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Abstract In this paper, we present a new scheme referred to as K(II) scheme which would be effective for im-
proving a certain class of PKC’s. Using K(II) scheme, we propose a new method for constructing the public-key
cryptosystems based on error-correcting codes. The constructed PKC is referred to as K(V)SE(1)PKC. We also
present more secure version of K(V)SE(1)PKC, referred to as K*(V)SE(1)PKC, using K(I) scheme previously pro-

posed by the present author, as well as K(II) scheme.
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1. Introduction

Most of the multivariate PKC’s so far proposed are con-
structed by simultaneous equations of degree larger than or
equal to 2 [1-6]. Recently the present author proposed a sev-
eral classes of multivariate PKC’s that are constructed by
many sets of linear equations [7,8], in a sharp contrast with
the conventional multivariate PKC’s where a single set of si-
multaneous equations of degree more than or equal to 2 are
used. In Ref.[9], the present author proposed a new scheme
referred to as K(I) scheme. This scheme can be applied for
constructing a wide class of new PKC’s.

In this paper, we present a new scheme referred to as K(I
I) scheme which would be effective for improving a certain
class of PKC’s that are constructed based on error correct-
ing codes. Using K(II) scheme, we propose a new method
for constructing the PKC’s based on error-correcting codes.
The constructed PKC is referred to as K(V)SE(1)PKC.
We also present a more secure version of K(V)SE(1)PKC,
referred to as K*(V)SE(1)PKC, using K(I) scheme. The
K*(V)SE(1)PKC has the following remarkable features:

e Coding rate of exactly 1.0.

e Significantly small size of public key compared with
the conventional SE(1)PKC.

Throughout this paper, when the variable v; takes on
a value ¥;, we shall denote the corresponding vector v =

(v1,v2, - ,Vn) as

B = (01,02, ,0n) - (1)

The vector v = (v1,v2,---,vn) will be represented by the

polynomial as
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v(z) = v 4o 4 - ozt (2)

The 4, @(z) et al. will be defined in a similar manner.
Throughout this paper, (n,k,d) code implies the code of
length n, number of information symbols k and the mini-

mum distance d.
2. K(V)SE(1)PKC

2.1 Construction of K(V)SE(1)PKC

Let the message vector M over Fam be represented by
M:(M17M27 aMk) (3)

Throughout this paper we assume that the messages
My, Ms,--- , M, are mutually independent and equally
likely. Let M be transformed as

(M17M2,"' 7Mk)AI - (m17m27"' 7mk)7 (4)

where A; is a k X k non-singular matrix over Fam.

Let the error vector E over Fom be represented by

E = (Oé1E1,0(2E2, e ,Oann), (5)

where «; € Fom and we assume that n is larger than k.

Let us transform F into e,

(OélEl, azFs, - -- ,OénEn)AII =e€

(6)
= (61,62, . ,ek)7
where Ay is an n X k matrix over Fom.
Let the message vector mpg added with error variables

,er be defined by

ey, e, -

mp = (m1+e1,ma+ez, - ,m+ex). (7



We then encode mg to a code word of an (n, k, d) code over

Fom as
mod G(z), (8)

where G(z) is the generator polynomial of a cyclic code of
degree g = n — k over Fam.

We assume that the minimum distance of the code is given
by 2t + 1. Denoting r(x) in a vector form by (r1,r2, -+ ,7g)

over Fam, the code word w can be represented by

w = (r1,r2, + ,Tg,M1 + €1, , Mg + €k). 9)

We then construct the word v by adding the error vector

E = (FE1,E, - ,E,) on w:

v=w+F
=(r1 + a1E1, 79 + aaFs, - -+ 74 + g Fy, (10)

mi +e1 + agr1Egi1, - ,mi + ek + anEy).

We see that any component of v consists of a linear equation

in the variables My, Ma,--- , My and E1,FEs,--- , E,.

sanEy) is

useful for hiding the structure of the code w. Besides the

Remark 1: The error vector F = (a1 E1, a2Fa, - -

w itself is further transformed to wg using non-singular ran-

dom matrix Amr over Fam, as we see below. O

Let us define K(II) scheme:

K(I) scheme:

the message mpg is very useful, because it can improve the

The process of obtaining the vector v from

security or coding rate of a large class of PKC’s that are con-

structed based on error correcting codes (See Fig.1). O
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Fig. 1 K(II) scheme

Let us further define a similar but simplified scheme, K* (1)
scheme, in the following:
K*(Il) scheme: Let us first define a predetermined error

vector e = (e1, ez, - ,e,) whose Hamming weight w(e) = t.

