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Abstract

In this work, we consider Authentication and Key Agreement (AKA), a popular
client-server Key Exchange (KE) protocol, commonly used in wireless standards (e.g.,
UMTS), and widely considered for new applications. We discuss natural potential
usage scenarios for AKA, attract attention to subtle vulnerabilities, propose a simple
and efficient AKA enhancement, and provide its formal proof of security.

The vulnerabilities arise due to the fact that AKA is not a secure KE in the stan-
dard cryptographic sense, since Client C does not contribute randomness to the session
key. We argue that AKA remains secure in current deployments where C is an entity
controlled by a single tamper-resistant User Identity Module (UIM). However, we also
show that AKA is insecure if several Client’s devices/UIMs share his identity and key.

We show practical applicability and efficiency benefits of such multi-UIM scenar-
ios. As our main contribution, we adapt AKA for this setting, with only the minimal
changes, while adhering to AKA design goals, and preserving its advantages and fea-
tures. Our protocol involves one extra PRFG evaluation and no extra messages. We
formally prove security of the resulting protocol. We discuss how our security improve-
ment allows simplification of some of AKA security heuristics, which may make our
protocol more efficient and robust than AKA even for the current deployment scenar-
ios.

1 Introduction

This work is positioned at the intersection of engineering security and cryptography. We
present a security enhancement of an existing heavily deployed protocol (AKA — Authen-
tication and Key Agreement), and analyze it with formal cryptographic tools. We aim
this paper for both crypto and security audiences. Therefore, we use the existing AKA
notation and some of the corresponding presentation style and, at the same time, we ab-
stract away non-essential protocol details and follow cryptographic formalisms. The result

*A short version of this paper appears in SCN 2010 [8].



and discussion of the paper is self-contained; standards documents and protocols referenced
in this work help put the paper in context for security reader, but are not required for
understanding.

Establishment and maintenance of authenticated secure channels is the most used fruit
of cryptography today. In particular, wireless and cellular communications critically rely on
secure (wired and wireless) channels to exercise control over the network, access, accounting,
ete.

In this work, we consider use scenarios (and their security consequences) of one of the
most popular wireless protocols — AKA. (Our entire discussion correspondingly applies to
AKA-derivative protocols, such as EAP-AKA [4].)

3GPP AKA [2], built as a security enhancement of GSM AKA, is a modern efficient
KE protocol, which is based on pre-shared secret key (PSK). It is widely deployed today in
GSM and other cellular networks, and is considered for a variety of additional applications.

For logistical reasons (e.g., cellular telephone roaming), there are three players in the
protocol: the user, user’s home environment (HE), and the (visited) serving network (SN).
AKA allows SN to authenticate and exchange keys with the user, without ever being given
the user’s key. Instead, one-time authentication vectors (AV) are issued to SN by the HE. All
communication and computation in AKA is very efficient thanks to the use of symmetric-
key cryptography. However, because of the complexities of existing SN-to-HE protocols and
associated delays, the AVs cannot be retrieved on-demand, are delivered in batches, and,

in particular, cannot depend on user-generated nonces!'.

1.1 Related Work

The AKA protocol is proposed and used by the 3rd Generation Partnership Project (3GPP)
[2]. EAP-AKA [4], an IETF RFC, is a wrapper around the AKA crypto core, to allow for
a standard EAP interface to the protocol.

AKA has been extensively debated and scrutinized by the standards bodies, and, less so,
in academic research. 3GPP published a technical report [3] containing an (enhanced) BAN-
logic [5] proof of security. However, this proof does not operate with rigorous complexity-
theoretic notions, and protocol specification contains occasional imprecise security state-
ments, some of which we note in this paper. We note that no serious security vulnerabilities
have been discovered in AKA.

In [13], the authors consider a simple Man-in-the-Middle attack that allows an attacker
(a “false base station” in their terminology) to redirect the traffic from a legitimate Serving
Network to a Serving Network of his choice. The attack relies on the fact, that AV’s issued
by User’s service provider do not cryptographically bind the ID of the Serving Network to
which they are issued. The solution of [13] is to do so. We note that this security issue is
different from what we are considering in this work.

!Observe the time it takes to switch on a mobile phone first time after landing in a new country versus
switching it on for a second time. In the first case, the authenticators are retrieved from HE. In the second
case, they are already cached at the visited SN.



1.2 Owur Contributions

In this work, we consider the AKA key exchange protocol. We present a simple and intuitive
argument, of security of the cryptographic core of AKA in the case when Client C is an
entity, controlled by a single User Identity Module (UIM), a tamper-resistant hardware
token storing the key and performing KE. We identify the logical steps that rely on the
single-UIM assumption.

We then argue that in many settings it is natural, convenient and more efficient to allow
for multiple UIMs, issued to the same user, to share the secret key. We show that AKA is
insecure in the above scenario with multiple UIMs sharing the key?.

