
Robust RFID Authentication Protocol with

Formal Proof and Its Feasibility

Miyako Ohkubo1, Shin'ichiro Matsuo1, Yoshikazu Hanatani2,3, Kazuo
Sakiyama2 and Kazuo Ohta2

1 National Institute of Information and Communication Technology
2 The University of Electro-Communications

3 Corporate Reserch & Development Center, Toshiba Corporation.

Abstract. The proloferation of RFID tags enhances everyday activities,
such as by letting us reference the price, origin and circulation route of
speci�c goods. On the other hand, this lecel of traceability gives rise to
new privacy issues and the topic of developing cryptographic protocols
for RFID- tags is garnering much attention. A large amount of research
has been conducted in this area. In this paper, we reconsider the secu-
rity model of RFID- authentication with a man-in-the-middle adversary
and communication fault. We de�ne model and security proofs via a
game-based approach makes our security models compatible with formal
security analysis tools. We show that an RFID authentication protocol
is robust against the above attacks, and then provide game-based (hand-
written) proofs and their veri�cation by using CryptoVerif.
Keywords: RFID authentication, security model, formal proofs

1 Introduction

1.1 Background

In recent years, a huge number of the low-power devices called RFID tags, which
communicate over wireless channels, have entered into use in our daily lives. In
most cases, RFID tags are used for identifying goods, authenticating parties'
legitimacy, detecting fakes, and billing for services. For such applications, secure
authentication of each RFID tag is fundamental. Also if the output of a tag
is �xed or related di�erent authentications, privacy issues arise in which an
adversary can trace the tag and activity of the owner. Thus, most research
on RFID authentication protocol realizes the importance of tag-unforgeability
and forward-privacy. Here, we consider the -technical- feasibility of an RFID
authentication protocol in terms of security.

Technical feasibility regarding security: Though a large number of secure pro-
tocols are proposed assuming wired networks, the next consideration is how to
deal with issues caused via wireless networks. In a wireless network environ-
ment in which RFID is used, the adversary has chances to conduct for instance,
man-in-the-middle or relay attack. The connection is less stable than in a wired

setting, and thus we must consider robustness against communication errors.
We must also construct a security model and de�nition, secure protocol, and
security proofs for such situation to clarify the security strength in actual usage.

1.2 Our Contribution

In this paper, we focus on solving the above issues in terms of feasibility. That
is, we study adding robustness to existing tag-unforgeable and forward-private
RFID authentication schemes as well as showing e�ciency when we implement
our scheme for actual RFID tags. Contributions of this paper are mainly on the
following four points. (1) We provide a formal security model and de�nitions
that deal with man-in-the-middle adversaries and communication faults. This
model is like security models of the key exchange protocol and suitable for rig-
orously estimating the success probability of attacks. (2) We propose a robust
RFID authentication protocol that satis�es the above model and de�ne security
requirements. We choose a hash-based scheme because the cost of computation
in a public key-based scheme is very high. Recently distance-bounding protocols
have been proposed as a solution that cover relay attacks, but this type of pro-
tocol needs many rounds of communications and is not suitable for our setting.
Therefore our protocol is mainly based on the OSK protocol, which can provide
forward-privacy, and we combine a mechanism that synchronizes the internal
status of the tag and the reader. (3) We prove the security and privacy of our
proposed scheme. a game-based approach. This approach works favorably as a
computationally rigorous proof and also as a formal veri�cation tool. We �rst di-
vide the security notions into several games, and show that the relation between
games preserves them. We also show that the (handwritten) proof is correct by
using the CryptoVerif formal veri�cation tool, which helps us to understand the
security of cryptographic protocols. As far as we know, this is the �rst work in
the RFID world that de�nes the security notion and shows the security by a
formal veri�cation tool.

2 Related Work

Many schemes exist for secure RFID- authentication that protects privacy; these
are summarized in [1]. For security models for RFID- authentication, Juels and
Weis �rst proposed the privacy model [9]; then Vaudenay proposed a classi�ca-
tion of security concepts for privacy regarding tag-authentication [13]. Paise and
Vaudenay presented a classi�cation of security concepts for mutual-authentication
with privacy [12]. One type of RFID- authentication scheme robust against re-
play attacks and wireless settings is using the distance-bounding protocol [8] by
Hancke and Kuhn. Because this protocol needs many rounds of communication
we chose another construction.

A major contribution of this paper is proving the security of our scheme
using a formal veri�cation tool. Security veri�cation using formal methods has a
long history dating to the 1980s. Recently, combining �computational di�culty,�

a major concept in cryptography, and �automated veri�cation,� a prime bene�t
of the formal method, has become main-stream researches in this area. In 2000,
Adabi and Rogaway pioneered work on the gap [2], many following works have
been proposed. Some practical tools such as �CryptoVerif� [5] [6], which we use
in this paper, were also proposed.

3 Security Model and De�nitions

3.1 Model

Communication : Communication between servers and clients is provided via
a wireless network, upon which third parties can easily eavesdrop and which is
easily cut or disturbed.

Client : In this paper, we suppose small devices like passive RFID tag as clients.
The clients only have poor electronic power provided by servers and can only
perform light calculations. The memory in the client is not resilient against
tamper attacks.

Server : We imagine PCs and devices readers as servers. Generally, an RFID
system tag communicates with readers through wireless channels, and then the
readers communicate with servers through secure channels. We assume that the
communication between reader and server is secure by using ordinal crypto-
graphic techniques such as SSL and VPN. Therefore, we describe the communi-
cations in an RFID system using two players - client and server.

Functions : Let these be indexes of the client ID, number of updating times
of secret key i ≥ 0, and secret key skID,i. Intuitively, each function means the
following. KeyGen() is a key generation processes. FR() is responses from server
to client (i.e., tag). SR() is the returning responses from client (i.e., tag) to server.
CheckY () means the veri�cation check of the client's output by the server. TR()
means the returning response from server to client (i.e., tag). CheckZ() is the
result of veri�cation check of the server's output by the client. SK() is the key
updating processes. More formally, each function is de�ned as follows.

� KeyGen(ID, i):
[Input] ID, i = 0 [Output] pskID,0 uniquely.

� FR(skID,i, ID, i):
[Input] ID, i, and skID,i. [Output] X.

� SR(skID,i, ID, i,X):
[Input] ID, i, skID,i, and X. [Output] Y .

� CheckY (skID,i, ID, i,X, Y):
[Input] ID, i, skID,i, X, and Y . [Output] dY .

� TR(skID,i, ID, i,X, Y):
[Input] ID, i, skID,i, X, and Y . [Output] Z.

� CheckZ(skID,i, ID, i,X, Y, Z):
[Input] ID, i, skID,i, X, Y , and Z. [Output] dZ .

� SK(skID,i, ID, i):
[Input] ID, i ≥ 0, and skID,i. [Output] skID,i+1 deterministically.

3.2 De�nitions

Security notions for (robust) mutual authentication protocols are de�ned by the
success probability of the adversary, which is allowed to access the oracles that
follow functions as above. We �rst show oracles that the adversary can access.

