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Abstract. Linear Hull is a phenomenon that there are a lot of linear
paths with the same data mask but different key masks for a block ci-
pher. In 1994, K. Nyberg presented the effect on the key-recovery attack
such as Algorithm 2 with linear hull, in which the required number of
the known plaintexts can be decreased compared with that in the at-
tack using an individual linear path. In 2009, S. Murphy proved that
K. Nyberg’s results can only be used to give a lower bound on the data
complexity and will be no use on the real linear cryptanalysis. In fact,
the linear hull produces such positive effect in linear cryptanalysis only
for some keys instead of the whole key space. So the linear hull can be
used to improve the classic linear cryptanalysis for some weak keys. In
the same year, K. Ohkuma gave the linear hull analysis on reduced-round
PRESENT block cipher, and showed that there are 32% weak keys of
PRESENT which make the bias of a given linear hull with multiple paths
more than a lower bound. However, K. Ohkuma has not considered the
dependency of the multi-path, and his results are based on the assump-
tion that the linear paths are independent. Actually, most of the linear
paths are dependent in the linear hull. In this paper, we will analyze
the dependency of the linear paths in a linear hull and the real effect of
linear hull with the dependent linear paths. Firstly, we give the relation
between the bias of a linear hull and its linear paths in linear cryptanal-
ysis. Secondly, we present the formula to compute the rate of weak keys
corresponding to the expected bias of the dependent paths. Based on
the formula, we show that the dependency of linear paths reduces the
number of weak keys corresponding to higher biases of the linear hull
compared with that in the independent case. It means that the depen-
dency of linear paths reduces the effect of linear hull. At last, we verify
our conclusion by analyzing reduced-round of PRESENT.
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1 Introduction

Linear cryptanalysis[1] is a powerful method of cryptanalysis introduced
by M. Matsui in 1993. It is a known plaintext attack in which the attacker
identifies the linear approximations of parity bits of the plaintext, cipher-
text and the subkey. We denote the probability of linear approximation
as p, then the absolute of the bias ε = p − 1/2 represents the effective-
ness of the linear approximation. Based on this idea, many variants of
linear cryptanalysis appeared, such as linear cryptanalysis using multiple
linear approximations with the same key mask[2], multiple linear approx-
imations cryptanalysis[3] and linear cryptanalysis based on linear hull[4]
etc.

Linear cryptanalysis using multiple approximations[2] was introduced
by B.S. Kaliski and M.J.B. Robshaw in 1994. For a given success rate, this
method reduced the data complexity by using multiple linear approxima-
tions. But their technique is limited to cases where all approximations
have the same key mask. Unfortunately, this approach imposes a very
strong restriction on the approximations. The concept of linear hull[4]
was first announced by K. Nyberg in 1994, and a linear hull stands for
the collection of all linear relations that have the same input mask and
output mask, but involve different sets of round subkey bits in the differ-
ent linear paths. The linear hull effect accounts for a clustering of linear
paths and decreases the required number of known plaintexts for a given
success rate. In 2009, however, S. Murphy proved that there is no linear
hull effect in linear cryptanalysis[5]. In the same year, K. Ohkuma pointed
that 32% of the whole key space for PRESENT are weak keys which will
produce much larger bias by the multi-path effect compared with that by
the single linear path[6]. That is to say, the number of required known
plaintexts can be reduced apparently for these weak keys. However, the
results of K. Ohkuma are based on the assumption that all linear paths
are independent. In fact, the assumption is not correct, so we need to
reconsider the effect of linear hull.

Many kinds of the dependency are difficult to be considered in crypt-
analysis. In this paper, we will analyze how the dependency of linear
paths of linear hull affects the linear cryptanalysis. And then we give the
relationship between the bias of linear hull and equivalent subkey values
of the linear paths. Since the linear paths are dependent, we will give
the method to compute the final bias of linear hull for a given key and
offer a formula to compute the rate of weak keys with the expected bias.
With the formula, we show that the dependency of linear paths reduces



the number of weak keys corresponding to higher biases of the linear hull
compared with that in the independent case, however, the dependency of
linear paths increases the number of keys corresponding to lower biases of
the linear hull compared with that in the independent case. It means that
the dependency of linear paths reduces the effect of linear hull. In order
to verify our method, we computed the bias and the corresponding weak
keys for block cipher PRESENT. As a result, the rate of the weak keys
corresponding to higher biases for the linear hull in PRESENT under the
dependent linear paths is lower than that under the independent linear
paths in [6], and moreover, as the round number increases, the rate of
weak keys will be reduced gradually.

This paper is organized as follows. Section 2 briefly introduces the
linear hull and the block cipher PRESENT. Section 3 presents the rela-
tionship between the linear bias and equivalent subkey values, derives the
formula of the linear bias under the dependent linear paths, and shows
how the dependency of linear paths affects the number of weak keys for
higher biases of the linear hull. In Section 4, we compute the rate of
weak keys with the expected bias for reduced-round PRESENT. Section
5 concludes this paper.

2 Preliminaries

2.1 Introduction of Linear Hull

The concept of linear hull was first proposed by K. Nyberg in [4]. A
linear hull stands for the collection of all linear approximations (across a
certain number of rounds) that have the same input and output masks,
but involve different sets of round subkey bits according to different linear
paths. As we know, the differential is the set of the differential character-
istics, and similarly the linear hull is the set of the linear approximations.
It is easy to compute the probability of the differential with multiple dif-
ferential characteristics, but the bias of the linear hull is difficult to be
obtained.

In [4], K. Nyberg also proposed the concept of linear hull effect
which accounts for a clustering of linear paths. Because of the existence
of the linear hull effect, the final bias may become significantly higher than
that of any individual linear path. Denote the input mask as a and the
output mask as b for a block cipher Y = Y (X, K), K. Nyberg computed
the potential of the corresponding linear hull as follows,

ALH(a, b) =
∑

ci∈Γ

(P(a ·X ⊕ b · Y = ci ·K)− 1
2
)2 = η2, (1)



where ci is the mask for the subkey bits, and the set Γ = {ci ·K}. Then,
key-recovery attacks such as Algorithm 2 in [1] apply with

N =
t

ALH(a, b)
=

t

η2

known plaintexts, where t is a constant. An advantage to use linear hull in
key-recovery attacks, such as in Algorithm 2, is that the required number
of known plaintexts can be decreased for a given success rate.