Finally, as our main contribution, we show a simple amendment to AKA that closes this
vulnerability, and results in a secure key exchange protocol, which we formally prove. The
idea of the proposed modification is to require the client to contribute randomness to the
resulting session key. We stress that our modification adheres to the design requirements
of AKA, and preserves the underlying data flow structure and patterns, and trust model,
which is critical in today’s deployment scenario. In particular, no extra communication with
Home Environment is required, and batching of authenticators AV is possible (actually is
simplified and improved). We discuss how this low-cost amendment (one extra PRFG
evaluation and no extra messages) adds robustness, allows new usage scenarios, simplifies
complicated AKA nonce generation heuristics, prevents UIM cloning attacks, etc.

1.3 Outline

We start, in §2, with presenting in detail the AKA protocol, and argue its security (in the
case when each client is controlled by a corresponding single UIM). Then, in §3, we discuss
the benefits of having several UIMs contain Client C’s identity and credentials, and show
AKA vulnerability in this case. We present our enhanced version of AKA KE protocol in
84, discuss its advantages and sketch a proof. We present its formal proof of security in
Appendix B. Finally, we conclude in §5.

2 The AKA protocol

In this section we present in detail the cryptographic core of the AKA protocol. See Fig. 1
for the players and flow, and Fig. 2 and Fig. 3 for the precise message description.

Notation. For readability, we will introduce and use standard cryptographic KE no-
tation. However, our presentation is based on [2]; therefore, for the benefit of the security
reader, we will include its notation for the ease of cross-reference. In particular, the dia-
grams are presented with notation of [2]. For reference, we provide a glossary of terms and
abbreviations we use and their correspondence.

2This scenario is not explicitly disallowed in AKA specification, although the single-UIM setting appears
to be implicit in the standards groups. Our discussion of the attacks thus serves to popularize this knowledge
and attract attention of potential AKA adopters.



Table 1: Glossary of terms and abbreviations

UIM (User Identity Module) — tamper-proof token | PSK (Pre-shared secret key)
AV (Authentication Vector) — auth. data given to S | SN (Serving Network) — server S
HE (Home Environment) — key server £S MS (Mobile Station) — client C
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Figure 1: AKA Flow (HELLOs and other details omitted. See §2 for notation.)



2.1 Players, Credentials, and Communication Flow
Players. There are three participants in AKA:

1. Client C (i.e., mobile phone, called Mobile Station (MS) in [2] and Peer in [4]) is the
party initiating the exchange. In the wireless context, C is usually a MS requesting to
be authenticated and granted access to a resource. C possesses a secret key k which
is the basis for authentication.

2. Key Server (KS) (called Home Environment (HE) in [2]). This player is C’s server
(in the wireless context, it is the service provider), who had issued C’s key k (usually
on a secure User Identity Module (UIM)), and securely stores k. Key Server does
not directly exchange keys or authenticate C, but facilitates this process by giving
one-time credentials to Server (described next).

3. Server S(called Serving Network (SN) in [2]) is the party who directly interacts with
and establishes a secure channel with the Client C. In the wireless context, S grants C
access to resource (network visited while roaming). As noted, C’s credentials (i.e. key
k) is not issued by S, and are unknown to him. Instead, S receives (possibly batched)
one-time authentication vectors AV from Key Server.

Credentials. Key exchange in AKA is based on Pre-shared Secret Key (PSK) k. The key
is issued by Key Server to client C; thus both XS and C have k. We stress that the server
S does not have access to k; instead he receives (as needed, possibly batched) one-time
authentication vectors AV from Key Server, which allows & and C to mutually authenticate
and share a session key.

Trust Relationships. Server and Key Server trust each other and are assumed to have
established a secure channel. We do not discuss how authentication vectors are delivered
to §; we assume this is done in a timely and secure manner. S and C, on the other hand,
do not a priori trust each other; it is the goal of KE to establish a secure channel only if
parties possess matching credentials.

Data Flow. Upon client’s initiation of KE, § contacts S and obtains the authentication
vector AV (usually, he would have done this in advance). AV (formally presented in the next
section), is a vector, consisting of a challenge for C, an expected response, auxiliary security
data, and session keys to be used in case of successful authentication. AV’s cannot be
reused; to enable multiple logins, XS sends several AV’s, indexed by the sequence number.
(It is critical that S contacts KS as infrequently as possible, due to unacceptable (minutes-
long) delays in current deployments. This imposes a rigid requirement on communication
patterns; in particular, Client-generated messages (e.g., nonce) cannot be forwarded to KS.)

S then sends AV’s challenge (consisting of a random nonce RAND and its authenticator
AUTN) to C. C uses AUTN and his key & to confirm that the challenge indeed came from
KS. If so, C computes the session keys, computes and sends back response RES, and is ready
to securely communicate with S. S receives C’s response and compares it with expected



response XRES, which was sent by KS as part of AV. If RES=XRES, S uses session keys
received as part of AV for communication with C.
We do not discuss error handling and other lower level details in this presentation.