Oracles : Sf , C, St are oracles as server' output and client' output. Others are
oracles as functions used in server or client. In the following de�nitions, ξi, ηi
and µi are any elements.

Sf : [Input] (ID, i) [Output] X
C : [Input] (ID, i,X) [Output] Y
St : [Input] (ID, i,X, Y) [Output] Z
SK : [Input] (ID, i) [Output] skID,i

SRO : [Input] (ξ1, ξ2, ξ3, ξ4, ξ5) [Output] Y

TRO : [Input] (η1, η2, η3, η4, η5) [Output] Z

SKO : [Input] (µ1, µ2, µ3) [Output] skID,i+1

Security notions : essentially we are concerned with privacy and authenticity
as well as identi�cation of property. Moreover, as extended notions we take con-
cerned with forward-security and (self)-synchronization. The security require-
ments for these notions are de�ned as follows.

Requests of these extended notions come from the client's (i.e., tag's) original
property and/or the communications between client and server. Since the client
(i.e., tag) does not have tamper-resilient memory, the adversary can easily ac-
quire the secret data stored in the tag. If the adversary acquires the secret data,
it can break not only the tag's current privacy and/or authenticity but also the
tag's previous history. Forward-secure property is required to protect the client's
(i.e., tag's or tagged person's) privacy and/or authenticity. Moreover, commu-
nication through radio can easily to be cut and disturbed. Therefore we should
be concerned about the fact that each transaction does not always succeed, and
is frequently fails. (Self)-synchronization is required to recover the status in the
case the communication between client and server fails.

De�nition 1 (Forward-secure (Client-)Indistinguishability). Adversary
AFI is allowed to access the oracles, Sf , C, St, SRO, TRO, SK SKO . Adversary

AFI chooses X̂ and j randomly, and sends a query with (X̂, j) to challenge
oracle CO, and receives Y . Where the challenge oracle CO �ips a coin. In the
case of b = 1, CO sends a random values as Y to AFI In the case of b = 0, CO
chooses α randomly, calculates SR(skID,j , ID, j, X̂), and returns Y to AFI . After
AFI receives the challenge, he is allowed to access oracles. Finally, AFI outputs
b'. Let 1

2 + εFI as the probability of that b'= b, where each index i of all requests
to oracle SK is j < i. (Note that if there are requests to oracle SK and the
indices in these requests are i ≤ j, it is not included in advantage of adversary
AFI). If εFI is negligible, the scheme is Forward-secure Indistinguishable.

Pr [ASf ,C,St,SR
O,TRO,SKSKO

FI win]

= Pr[b′ = b|

b′ ← ASf ,C,St,SR
O,TRO,SK, SKO

FI (Y),

Y ← CO(X̂, j), (X̂, j)← ASf ,C,St,SR
O,TRO,SK, SKO

FI |j < i]

=
1

2
+ εFI ,

whereεFI <<
1

2K
, K is security parameter.

De�nition 2 (Forward-secure (Client)-Unforgeability). Adversary ACU

is allowed to access the oracles, Sf , C, St, SRO, TRO, SK, SKO. Adversary
ACU chooses j, and sends the j to challenge oracle CO, and receives X. After
ACU receives the challenge, it is allowed to access the oracles. Finally, ACU

outputs Ŷ . If the probability that the output of CheckY (skID,j , ID, j,X, Ŷ), dY
is 1 (i.e., Ŷ is equal to the output of SR(skID,j , ID, j,X)), which is negligible,
where each index i of all requests to oracle SK is j < i, the scheme is Forward-
secure (Client)-Unforgeable. (Note that if there are requests to oracle SK and
the indices in these requirements are i ≤ j, it is not included in the advantage
of adversary ACU .)

Pr [ASf ,C,St,SR
O,TRO,SK,SKO

CU win]

= Pr[dY = 1← CheckY (skID,j , ID, j,X, Ŷ)|

Ŷ ← ASf ,C,St,SR
O,TRO,SK, SKO

CU (X),

X ← CO(j), j ← ASf ,C,St,SR
O,TRO,SK, SKO

CU |j < i]

= εCU <<
1

2K
,

where K is the security parameter.

De�nition 3 (Forward-secure (Server)-Unforgeability). Adversary ASU

is allowed to access the oracles, Sf , C, St, SRO, TRO, SK, SKO. Adversary

ASU chooses X̂ and j, and sends (X̂, j) to challenge oracle CO, and receives
Y . After ASU receives the challenge, it is allowed to access the oracles. Finally,
ASU outputs Ẑ. If the probability that the output CheckZ(skID,j , ID, j, X̂, Y, Ẑ)

is dZ = 1 (i.e., Ẑ is equal to the output of TR(skID,j , ID, j, X̂, Y)) is negligible,
where each index i of all requests to oracle SK is j < i, the scheme is Forward-
secure (Server)-Unforgeable. (Note that if there are requests to oracle SK and
the indices in these requirements are i ≤ j, it is not included in the advantage
of adversary ASU .)

Pr [ASf ,C,St,SR
O,TRO,SK,SKO

SU win]

= Pr[dZ = 1← CheckZ(skID,j , ID, j, X̂, Y, Ẑ)|

Ẑ ← ASf ,C,St,SR
O,TRO,SK,SKO

SU (Y),

Y ← CO(X̂, j), (X̂, j)← ASf ,C,St,SR
O,TRO,SK,SKO

SU |j < i]

= εSU <<
1

2K
,

where K is the security parameter.

De�nition 4 (Forward-secure Secret Key Incrementability). Adversary
AFSK is allowed to access oracles, Sf , C, St, SRO, TRO, SK, SKO. Adversary
AFSK chooses j, and sends j to challenge oracle CO, and receives skID,j. After
AFSK receives the challenge, it is allowed to access the oracles. Finally, AFSK

outputs ˆskID,t. If the probability that the output skID,j = KeyGenj−t(ˆskID,t, ID, t),
is negligible, where each index i in all requests to oracle SK is j < i, the scheme
is Forward-secure Key Incrementable. Note that KeyGenj−t means to calculate
SK j − t times.

Pr [ASf ,C,St,SR
O,TRO,SK,SKO

FSK win]

= Pr[skID,j = KeyGenj−t(ˆskID,t, ID, t)|
ˆskID,t ← A

Sf ,C,St,SRO,TRO,SK,SKO

FSK (skID,j), skID,j ← CO(j|j < ĩ),

(j|j < ĩ)← ASf ,C,St,SR
O,TRO,SK,SKO

FSK |j < i]

= εFSK <<
1

2K
,

where K is security parameter.

4 Construction

4.1 Proposed Protocol and Its Design Concepts

Our proposed protocol meets the security requirements in Section 3. The details
of the protocol are shown in Fig. 1. Here we explain the overview and concepts
of our proposal.

The basic idea is combining the OSK protocol and key update mechanism
from mutual authentication. Let H0 and H2 be hash functions (random oracle).
H0 and H2 work in the same manner as the output function and key update
function in OSK protocol, respectively.