2.2 Brief Description of PRESENT

PRESENT is an ultra-lightweight block cipher proposed by A. Bogdanov,
L.R. Knudsen and G. Leander et al.[9]. PRESENT is a 31-round SP-
network with block size 64 bits and 80 bits or 128 bits key size. The
round function consists of three layers: AddRoundKey, SboxLayer and
pLayer. The AddRoundKey is a 64-bit exclusive OR operation with a
round key. The SboxLayer is a 64-bit nonlinear transform using a single
S-box 16 times in parallel. The S-box is a nonlinear bijective mapping
given in Tab. 5. The pLayer is a bit-by-bit permutation given in Tab. 6.
The design idea of SboxLayer and pLayer is adapted from Serpent [7] and
DES block cipher[8], respectively.

3 The Bias of the Linear Hull

3.1 The General Formula of the Bias

A linear path is defined as a single path of linear approximations con-
catenated over multiple rounds[11]. Now suppose that there is a n-round
linear hull with data mask (a, b) and L linear paths. The bias of the
linear hull is denoted as η, and the bias of each linear path is denoted
as εi(1 6 i 6 L). In addition, ci(1 6 i 6 L) is subkey mask. In fact,
each ci ·K is a key expression about the subkey bits and we name it as
the equivalent subkey bit. The expressions of linear paths are defined as
follows,

a ·X ⊕ b · Y = ci ·K with probability
1
2

+ εi, ci ∈ Γ, (2)

where Γ is the space of subkey masks.
From [5] and [6], we know that η is determined by εi and ci·K. The bias

εi may be positive or negative. Without loss of generality, we can assume



that all biases are positive, as the sign can be absorbed in the equivalent
subkey bits. For example, if εi < 0, we have (−1)ci·Kεi = (−1)ci·K⊕1(−εi).
Then we get the equivalent subkey bit ki = ci · K ⊕ 1. So the bias of a
linear hull is given by

η =
L∑

i=1

(−1)kiεi, (3)

where εi > 0 and ki is the equivalent subkey bit. In order to confirm equa-
tion (3), we compute the bias with enough amount of pairs of plaintexts
and ciphertexts under 4-round linear hull of PRESENT, and the results
are given in App. B.

3.2 How to Compute the Bias of Linear Hull with Dependent
Paths

In this subsection, we will discuss how the dependency of linear paths af-
fects the bias of a linear hull. For a n-round liner hull of data mask (a, b),
we suppose that it contains L linear paths. Let us denote the linear path as

a ·X ⊕ b · Y = K(0)[χ0
j ]⊕K(1)[χ1

j ]⊕ . . .⊕K(n)[χn
j ]

= kj , with probability pj =
1
2

+ εj , 1 6 j 6 L,
(4)

where kj is an equivalent subkey bit, Γ = {kj}L
j=1.

Here we denote the vector form of key mask cj as (c0
j,0, . . ., c0

j,h, c1
j,0,

. . ., c1
j,h, . . ., cn

j,0, . . ., cn
j,h), where cr

j,l ∈ {0, 1}, 0 ≤ r ≤ n, 0 ≤ l < h,
and cr

j,l ∈ {0, 1} is the coefficient of the l-th bit of the r-th round subkey.
According to equation (4), the dependency of linear paths means all key
masks cj(1 ≤ j ≤ L) are dependent. For example, if the first four linear
paths are dependent, we have c1 ⊕ c2 ⊕ c3 ⊕ c4 = 0. That is to say the
dependency of linear paths is the dependency of vector cj(1 ≤ j ≤ L). We
also call kj = cj ·K equivalent subkey bit, then we say the dependency of
linear paths also means that their equivalent subkey bits are dependent.

Assume that the maximum number of linear paths whose equivalent
subkey bits are independent with each other is R. Without loss of gen-
erality, we assume that k1, k2, . . . , kR are independent with each other,
and name them as independent subkey bits, which form a set Γ1. The
dependent subkey bits, which form a set Γ2, are denoted by the de-
pendent subkey expressions kj = c1,jk1 ⊕ c2,jk2 ⊕ . . .⊕ cR,jkR, R < j 6
L, ci,j ∈ {0, 1}, 1 6 i 6 R. So Γ = Γ1 ∪ Γ2.



In order to compute the bias of linear hull, we must find out the regu-
larity of distribution of independent subkey bits on the expressions of the
dependent subkey bits. So we study the relationship between independent
subkey bits and dependent subkey bits at first.

– If we do the XOR operation for two different equations in (4), we get

0 = K(0)[χ0
i , χ

0
j ]⊕ . . .⊕K(n)[χn

i , χn
j ], i 6= j.

Obviously, this expression is not a linear path of the linear hull. The
conclusion always holds if the number of these equations is even.

– If we do the XOR operation for three different equations in (4), we
get

a · P ⊕ b · C = K(0)[χ0
u, χ0

v, χ
0
w]⊕ . . .⊕K(n)[χn

u, χn
v , χn

w], u 6= v 6= w.

Obviously, the expression is a linear path of the linear hull. The con-
clusion always holds if the number of these equations is odd.