2.2 Authentication and Session Key Derivation

In this section, we present in detail the contents of the exchanged messages, and informally
argue the security of AKA in the case when each C is a single entity, such as a securely
issued UIM.

AUTN
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‘ AVi=RAND IIXRES ICK K Il AUTN ‘ ‘ Verify that SQN is in the correct range ‘
Figure 2: AKA Authentication Vector Figure 3: AKA Client Derivation

As mentioned above, we do not discuss the security of the channel between S and S;
we assume that the adversary cannot read or interfere with this channel. We concentrate
on the channel in control of the adversary — the network (or air) connecting S and C.

Construction of messages referred to in Fig. 1 and discussed in §2.1, are discussed below
and graphically shown on Fig. 2 and Fig. 3.

AV is computed as follows.

First, XS generates a fresh sequence number SQN and a random challenge RAND3.
SQN is used to keep track of the usage of the one-time AVs, and to help C detect and reject
replays. SQN need not be sequential; [2] discusses (somewhat involved) selection strategies
which allow efficient tracking and re-synchronization in case of failures, which is beyond the
scope of this paper. AMF, the Authentication Management Field, is used to select technical
parameters, such as timeout values; its use is not relevant for our analysis of the core of

AKA.

3In [2], depending on the occurrence in text, RAND is required to be either “random” or “unpredictable”.
We note that actually a weaker requirement of freshness is sufficient when derivation functions f; are pseu-
dorandom (e.g., AES).



Then, XRES, CK, IK, AK, AUTN and MAC are derived from PSK &k, SQN, RAND, and
AMF using message authentication functions fi, fo and key derivation functions fs, ..., fs.
We note that security properties of fi,..., f5 are stated insufficiently formally in [2]*. For
simplicity, we assume stronger properties of f1, ..., f5, namely that they are pseudorandom.
One can think of these functions as AES evaluated on the argument prefixed with the
index of the function, e.g. fi(z) = AES(i,x). Following the existing notation, we keep the
functions f1, ..., f5 in our presentation.

The derivation proceeds as follows (illustrated on Fig. 2).

e message authentication code MAC
MAC= f1, ( SQN || RAND || AMF )

e an expected response
XRES= f5, (RAND)

e cipher key
CK= f3, (RAND)

e integrity key
IK= f4, (RAND)

e anonymity key
AK= f5, (RAND)

e authentication token
AUTN = SQN @ AK || AMF || MAC

Here, CK and IK are the keys to be used in the event of successful authentication. The
use of AK is optional, and when its generating function f5 is non-zero, AK is used for hiding
the sequence number. We do not consider this option, and set f5 = 0, as it is not relevant
to the security of AKA core.

Finally, authentication vector AV is the concatenation
AV = RAND || XRES || CK || IK || AUTN.

Client’s computation. C receives® RAND and AUTN = SQN || AMF || MAC. (Recall,
AMF is not essential for AKA core security). Since C has possession of the same PSK & that
was used in the derivation of AV, C is able to derive the respective values: response RES,
CK, IK, and expected MAC XMAC, as shown on Fig. 3. Then C verifies that the received
MAC equals to expected MAC (MAC= XMAC) and checks that the sequence number SQN
is within the expected (heuristically specified) range. If the checks pass, C sends his final

4In particular, message authentication function fa, used in the computation of XRES, is allowed to be
truncated. We note that, depending on the MAC function, truncation may completely remove its security
properties. This is because standard definition of MAC allow for portions of the MAC output to be irrelevant
(e.g. always set to 0). Clearly, truncating MAC, leaving only the predictable zeros allows for easy MAC
forgery.

Recall we considering the case when AK = 0.



response RES to S, considers that AKA succeeded, and starts using CK and IK that he
derived.

Server’s computation. & receives C’s response RES; if RES = XRES, § considers that
AKA succeeded, and starts using CK and IK that he received from KS.
This completes the description of the cryptographic core of the AKA key exchange.

2.2.1 Security Argument

We present an intuitive argument of security of AKA in the case when each C is a single
entity, such as a securely issued UIM. This informal analysis also serves the purpose of
identifying the logical steps that use the single-UIM assumption. For simplicity, we assume
that each function f; used is pseudorandom. The analysis of the actual AKA, which relies
on MAC, is almost identical.

We proceed with the message flow of AKA, and first consider C and his actions. Consider
the case when C accepts. (Otherwise C simply aborts without outputting anything, and, as
is easy to see, the adversary A cannot gain from this. The only information leaked to A here
is the pattern of failures, which he can predict by himself based on the messages he delivers
to C.) We first observe that the adversary A cannot have obtained from KS, S or C two
vectors AV with the same RAND but different SQN. Since C accepted, C must have verified
the freshness of SQN (that is that C had not received AV with this SQN beforeS). We can
now see that RAND received by C is fresh and indeed generated by XS in the AV with SQN7.
That is, with overwhelming probability, this RAND had not been used by IS in other AV’s,
and it is not replayed® or forged by the adversary .A. This follows from the unforgeability
of PRF (or MAC, if we assume f; is a secure MAC, as is done in [2]). Indeed, suppose to
the contrary, C accepted a RAND, SQN pair delivered by A which was not generated by
KS. Then A must have broken the PRF/MAC property of fi, by generating a MAC on a
new message, since C must have verified and accepted MAC.