In the OSK protocol, the tag excecutes as follows. At �rst, client (i.e., tag)
is requested from server, and then a secret key is input, which is recorded in the
tag's memory to H0, and then inputs the output to H2. At the end, the client
outputs the calculated results of H2 to the server. The server receives the tag's

output and then searches its database for the relevant secret key, which is shared
with each tag, to H0 and then inputs the output to H2 using the same processes.

To accomplish key updates in both the RFID tag and the server, we must
cope with the problem of desynchronization. If only one side of the party updates
its secret key, the protocol fails for further authentication attempts. Such desyn-
chronization causes not only failure of authentication, but also risks of breaching
privacy. We prevent desynchronization by using a key update in the mutual au-
thentication. The mutual authentication consists of two challenge-response pro-
tocols via hash functions. First, the server sends a random challenge, and then
the tag calculates a response with H0. The second challenge-response is initiated
by the tag. The tag sends the challenge with the calculated response in Y ′. The
server calculates the response by using the hash function H1 with the current
secret or previous (old) secret. Note that the server stores both the current and
previous secret key and which secret key is used depends on which secret key
the server detects to calculate the received Y ′. The server only calculates the
value with the previous secret key if detects that the received Y ′ is calculated
using that previous secret key, and calculates the value with the current up-
dated secret key if detects that the received Y ′ is calculated using that current
updated one. This mechanism deals with desynchronization by communication
error. After that the server sends the (second) response to the tag. Only when
the tag con�rms the response will it update the secret key.

The basic security requirements are ful�lled from OSK-like construction, and
desynchronization is solved by mutual authentication by holding two secret keys
the current and the previous on the server side.

i means times of key updating events, i.e., counts of key updating. skID,i is
the i'th secret key of a client (i.e., tag). ID is the client's ID.

4.2 Discussions

Synchronization : The secret key is updated by both servers and clients, and if
desynchronization occures the server can distinguish and follow to the client's
current state in the next session. Therefore this protocol can solve the desyn-
chronization problem. Note that if the adversary cuts all responses from server
to tag, the secret key in the tag cannot be updated. So if the adversary cuts all
response from server to tag through several sessions, and then tampers with the
tag, the adversary can trace the history of the tag during these several sessions.

Resiliency against DOS-like attack : Ari and Weis discussed the requirements of
RFID protocols in [10]. They introduced the attack against a hash-chain-based
scheme like a DOS- attack against a server via the Internet. In the proposed
scheme, the event in which the secret key updated in the tag proceeds only when
the veri�cation check is OK. Therefore a DOS-like attack cannot be applied to
the proposed scheme.

Saving computational cost of server : Generally, hash-based identi�cation schemes
like [11] require many server calculation to identify a tag(i.e., a client), and server

Server RFID-tag

(skID,i, skID,i−1, ID, i) (skID,i′ , ID, i
′)

S1. X
R← {0, 1}t.

S2. Send X. -X

T1. α′
R← {0, 1}t.

T2. Compute
β′ ← H0(skID,i′ , ID, i

′, X, α′).
T3. Set Y ′ ← α′||β′.

� Y ′ T4. Send Y ′.
RFID tag authentication part

S3. Parse Y ′ as α′||β′.
S4. Compute

βi = H0(skID,i, ID, i,X, α
′),

S5. if β′ = βi accept and set dY ← 1,
S6. else compute

βi−1 = H0(skID,i−1, ID, i− 1, X, α′),
S7. if β′ = βi−1 accept and set dY ← 1,
S8. otherwise set dY ← 0.

S9. IF dY = 1 and β′ = βi,
compute Z = H1(skID,i, ID, i,X, α

′).
S10. IF dY = 1 and β′ = βi−1,

compute
Z = H1(skID,i−1, ID, i− 1, X, α′).

S11. IF dY = 0

rnd
R← {0, 1}∗, set Z ← H1(rnd).

S12. Send Z. -Z

Server authentication part

Key update part T5. Compute
S13. IF β′ = βi, compute Z′ = H1(skID,i′ , ID, i

′, X, α′).
s = H2(skID,i, ID, i), T6. IF Z′ = Z, set dZ ← 1.

S14. and set skID,i−1 ← skID,i, T7. Otherwise,
S15. and set skID,i ← s, set dZ ← 0 and reject.
S16. and set i← i+ 1, Key update part

S17. otherwise keep the status. T8. IF dZ = 1, compute
s = H2(skID,i′ , ID, i

′),
T9. and set skID,i′ ← s,
T10. and set i′ ← i′ + 1,
T11. otherwise keep the status.

Fig. 1. Proposed protocol

must compute 2m hash calculations for each tag, wherem is a maximum number
of updates of the secret key. While in the proposed scheme, a server and a client
can share the current state of the common secret key; therefore a server only
needs to compute two hash calculations for each tag. The huge computational
cost of a server can thereby be saved.

Resiliency against replay attack : In proposed scheme, fresh randomnesses chosen
by both a server and a client are used; therefore a replay attack cannot be applied
to the proposed scheme.

5 Security

The proposed scheme satis�es some requirements. Firstly, the basic properties
are identi�cation, authentication, and privacy. Then, forward-security and syn-
chronization are extended properties.

Regarding privacy issues, there are two points of view. One is if a party iden-
ti�es the ID, there are risks that the privacy of products or people, which are
attached to tags, can be breached. Another is that if the output of a tag can be
identi�ed, the tag can be used as a tracing tool; for instance a tagged person
(or something such as books, glasses, or bags) can be traced by tracing out-
puts from the tag. From the two points of views, indistinguishability is required;
i.e., a tag's output is indistinguishable from random values. For authentication
requirements, there are two sides - client- authentication and server authentica-
tion. Mutual authentication is achieved by satisfying both requirements. Since
low cost is requirement of small devices such as RFIDs many are not able to
satisfy the further requirement of tamper resistance. Therefore an adversary has
a chance at a acquiring the secret key in these devices by tampering. This poses
the risk of the tag's past output being traced, identi�ed, and/or forged (i.e.,
client privacy and/or authenticity are breached). To protect the history in the
tampered devices, the property of forward-security is required. Synchronization
is another important property requirement since small devices such as RFIDs
communicate wirelessly and wireless communication is often easily lost. There-
fore when desynchronization occurs, a (state-ful) protocol requires the property
of self-synchronization.

In this paper, we de�ned security notions to achieve not only basic prop-
erties, i.e., indistinguishability and authenticity, but also extended properties,
i.e., forward-security and synchronization. We show the security proofs for these
security notions in this section.

5.1 Game-based Theoretical Proof

The goal of our scheme is to achieve mutual authentication that preserves pri-
vacy. In [12], eight variations of security level are presented. Our scheme achieves
narrow-destructive privacy , as de�ned in [12]. The de�ned security notions in

this paper are concrete for security notions to achieving narrow-destructive pri-
vacy for our scheme.

