public parameters PP from the setup oracle.

2. The adversary obtains a public key pki∗ from the uncorrupted key generation oracle.
Note that pki∗ will be added in ΓU by the oracle.

3. The adversary obtains a public/secret key pair (pkj , skj) from the corrupted key gen-
eration oracle. Note that pkj will be added in ΓC by the oracle.

1In the ReEnc algorithm of Matsuda-Nishimaki-Tanaka PRE scheme, it even overlooks this checking.
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4. The adversary submits (pki∗ ,m0,m1) to the challenge oracle, and then is given the
challenge ciphertext Ci∗ = (vk∗, c1,i∗ , c

∗
2, c

∗
3, τ

∗, σ∗), where c1,i∗ is the output of function
LossyEval. Here we use Matsuda-Nishimaki-Tanaka’s concrete realization of LossyEval
as an example. Wlog, suppose c1,i∗ = (y1,y2) = (y1, (y2,1, · · · , y2,n)).

5. The adversary first randomly picks ỹ2,1, · · · , ỹ2,n from G, and modifies the challenge
ciphertext to obtain a new (ill-formed) ciphertext C ′

i∗ = (vk∗, c′1,i∗ , c
∗
2, c

∗
3, τ

∗, σ∗), where
c′1,i∗ = (y1, (ỹ2,1, · · · , ỹ2,n)). Then, the aversary submits (pki∗ , pkj , C

′
i∗) to the re-

encryption oracle. Note that, although pkj ∈ ΓC , it is legal for the adversary to
issue this query, since (pki∗ , C

′
i∗) is not a derivate of (pki∗ , Ci∗). Note that, the

re-encryption algorithm ReEnc cannot check the validity of the ciphertext compo-
nent c′1,i∗ . So, the re-encryption oracle will return the re-encrypted ciphertext C ′

j =
ReEnc(PP,ReKeyGen(PP, ski∗ , skj), C

′
i∗) to the adversary.

According to the re-encryption algorithm, we have C ′
j = (vk∗, c′1,j , c

∗
2, c

∗
3, τ

∗, σ∗), where
c′1,j = ReEval(si∗↔j , c

′
1,i∗). According to Matsuda-Nishimaki-Tanaka’s concrete realiza-

tion of ReEval, we have c′1,j = (y1, (ỹ
′
2,1, · · · , ỹ′2,n)) =

(
y1,
(
ỹ2,1 · y

z1,i∗↔j

1 , · · · , ỹ2,n · y
zn,i∗↔j

1

))
.

Now, from c′1,j = (y1, (ỹ
′
2,1, · · · , ỹ′2,n)), the adversary can compute the following

c1,j =

(
y1, (

ỹ′2,1y2,1

ỹ2,1
, · · · ,

ỹ′2,ny2,n

ỹ2,n
)

)
=

(
y1, (

ỹ2,1 · y
z1,i∗↔j

1 y2,1
ỹ2,1

, · · · , ỹ2,n · y
zn,i∗↔j

1 y2,n
ỹ2,n

)

)
=
(
y1, (y2,1 · y

z1,i∗↔j

1 , · · · , y2,n · y
zn,i∗↔j

1 )
)
.

Observe that c1,j is indeed equivalent to the result of ReEval(si∗↔j , c1,i∗). Thus, Cj =
(vk∗, c1,j , c

∗
2, c

∗
3, τ

∗, σ∗) is indeed the result of ReEnc(PP,ReKeyGen(PP, ski∗ , skj), Ci∗),
which is an encryption of mb. Now, the adversary can obtain the underlying plaintext
mb by decrypting the re-encrypted ciphertext Cj using the secret key skj , and obviously
can break the CCA-security of Matsuda-Nishimaki-Tanaka PRE scheme.

The above attack can also be simply extended to the case that the user j is uncorrupted.
In this case, the adversary A directly request (pkj , Cj) to the decryption oracle, which will
return the plaintext mb to A.

6 Discussions and Conclusion

The authors constructed 10 games, Game-0 to Game-10, to prove the CCA security of the
PRE scheme developed in [12] , where Game 0 is just the CCA definitional game of PRE
(recalled in Section 3). Our above concrete attack shows that the CCA security proof in [12]
must be flawed. A careful investigation shows that the proof has already been flawed for the
arguments between Game-0 and Gmae-1.

Specifically, the Game-1 in [12] is identical to Game-0, except for some modifications on
the actions of decryption oracles. Particularly, in Game-1, when queried with (pkj , Cj) =
((srltdf, τ), (vk, c1,j , c2, c3, τ

′, σ)) such that (vk, c2, c3, τ
′, σ) = (vk∗, c∗2, c

∗
3, τ

∗, σ∗), where Ci∗ =
(vk∗, c1,i∗ , c

∗
2, c

∗
3, τ

∗, σ∗) and pki∗ = (s∗rltdf, τ
∗) are the challenge ciphertext and the chal-

lenge public-key (w.r.t. the uncorrupted player i∗) respectively, the decryption oracle per-
forms as follows: it first checks whether PrivReEval(x∗, τ ′, τ, srltdf) = c1 where x∗ denotes
the random value used to form the challenge ciphertext (i.e., c∗1,i∗ = LossyEval(s∗rltdf, x

∗),
c∗2 = Fabo(s

∗
abo, vk

∗, x∗) and c∗3 = h(x∗) ⊕ mb), and then outputs m = c3 ⊕ h(x∗) in case
the check is successful. It is claimed in [12] that this modification does not affect any
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success probability of an adversary, and in fact, the probability that the queries satisfying
PrivReEval(x∗, τ ′, τ, srltdf) = c1 is negligible.

But, our concrete attack shows that the above security arguments are wrong. In par-
ticular, the ciphertext Cj generated by the concrete attack satisfies both (vk, c2, c3, τ

′, σ) =
(vk∗, c∗2, c

∗
3, τ

∗, σ∗) and PrivReEval(x∗, τ ′, τ, s) = c1 (which occurs with probability 1), and
the decryption oracle will return back the challenge plaintext mb in this case.

The PRE scheme developed in [12] is based upon the CCA-secure public-key encryption
(PKE) scheme of Peikert and Waters (that is in turn based upon LTDFs) [13], which can
be viewed as an extension of the Peikert-Waters PKE scheme into the proxy re-encryption
setting. One key difference between the Peikert-Waters PKE construction and the PRE
construction of [12] is that: all components in the ciphertext of the Peikert-Waters PKE are
signed by the one-time signature (under the verification key vk), but the key component c1
is not signed in the ciphertext of the PRE of [12]. Of course, signing c1 can prevent our
concrete attack, but the resultant scheme is not a PRE scheme any longer (particularly, the
proxy cannot translate ciphertexts among players, as the underlying signing key w.r.t. vk is
unknown to the proxy). From our view, developing CCA proxy re-encryption without pairing
in the standard model may need significantly new ideas and techniques. As a consequence,
it is still an open problem to come up with a (bidirectional or unidirectional) proxy re-
encryption scheme without pairings in the standard model.
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