At this point, we know that S and C share the same RAND. Thus RES = XRES and S and
C compute the same IK and CK. Further, RAND is fresh?, that is, A had not seen f;, (RAND).
Then, even though A knows RAND, learning anything about XRES= f5, (RAND) or CK=
f3,(RAND) or IK= f4, (RAND), implies that A can break the pseudorandomness properties
of fi (is thus considered impossible).

Now C computes and sends out RES = f5, (RAND). Both C and S had agreed on
random and unknown to A session keys. Now, the most damage A can do is interfere with
the delivery of RES to S, preventing the establishment of the secure channel. However this

SHere is where the assumption of a single instance of C is critical. If C is allowed to be instantiated, e.g.,
on two devices, freshness cannot be guaranteed.

"We are also guaranteed that the AMF received by C was generated by XS in the same AV as RAND and
SQN. However, we are not addressing the AMF issues in this work, and will not discuss this further.

8Here the assumption of a single instance of C comes in again. If C is allowed to be instantiated, e.g., on
two devices, then replays are possible, since both devices will accept the same sequence number SQN.

9 Again, provided that C is instantiated on a single device, and the adversary A thus did not replay the
AV.



is not considered a vulnerability in KE, since the same effect can be achieved, e.g., by A
simply jamming the communication channels.

Security Proof. We note that the above security argument can be transformed into a
formal proof of security. There are two things that need to be done. First, we need to
give a definition of security in the setting with a single-UIM client. Such definition can be
derived from existing KE definitions (e.g., [11, 6, 7, 10]) by carefully restricting instance
creation in the ideal worlds (simulation-based) or the games (indistinguishability-based) of
the definitions. Then, we can transform our argument into a proof based on the proposed
definition. We defer these technically involved steps as future work.

3 Multi-UIM setting and AKA vulnerabilities

We start with justifying the setting where the client C would possess several devices provi-
sioned with the same PSK (let’s call it the multi-UIM setting).

Today, service providers aim to engage the customers as much as possible, and offer
bundled services, such as triple play (phone, internet, TV). It is easy to imagine that the
next step is to allow customers to have a number of devices, such as laptop, phone, camera,
etc., to use the service.

We first observe that it is convenient to decouple the user (i.e. subscriber) from the
device (as done, e.g., by GSM and the WiMAX Forum [1]). This allows attractive business
scenarios, where one customer may have several subscriptions, and use several devices (e.g.,
laptop, phone, camera, etc. in case of WiMAX). The convenience factor for the user is that
the devices are all linked in one plan, and the service is not linked to the device, but rather
to the subscriber identity. A person should be able, e.g., to borrow or buy a new device,
plug in his UIM card, and use it. The devices often need to be “swappable”, as is done
today with the removable UIM cards. The UIM cards should not be tied to the type of
service (TV, phone, etc.), but should be interchangeable and mainly serve to authenticate
the customer.

In cases as above, it may be convenient (although, of course, not absolutely necessary)
to employ multi-UIMs (i.e., UIMs issued to the same C and initialized with the same PSK).
Issuing several identical UIM cards to the customer is convenient to the user and the service
provider, and it brings significant efficiency gains, as described next.

Convenience and efficiency gains with multi-UIM. Clearly, this ensures the swap-
pability as described above, and the associated convenience for the customer. We note that
this feature can be emulated by issuing UIMs with different keys, and XS linking them to
the customer’s account and keeping track of all the keys. This is a feasible replacement,
which, however, comes at a cost. Firstly, S must keep track of and securely store a much
larger number of keys (a factor of 5 to 10 in the near future, depending on the average
number of devices per user). Secure storage is expensive, and this is a significant penalty.
Further, generating and delivering batched AV is much more convenient with the multi-
UIMs, since any of the AV’s generated for the customer would work. In contrast, if each of



customer’s UIMs has a separate key, a separate AV must be requested and delivered to S,
causing latencies, additional network load, and increased S storage.

3.1 Multi-UIM vulnerabilities of AKA

As already noted, in AKA, C does not contribute randomness to the resulting session key,
and instead relies on the freshness of SQN, which can only be guaranteed if PSK k is stored
securely on a UIM and only a single UIM is issued per customer identity. At the same
time, as discussed above, employing multiple UIMs keyed with the same PSK k is often
convenient and more efficient.