Let the hashed vector of e be h(e) = (e, e5,--- ,e}). The
vectors mpg, w, v are given in an exactly similar manner as
those given from Eqs.(7), (9) and (10). O
The vector v is further transformed into w,
vAmr =u
(1)
= (’LL1,’U,27 e 7u”7«)'

We have the following set of keys:
Public key: {u;}.
Secret, key: A]7 AH, AH[, G(:c), {Ozi}, {el}

2.2 Parameters

We see that u; in Eq.(11) is a linear equation in the vari-
ables My, Ms,--- , My and E1,Es,--- , E,. Thus, the total
number of equations, Ng, and the total number of variables,

Ny, are proved to be given by

Ne=n=k+g (12)
and

Ny =k+n=2k+g (13)
respectively.

The size of the public key, Sy, is given by

Spk = Ng - Ny -m

(14)
=(k+9)(2k + g)m.
The coding rate, p, is given by
number of information symbols k&
p= =—. (15)

length of ciphertext n
2.3 Encryption
The encryption can be performed by the following steps:
Step 1: Letting the Hamming weight of E be denoted by
WH (E) , the sending end chooses nonzero Ei’s under the con-

dition that

wp (E) =t (16)

in a random manner.

Step 2: The ciphertext c is given by

C:('Ill,{bg,"' ?ﬁ"’l) (17)

The component 4; is given by
= fO NN Moo M. Fn Eo -
Usg _fl (M17M27 7Mk7E17E27

where fi(l)(*) implies a linear equation.

) N



2.4 Decryption
The decryption can be performed by the following steps:
Step 1:

forms ¢ into the vector v,

Given ¢ = (U1, U2, -+ ,Un), the receiving end trans-

Gy, @2, - ,Gn)Ag =0
( ) 1T (19)

Step 2: Given @, the error vector E = (oqu, asEs, -+,
anE'n) can be successfully corrected, as wpy (E) satisfies
; ék)

,€r) is subtracted from

wu (E) =t, yielding g and & = (é1,, - -
Step 3: The vector & = (é1,é2,- -
mEg, yielding vector m.

Step 4: The vector 7 is inverse-transformed into the orig-

inal message M,

M = (My, Ms, -+ , My,). (20)

2.5 Security Considerations

In K(V)SE(1)PKC, we do not necessarily recommend to
use the Goppa codes. Namely we believe that the use of the
conventional code such as BCH code or Reed-Solomon code
would cause no deterioration of security, in our proposed
scheme.

The linear transformation matrices Ay, Ap, and A
would be effective to hide the code structure. Besides we

add the following error vector E on w:
E = (CM1E1,O(2E2,"' ,OtnEn), (21)

where o; € Fom is chosen in a random manner.
As F; takes on the value in Fom also in a random manner,

the ambiguity of F;, h(E;), can be given by
h(E;) = log, (2™ — 1) (bit). (22)

In the examples given in this paper, the ambiguity of E will

be chosen sufficiently large.

Remark 2: For m =1, welet a; = 1; ¢ = 1,2,--- ;n. Thus

the entropy h(a;) = 0 (bit).

The entropy of the vector E, h(E), can be given by

h(E) = ,Cyitlog, (2™ — 1) (bit), (23)
for m = 2. O
Remark 3: The error vector E is added on w whose compo-

-, En. We

thus conclude that the error vector E having a large ambigu-

nent is given by a linear combination of E1, Fa, - -

ity is able to hide the structure of the code used. Furthermore
w + F is transformed into uw using Apr whose ambiguity can

be given approximately by mn? bit. O

One of the most strong attacks on K(V)SE(1)PKC would be
the following attack.

Attack I: Attack on E. m]

On Attack I, we assume the following two cases.
Case I:
symbols in the ciphertext at k locations, S1, S2, ---, Sk.

Attack I successfully estimates a set of error free

Case II: Attack I successfully estimates ¢t nonzero symbols
of the error vector E.

Case I provides the k linear equations in k variables, yielding
the message symbols m1,ma,- - ,mi. However each equa-
tion has an error component given by a linear combination
of t errors. Let the probability that an error component con-
sisted of ¢ errors happens to be zero be denoted by Pg(0).

The Pg(0) is given by
Pg(0)=2"" (24)

for sufficiently large ¢. The probability that Case I where
k error components happen to be all zeros occurs, P.(I), is

given by
P.(I) =27, (25)

In the examples given in Table 1, the probabilities P.(I)’s
are made to be sufficiently small.