The proposed scheme satis�es of forward-secure indistinguishable, forward-
secure (client)-unforgeable, forward-secure (server)-unforgeable, and forward-secure
key-incrementable. We prove that the proposed scheme satis�es the four security
notions by using a game style proof technique. Note that forward-secure indis-
tinguishable is focused on the output of client. By the same token, the de�nition
focused on the output of the server can be described and the proposed scheme
satis�es the notion. Due to the space limitations, we omit the discussion about
the privacy related to the output from server. This section covers the intuition of
the proof technique and the theorems as results. See the details in the appendix.

The construction of the proofs is as followings. The proofs are constructed
following game-based techniques. We make four steps as games as follows.

� Game 0: Simulator SIM executes simulations following protocols.

� Game 1: Simulator SIM executes simulations setting the outputs of oracles
random values, instead of the results of functions.

� Game 2: Excluding the case in which adversary accesses to oracles with the
information of the secret key directly from the adversary's win.

� Game 3: Replying changed from challenge oracle CO to adversary and set
the replying random values set regardless of coin-�ipping results.

Through these games we show that the adversary in the protocol (i.e., Game
0) is in the same situations in that it is given no information related to the secret
key, and there are no means other than random guessing.

As a results the following theorems are shown.

Theorem 1. Forward-secure Indistinguishablity
The proposed scheme is Forward-secure Indistinguishable, if hash functions H0, H1, H2

are random oracles.

Theorem 2. Forward-secure (Client)-Unforgeability
The proposed scheme is Forward-secure (Client)-Unforgeable if hash functions
H0, H1, H2 are random oracles.

Theorem 3. Forward-secure (Server)-Unforgeability
The proposed scheme is Forward-secure (Server)-Unforgeable if hash functions
H0, H1, H2 are random oracles.

Theorem 4. Forward-secure Key-incrementability
The proposed scheme is Forward-secure Key-incrementable if hash functions
H0, H1, H2 are random oracles.

5.2 Veri�cation Using CryptoVerif

We show veri�cation results of the proposed protocol using CryptoVerif ver.
1.10pl1 [3,4,7]. CryptoVerif is a software that veri�es security of cryptographic
protocols by the game- based approach. For the veri�cation we describe attack
games and rewriting rules by using CryptoVerif's syntactic rules, and input them
to CryptoVerif. The attack games represent a cryptographic protocol and its se-
curity requirements. The rewriting rules represents computational assumptions,
etc. CryptoVerif then repeatedly modi�es the attack game by using the rewriting
rules. If the modi�ed game satis�es the security requirements, the cryptographic
protocol is judged as secure.

In this paper, we cannot describe the key update mechanism by hash chain
because of restrictions of the syntactic rules. Therefore we describe a simple
protocol that omits the key update mechanism, and verify the indistinguishabil-
ity and the unforgeabilities by CryptoVerif. Oracle SK is also omitted from the
attack model because the simple protocol clearly has no forward securities.

We succeeded in the security proof of the securities of the simple protocol by
using CryptoVerif. The indistinguishability is proven by 18 game modi�cations,
and the unforgeabilities are proven by 14 game modi�cations. The time required
for each proof is �ve seconds. These results mean that the proposed scheme
satis�es indistinguishability, (Client)-Unforgeability, and (Server)-Unforgeability
as long as a tag is not tampered. Moreover, these results contribute to under-
standings of the proofs of the proposed protocol's securities by using a hybrid
argument technique.

6 Conclusion

In this paper, we proposed a formal security model and de�nitions for RFID
authentication protocol that is robust against a man-in-the-middle adversary.
Then we proposed an RFID authentication protocol from the OSK protocol
and synchronization mechanism. We also prove the security of the protocol, (1)
by using handwritten proof in the game-based scheme, and (2) by verifying the
correctness of the handwritten proof by using the CryptoVerif formal veri�cation
tool.

References

1. RFID security & privacy lounge. http://www.avoine.net/r�d/.
2. Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography (the

computational soundness of formal encryption). In IFIP TCS, pages 3�22, 2000.
3. Bruno Blanchet. CryptoVerif computationally sound, automatic cryptographic

protocol veri�er user manual. http://www.cryptoverif.ens.fr/.
4. Bruno Blanchet. A computationally sound mechanized prover for security proto-

cols. Cryptology ePrint Archive, Report 2005/401, 2005. http://eprint.iacr.org/.
5. Bruno Blanchet. A computationally sound mechanized prover for security pro-

tocols. In IEEE Symposium on Security and Privacy, pages 140�154, Oakland,
California, May 2006.

6. Bruno Blanchet and David Pointcheval. Automated security proofs with sequences
of games. In CRYPTO, pages 537�554, 2006.

7. Bruno Blanchet and David Pointcheval. Automated security proofs with sequences
of games. In CRYPTO, pages 537�554, 2006.

8. Gerhard Hancke and Markus Kuhn. An RFID Distance Bounding Protocol. In
Conference on Security and Privacy for Emerging Areas in Communication Net-

works � SecureComm 2005, pages 67�73, Athens, Greece, September 2005. IEEE,
IEEE Computer Society.

9. Ari Juels and Stephen Weis. De�ning strong privacy for RFID. Cryptology ePrint
Archive, Report 2006/137, 2006.

10. Ari Juels and Stephen Weis. De�ning Strong Privacy for RFID. In International

Conference on Pervasive Computing and Communications � PerCom 2007, pages
342�347, New York City, New York, USA, March 2007. IEEE, IEEE Computer
Society Press.

11. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic approach
to �privacy-friendly� tags. In RFID Privacy Workshop, MIT, MA, USA, November
2003.

12. Paise Radu-Ioan and Serge Vaudenay. Mutual Authentication in RFID: Security
and Privacy. In Proceedings of the 3rd ACM Symposium on Information, Computer

and Communications Security � ASIACCS'08, pages 292�299, Tokyo, Japan, 2008.
ACM Press.

13. Serge Vaudenay. On Privacy Models for RFID. In Advances in Cryptology -

Asiacrypt 2007, volume 4833 of Lecture Notes in Computer Science, pages 68�87,
Kuching, Malaysia, December 2007. Springer-Verlag.

Appendix

The proof of Theorem 1. (sketch)

Game 0 Adversary AFI is allowed to access the oracles, Sf , C, St, SRO,

TRO, SK, SKO. Simulator SIM sets skID,0 randomly, and replies to queries
from the adversary using skID,0 following the protocol. Adversary AFI chooses

X ← {0, 1}nx and sends (X̂, j) to challenge oracle CO and receives Y . When
the challenge oracle CO �ips a coin in the case of b = 1, CO sends a random
values as Y to AFI In the case of b = 0, CO chooses α randomly, calculates
SR(skID,j , ID, j, X̂), and returns the result Y to AFI . After AFI receives the
challenge, it is allowed to access the oracles. Finally, AFI outputs b′. Let the
probability of the case b′ = b, where each index i in requests to oracle SK is
j < i,

Pr[AFI in Game0] =
1

2
+ εFI

Game 1 Adversary AFI is allowed to access the oracles as same as Game 0.
Simulator SIM simulates as follows. If SIM receives a query to Sf oracle, it
replies X randomly as in Game 0. If SIM receives a query to St oracle with
(ID, i,X, Y), at �rst, it searches its database and checks if there is a pair of
setting secret key skID,i and requested query (ID, i,X, Y) asked to St or TRO

previously. If there is a pair, SIM replies with the same output value recorded
in the database as Z. Otherwise, it chooses Z randomly and replies to it, then
records the pair of received values as input and Z in its database. If SIM receives
a query to TRO oracle with (skID,i, ID, i,X, Y), he �rst searches its database and
checks if there is a pair of the requested query and output as Z. If there is a
pair, SIM replies with the same output value recorded in its database as Z.
Otherwise, it chooses Z randomly and replies to it, then records the pair of
received values as input and Z, i.e., ((skID,i, ID, i,X, Y), Z) in his database. If
SIM receives a query to SK oracle with (ID, i), it �rst searches its database
and checks if there is a pair of the setting secret key skID,i and the requested

query (ID, i), asked to SK or SKO previously. If there is a pair, SIM replies
with the same output value recorded in its database as skID,i. Otherwise, it
chooses skID,i randomly and replies to it, then records the value in its database.