Because AKA Client contributes no randomness, the session key is entirely determined
by the RAND (and its authenticator AUTN) sent by server. We now show two simple attacks
on AKA deployment in the multi-UIM scenario, i.e. if there are two instances (e.g., devices)
of C using the same PSK.

Denote by C; and Cy the two instances/devices of C sharing the same PSK k.

Attack scenario 1. (C; and Cy both wish to connect to the network. C; initiates the
exchange, and, as prescribed by AKA, S sends RAND, AUTN to Cy, which C; receives, and
the adversary A overhears. Co initiates the exchange, which A blocks from S. Instead, A
replays the RAND, AUTN message to Co. At this time, both devices C; and Cs derive the
same session keys CK,IK, but they both think they are talking to S. Carefully forwarding
(presumably secured) messages sent between the two devices and the server may allow A to
create unintended transactions on C’s account. For example, if the transaction performed
on C; involves a debit on the account maintained by Ci’s UIM, the adversary A replaying
this transaction to Co (possible, since Co has the same session key as C1) may effect a
corresponding debit on Ca’s UIM — clearly an unintended transaction and a successful attack.

Attack scenario 2. The above attack is strengthened if the adversary A borrows (or
captures or remotely compromises) one of C’s devices containing the PSK k (say, C2). By
good engineering practices, PSK k is securely stored on UIM, which it never leaves. Thus,
with k& unavailable to A a secure system should guarantee that the compromised device Co
should not help A compromise other devices (e.g., C1) or their sessions.

Not so with using AKA in this scenario. Indeed, the session keys produced by the UIM
are exported into the main memory of the device, which A can exploit by performing an
attack similar to described above. A simply overhears RAND, AUTN destined to C;, and
forwards it to the UIM in his control. As prescribed by AKA, A’s UIM will generate and
export to the device session keys CK,IK, which are the same keys generated on C;. Clearly,
the adversary A is now in control of the (presumably) secure session established between S
and C;.

We stress that this attack is especially dangerous if user’s devices have different degrees of
confidence. Then, the attacker, by remotely hacking an unimportant and weakly protected
device, such as child’s laptop, may gain access to a high-confidence device on the same
account, such as parent’s smart phone.

10



4 Secure Multi-UIM AKA

In this section we present our main contribution — a simple and efficient AKA security
enhancement for the multi-UIM case. We formally prove security of our protocol; in par-
ticular, we close the multi-UIM vulnerability. The idea of the enhancement is to have the
client C’s UIM(s) generate and contribute their randomness to the session key, in a way
that preserves AKA message flow.

The most natural (and sufficient!) method to do it is to use the already established CK,IK
as intermediate keys only, and derive the session keys based on randomness sampled by UIM.
For example the actual session keys could be CK’ = fck (RANDC), IK” = fix(RANDC), where
RANDC €r {0,1}" is sampled by UIM. Now, C could simply send RANDC to S to enable
server-side derivation. We note that it is critical that UIM never exports to the device
anything other than the final session keys.

Intuitively, security now holds since only the parties who possess CK,IK are able to
derive the session key by evaluating the prescribed derivation function keyed with CK,IK
on argument RANDC. These parties are the (authorized) C (his UIM sampled RANDC
and evaluated on it), and S, who is given CK,IK by KS. The adversary A is not able to
compute session keys CK’IK’; even if he compromised C’s additional devices, since UIMs
of these devices only evaluate derivation functions on the arguments they (UIM’s) sample
themselves.

Next, we present our protocol in detail, and give intuition for its security. We present a
formal proof of security in the Appendix.

4.1 The formal Multi-AKA Protocol

The protocol, informally presented above, demonstrates the step that we need to take
to achieve security in the multi-UIM setting. This protocol can be naturally simplified
and optimized, which we do in this section. Importantly, we keep the message structure,
efficiency, and features of the original AKA protocol.

We observe that there is no need to include two derived keys (CK,IK) into AV. One
derivation key KD computed from PSK k£ and RAND is sufficient to derive CK and IK to be
used in the (now secure) session. One simple optimization we perform is using just one key
KD in place of CK,IK in AV.

Let fi,F, F1, F2 be pseudorandom function generators, such as AES!°.

Protocol 1 Multi-AKA

1. As follows from the above discussion and examples, in Multi-AKA, KS will not send
the session keys CK,IK to S in the AV. Instead, KS will send to S the session deriva-
tion key KD, which is derived from PSK k and the AV’s randomness RAND: KD
= F,(RAND). MAC is computed by KS as before: MAC= f1, (SQN || RAND || AMF

10 A5 already discussed above, these functions can either be different functions, or the same function such as
AES. In the latter case, we must ensure differentiation of the evaluation of the functions, e.g. by prepending
the (AES) argument with a function-unique prefix.

11
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Figure 4: Multi-AKA Authentication vector

). XRES is omitted since S will compute it itself based on KD and C’s randomness.
AUTN is computed as before (AUTN = SQN || AMF || MAC)'!, and AV is set to AV
= RAND || KD || AUTN. This step is illustrated on Fig. 4.

