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Abstract In this paper, we present a new scheme referred to as K(III) scheme which would be effective for im-

proving a certain class of PKC’s. Using K(III) scheme, we propose a new method for constructing the public-key

cryptosystems based on error-correcting codes. The constructed PKC is referred to as K(V)SE(1)PKC. We also

present more secure version of K(V)SE(1)PKC, referred to as K∗(V)SE(1)PKC, using K(I) scheme previously pro-

posed by the present author, as well as K(III) scheme.
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1. Introduction

Most of the multivariate PKC’s so far proposed are con-

structed by simultaneous equations of degree larger than or

equal to 2 [1-6]. Recently the present author proposed a sev-

eral classes of multivariate PKC’s that are constructed by

many sets of linear equations [7,8], in a sharp contrast with

the conventional multivariate PKC’s where a single set of si-

multaneous equations of degree more than or equal to 2 are

used. In Ref.[9], the present author proposed a new scheme

referred to as K(I) scheme. This scheme can be applied for

constructing a wide class of new PKC’s.

In this paper, we present a new scheme referred to as K(I

II) scheme which would be effective for improving a certain

class of PKC’s that are constructed based on error correct-

ing codes. Using K(III) scheme, we propose a new method

for constructing the PKC’s based on error-correcting codes.

The constructed PKC is referred to as K(V)SE(1)PKC.

We also present a more secure version of K(V)SE(1)PKC,

referred to as K∗(V)SE(1)PKC, using K(I) scheme. The

K∗(V)SE(1)PKC has the following remarkable features:

• Coding rate of exactly 1.0.

• Significantly small size of public key compared with

the conventional SE(1)PKC.

Throughout this paper, when the variable vi takes on

a value ṽi, we shall denote the corresponding vector v =

(v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn) . (1)

The vector v = (v1, v2, · · · , vn) will be represented by the

polynomial as

v(x) = v1 + v2x + · · ·+ vnxn−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

Throughout this paper, (n, k, d) code implies the code of

length n, number of information symbols k and the mini-

mum distance d.

2. K(V)SE(1)PKC

2. 1 Construction of K(V)SE(1)PKC

Let the message vector M over F2m be represented by

M = (M1, M2, · · · , Mk). (3)

Throughout this paper we assume that the messages

M1, M2, · · · , Mk are mutually independent and equally

likely. Let M be transformed as

(M1, M2, · · · , Mk)AI = (m1, m2, · · · , mk), (4)

where AI is a k × k non-singular matrix over F2m .

Let the error vector E over F2m be represented by

E = (α1E1, α2E2, · · · , αnEn), (5)

where αi ∈ F2m and we assume that n is larger than k.

Let us transform E into e,

(α1E1, α2E2, · · · , αnEn)AII = e

= (e1, e2, · · · , ek),
(6)

where AII is an n× k matrix over F2m .

Let the message vector mE added with error variables

e1, e2, · · · , ek be defined by

mE = (m1 + e1, m2 + e2, · · · , mk + ek). (7)
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We then encode mE to a code word of an (n, k, d) code over

F2m as

mE(x)xg ≡ r(x) mod G(x), (8)

where G(x) is the generator polynomial of a cyclic code of

degree g = n− k over F2m .

We assume that the minimum distance of the code is given

by 2t + 1. Denoting r(x) in a vector form by (r1, r2, · · · , rg)

over F2m , the code word w can be represented by

w = (r1, r2, · · · , rg, m1 + e1, · · · , mk + ek). (9)

We then construct the word v by adding the error vector

E = (E1, E2, · · · , En) on w:

v =w +E

=(r1 + α1E1, r2 + α2E2, · · · , rg + αgEg,

m1 + e1 + αg+1Eg+1, · · · , mk + ek + αnEn).

(10)

We see that any component of v consists of a linear equation

in the variables M1, M2, · · · , Mk and E1, E2, · · · , En.

Remark 1: The error vector E = (α1E1, α2E2, · · · , αnEn) is

useful for hiding the structure of the code w. Besides the

w itself is further transformed to uE using non-singular ran-

dom matrix AIII over F2m , as we see below. 2

Let us define K(III) scheme:

K(III) scheme: The process of obtaining the vector v from

the message mE is very useful, because it can improve the

security or coding rate of a large class of PKC’s that are con-

structed based on error correcting codes (See Fig.1). 2

Fig. 1 K(III) scheme

Let us further define a similar but simplified scheme, K∗(III)

scheme, in the following:

K∗(III) scheme: Let us first define a predetermined error

vector e = (e1, e2, · · · , en) whose Hamming weight w(e) = t.