If SIM receives a query to SKO oracle, with (skID,i, ID, i), it �rst searches its
database and checks if there is a pair of the requested query and output as
skID,i+1. If there is a pair, SIM replies with the same output value recorded in
its database as skID,i+1. Otherwise, it chooses skID,i+1 randomly and replies to
it, then records the value in its database. If SIM receives a query to C oracle
with (ID, i,X), at �rst, it searches its database and checks if there is a pair of
the setting secret skID,i and the requested query (ID, i,X), requested from C
or SRO previously. If there is a pair, SIM replies with the same output value
recorded in its database as Y . Otherwise, if chooses Y randomly and replies to
it, then records the pair of received values as input and Y in its database. If
SIM receives a query to SRO oracle with (skID,i, ID, i,X), at �rst, it searches
its database and checks if there is a pair of the requested query and output
as Y . If there is a pair, SIM replies with the same output value recorded in
its database as Y . Otherwise, it chooses Y randomly and replies to it, then
records the pair of received values as input and Y , i.e., ((skID,i, ID, i,X), Y) in
its database. After then AFI outputs b′. Let the probability of the case b′ = b,
where each index i in all requests to oracle SK is j < i, (same conditions as
Game 0) Pr[AFI in Game1]. Pr[AFI in Game0] − Pr[AFI in Game1] means
the advantage that adversary can acquire in Game 0 against in Game 1, where in
Game 0 SIM simulates using the setting secret key and following the protocol,
while in Game 1 SIM simulates setting the oracle's output randomly.

Let us look at the output of each oracle. The output of oracle Sf is always
a random value and independent of the secret key, therefore the output gives
no advantage to adversary. The output of oracles St and TRO are outputs of
hash function H1. H1 assumes that the output of H1 is random distribution.
Therefore he adversary cannot distinguish whether SIM simulates using the
setting secret key or setting output randomly. Therefore the outputs give no
advantage to adversary. The outputs of oracles SK and SKO are related to the
output of hash function H2. As long as j < i, i.e., the secret key is not invoked,
the adversary cannot distinguish whether SIM simulates using the setting secret
key or setting output randomly, since H2 also assumes that the output of H2

is random distribution. The outputs of oracles C and SRO are outputs of hash

function H0. H0 also assumes that the output of H0 is random distribution.
Additionally, the adversary is not allowed to ask a query with a value that is
same as the received value from CO. Therefore the outputs give no advantage
to adversary. At the end,

Pr[AFI in Game0]− Pr[AFI in Game1] = 0

So,
Pr[AFI in Game0] = Pr[AFI in Game1]

Game2 Adversary AFI is allowed to access the oracles as in Game 0. However,
when the adversary outputs b′, if it has accessed oracles SRO or TRO, it is
not included in adversary's win. If the same conditions as Game 0 are satis�ed
and the adversary has not accessed SRO and TRO, the adversary wins. Let the
probability by Pr[AFI in Game2].

Let us consider Pr[AFI in Game1] − Pr[AFI in Game2]. The di�erence
comes in the following cases. In the �rst case, it happens that the adversary asks
oracle SRO with (skID,j′ , ID, j

′, X̂, α̂), where (skID,j′ is identical with a secret

key set by the simulator. In this case, if the query to CO is (X̂, j′) and coin is
b = 0, and then CO happens to choose α̂ as α, the adversary can distinguish
the challenge from CO. The second case is as follows, if it happens that the
two values are the same in that one is a received value from oracle SRO and the
other is a received value from oracle C, and the same value (ID, j′, X) are included
in both queries. In this case, the adversary can identify the value of the j′ − th
secret key. If j′ ≤ j, the adversary can acquire information that contributes to its
advantage. The third case is as follows, similarly to the second case, if it happens
that the two values are same in that one is a received value from oracle TRO

and another is a received value from oracle St, and the same value (ID, j′, X, Y)
are included in both queries. In this case, the adversary can identify the value
of the j′ − th secret key. If j′ ≤ j, the adversary can acquire information that
contributes to its advantage. Let the maximum number of queries be q times and
the size of secret key be ns bits. The probability of the above events occurring
is at most q

2ns . Therefore,

Pr[AFI in Game1]− Pr[AFI in Game2] ≤
q

2ns

Game3 Adversary AFI is allowed to access the oracles as in Game 0. Let Game
3 changed as follows. When CO is requested from the adversary, he replies a
random value and the value is independent from whether b is 0 or 1. Finally,
AFI outputs b′. If the same conditions as Game 0 are satis�ed, the adversary
wins. Let the advantage of the adversary in this game be Pr[AFI in Game3].
The probability is that Pr[AFI in Game3] =

1
2 . Assuming the hash function H0

is a random oracle,

Pr[AFI in Game3] = Pr[AFI in Game2]

=
1

2

From Game 0, 1, 2, 3, the following is shown.

Pr[AFI in Game0] = Pr[AFI in Game1]

≤ Pr[AFI in Game2] +
q

2ns

= Pr[AFI in Game3] +
q

2ns

Therefore,

Pr[AFI in Game0] =
1

2
+ εFI ≤

1

2
+

q

2ns
.

Where we can say that

εFI ≤
q

2ns
.

As a result, it can be shown that the proposed scheme is forward-secure
indistinguishable, if q << 2ns and H0 is random oracle. ¶

Proof of Theorem 2. (sketch)

Game0 Adversary ACU is allowed to access the oracles, Sf , C, St, SRO, TRO,

SK, SKO. Simulator SIM sets skID,0 randomly, and replies to queries from ad-
versary using skID,0 following the protocol. Adversary ACU chooses j randomly,
and sends it to challenge oracle CO and receives X. After ACU receives the
challenge, it is allowed to access the oracles. Finally, ACU outputs Ŷ . Let the
probability of the case be that the output of CheckY (skID,j , ID, j,X, Ŷ) is dY = 1

(i.e., Ŷ is equal to the output of SR(skID,j , ID, j,X)) , where each index i in all
requests to oracle SK is j < i, Pr[ACU in Game0].