So we affirm that every dependent subkey bit is determined by odd
number of independent subkey bits. That is to say, the sum of coefficients
rj =

∑R
i=1 cij for kj (kj ∈ Γ2) is odd. Let us denote the maximal sum as

r′ = max
R<j6L

{rj} = max
R<j6L

{
R∑

i=1

ci,j}. (5)

Now suppose that we have derived all the linear paths in a linear hull,
the relationship between dependent subkey bits and independent subkey
bits can be obtained. We classify all the independent equivalent subkey
bits according to their values, and present the method to compute the
bias of a given linear hull and the rate of weak keys satisfying a lower
bound of the bias. The main idea is described as follows,

1. We study the distribution of the independent subkey bits on the ex-
pressions of the dependent subkey bits. For a given master key, every
independent subkey bit has two possible values: 0 or 1, and |Γ1| = 2R.
a. For a possible value of Γ1, suppose that the number of the indepen-

dent subkey bits whose values are 0 is s (s 6 R), and the number
of the independent subkey bits whose values are 1 is (R − s). We
classify the independent subkey bits into two groups according to
their values.



b. Consider the values of the dependent subkey bits. If there are odd
number of subkey bits among the s subkey bits in the expressions
of the dependent key bit kj (R < j 6 L), we have kj = 0.

c. In order to get the general formula, we classify the dependent
subkey bits according to the number of independent subkey bits,
whose values are 0, in the expressions of them.

Fig. 1 is useful to understand our idea.
2. Compute the bias of the linear hull for every possible value of Γ1. Then

we can calculate the rate of weak keys according to the definition of
weak keys.

Rkkk ,,, 21  , there are  possible valuesR2

RClassify all possible values by  the value of the  subkey bits 

There are s subkey bits whose values 

are 0. 
),1(1  ,0 jiRikk ij   ! ! ")1(  0 Rik i )1(  1 Rik i!!  ! !

Classify the dependent subkeys bits by the number of the indepentdent  subkey bits whose values is zero in their expressions 

The dependent subkey bits whose expressions 

contain 3 0-value independent subkey bits of s

The dependent subkey bits whose expressions 

contain 5 0-value independent subkeys bits of s

The dependent subkey bits whose expressions contain 

12 #l  0-value independent subkeys bits of s

Fig. 1. Classification of Linear Paths

Let us denote the times of ki (1 6 i 6 R) appeared in the dependent
subkey bits as Ni, and the times of ki1 ⊕ ki2 ⊕ . . . ⊕ kit appeared in
dependent subkey bits as Ni1,i2,...,it , (1 6 i1 < i2 < . . . < it 6 R, t 6 R).
We denote Ni1,i2,...it as N(t) at the case of no ambiguity, and then 0 6
N(t) 6 L−R. According to the definition, we have

Ni =
L∑

j=R+1

ci,j , Ni1,i2,...,it =
L∑

j=R+1

(
t∏

l=1

cil,j).

As in [6], we also only consider the best linear paths which have the
same bias εj = ε > 0 (1 6 j 6 L). Then the bias of linear hull is
η =

∑L
i=1 (−1)kiε, Let us denote T j

s as the number of dependent subkey
bits in which the values of j independent subkey bits are zero. And we
define the number of the dependent subkey bits with zero value as

Ts =
∑

16j6s, j is odd
T j

s .



If we choose the values of s independent subkey bits, we have derived
equation (6) to compute Ts in App. C.

Ts =
s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 4
∑

N(3) − 8
∑

N(4) + ...

− (2l +
(

2l

3

)
+

(
2l

5

)
+ ... +

(
2l

2l − 1

)
·
∑

N(2l)

+ (2l + 1 +
(

2l + 1
3

)
+

(
2l + 1

5

)
+ ... +

(
2l + 1
2l + 1

)
·
∑

N(2l+1)

+ ... + (−1)s−1(s +
(

s

3

)
+

(
s

5

)
+ ...) ·N(s).

(6)

If s independent zero subkey bits have been chosen, we can compute
a value of Ts with equation (6). There are

(
R
s

)
different distributions for

the s independent zero subkey bits, so Ts stands for
(
R
s

)
different values.

Property 1: For a given key with L subkey bits, if there are s indepen-
dent zero subkey bits, R− s independent non-zero subkey bits, and h
dependent zero subkey bits, the bias of the linear hull corresponding
to the key will be ((s+h)−((R−s)+(L−R−h)))·ε = (2(h+s)−L)·ε.

Now in order to compute the number of possible subkey values corre-
sponding to the different bias, we will classify Ts by their values in any
distributions of s independent zero subkey bits. Considering all the distri-
butions for the s independent zero subkey bits, we denote the total num-
ber of any s independent zero subkey bits with the bias (2(h + s)−L) · ε
as m

(s)
h . For

(
R
s

)
possible values for Ts, we have

m
(s)
h = #{Ts = h}.

For the different values of h, we will compute their bias corresponding
to

(
R
s

)
different subkey values. Then we can obtain the number of the

subkey values with the expected bias.
For each value of s (0 ≤ s ≤ R), we need to compute

(
R
s

)
times of Ts.

In order to reduce the computing time, we identify the following property:

Property 2: For a given key with L subkey bits, if there are s indepen-
dent non-zero subkey bits, R − s independent zero subkey bits, and
h dependent non-zero subkey bits, the bias of the linear hull corre-
sponding to the key will be (((R − s) + (L− R − h))− (s + h)) · ε =
−(2(h + s)− L) · ε.



From Property 1 and Property 2, the absolute bias of the two cases are
equal. Therefore, we only need to compute the bias of s 6 dR/2e. In
equation (6), we only need to compute N(t), t 6 dR/2e. In equation (5),
we have given the equation to compute r′. If r′ < dR/2e and r′ < l 6
dR/2e, we can obtain N(l) = 0. Then equation (6) can be simplified to
the following equation:

Ts =
s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 4
∑

N(3) − 8
∑

N(4)

+ . . . + (−1)r′−1(r′ +
(

r′

3

)
+

(
r′

5

)
+ . . . +

(
r′

r′

)
) ·N(r′).

(7)

If r′ ≥ dR/2e, we will still compute Ts with equation (6).
With equation (7), we can compute m

(s)
h for s 6 dR/2e. According

to Property 1 and Property 2, the number of equivalent subkey values
satisfying |η| = |L − 2(h + s)| · ε usually is 2m

(s)
h . However, there is a

special case, if R is an even and s = R/2, the number of equivalent
subkey values satisfying |η| = |L− 2(h + s)| · ε is m

(s)
h .