Let the hashed vector of e be h(e) = (e′1, e
′
2, · · · , e′k). The

vectors mE , w, v are given in an exactly similar manner as

those given from Eqs.(7), (9) and (10). 2

The vector v is further transformed into u,

vAIII = u

= (u1, u2, · · · , un).
(11)

We have the following set of keys:

Public key: {ui}.
Secret key: AI , AII , AIII , G(x), {αi}, {ei}.

2. 2 Parameters

We see that ui in Eq.(11) is a linear equation in the vari-

ables M1, M2, · · · , Mk and E1, E2, · · · , En. Thus, the total

number of equations, NE , and the total number of variables,

NV , are proved to be given by

NE = n = k + g (12)

and

NV = k + n = 2k + g (13)

respectively.

The size of the public key, Spk, is given by

Spk = NE ·NV ·m
= (k + g)(2k + g)m.

(14)

The coding rate, ρ, is given by

ρ =
number of information symbols

length of ciphertext
=

k

n
. (15)

2. 3 Encryption

The encryption can be performed by the following steps:

Step 1: Letting the Hamming weight of Ẽ be denoted by

wH

(
Ẽ

)
, the sending end chooses nonzero Ẽi’s under the con-

dition that

wH

(
Ẽ

)
= t (16)

in a random manner.

Step 2: The ciphertext c is given by

c = (ũ1, ũ2, · · · , ũn). (17)

2

The component ũi is given by

ũi = f
(1)
i

(
M̃1, M̃2, · · · , M̃k, Ẽ1, Ẽ2, · · · , Ẽn

)
, (18)

where f
(1)
i (∗) implies a linear equation.
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2. 4 Decryption

The decryption can be performed by the following steps:

Step 1: Given c = (ũ1, ũ2, · · · , ũn), the receiving end trans-

forms c into the vector ṽ,

(ũ1, ũ2, · · · , ũn)A−1
III = ṽ

= (ṽ1, ṽ2, · · · , ṽn).
(19)

Step 2: Given ṽ, the error vector Ẽ = (α1Ẽ1, α2Ẽ2, · · · ,
αnẼn) can be successfully corrected, as wH

(
Ẽ

)
satisfies

wH

(
Ẽ

)
= t, yielding m̃E and ẽ = (ẽ1, ẽ2, · · · , ẽk).

Step 3: The vector ẽ = (ẽ1, ẽ2, · · · , ẽk) is subtracted from

m̃E , yielding vector m̃.

Step 4: The vector m̃ is inverse-transformed into the orig-

inal message M̃ ,

M̃ =
(
M̃1, M̃2, · · · , M̃k

)
. (20)

2

2. 5 Security Considerations

In K(V)SE(1)PKC, we do not necessarily recommend to

use the Goppa codes. Namely we believe that the use of the

conventional code such as BCH code or Reed-Solomon code

would cause no deterioration of security, in our proposed

scheme.

The linear transformation matrices AI , AII , and AIII

would be effective to hide the code structure. Besides we

add the following error vector E on w:

E = (α1E1, α2E2, · · · , αnEn), (21)

where αi ∈ F2m is chosen in a random manner.

As Ei takes on the value in F2m also in a random manner,

the ambiguity of Ei, h(Ei), can be given by

h(Ei) = log2 (2m − 1) (bit). (22)

In the examples given in this paper, the ambiguity of E will

be chosen sufficiently large.

Remark 2: For m = 1, we let αi = 1; i = 1, 2, · · · , n. Thus

the entropy h(αi) = 0 (bit).

The entropy of the vector E, h(E), can be given by

h(E) = nCtt log2 (2m − 1) (bit), (23)

for m >= 2. 2

Remark 3: The error vector E is added on w whose compo-

nent is given by a linear combination of E1, E2, · · · , En. We

thus conclude that the error vector E having a large ambigu-

ity is able to hide the structure of the code used. Furthermore

w+E is transformed into u using AIII whose ambiguity can

be given approximately by mn2 bit. 2

One of the most strong attacks on K(V)SE(1)PKC would be

the following attack.

Attack I: Attack on E. 2

On Attack I, we assume the following two cases.

Case I: Attack I successfully estimates a set of error free

symbols in the ciphertext at k locations, S1, S2, · · · , Sk.

Case II: Attack I successfully estimates t nonzero symbols

of the error vector E.

Case I provides the k linear equations in k variables, yielding

the message symbols m1, m2, · · · , mk. However each equa-

tion has an error component given by a linear combination

of t errors. Let the probability that an error component con-

sisted of t errors happens to be zero be denoted by PE(0).