Game1 Adversary ACU is allowed to access the oracles as in Game 0. Simulator
SIM simulates as follows. If SIM receives a query to Sf oracle, it replies X
randomly as in Game 0. If SIM receives a query to St oracle with (ID, i,X, Y),
at �rst, it searches its database and checks if there is a pair of the setting secret
key skID,i and requested query (ID, i,X, Y) requested to St or TRO previously. If
there is a pair, SIM replies with the same output value recorded in its database
as Z. Otherwise, it chooses Z randomly and replies to it, then records the pair of
receives values as input and Z in its database. If SIM receives a query to TRO

oracle with (skID,i, ID, i,X, Y), it �rst searches its database and checks if there
is a pair of the requested query and output as Z. If there is a pair, SIM replies
with the same output value recorded in its database as Z. Otherwise, it chooses
Z randomly and replies to it, then records the pair of received values as input and

Z, i.e., ((skID,i, ID, i,X, Y), Z) in its database. If SIM receives a query to SK
oracle with (ID, i), it �rst searches its database and checks if there is a pair of the
setting secret key skID,i and the requested query (ID, i), requested to SK or SKO

previously. If there is a pair, SIM replies with the same output value recorded
in its database as skID,i. Otherwise, it chooses skID,i randomly and replies to it,

then records the value in its database. If SIM receives a query to SKO oracle,
with (skID,i, ID, i), it �rst searches his database and checks if there is a pair
of the requested query and output as skID,i+1. If there is a pair, SIM replies
with the same output value recorded in his database as skID,i+1. Otherwise, it
chooses skID,i+1 randomly and replies to it, then record the value in its database.
If SIM receives a query to C oracle with (ID, i,X), it �rst searches its database
and checks if there is a pair of the setting secret skID,i and the requested query

(ID, i,X), requested to C or SRO previously. If there is a pair, SIM replies with
the same output value recorded in its database as Y . Otherwise, it choose Y
randomly and replies to it, then records the pair of received values as input and
Y in its database. If SIM receives a query to SRO oracle with (skID,i, ID, i,X),
it �rst searches its database and checks if there is a pair of the requested query
and output as Y . If there is a pair, SIM replies with the same output value
recorded in its database as Y . Otherwise, it chooses Y randomly and replies to
it, then records the pair of received values as input and Y , i.e., ((skID,i, ID, i,X),

Y) in its database. Finally, adversary ACU outputs Ŷ . Let the probability of the
case be that the output of CheckY (skID,j , ID, j,X, Ŷ) is dY = 1 (i.e., Ŷ is equal
to the output of SR(skID,j , ID, j,X)) , where each index i of all requests to oracle
SK is j < i (same conditions as Game 0), Pr[ACU in Game1].

Pr[ACU in Game0] − Pr[ACU in Game1] means the advantage that the
adversary can acquire in Game 0 against in Game 1, where in Game 0 SIM
simulates using the setting secret key and following the protocol, while in Game
1 SIM simulates setting the oracle's output randomly.

The output of oracle Sf is always a random value and independent of the
secret key, therefore the output gives no advantage to the adversary. The output
of oracles St and TRO are outputs of hash function H1. H1 assumes that the
output of H1 is random distribution. Therefore the adversary cannot distinguish
whether SIM simulates using the setting secret key or setting output randomly.
Therefore the outputs give no advantage to the adversary. The outputs of oracles
SK and SKO are related to the output of hash function H2. As long as j < i, i.e.,
the secret key is not invoked, the adversary cannot distinguish whether SIM
simulates using the setting secret key or setting output randomly, since H2 also
assumes that the output of H2 is random distribution. The outputs of oracles
C and SRO are outputs of hash function H0. H0 also assumes that the output
of H0 is random distribution. Additionally, the adversary is not allowed to ask
a query with a value that is the same as the received value from CO. Therefore
the outputs give no advantage to the adversary. At the end,

Pr[ACU in Game0]− Pr[ACU in Game1] = 0

So,

Pr[ACU in Game0] = Pr[ACU in Game1]

Game 2 Adversary ACU is allowed to access the oracles as in Game 0. However,
When the adversary outputs Ŷ , if it has accessed oracles SRO or TRO, it is not
included in the adversary's win. If the same conditions as Game 0 are satis�ed
and the adversary has not accessed to SRO and TRO, the adversary wins. Let
the probability be Pr[ACU in Game2].

Let us consider Pr[ACU in Game1] − Pr[ACU in Game2]. The di�erence
comes in the following cases. In the �rst case, the two values are the same in that
one is a received value from oracle SRO and another is a received value from oracle
C, and the same value (ID, j′, X) are included in both queries, the adversary can
identify the value of the j′ − th secret key. If j′ ≤ j, the adversary can acquire
information that contributes to its advantage. Similarly, the two values are the
same in that one is a received value from oracle TRO and another is a received
value from oracle St, and the same value (ID, j′, X, Y) are included in the both
queries. In this case, the adversary can identify the value of the j′ − th secret
key. If j′ ≤ j, the adversary can acquire information that contributes adversary's
advantage. Let the maximum number of queries be q times and the size of secret
key is ns bits. The probability of that the above events occurring is at most q

2ns .
Therefore,

Pr[ACU in Game1]− Pr[ACU in Game2] ≤ q

2ns

Game 3 Adversary ACU is allowed to access the oracles as in Game 0. Let
Game 3 changed as follows. When CO is requested from the adversary, it replies
a random value and the value is independent from the requested queries. Finally,
ACU outputs Ŷ . If the same conditions as Game 0 are satis�ed, the adversary
wins. Let the advantage of the adversary in this game be Pr[ACU in Game3].
Since ACU can receives only random values from the oracles, i.e., all received
values are independent from the information of the secret key, ACU wins, only
when it happens to guess the correct Ŷ . Therefore, Pr[ACU in Game3] = 1

2ns .
Assuming hash function H0 is a random oracle,

Pr[ACU in Game3] = Pr[ACU in Game2]

=
1

2ns
.

From Game 0, 1, 2, 3, the following is shown.

Pr[ACU in Game0] = Pr[ACU in Game1]

≤ Pr[ACU in Game2] +
q

2ns

= Pr[ACU in Game3] +
q

2ns

=
1

2ns
+

q

2ns
=
q + 1

2ns

As a result, it can be shown that the proposed scheme is forward-secure
(client)-unforgeable, if q << 2ns and H0 is random oracle. ¶

Proof of Theorem 3. (sketch)

Game0 Adversary ASU is allowed to access the oracles, Sf , C, St, SRO, TRO,

SK, SKO. Simulator SIM sets skID,0 randomly, and replies to queries from the
adversary using skID,0 following the protocol. The adversary ASU chooses j and

X̂ randomly, and sends (X̂, j) to challenge oracle CO and receives Y . After ASU

receives the challenge, it is allowed to access the oracles. Finally, ASU outputs Ẑ.
Let the probability of the case in which the output of CheckZ(skID,j , ID, j, X̂, Y, Ẑ).

be dZ = 1 (i.e., Ẑ is equal to the output of TR(skID,j , ID, j, X̂, Y)), where each
index i in all requests to oracle SK is j < i, Pr[ASU in Game0].