The probability that the Case I occurs, P.(Il), is given by

-
7'nCt

We shall also see that the probability P.(II) is made suffi-

Pe(T) @" -1 (26)

ciently small in the examples in Table 1.
2.6 Example
In Table 1, we resent several example of K(V)SE(1)PKC.

0 1 Examples of K(V)SE(1)PKC over Fom

m Code |n,Ng,| k |n+k Ny |g n—=k
Example I | 1 | KS[12] 197 | 101 293 96
Example T | 1 | BCH[12] | 255 | 147 402 108
Example I | 8 | S-RS*! 128 | 112 240 12
Example IV | 8 | S-RS*! 64 48 112 16

t P.() P.(N) Spi(Kbit) | p
Example I | 13 | 3.94x10731 | 2.57x10~18 58 0.512
Example T | 14 | 5.60x10~45 | 2.55x10~23 197 0.58
Example I | 6 | 1.89x107270 | 6.54x10—25 246 0.875
Example IV | 8 | 2.53x107116 | 1.23x10~29 57 0.75

*1 §.RS: Shortened Reed-Solomon code.

In Table 1, we present two examples of K(V)SE(1)PKC

over Fys.
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3. Construction of K*(V)SE(1)PKC

3.1 K*(V)SE(1)PKC

In Ref.[9], the present author proposed a new scheme that
has successfully strengthened a class of public key cryptosys-
tems. Based on the new scheme, referred to as K(I) scheme,
a new class of public key cryptosystem, K(IV)SE(1)PKC, is
proposed in Ref.[9]. The K(IV)SE(1)PKC has the following
remarkable features:

e Simple process of decryption as it uses a small class of
perfect codes such as (7,4,3) Hamming code.

e (Coding rate of exactly 1.0.

® Significantly small size of public key compared with
that of McEliece PKC presented in 1977.

In this section we present another class of PKC,

K*(V)SE(1)PKC, by applying K(I) scheme for K(V)SE(1)PKC.

The principle of K(I) scheme is given in Fig.l. In K(I)
scheme, we assume that the conditional entropy H (M |my)

satisfies the following relation holds:

H(M|mp) = 80 bit. (27)

Message sequence

My, My, - - - My
-
Linear Transformation
-
mgyc m,;; [ Public key
. 4

Secret LA Secret
Transformation I CP Transformation II

| Public key |

Fig. 2 K(I) scheme

3.2 K*(V)SE(1)PKC based on (7,4,3)
Hamming code
3.2.1 Construction
Using K(I) scheme, let us construct K*(V)SE(1)PKC
based on (7,4,3) cyclic Hamming code. Let us partition the

cyclic

message vector m into menc and mpuUB

mpNo = (M1, ma, - ,mL), (28)
Where m; = (mil, mi2, M;3, mi4), and

mpuB = (m4L+1, mar+2,- - ,m4L+H) (29)

respectively.
The component m; of mgnc is encoded to (7,4,3) cyclic
Hamming code. The mpyp is publicized.

Let the error vector E; be,

E;, = (Eil,EiQ,"' ,EW). (30)

From FE; we obtain the error vector e; in a similar manner
as we have obtained e from Eq.(6).

Let the i-th component of mgNc, mi, be encoded to the
code word of (7,4,3) cyclic Hamming code, a member of the

perfect codes, as

{mi(z) + ei(x)}a
=din + dipx + dizz® mod (1+z+2”) (31)
=1, L.

The code word w; is given by

w; = (di1, diz, diz, mi1 + €51, ,Mia + €i4)
(32)
;1=1,---,L.
The w; is added with E;,
w; + E; = v;
(33)
= (Ui17'l)i27 t 7'Ui7)~
The word v; is then transformed into u;,
’viA[v = Uu;
(34)
= (Uﬂ,uw, t 7“1’7)7

where Ap is a 7 X 7 nonsingular matrix.
Letting Ay be an H x 7L matrix over Fz, the message mp

is transformed as

(mart1, -+ ,mar+m)Av = (A1, A2, -, AL), (35)

where \; is

Ai = (N, Aa, -0, Air). (36)
Let u; be defined as

Yy, =ui+ X (i=1,---,L). (37)
Public Key: {mar+41, - ,mar+u}, {y;}

Secret Key: A, Am, A, Av, {uw:}, {\:}

3.2.2 Encryption and Decryption
The ciphertext ¢ is given by

C:(mpaglv’g23"'7'gL)' (38)

Because the component of ¢, is a linear combination of the
message variables Ml, Mz, . ,Mk added with error vector
€;, the encryption can be performed fast.