The PE(0) is given by

PE(0) = 2−m (24)

for sufficiently large t. The probability that Case I where

k error components happen to be all zeros occurs, Pc(I), is

given by

Pc(I) = 2−mk. (25)

In the examples given in Table 1, the probabilities Pc(I)’s

are made to be sufficiently small.

The probability that the Case II occurs, Pc(II), is given by

Pc(II) =
1

nCt
(2m − 1)−t. (26)

We shall also see that the probability Pc(II) is made suffi-

ciently small in the examples in Table 1.

2. 6 Example

In Table 1, we resent several example of K(V)SE(1)PKC.

表 1 Examples of K(V)SE(1)PKC over F2m

m Code n, NE , k n + k, NV g, n− k

Example I 1 KS[12] 197 101 293 96

Example II 1 BCH[12] 255 147 402 108

Example III 8 S·RS∗1 128 112 240 12

Example IV 8 S·RS∗1 64 48 112 16

t Pc(I) Pc(II) Spk(Kbit) ρ

Example I 13 3.94×10−31 2.57×10−18 58 0.512

Example II 14 5.60×10−45 2.55×10−23 197 0.58

Example III 6 1.89×10−270 6.54×10−25 246 0.875

Example IV 8 2.53×10−116 1.23×10−29 57 0.75
∗1 S·RS: Shortened Reed-Solomon code.

In Table 1, we present two examples of K(V)SE(1)PKC

over F28 .
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3. Construction of K˜(V)SE(1)PKC

3. 1 K˜(V)SE(1)PKC

In Ref.[9], the present author proposed a new scheme that

has successfully strengthened a class of public key cryptosys-

tems. Based on the new scheme, referred to as K(I) scheme,

a new class of public key cryptosystem, K(IV)SE(1)PKC, is

proposed in Ref.[9]. The K(IV)SE(1)PKC has the following

remarkable features:

• Simple process of decryption as it uses a small class of

perfect codes such as (7,4,3) Hamming code.

• Coding rate of exactly 1.0.

• Significantly small size of public key compared with

that of McEliece PKC presented in 1977.

In this section we present another class of PKC,

K∗(V)SE(1)PKC, by applying K(I) scheme for K(V)SE(1)PKC.

The principle of K(I) scheme is given in Fig.1. In K(I)

scheme, we assume that the conditional entropy H(M |mp)

satisfies the following relation holds:

H(M |mP ) >= 80 bit. (27)

Fig. 2 K(I) scheme

3. 2 K˜(V)SE(1)PKC based on (7,4,3) cyclic

Hamming code

3. 2. 1 Construction

Using K(I) scheme, let us construct K∗(V)SE(1)PKC

based on (7,4,3) cyclic Hamming code. Let us partition the

message vector m into mENC and mPUB

mENC = (m1,m2, · · · ,mL), (28)

where mi = (mi1, mi2, mi3, mi4), and

mPUB = (m4L+1, m4L+2, · · · , m4L+H) (29)

respectively.

The component mi of mENC is encoded to (7,4,3) cyclic

Hamming code. The mPUB is publicized.

Let the error vector Ei be,

Ei = (Ei1, Ei2, · · · , Ei7). (30)

From Ei we obtain the error vector ei in a similar manner

as we have obtained e from Eq.(6).

Let the i-th component of mENC , mi, be encoded to the

code word of (7,4,3) cyclic Hamming code, a member of the

perfect codes, as

{mi(x) + ei(x)}x3

= di1 + di2x + di3x
2 mod

(
1 + x + x3

)

; i = 1, · · · , L.

(31)

The code word wi is given by

wi = (di1, di2, di3, mi1 + ei1, · · · , mi4 + ei4)

; i = 1, · · · , L.
(32)

The wi is added with Ei,

wi +Ei = vi

= (vi1, vi2, · · · , vi7).
(33)

The word vi is then transformed into ui,

viAIV = ui

= (ui1, ui2, · · · , ui7),
(34)

where AIV is a 7× 7 nonsingular matrix.

Letting AV be an H×7L matrix over F2, the message mP

is transformed as

(m4L+1, · · · , m4L+H)AV = (–1,–2, · · · ,–L), (35)

where –i is

–i = (λi1, λi2, · · · , λi7). (36)

Let ui be defined as

yi = ui + –i (i = 1, · · · , L). (37)

Public Key: {m4L+1, · · · , m4L+H}, {yi}
Secret Key: AI , AII , AIV , AV , {ui}, {–i}

3. 2. 2 Encryption and Decryption

The ciphertext c is given by

c = (m̃P , ỹ1, ỹ2, · · · , ỹL). (38)

Because the component of ỹi is a linear combination of the

message variables M̃1, M̃2, · · · , M̃k added with error vector

ẽi, the encryption can be performed fast.