When independent subkey bits take all 2R possible values, the num-
ber of equivalent subkey values with the different biases is computed as
follows,

#{|η| = L · ε} = 2,

#{|η| = |L− 2| · ε} = 2m
(1)
0 ,

#{|η| = |L− 4| · ε} = 2m
(1)
1 + 2m

(2)
0 ,

#{|η| = |L− 6| · ε} = 2m
(1)
2 + 2m

(2)
1 + 2m

(3)
0 ,

#{|η| = |L− 8| · ε} = 2m
(1)
3 + 2m

(2)
2 + 2m

(3)
1 + 2m

(4)
0 ,

...
...

. . . ,

#{|η| = |L− 2(L−R + 1)| · ε} = 2m
(1)
L−R + 2m

(2)
L−R−1 + . . . + c ·m(dR/2e)

L−R−dR/2e+1 ,

#{|η| = |L− 2(L−R + 2)| · ε} = 2m
(2)
L−R + . . . ,

...
. . .

... ,

#{|η| = |L− 2(L−R + dR/2e)| · ε} = c ·m(dR/2e)
L−R .

(8)

where c = 1 as R is even, and c = 2 as R is odd.
We classify all possible equivalent subkey values by their resulted bi-

ases of linear hull in equation (8), and we can easily compute the rate of
weak keys with the lower bound of bias. Equation (8) is important to show
how the dependent paths affect the number of weak keys corresponding
to higher biases for the linear hull. In the following, we will describe it.



3.3 How the Dependent Paths Affect Weak Keys for Higher
Biases of Linear Hull

In equation (8), we know that m
(s)
h means there are s independent zero

subkey bits and h dependent zero subkey bits in L subkey bits, and m
(s)
h ≤(

R
s

) · (L−R
h

)
. So we have

#{|η| = |L− 2j| · ε}
=2m

(1)
j−1 + 2m

(2)
j−2 + . . .

=





2m
(1)
j−1 + 2m

(2)
j−2 + . . . + 2m

dR/2e
(0) , j < dR/2e

2m
(1)
j−1 + 2m

(2)
j−2 + . . . + cm

(dR/2e)
j−dR/2e, dR/2e ≤ j ≤ L−R,

2m
(j−L+R)
L−R + 2m

(j−L+R+1)
L−R−1 + . . . + cm

(dR/2e)
j−dR/2e, L−R < j ≤ L−R + dR/2e

≤





2{(R
1

)(
L−R
j−1

)
+

(
R
2

)(
L−R
j−2

)
+ . . . +

(
R

dR/2e
)}, j < dR/2e

2{(R
1

)(
L−R
j−1

)
+ . . . +

(
R

dR/2e−1

)(
L−R

j−dR/2e+1

)}+ c
(

R
dR/2e

)(
L−R

j−dR/2e
)
, dR/2e ≤ j ≤ L−R,

2{( R
j−L+R

)
+ . . . +

(
R

dR/2e−1

)(
L−R

j−dR/2e+1

)}+ c
(

R
dR/2e

)(
L−R

j−dR/2e
)
, L−R < j ≤ L−R + dR/2e

(9)

where c is the same as that in equation (8).
However, if all the equivalent subkey bits are independent, we have

#{|η| = |L− 2j| · ε} = 2
(

L

j

)
. (10)

We denote the right sides of equation (9) and (10) as Cd and Ci,
respectively. Namely, Cd is the upper bound of the number of keys under
the dependent paths with the bias #{|η| = |L − 2j| · ε}, and Ci is the
number of keys under the independent paths with the bias #{|η| = |L−
2j| · ε}. For a large amount of values of (L,R), we compute Ci and Cd

for different bias values for the linear hull with Mathematic Software
Version 5.0, the following property has been observed: Ci < Cd when
j < L/5 + R/14, and Ci > Cd when j > L/5 + R/14. Here we only list
part of test results for 3 values of (L,R) in Tab.1.

The above property shows that the dependency of linear paths reduces
the number of keys corresponding to higher biases for the linear hull
compared with that in the independent case. Meanwhile, the dependency
of linear paths increases the number of keys corresponding to lower biases
for the linear hull compared with that in the independent case. In order
to show the correctness of the conclusion we derived, we will analyze
PRESENT block cipher under the dependent linear paths in the following
section.



Table 1. Comparison of the Key Quantity in Dependent and Independent Paths

L=30, R=13 L=60, R=21 L=100, R=33

bias Cd Ci Ci − Cd bias Cd Ci Ci − Cd bias Cd Ci Ci − Cd

28ε 13 30 -17 28ε 21 60 -39 98ε 33 100 -67

26ε 299 435 -136 58ε 1029 1770 -741 94ε 113795 161700 -47905

24ε 3380 4060 -680 56ε 25081 34220 -9139 90ε 6.56e+7 7.53e+7 -9.66e+6

22ε 25025 27405 -2380 54ε 405384 487635 -82251 86ε 1.52e+10 1.60e+10 -8.70e+8

20ε 136318 142506 -6188 · · · · · · · · · · · · · · · · · · · · · · · ·
18ε 581399 593775 -12376 40ε 3.41e+11 3.43e+11 -1.66e+9 66ε 6.647e+18 6.650e+18 -3.37e+15

16ε 2047240 2035800 11440 38ε 1.396e+12 1.399e+12 -3.64e+9 62ε 1.32e+20 1.32e+20 -2.41e+16

14ε 6091163 5852925 238238 36ε 5.162e+12 5.167e+12 -4.64e+9 58ε 2.04e+21 2.04e+21 -1.18e+17

12ε 1.57e+7 1.43e+7 1.38e+6 34ε 1.736e+13 1.735e+13 1.72e+10 54ε 2.49e+22 2.49e+22 6.01e+17

10ε 3.53e+7 3.01e+7 5.23e+6 32ε 5.34e+13 5.32e+13 2.07e+11 50ε 2.43e+23 2.43e+23 5.58e+19

4 Effect of Dependency Paths in PRESENT

4.1 Linear Paths of PRESENT

From [10] and [11], we know that there are plenty of linear hulls in
PRESENT which have multiple linear paths with the highest bias. And
every linear path exploits the linear approximations of S-boxes with only
one non-zero bit for the input and output masks. The output mask of
S-box with more than one non-zero bit will affect at least two S-boxes in
the next round due to the permutation layer, which will produce much
less linear correlation in the multiple rounds of PRESENT.