The decryption can be performed in an exactly similar
manner as in Ref.[9]. The decryption can be performed by
(1) Linear transformations by A;', A;', AI_VI7 and A‘_,l,

(2) Single error correction for (7,4,3) cyclic Hamming code.
We see that the decryption is also simple and can be per-

formed fast.



3.2.3 Security Considerations

From the given ciphertext, mar+1, -+ ,Mar+u are given
as they are. However it should be noted that the total num-
ber of equations in m4r41,--- ,mar+H, NE, is significantly
smaller than the total number of the variables, Ny = n.
Namely, Ny > Ng.

K*(V)SE(1)PKC would be the following attack:

Thus the most powerful attack on

Attack II: Given the ciphertext, Attack I estimates an error
symbol from the given g, (: =1,---,L). O

Let us assume that H and L are given by H = 80 and L = 16
respectively. Let P(CEST) be the probability that 4 com-
ponents of w; are estimated correctly when g, is given. The

probability P(CEST) is evidently given by

P(Cpsr) = (%)4 (39)

The probability that the correct estimation can be performed

for all of the y,’s is given by

P(Crst))" = (1) = 542310, (40)

sufficiently small value. We thus conclude that

K*(V)SE(1)PKC is secure against the Attack II.

Attack II: Given the ciphertext, Attack Il discloses the mes-

sage m; using the decoding table of a very small size. O

The w; takes on only 2% values. However \; is added on w;,
u; takes on one of the 27 values equally likely. Consequently
K*(V)SE(1)PKC is secure against the Attack II.

3.3 Parameters

Let us assume that H = 80 and L = 16, then Ng, Ny,

and Spx are given as

Ng =H+ 7L =192, (41)

Ny =n=4L+ H = 146, (42)
and

Sprk = Ng - Ny = 28.0 Kbit, (43)
respectively.

We see that the size of public key is smaller than 524 Kbit
of the McEliece PKC by a factor of 18.

Let us append an additional message sequence Ma =
(Mps1,Myi2,--+ , Mptsr). It should be noted that when
the message variables are mutually independent and equally
likely, any error symbol e;; (j=1,---,7) can be substi-
tuted by a set of additional meesage Mf‘ = (M1, M2, M;3)
without deteriorating the security of K*(V)SE(1)PKC, yield-

ing the improvement of the coding rate. Letting M} =

(Mi1, Mi2, M;3), in the substitution, M? is read as the nat-
ural binary number. For example, when M? = (011), M#
is read as |M;4 = 3. With this transformation M is sub-

7

stituted by an error m| ! for 1 < ‘Mﬂ < 7. For

|M§4 = 0, e; takes on the value 0. The coding rate p is
given by
Ny
=— =1 44
P=x5, = L0 (44)

It should be noted that with the substitution coding rate
of exactly 1.0 is achieved.

3.4 K*(V)SE(1)PKC based on (3,1,3) code

In an exactly similar manner in the preceding subsection,
a simpler scheme can be constructed based on (3,1,3) cyclic
Hamming code, the smallest error correcting code but a per-
fect code over Fo. Let m;, the i-th component of mg, be

encoded to the code word of (3,1,3) cyclic Hamming code as
(mi + ei)a® = di1 + dizz  mod (1 +x+ xQ). (45)
The word wv; is given by
v =w; + E;. (46)

Letting H = 60 and L = 64, the probability P(Cggr) and
[P(CEST)] Y are given by

P(Cpst) = 5 (47)
and

[P(Crgr)]” = (%)64 = 5.42x10™° (48)
respectively.

The Ng, Ny, Spkx and p are given by

Np = H + 3L = 252, (49)

Ny =n=H+ L =124, (50)

Spx = Ng - Ny = 31.2 Kbit, (51)
and

p=1.0 (52)

by the substitution.
4. Conclusion

We have presented a new class of PKC, referred to as
K(V)SE(1)PKC. We have shown that the K(V)SE(1)PKC
can be made sufficiently secure against the attack based
on linear transformations. We have also presented
K*(V)SE(1)PKC based on the members of the class of per-
fect codes, using K(I) scheme. The K*(V)SE(1)PKC has the
following remarkable features:

e Coding rate of exactly 1.0.

e  Small size of public key compared with the conven-
tional SE(1)PKC.

The author is thankful to the support of SCOPE.
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