2. Upon C’s request for authentication, S forwards RAND and AUTN to C. C verifies MAC
as in AKA, and, if successful, proceeds as follows. First, it computes his version of the
derivation key KD = F,(RAND). Then C samples random RANDC and computes RES
= Fxp(RANDC). C also computes CK= F1lkp(RANDC), and IK= F2xp(RANDC).
Then C sends RANDC and RES to S and is ready to communicate over a channel
secured by session keys CK,IK. This step is illustrated on Fig. 5.

3. Upon receipt from C the pair RANDC and RES, S proceeds as follows. He first computes
XRES= Fxp(RANDC), and checks that XRES= RES. If so, S derives (and uses) the
session keys CK= F1lkp(RANDC), and IK= F2xp(RANDC). This step is illustrated
on Fig. 6.

Remark: All actions of C are performed on a UIM, and only the resulting keys CK,IK are
exported outside of the UIM.

4.2 Security Argument and Claim

The security proof of Multi-AKA is actually simpler than that of AKA presented above in
§2.2.1. The main reason is that with both § and C contributing randomness to session keys,
message replays don’t matter, since they always result in the generation of unrelated keys,
which cannot help the adversary A in attacking other sessions.

"Recall, we set AK = 0.

12
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We proceed with the message flow of Multi-AKA, and first consider C and his actions.
Consider the case when C accepts (otherwise C simply aborts without outputting anything,
and, as is easy to see, the adversary A cannot gain from this. The only information leaked
to A here is the pattern of failures, which he can predict by himself based on the messages
he delivers to C.) We first observe that S cannot have received from KS two vectors AV
with the same RAND but different SQN (this is because the probability of collision of two
randomly sampled RAND values is negligible). Therefore, there cannot be two instances
of § that generated the same KD. We note that A can cause different instances of C
(e.g., C1 and C2) to generate the same KD simply by replaying S’s message. However, it
is easy to see that even in the case when A controls one of client’s instances (say, C1), the
session keys CK,IK output by Cs cannot be predicted by A, due to the security (namely,
pseudorandomness) properties of the function used to generate the keys. This also means
that A cannot arrange for secure channels between unintended parties (e.g., as in our attacks
in §3.1, where S shared session key with two clients). Here, it is critical that UIMs do not
export intermediate keys (KD) into the main memory of the device!?.

Similarly, A cannot learn server keys or mismatch server secure channels (e.g., as in our
attacks in §3.1). This is because, firstly, intermediate keys KD generated by any player are

121f in fact KD was exported, then A could trivially compute the session key established by Co: CK=
F1kp(RANDC).
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unpredictable to A. Further, as noted above, no two servers use the same KD, and thus
replaying client’s response to S will cause a verification failure.
Above discussion leads to the following theorem:

Theorem 1 Protocol 1 (Multi-AKA) is a secure key exchange protocol. In particular, it
remains secure if the adversary A corrupts one or more of C’s instances (devices), but does
not get access inside the UIM executing the protocol.

We approach the proof of Theorem 1 as follows. First, we further abstract away the
non-essential messages and concepts and leave only the core message exchange. Then we
recall a KE definition (derived from a more general definition of [10]), and prove security
of the abstracted protocol with respect to that definition. Finally, it is easy to see that this
implies the statement of Theorem 1.

We present a formal proof of security in the Appendix.

4.3 Practical Implications and Considerations

We mention several practical implications of our proposed protocol. First, as can be seen
by direct inspection of our abstracted protocol (Appendix §B), we do not use SQN at all.
This means that (at least some of) the complicated heuristics associated with the state
maintenance can be avoided or simplified. Further, the persistent AKA problem of UIM
cloning goes away in the following sense. Of course, a cloned UIM would be able to access
the resource as well as the legitimate UIM, however, he would not be able to mount man-
in-the-middle attacks on the legitimate UIM’s connection.

Revocation. At the first glance, the issue of revocation would become significantly
more complex, since all of C’s UIMs share the same key. However, this does not appear to
pose any problems, for the following reasons. One revocation solution can use broadcast
encryption techniques, and, upon C’s request, simply update the keys of legitimate UIMs,
while excluding the stolen ones. We note, that this would require each UIM storing a small
number of keys, depending on the maximum number of user’s devices. Other solutions could
use out-of-band secure channel (e.g., telephone conversation with an agent or a separately
protected web control page) to obtain PIN(s) required to refresh the keys of the authorized
UIMs. During refresh, short authenticated string (SAS)-based techniques [12] may prove
helpful.