Here we only focus on the linear single-bit paths with the highest bias.
Just as in [11], let π(α, β) denote a linear approximation of S-box S

where α, β∈F4
2 are the input and output masks of S, respectively. The

bias of π(α, β) is denoted by ε(α, β). The S-box has the following prop-
erties[11]:

Property 3: For α, β ∈ {2, 4, 8}, ε(α, β) = ±2−3, except that ε(8, 4) = 0.
Property 4: For α ∈ {1, 2, 4, 8}, ε(α, 1) = ε(1, α) = 0.

Let us define I = {S5, S6, S7, S9, S10, S11, S13, S14, S15} and A = {4i+
1, 4i + 2, 4i + 3 |0 ≤ i ≤ 15, Si ∈ I}. Then, the permutation P of the
pLayer has the following property[11]:

Property 5: If x ∈ A, then P(x) ∈ A.

According to the above three properties, there are nine S-boxes of S
which are usable for each round of a single-bit path, and there are three
possible values for the mask of each S-box. Let Mi = (0, . . . , 0, 1, 0, . . . , 0)



(only the i-th (i ∈ A) bit is non-zero) denote the input mask or output
mask, there are no more than 27 possible mask values for each round.

For n-round linear paths, let L
(j)
i (i ∈ A, 0 6 j 6 n) denote the

number of linear paths in which the i-th bit of the j-th round output
mask (namely, the input mask of the (j + 1)-th round) is 1. When j = 0,
the output mask of the 0-th round means the plaintext mask. We get the
following formula by Property 3 and Tab. 6:

Lj+1
21 = Lj

21 + Lj
22 + Lj

23, Lj+1
37 = Lj

21 + Lj
22, Lj+1

53 = Lj+1
21 ,

Lj+1
22 = Lj

25 + Lj
26 + Lj

27, Lj+1
38 = Lj

25 + Lj
26, Lj+1

54 = Lj+1
22 ,

Lj+1
23 = Lj

29 + Lj
30 + Lj

31, Lj+1
39 = Lj

29 + Lj
30, Lj+1

55 = Lj+1
23 ,

Lj+1
25 = Lj

37 + Lj
38 + Lj

39, Lj+1
41 = Lj

37 + Lj
38, Lj+1

57 = Lj+1
25 ,

Lj+1
26 = Lj

41 + Lj
42 + Lj

43, Lj+1
42 = Lj

41 + Lj
42, Lj+1

58 = Lj+1
26 ,

Lj+1
27 = Lj

45 + Lj
46 + Lj

47, Lj+1
43 = Lj

45 + Lj
46, Lj+1

59 = Lj+1
27 ,

Lj+1
29 = Lj

53 + Lj
54 + Lj

55, Lj+1
45 = Lj

53 + Lj
54, Lj+1

61 = Lj+1
29 ,

Lj+1
30 = Lj

57 + Lj
58 + Lj

59, Lj+1
46 = Lj

57 + Lj
58, Lj+1

62 = Lj+1
30 ,

Lj+1
31 = Lj

61 + Lj
62 + Lj

63, Lj+1
47 = Lj

61 + Lj
62, Lj+1

63 = Lj+1
31 .

(11)

For example, bypass Sboxplayer, non-zero bit in 21, 22 or 23 of the j-th
round output mask can produce the 21st non-zero bit of the output mask
in (j+1)-th round respectively, and P (21) = 21 according to Tab. 6. So
we get Lj+1

21 = Lj
21 + Lj

22 + Lj
23.

When we fix the input mask α with one non-zero value in bit l and
the output mask β, we have L

(0)
l = 1, L

(0)
i = 0, (i 6= l, i, l ∈ A), then the

number of linear paths of n-round linear hull with data mask (α, β) is

L(n) =
∑

j∈A

L
(n−3)
j , n > 7. (12)

Here we will not describe the proof of equation (12) in this paper due to
the limited space.

Tab. 2 shows our computed results for L(n) corresponding to a fixed
linear hull, which are same as the results of Tab. 2 in [10]. In our Tab.
2, the rank is the number of the independent linear paths or the number
of the independent equivalent subkey bits in a linear hull. The rank of
i (3 6 i 6 13) rounds linear hull is obtained by our computing program.
We find the rank will be increased linearly as the number of rounds is
increased. So we compute the rank of the linear hull from 14-round to
28-round.



Table 2. Number of Linear Paths and Rank of Equivalent Subkey Bits in PRESENT
for Data Mask (IM21, OM21)

#round 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

#paths 1 3 9 27 72 192 512 1344 3528 9261 24255 63525 166375 435600 1140480

rank 1 3 9 27 45 63 81 99 117 135 153 171 189 207 225

#round 18 19 20 21 22 23

#paths 2,985,984 7,817,472 20,466,576 53,582,633 140,281,323 367,261,713

rank 243 261 279 297 315 333

#round 24 25 26 27 28

#paths 961,504,803 2,517,252,696 6,590,254,272 17,253,512,704 45,170,283,840

rank 351 369 387 405 423

(IM21 means only the 21st bit of input mask is non-zero, and OM21 means only the
21st bit of output mask is non-zero.)

4.2 Computing the Rate of Weak Keys

For n-round PRESENT, we only consider the linear paths with the high-
est bias and |εi| = ε = 2−2n−1. Denote the number of linear paths with
equivalent subkey bit 0 by N0, and the number of linear paths with equiv-
alent subkey bit 1 by N1. Then the bias for the linear hull is approximate
to 2−2n−1|N0 −N1| according to equation (3).