The decryption can be performed in an exactly similar

manner as in Ref.[9]. The decryption can be performed by

(1) Linear transformations by A−1
I , A−1

II , A−1
IV , and A−1

V ,

(2) Single error correction for (7,4,3) cyclic Hamming code.

We see that the decryption is also simple and can be per-

formed fast.
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3. 2. 3 Security Considerations

From the given ciphertext, m̃4L+1, · · · , m̃4L+H are given

as they are. However it should be noted that the total num-

ber of equations in m4L+1, · · · , m4L+H , NE , is significantly

smaller than the total number of the variables, NV = n.

Namely, NV À NE . Thus the most powerful attack on

K∗(V)SE(1)PKC would be the following attack:

Attack II: Given the ciphertext, Attack II estimates an error

symbol from the given ỹi (i = 1, · · · , L). 2

Let us assume that H and L are given by H = 80 and L = 16

respectively. Let P
(
CEST

)
be the probability that 4 com-

ponents of wi are estimated correctly when ỹi is given. The

probability P
(
CEST

)
is evidently given by

P
(
CEST

)
<=

(
1

2

)4

. (39)

The probability that the correct estimation can be performed

for all of the yi’s is given by

[
P

(
CEST

)]L <=

(
1

16

)16

= 5.42×10−20, (40)

sufficiently small value. We thus conclude that

K∗(V)SE(1)PKC is secure against the Attack II.

Attack III: Given the ciphertext, Attack III discloses the mes-

sage m̃i using the decoding table of a very small size. 2

The wi takes on only 24 values. However –i is added on wi,

ui takes on one of the 27 values equally likely. Consequently

K∗(V)SE(1)PKC is secure against the Attack III.

3. 3 Parameters

Let us assume that H = 80 and L = 16, then NE , NV ,

and SPK are given as

NE = H + 7L = 192, (41)

NV = n = 4L + H = 146, (42)

and

SPK = NE ·NV = 28.0 Kbit, (43)

respectively.

We see that the size of public key is smaller than 524 Kbit

of the McEliece PKC by a factor of 18.

Let us append an additional message sequence MA =

(Mn+1, Mn+2, · · · , Mn+3L). It should be noted that when

the message variables are mutually independent and equally

likely, any error symbol eij (j = 1, · · · , 7) can be substi-

tuted by a set of additional meesage MA
i = (Mi1, Mi2, Mi3)

without deteriorating the security of K∗(V)SE(1)PKC, yield-

ing the improvement of the coding rate. Letting MA
i =

(Mi1, Mi2, Mi3), in the substitution, MA
i is read as the nat-

ural binary number. For example, when MA
i = (011), MA

i

is read as
∣∣MA

i

∣∣ = 3. With this transformation MA
i is sub-

stituted by an error x

∣∣MA
i

∣∣−1
for 1 <=

∣∣MA
i

∣∣ <= 7. For∣∣MA
i

∣∣ = 0, ei takes on the value 0. The coding rate ρ is

given by

ρ =
NV

NE
= 1.0, (44)

It should be noted that with the substitution coding rate

of exactly 1.0 is achieved.

3. 4 K˜(V)SE(1)PKC based on (3,1,3) code

In an exactly similar manner in the preceding subsection,

a simpler scheme can be constructed based on (3,1,3) cyclic

Hamming code, the smallest error correcting code but a per-

fect code over F2. Let mi, the i-th component of mE , be

encoded to the code word of (3,1,3) cyclic Hamming code as

(mi + ei)x
2 = di1 + di2x mod

(
1 + x + x2

)
. (45)

The word vi is given by

vi = wi +Ei. (46)

Letting H = 60 and L = 64, the probability P
(
CEST

)
and[

P
(
CEST

)]L
are given by

P
(
CEST

)
=

1

2
(47)

and

[
P

(
CEST

)]L
=

(
1

2

)64

= 5.42×10−20 (48)

respectively.

The NE , NV , SPK and ρ are given by

NE = H + 3L = 252, (49)

NV = n = H + L = 124, (50)

SPK = NE ·NV = 31.2 Kbit, (51)

and

ρ = 1.0 (52)

by the substitution.

4. Conclusion

We have presented a new class of PKC, referred to as

K(V)SE(1)PKC. We have shown that the K(V)SE(1)PKC

can be made sufficiently secure against the attack based

on linear transformations. We have also presented

K∗(V)SE(1)PKC based on the members of the class of per-

fect codes, using K(I) scheme. The K∗(V)SE(1)PKC has the

following remarkable features:

• Coding rate of exactly 1.0.

• Small size of public key compared with the conven-

tional SE(1)PKC.

The author is thankful to the support of SCOPE.
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