4.4 Performance

As it is easy to see, the costs of added security that we propose are negligible. The final tally
would depend on the exact instantiations, but our core protocol has only one (1) additional
PRFG evaluation by S, as he now needs to compute XRES himself (however, this offloads
the corresponding operation on KS). We do not further calculate these costs, since they
are negligible compared to AKA communication costs, in terms of energy consumption and
time.
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5 Conclusion

We considered a widely used AKA protocol and the issue of its reliance on the uniqueness
of the tamper-resistant module, UIM, holding user’s key. We presented the intuition for
security of AKA in this setting. We noted that issuing multiple UIMs to the user, all
of which hold the same user’s key is appealing for UIM interchangeability, and allows for
protocol efficiency improvement, such as better reuse of authenticating data and reduction
of required secure storage.

As AKA turns out to be insecure in this setting, we presented a security enhancement
of AKA, along with a formal proof of security. Our protocol has negligible performance
premium, and is more robust than AKA, while adhering to AKA design goals. Its robustness
offers avenues for simplifications of AKA heuristics. We believe our protocol may be a
worthy upgrade for AKA and a candidate for more general scenarios.

Acknowledgements. I would like to thank anonymous reviewers of this paper for many
valuable comments, and Simon Mizikovsky for our initial discussion about AKA.
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A Definition of Security of KE

In this section, we present the definition of security we use in our proofs. This definition is
a natural adaptation (actually, simplification) of the definitions of Kolesnikov and Rackoff
[9, 10]. The latter definitions consider a substantially more general setting of multi-factor
authenticated KE, where parties possess both long and short keys (e.g. PSK and passwords).
The definitions of [9, 10] have the graceful degradation property, that is, a compromise of
some of the keys results in the security level accorded by the remaining key(s). Naturally
(also indirectly implied in [9, 10]), omitting the use of short keys results in the definition
for our setting.

While one can use one of several KE definitions, we found game-based definition to be
the simplest to use. For completeness and the formalization of discussion, we now present
the adapted definition that we will use.

We denote by C{ the i-th instance of client C' who wants to talk to (some instance of)
server S. S]-C is defined symmetrically.

KE definitions rely on the notion of partners to specify what constitutes an attack. Infor-
mally, two instances of players are partners, if they establish a secure channel. Syntactically,
we define partners as follows.

Definition 1 We say that an instance CZ-S of a client C' and an instance Sjc of a server S
are partners, if they have output the same session id sid.

Session id sid is an additional (somewhat artificial) output of KE, which need not be
used in real execution, but which is needed for syntactic manipulations in the proof. We
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omit the detailed discussion of the need of sid and refer the interested reader to literature,
e.g., [9, 10] for additional information.

We start by presenting the KE game, which model attacks of a real-life adversary.
Recall, we do not address the security aspects of the server (SN in AKA) receiving the
authenticating credentials from the key server KS; we assume this is done in a secure
manner, e.g. using pre-established channels.

Game KE. An honest server S is created. Adv then runs players by executing steps 1-6
multiple times, in any order:

1. Adv creates an honest client C. C' is registered with S, and a randomly chosen key is
set up and associated with C'. Only one honest client can be created.

2. Adv creates a corrupt client B'. A randomly chosen key is set up and associated with
B;.

3. Adv creates an instance C; of the honest client C. C; is given (secretly from Adv) as
input the key associated with C.

4. Adv creates an instance S; of the honest server S. S; is given (secretly from Adv) as
input the partner client’s key'>.

5. Adv delivers a message m to an honest party instance. The instance immediately
responds with a reply (by giving it to Adv) and/or, terminates and outputs the result
(a sid and either the session key, or the failure symbol L) according to the protocol.
Adv learns only the sid part of the output.

6. Adv “opens” any successfully completed and checked honest instance — then he is given
the session key output of that instance.

Then Adv asks for a challenge on an instance of an honest player.

The challenge of instance Sjc of the server S is handled as follows. Sjc, who has been
instantiated to talk to the honest client C', must have completed and output a session key.
The challenge is, equiprobably, either the key output by Sjc or a random string of the same
length. Adv must not have opened SJC or a partner of S’]-C, and is not allowed to do it in the
future.

The challenge of instance C’]S of the client C' is handled symmetrically.

Then Adv continues to run the game as before (execute steps 2-6). Finally, Adv outputs
a single bit b which denotes Adv’s guess at whether the challenge string was random. Adv
wins if he makes a correct guess, and loses otherwise. Adv cannot “withdraw” from a
challenge, and must produce his guess.

The above game is almost sufficient for security definition. The only remaining technical
aspect is the enforcement of non-triviality. We need to prevent improper partnering (e.g.
players unnecessarily outputting same sid). Recall, Adv is not allowed to challenge parties
whose partner has been opened; SID ensures that Adv is not unfairly restricted. We handle
this by introducing the following game

130ther authenticating credentials may be given instead, such as KD in the AKA setting.
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Game SID is derived from game KE by adjusting the win condition. Adv does not ask for
(nor answers) the challenge. Adv wins if any two honest partners output different session
keys.

Note, SID allows for one (or both) of the partners to output a failure symbol. Adv only
wins if two successfully completed parties output different session keys.