From Tab. 2, the linear paths of PRESENT are correlative with each
other as n ≥ 7. So it is inaccurate to estimate the rate of weak keys with
the assumption of the independency of the linear paths.

For 7-round PRESENT, the data mask is (IM21,OM21), and the num-
ber of linear paths of the linear hull is L = 72. The rank of equivalent
subkey bits Γ = {ki}71

i=0 is R = 45. As in the previous section, we assume
that the first 45 equivalent subkey bits are independent subkey bits.

According to the relationship of linear paths we derived, all dependent
subkey bits are determined by three independent subkey bits for 7-round
linear hull. So we just consider three cases according to s:

– s=1, it means a single independent subkey bit (45 possible values);
– s=2, it means the combination of two independent subkey bits (

(
45
2

)
=

990 possible values);
– s=3, it means the combination of three independent subkey bits (

(
45
3

)
=

14190 possible values).

Suppose that there are s independent subkey bits with value zero,
and let Λs = {ju}s

u=1, where kju = 0. Firstly, counting Nj(0 6 j < 45),
Nj1,j2(0 6 j1 < j2 < 45) and Nj1,j2,j3(0 6 j1 < j2 < j3 < 45). And



N(l) = 0 for l > 3. Secondly, we can compute

T1 = Nj1 ,

T2 = Nj1 + Nj2 − 2Nj1,j2 ,

T3 = Nj1 + Nj2 + Nj3 − 2(Nj1,j2 + Nj1,j3 + Nj2,j3) + 4Nj1,j2,j3 ,

T4 =
∑

ju∈Λ4

Nju − 2
∑

ju, jv∈Λ4

Nju,jv + 4
∑

ju, jv, jw∈Λ4

Nju,jv,jw ,

. . . . . . . . . ,

T22 =
∑

ju∈Λ22

Nju − 2
∑

ju, jv∈Λ22

Nju,jv + 4
∑

ju, jv, jw∈Λ22

Nju,jv,jw .

(13)

The values of Ts will be different when the positions of these s indepen-
dent subkey bits are changed. We classify Ts by s and their values, and
then we get m

(1)
h1

,m
(2)
h2

,m
(3)
h3

, . . . , m
(22)
h22

(0 6 h1, h2, . . . , h22 6 27), where
27 = L−R is the number of dependent subkey bits. Finally, we know the
bias of linear hull for any equivalent subkey values.

The computation complexity increases rapidly with the growing of
the number of linear paths. Here we offer another method to compute the
rate of weak keys.

We define the subkey values satisfying |η| = |N0−N1| ·ε >
√

72ε > 8ε
as weak keys. Instead of taking all possible subkey values to compute weak
keys, we choose a large number of random subkey values to compute the
rate of weak keys. The testing procedure is presented as follows,

– 1. Choose N ′(< 232) values for 45-bit independent equivalent subkey
bits randomly.

– 2. For each chosen value, compute the values of other 27 dependent
equivalent subkey bits by the linear paths we derived. According to
the number of zero subkey bits, add the counter of the corresponding
bias value.

– 3. Compute the number of weak keys satisfying |η| > 8ε.

The results are shown in Tab. 3, N ′ means the number of equivalent
subkey values we tested, rd is the rate of weak keys computed by our
method (under the dependent linear paths), and ru is the rate of weak keys
computed by K. Ohkuma’s model (under the assumption of independency
of linear paths).

If the 72 subkey bits are independent, each bit takes zero with the
probability 1

2 . So the rate can be computed by the following equation:

1− 2
(
72
32

)
+ 2

(
72
33

)
+ 2

(
72
34

)
+ 2

(
72
35

)
+

(
72
36

)

272
= 0.28878, (14)



Table 3. The Rate of Weak Keys for 7-Round PRESENT

N ′ rd ru

215 28.05% 29.13%

216 28.07% 29.06%

217 28.04% 28.94%

218 28.09% 28.92%

219 28.13% 28.91%

220 28.12% 28.91%

221 28.13% 28.89%

which approaches to 28.89% in Tab. 3. So we believe that it is reasonable
to use the above random test, and there are 28.13% weak key in 7-round
linear hull of PRESENT, which is lower than the case under the assump-
tion of independent linear paths. As we described in the previous section,
in PRESENT, the rate of weak keys under dependent linear paths is less
than that under independent case.

In order to further verify our method, we compute the rate of weak
keys of linear hull for more rounds PRESENT. First of all, we use different
number of samples to count weak keys of i-round linear hull (7 6 i 6 13).
And then we focus on the size of sample N ′ where the rate of weak keys
is steady (that is more sample don’t change the rate obviously). Finally,
we randomly choose 100 groups sample whose size are N ′ to compute
the rate of weak keys. The results are listed in Tab. 4. Here n is the
round of linear hull, L is the number of linear paths, R is the number
of independent linear paths of all L paths, N ′ stands for the number of
equivalent subkey values we used, rd is the rate of weak keys computed
by our method (under the dependent linear paths), and is called the
computed rate, ru is the rate of weak keys computed by K. Ohkuma’s
model (under the assume of independent linear paths), whose computing
method is similar to equation (14), and is called the predicted rate. 4r
is defined as

4r =
|ru − rd|

ru
,

we call it reduced rate.
At last, we compare the computed rate rd with the predicted rate

ru in Fig. 2. From Fig. 2, the difference between the computed rate and
the predicted rate will increase as the round number increases, which is
caused by the dependency of the linear paths. Therefore, as the round
number increases, the rate of weak keys will be reduced gradually.