Game1 Adversary ASU is allowed to access the oracles as in Game 0. Simulator
SIM simulates as follows. If SIM receives a query to Sf oracle, it replies X
randomly as in Game 0. If SIM receives a query to St oracle with (ID, i,X, Y), at
�rst, it searches its database and checks if there is a pair of the setting secret key
skID,i and the requested query (ID, i,X, Y) requested to St or TRO previously. If
there is a pair, SIM replies with the same output value recorded in its database
as Z. Otherwise, it chooses Z randomly and replies to it, then records the pair of
received values as input and Z in its database. If SIM receives a query to TRO

oracle with (skID,i, ID, i,X, Y), at �rst, it searches its database and checks if there
is a pair of the requested query and output as Z. If there is a pair, SIM replies
with the same output value recorded in its database as Z. Otherwise, chooses Z
randomly and replies to it, then records the pair of received values as input and
Z, i.e., ((skID,i, ID, i,X, Y), Z) in its database. If SIM receives a query to SK
oracle with (ID, i), it �rst searches its database and checks if there is a pair of the
setting secret key skID,i and the requested query (ID, i), requested to SK or SKO

previously. If there is a pair, SIM replies with the same output value recorded
in its database as skID,i. Otherwise, it chooses skID,i randomly and replies to it,

then records the value in its database. If SIM receives a query to SKO oracle,
with (skID,i, ID, i), it �rst searches its database and checks if there is a pair of
the requested query and output as skID,i+1. If there is a pair, SIM replies with
the same output value recorded in its database as skID,i+1. Otherwise, it choose

skID,i+1 randomly and replies to it, then records the value in its database. If
SIM receives a query to C oracle with (ID, i,X), it �rst searches its database
and checks if there is a pair of the setting secret skID,i and the requested query

(ID, i,X), requested to C or SRO previously. If there is a pair, SIM replies with
the same output value recorded in its database as Y . Otherwise, it chooses Y
randomly and replies to it, then records the pair of received values as input and
Y in its database. If SIM receives a query to SRO oracle with (skID,i, ID, i,X),
it �rst searches its database and checks if there is a pair of the requested query
and output as Y . If there is a pair, SIM replies with the same output value
recorded in its database as Y . Otherwise, it chooses Y randomly and replies to
it, then records the pair of received values as input and Y , i.e., ((skID,i, ID, i,X),

Y) in its database. Finally, adversary ASU outputs Ẑ. Let the probability of
the case where the output of CheckZ(skID,i, ID, j, X̂, Y, Ẑ): be dZ = 1 (i.e., Z is

equal to the output of TR(skID,j , ID, j, X̂, Y)), where each index i in all requests
to oracle SK is j < i (same conditions as Game 0), Pr[ASU in Game1].

Pr[ASU in Game0] − Pr[ASU in Game1] means the advantage that the
adversary can get in Game 0 versus Game 1, where in Game 0 SIM simulates
using the setting secret key and following the protocol, while in Game 1 SIM
simulates setting the oracle's output randomly.

The output of oracle Sf is always a random value and independent of the
secret key, therefore the output gives no advantage to the adversary. The output
of oracles C and SRO are outputs of hash function H0. H0 assumes that the
output of H0 is random distribution. Therefore the adversary cannot distinguish
whether SIM simulates using the setting secret key or setting output randomly.
The outputs therefore give no advantage to the adversary. The outputs of oracles
SK and SKO are related to the output of hash function H2. As long as j < i, i.e.,
the secret key is not invoked, the adversary cannot distinguish whether SIM
simulates using the setting secret key or setting output randomly, since H2 also
assumes that the output of H2 is random distribution. The outputs of oracles
St and TRO are outputs of hash function H1. H1 also assumes that the output
of H1 is random distribution. Additionally, the adversary is not allowed to ask
a query with a value that is same as the received value from CO. Therefore the
outputs give no advantage to the adversary. At the end,

Pr[ASU in Game0]− Pr[ASU in Game1] = 0

Game 2 Adversary ASU is allowed to access the oracles as in Game 0. However,
when the adversary outputs Ẑ, if it has accessed oracles SRO or TRO, it is not
included in the adversary's win. If the same conditions as Game 0 are satis�ed
and the adversary has not accessed to SRO and TRO, the adversary wins. Let
the probability be Pr[ASU in Game2].

Let us consider Pr[ASU in Game1] − Pr[ASU in Game2]. The di�erence
comes from the following cases. In the �rst case, the two values are the same
in that one is a received value from oracle SRO and another is a received value
from oracle C, and the same value (ID, j′, X) are included in the both queries. In
this case, adversary can identify the value of the j′− th secret key. If j′ ≤ j, the

adversary can acquire information that contributes to its advantage. Similarly,
the two values are the same in that one is a received value from oracle TRO and
another is a received value from oracle St, and the same value (ID, j′, X, Y) are
included in the both queries. In this case, the adversary can identify the value
of the j′ − th secret key. If j′ ≤ j, the adversary can acquire information that
contributes to its advantage. Let the maximum number of queries be q times
and the size of secret key be ns bits. The probability of that the above events
occurring is at most q

2ns . Therefore,

Pr[ASU in Game1]− Pr[ASU in Game2] ≤ q

2ns

Game3 Adversary ASU is allowed to access the oracles as in Game 0. Let Game
3 changed as follows. When CO is requested from the adversary, it replies with a
random value and the value is independent from the requested queries. Finally,
ASU outputs Ẑ. If the same conditions as Game 0 are satis�ed, the adversary
wins. Let the advantage of adversary in this game be Pr[ASU in Game3]. Since
ASU can receives only random values from oracles, i.e., all received values are
independent with the information of secret key, ASU wins, only when it happens
to guess the correct Ẑ. Therefore, Pr[ASU in Game3] = 1

2ns . Assuming the hash
function H1 is a random oracle,

Pr[ASU in Game3] = Pr[ASU in Game2]

=
1

2ns
.

From Game 0, 1, 2, 3, the following is shown.

Pr[ASU in Game0] = Pr[ASU in Game1]

≤ Pr[ASU in Game2] +
q

2ns

= Pr[ASU in Game3] +
q

2ns

=
1

2ns
+

q

2ns
=
q + 1

2ns

As a result, it can be shown that the proposed scheme is forward-secure
(server)-unforgeable, if q << 2 ns and H1 is a random oracle. ¶

Proof of Theorem 4. (sketch)

Game0 Adversary AFSK is allowed to access the oracles, Sf , C, St, SRO,

TRO, SK, SKO. Simulator SIM sets skID,0 randomly, and replies to queries
from the adversary using skID,0 following the protocol. The adversary AFSK

chooses j randomly, and sends it to challenge oracle CO and receives skID,j .

After AFSK receives the challenge, it is allowed to access the oracles. Finally,
AFSK outputs ˆskID,t. Let the probability of the case be that the output of

skID,j = KeyGenj−t(ˆskID,t, ID, t) (where, SK
j−t means executing SK j− t times) ,

where each index i in all requests to oracle SK is j < i, Pr[AFSK in Game0] =
j−1
2ns + εFSK .