Table 4. The Rate of Weak Keys for Reduced-Round PRESENT

n L R N ′ rd ru 4r

7 72 45 221 28.13% 28.88% 2.60%

8 192 63 221 32.65% 34.82% 6.23%

9 512 81 221 27.86% 30.94% 9.95%

10 1344 99 222 27.30% 31.28% 12.72%

11 3528 117 222 27.10% 32.05% 15.44%

12 9261 135 222 26.05% 31.85% 18.21%

13 24255 153 222 25.15% 31.65% 20.54%

Fig. 2. Difference of Rate of Weak Keys

5 Conclusion

Linear cryptanalysis has been an important cryptanalytic method for
block cipher. However, if there are linear hulls in the block cipher, the
linear cryptanalysis may be strengthened or weaken which is decided by
the key value. In fact, the linear cryptanalysis with linear hull is the
cryptanalytic method under the assumption of the special weak keys. The
previous attack with linear hull assumed the linear paths are independent.
But the assumption is not true, so the previous attack is inaccurate.

In this paper, we assume the round subkeys are independent with each
other and consider all kinds of the dependency in the linear paths with
the highest bias, and derive the method to compute the number of the
weak keys satisfying the expected bias for the linear hull. We show that
the dependency of linear paths reduces the number of weak keys corre-
sponding to higher biases for the linear hull compared with that in the



independent case, however, the dependency of linear paths increases the
number of keys corresponding to lower biases for the linear hull compared
with that in the independent case. It means that the dependency of linear
paths reduces the effect of linear hull. We verified our method by ana-
lyzing the reduced-round PRESENT block cipher and we found the rate
of weak keys will be reduced gradually as the round number increases.
It is noted that we don’t consider the dependency of the key schedule
algorithm. If we consider the dependency of the key schedule algorithm,
it will be unfavorable to present the effect of the dependency linear paths.

However, if we consider all paths with different biases, it is difficult to
decide the effectiveness of the linear cryptanalysis with the linear hull.
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A The S-box and Permutation Tables of PRESENT

The S-box and the permutation tables of PRESENT are given in Tab. 5
and Tab. 6, respectively.

Table 5. S-box Table in Hexadecimal Notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 6. Permutation Table

i 0 1 2 3 4 5 6 7 8 9 A B C D E F

P[i] 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P[i] 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P[i] 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P[i] 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

B Bias of 4-Round Linear Hull of PRESENT

For block cipher PRESENT, the data mask we used is (00000000x||00300000x,
00400000x||00400040x), denoted by active bits form as (P[20, 21],C[6, 22, 54]).
There are three linear paths in all:

P[20, 21]⊕ C[6, 22, 54] = K0[20, 21]⊕K1[21]⊕K2[37]⊕K3[25]⊕K4[6, 22, 54],

P[20, 21]⊕ C[6, 22, 54] = K0[20, 21]⊕K1[37]⊕K2[41]⊕K3[26]⊕K4[6, 22, 54],

P[20, 21]⊕ C[6, 22, 54] = K0[20, 21]⊕K1[21, 53]⊕K2[37, 45]⊕K3[25, 27]⊕K4[6, 22, 54].

The biases separately are ε1 = −2−8, ε2 = 2−8 and ε3 = 2−11. Then we
have

k1 = K0[20, 21]⊕K1[21]⊕K2[37]⊕K3[25]⊕K4[6, 22, 54],

k2 = K0[20, 21]⊕K1[37]⊕K2[41]⊕K3[26]⊕K4[6, 22, 54],

k3 = K0[20, 21]⊕K1[21, 53]⊕K2[37, 45]⊕K3[25, 27]⊕K4[6, 22, 54].

We computed the bias with random plaintexts for three different 80-
bit encryption key and the results are listed in Tab. 7. Here we denote the



80-bit encryption key as κ, and κ[j] means the j-th (0 6 j < 80) bit of κ,
κ[19] = 1 means only the 19-th bit of κ is 1 and others are 0. Similarly,
κ[17] = κ[19] = 1 means the 17-th and the 19-th bit are 1 and the rest
are all 0. The last column is the bias computed with a large number of
random plaintexts under 4-round PRESENT block cipher, the second to
last column is the bias computed with equation (3). Both of them are
approximately equal.

Table 7. Bias of 4-Round Linear Hull

Equivalent Keys Number of Bias Computed Experimental
Initial Key k1 k2 k3 Plaintexts by Equation (3) Bias

κ[j] = 0, 0 6 j < 80 1 0 1 218 2−7.0931 2−7.0960

κ[19] = 1 1 1 0 225 2−11 2−10.8513

κ[17] = κ[19] = 1 1 0 0 218 2−6.9125 2−6.8961

C Computing Ts in Sect. 4

Symbols:
Γ1: The set of independent subkey bits;
Γs: The subset of Γ1, whose elements have zero value;
T j

s : The number of dependent subkey bits in which j elements of Γs

appear, and the number of dependent subkey bits with value zero is

Ts =
∑

16j6s, j is odd
T j

s .

All biases are computed according to equation (3) in what follows.

1. Let us first consider the case of s = 1. It means that there is only one
independent zero subkey bit, and we denote it as kj , j is one value of
(1, 2, . . . , R).
If Nj = 0, it means that kj does not appear in any dependent subkey
expressions. The number of dependent zero subkey bits is T1 = 0, then
η = −(L− 2)ε.
If Nj = 1, it means that kj only appears once in all dependent subkey
bits. The number of dependent zero subkey bits is T1 = 1, then η =
−(L− 2(T1 + 1))ε = −(L− 4)ε.
In the similar way, if Nj = t, it means that kj appears t times in all
dependent subkey bits. The number of dependent zero subkey bits is



T1 = Nj = t, then η = −(L − 2(T1 + 1))ε = −(L − 2(Nj + 1))ε =
−(L− 2(t + 1))ε.
If s = R− 1, it means that there is only one independent zero subkey
bit. We also denote it as kj , j is one value of (1, 2, . . . , R), that is
because kj = 0, kl = 1 (1 6 l 6 R, l 6= j) and kj = 1, kl =
0 (1 6 l 6 R, l 6= j) for j are one to one correspondence. Similar
with above process, we know that TR−1 = Nl = t and the bias η =
(L− 2(TR−1 + 1))ε = (L− 2(Nl + 1))ε = (L− 2(t + 1))ε.
Here we classify T1 by their value. Let m

(1)
h denote the number of

possible equivalent subkeys with only one independent zero subkey bit
appearing h times in all dependent subkey bits, that is m

(1)
h = #{1 6

j 6 R | T1 = Nj = h}, 0 6 h 6 L − R. Then m(1) =
∑L−R

h=0 m
(1)
h

means the total number of T1, and T1 = Nj has R possible values.
So m(1) =

(
R
1

)
= R. Therefore, the number of equivalent subkeys

satisfying η = −(L − 2(h + 1))ε is m
(1)
h . According to symmetry, the

number of equivalent subkeys satisfying η = (L − 2(h + 1))ε is m
(1)
h

too.
2. Considering the case of s = 2, it is a subset of any two zero or non-zero

independent subkey bits ku ⊕ kv (1 6 u < v 6 R).
As we know, ku appears Nu times in dependent subkey expressions,
and kv appears Nv times, ku ⊕ kv appears Nu,v times, then the num-
ber of dependent subkey expressions which are dependent on ku but
independent on kv is N ′

u = Nu − Nu,v, similarly the number of de-
pendent subkey expressions which are dependent on kv but indepen-
dent on ku is N ′

v = Nv − Nu,v. Since ku = kv = 0, the value of
dependent subkey bits which is only dependent on one of ku and kv

is 0, and the number of dependent subkey bits with value zero is
T2 = N ′

u + N ′
v = Nu + Nv − 2N(u,v). So η = −(L− 2(T2 + 2))ε.

With the method in case 1, let us classify T2 by its value, and define
m

(2)
h = #{1 6 u < v 6 R | T2 = h}, 0 6 h 6 L − R. Then m(2) =∑L−R
h=0 m

(2)
h =

(
R
2

)
means the total number of T2.

So the number of equivalent subkeys satisfying η = −(L− 2(h + 2))ε
is m

(2)
h . By symmetry, the number of equivalent subkeys satisfying

η = (L− 2(h + 2))ε is m
(2)
h too.

3. For the general case, we consider the subset of any s independent
subkey bits Γs = {k1, k2, . . . , ks}. We need to compute the number of
dependent subkey expressions in which odd elements of Γs appear.
The number of dependent subkey expressions in which k1⊕k2⊕ . . .⊕
ks−1 appear but ks does not appear (call the s − 1 elements of Γs



appear independently) is N ′
1,2,...,(s−1) = N1,2,...,(s−1) − N1,2,...,s. The

number of dependent subkey expressions in which k1⊕k2⊕ . . .⊕ks−2

appear independently is N ′
1,2,...,(s−2) = N1,2,...(s−2)−N ′

1,2,...,(s−2),(s−1)−
N ′

1,2,...,(s−2),s−N1,2,...,s = N1,2,...,(s−2)−(N1,2,...,(s−2),(s−1)+N1,2,...,(s−2),s)+
N1,2,...,s. We can also compute the number of dependent subkey ex-
pressions in which any s−2 elements of Γs appear independently. Then
we compute the number of dependent subkey expressions in which any
s− 3 elements of Γs appear independently. According to mathemati-
cal induction, we get the number of dependent subkey expressions in
which one element of Γs appears independently

N ′
i = Ni −

∑

16j6s, j 6=i

Ni,j +
∑

16j<k6s, j 6=i, k 6=i

Ni,j,k + . . . + (−1)s−1N(s).

We know that N(l) is just a symbol and it stands for
(
s
l

)
different

values. N(l) in N ′
i(1 6 i 6 s) are always related with ki, then the

number of N(l) in N ′
i is

(
s−1
l−1

)
. Therefore, the number of all N(l) in∑s

i=1 N ′
i is s ·(s−1

l−1

)
. By symmetry, the times of every N(l) appeared in

∑s
i=1 N ′

i is equal. So the coefficient of
∑

N(l) in
∑s

i=1 N ′
i is

s·(s−1
l−1)
(s

l)
= l.

Hence,

T 1
s =

s∑

i=1

N ′
i =

s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 3
∑

N(3)

− 4
∑

N(4) + ... + (−1)l−1 · l ·
∑

N(l)

+ ... + (−1)s−1 · s ·N(s).

Similarly, we consider the number of N(l) appeared in N ′
(u)(u < l, u is an odd).

N(l) in N ′
(u) is always related with u elements of Γs, then the number

of N(l) in N ′
(u) is

(
s−u
l−u

)
. Therefore, the number of all N(l) in

∑
N ′

(u) is(
s
u

)·(s−u
l−u

)
. By symmetry, the times of every N(l) appeared in

∑
N ′

(u) is

equal. So the coefficient of
∑

N(l) in
∑

N ′
(u) is (s

u)·(s−1
l−u)

(s
l)

=
(

l
u

)
. Hence,

T u
s =

∑
N ′

(u) =
∑

N(u) −
(

u + 1
u

)
·
∑

N(u+1) + . . .

+ (−1)l−1 ·
(

l

u

) ∑
N(l) + ... + (−1)s−1 ·

(
s

u

)
·N(s).



Finally, we get the equation (6)

Ts =
∑

16j6s,j is an odd
T j

s

=
s∑

j=1

N ′
j +

∑
N ′

(3) +
∑

N ′
(5) + . . .

=
s∑

j=1

Nj − 2
∑

16i<j6s

Ni,j + 4
∑

N(3) − 8
∑

N(4) + ...

− (2l +
(

2l

3

)
+

(
2l

5

)
+ ... +

(
2l

2l − 1

)
·
∑

N(2l)

+ (2l + 1 +
(

2l + 1
3

)
+

(
2l + 1

5

)
+ ... +

(
2l + 1
2l + 1

)
·
∑

N(2l+1)

+ ... + (−1)s−1(s +
(

s

3

)
+

(
s

5

)
+ ...) ·N(s).