Game1 Adversary AFSK is allowed to access the oracles as in Game 0. Simula-
tor SIM simulates as follows. If SIM receives a query to Sf oracle, it replies X
randomly as in Game 0. If SIM receives a query to St oracle with (ID, i,X, Y),
it �rst searches its database and checks if there is a pair of the setting secret key
skID,i and the requested query (ID, i,X, Y) requested to St or TRO previously. If
there is a pair, SIM replies with the same output value recorded in its database
as Z. Otherwise, it chooses Z randomly and replies to it, then records the pair of
received values as input and Z in its database. If SIM receives a query to TRO

oracle with (skID,i, ID, i,X, Y), it �rst searches its database and checks if there
is a pair of the requested query and output as Z. If there is a pair, SIM replies
with the same output value recorded in its database as Z. Otherwise, it chooses
Z randomly and replies to it, then records the pair of received values as input
and Z, i.e., ((skID,i, ID, i,X, Y), Z) in its database. If SIM receives a query to
SK oracle with (ID, i), it �rst searches its database and checks if there is a pair of
the setting secret key skID,i and the requested query (ID, i), asked to SK or SKO

previously. If there is a pair, SIM replies with the same output value recorded
in its database as skID,i. Otherwise, it chooses skID,i randomly and replies to it,

then records the value in its database. If SIM receives a query to SKO oracle,
with (skID,i, ID, i), it �rst searches its database and checks there is a pair of the
requested query and output as skID,i+1. If there is a pair, SIM replies with the
same output value recorded in its database as skID,i+1. Otherwise, it chooses
skID,i+1 randomly and replies to it, then records the value in its database. If
SIM receives a query to C oracle with (ID, i,X), it �rst searches its database
and checks if there is a pair of the setting secret skID,i and the requested query

(ID, i,X), requested to C or SRO previously. If there is a pair, SIM replies with
the same output value recorded in its database as Y . Otherwise, it chooses Y
randomly and replies to it, then records the pair of received values as input and
Y in its database. If SIM receives a query to SRO oracle with (skID,i, ID, i,X),
it �rst searches its database and checks if there is a pair of the requested query
and output as Y . If there is a pair, SIM replies with the same output value
recorded in his database as Y . Otherwise, it chooses Y randomly and replies to
it, then records the pair of received values as input and Y , i.e., ((skID,i, ID, i,X),

Y) in its database. Finally, adversary AFSK outputs ˆskID,t. Let the probability of

the case be that the output of skID,j = KeyGenj−t(ˆskID,t, ID, t) (where KeyGen
j−t

means that executing SK j−t times)� where each index i in all requests to oracle
SK is j < i (same conditions as Game 0), Pr[AFSK in Game1].

Pr[AFSK in Game0]− Pr[AFSK in Game1] means the advantage that ad-
versary can get in Game 0 against in Game 1, where in Game 0 SIM simulates

using the setting secret key and following the protocol, while in Game 1 SIM
simulates setting the oracle's output randomly.

The output of oracle Sf is always a random value and independent from the
secret key, therefore the output gives no advantage to the adversary. The output
of oracles C and SRO are outputs of hash function H0. H0 assumes that the
output of H0 is random distribution. Therefore the adversary cannot distinguish
whether SIM simulates using the setting secret key or setting output randomly.
The outputs therefore give no advantage to the adversary. The output of oracles
St and TRO are outputs of hash functionH1.H1 assumes that the output ofH1 is
random distribution. Therefore the adversary cannot distinguish whether SIM
simulates using the setting secret key or setting output randomly. Therefore the
outputs give no advantage to the adversary. The outputs of oracles SK and SKO

are related to the output of hash function H2. As long as j < i, i.e., the secret
key is not invoked, the adversary cannot distinguish between whether SIM
simulates using the setting secret key or setting output randomly, since H2 also
assumes that the output of H2 is random distribution. At the end,

Pr[AFSK in Game0]− Pr[AFSK in Game1] = 0

So,
Pr[AFSK in Game0] = Pr[AFSK in Game1]

Game2 Adversary AFSK is allowed to access the oracles as same as Game 0.
However, when adversary outputs ˆskID,t, if it has accessed oracles SRO or TRO,
it is not included in the adversary's win. If the same conditions as Game 0 are
satis�ed and adversary has not accessed to SRO and TRO, the adversary wins.
Let the probability be Pr[AFSK in Game2].

Let us consider Pr[AFSK in Game1]−Pr[AFSK in Game2]. The di�erence
comes from the following cases. In the �rst case, the two values are the same in
that one is a received value from oracle SRO and the other is a received value
from oracle C, and the same value (ID, j′, X) is included in both queries. In this
case, the adversary can identify the value of the j′ − th secret key. If j′ ≤ j, the
adversary can acquire information that contributes to its advantage. Similarly,
the two values are the same in that one is a received value from oracle TRO and
the other is a received value from oracle St, and the same value (ID, j′, X, Y)
are included in both queries. In this case, the adversary can identify the value
of the j′ − th secret key. If j′ ≤ j, the adversary can acquire information that
contributes to its advantage. As another case, it occurs that the adversary asks
oracle SKO with (skID,j−1, ID, j−1), where (skID,j−1 identical to a secret key set
by the simulator. In this case, AFSK could acquire the correct secret key (skID,j .
If the query to CO is (ID, j), AFSK receives (skID,j . Therefore, in this case AFSK

identi�es the correct secret key (skID,j−1, and this case gives the adversary an
advantage. Let the maximum number of queries be q times and the size of secret
key be ns bits. The probability of that the above events occurring is at most
q

2ns . Therefore,

Pr[AFSK in Game1]− Pr[AFSK in Game2] ≤ q

2ns

Game3 Adversary AFSK is allowed to access the oracles as in Game 0. Let
Game 3 changed as follows. When CO is requested from the adversary, it replies
a random value and the value is independent from the requested queries. Finally,
ACU outputs ˆskID,t. If the same conditions as Game 0 are satis�ed, the adversary
wins. Let the advantage of the adversary in this game be Pr[AFSK in Game3].
Since AFSK can receives only random values from oracles, i.e., all received values
are independent from the information of the secret key, AFSK wins, only when
it happens to guess the correct ˆskID,t. Therefore, Pr[AFSK in Game3] = 1

2ns .
Assuming the hash function H2 is a random oracle,

Pr[AFSK in Game3] = Pr[AFSK in Game2]

=
j − 1

2ns
.

From Game 0, 1, 2, 3, the following is shown.

Pr[AFSK in Game0] = Pr[AFSK in Game1]

≤ Pr[AFSK in Game2] +
q

2ns

= Pr[AFSK in Game3] +
q

2ns

=
j − 1

2ns
+

q

2ns
=
q + j − 1

2ns

As a result, it can be shown that the proposed scheme is forward-secure
key-incrementable, if q << 2ns and H0 is random oracle. ¶