We are now ready to present the definition.

Definition 2 We say that a key exchange protocol 11 is secure, if for every polytime ad-
versaries Advy, Advgq playing games KE and SID, their probabilities of winning (over the
randomness used by the adversaries, all players and generation algorithms) is at most only
negligibly (in security parameter n) better than:

e 1/2, for KE,

e 0, for SID.

B Theorem Statement and Proof of Security of Protocol 1

We now formally state and prove the security theorem of our proposed Protocol 1.

For simplicity, we consider only the core of the protocols, leaving out the non-security-
essential messages, and slightly rearrange the PRFG calls in a natural way. It is clear that
the following Protocol 2 represents Protocol 1, and the latter is secure if so is the former.
We will thus consider and prove security of the following protocol.

Protocol 2 (Essential message exchange of Protocol 1)

S¢ c?
given r € {0,1}", given k
KD = Fi(1,7),
MAC = Fj.(2, 7)

r,MAC—s

verify MAC = Fi(2,r)
if fail, abort
choose r. €r {0,1}"
— Te, FKD(37 Tc)
verify Fkp(3,7.)
if fail, abort

set sk = Fxp(4,7¢) set sk = Fxp(4,7¢)
set sid = (r,7c), set sid = (r,7c),
Output (sk, sid) Output (sk, sid)

Theorem 2 Let F' be a PRFG. Then, protocol 2 is a secure KE protocol, according to the
Definition 2.
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As mentioned above, the proof of Theorem 2 implies the security of Protocol 1.

Our proof will consist of several steps. First, we introduce a game G (see below), a
simplification of the KE game, and show (Lemma 1) that any Adv winning KE implies a
corresponding distinguisher for G. Then we show that existence of such a distinguisher for
G implies an attack on the employed PRFG. This implies that KE game cannot be won by
polytime Adv if PRFG is secure. Finally we observe that such Adv cannot win the game
SID neither. Indeed, in our protocol, partners never output different keys (since the session
key is determined by sid).

Game G.
Game is parameterized by the security parameter n, and is played with a distinguisher Dist.
Dist proceeds by executing the following Step multiple times:

1. Dist queries the PRFG oracle Op(i,j,r) = F,(j,r), where the random key k; is
chosen by the game, remembered for potential future calls to Op, and not revealed to
Dist. Here r € {0,1}", integer i and j € {1,2} are chosen by Dist.

Then Dist chooses i and ro € {0,1}" and queries the challenge oracle O¢(i,rg). O¢
produces a challenge as follows: it randomly chooses a bit b and a string p €g {0,1}™. Then
Oc(i,m0) = Fi,(4,70) if b = 0, and Oc¢(i,m0) = p if b = 1. Dist is not allowed to query
Oc(i,r0), if he queried Op(i,4,r0).

Then, Dist continues running the above Step 1 multiple times, with the exception that
he is not allowed to query Op(i,4,r9).

Finally, Dist outputs a bit b'. Dist wins if b=1'.

Lemma 1 Suppose there exists an adversary Adv that wins KE with probability non-negligibly
greater than 1/2. Then there exists Dist winning the game G with probability non-negligibly
greater than 1/2, where G is run with the same PRFG F as game KE.

Proof: We present a distinguisher Dist and show that it wins G essentially whenever
Adv wins the KE game. Dist simulates an environment (i.e. KE players and their actions),
in which he runs Adv, answers Adv’s queries and uses Adv’s decisions to make decisions
in G. We say “Dist stops”, meaning “Dist finishes processing Adv’s request and returns
control to Adv”, and “Dist sends (outputs) m”, meaning “Dist simulates the given player
sending (outputting) m, by giving m to Adv”.

Dist starts up Adv. Dist then runs Adv and satisfies its requests for information as
follows. Note that a client C must have been created to create its instances C; or server
instances Sjc. We also note that while we carefully handle messages and responses associated
with the honest client — this is how we reduce the KE game to the simpler game G — Dist
simply executes the protocol to handle messages associated with corrupt clients. This is
because the keys for each client are independent, and each instance (both of server or client)
only possesses the keys relevant only to the the communication with its partner instance.
That is, for example, server instance talking to client B will not know anything about
C’s keys, and thus cannot possibly help in attacking C. (We note that a similar issue is
addressed in [9]; we refer the interested reader there for more intuition and justification.)
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Variables notation. In the following, we will use indexed variables. We will adhere to the
following notation. Messages generated by S (i.e. by Dist on behalf of S) will be indexed
with letter j. Messages generated by C' will be indexed with i. Messages received by S will
have a “hat” and are indexed with j. Finally, messages received by C' will have a “hat” and
are indexed with 7. For example, a random string sent by instance S; will be denoted by
rj. Upon delivery to instance C; (potentially the same) string will be denoted 7;.

1. Adv creates a bad client B*:
No action needed.

2. Adv creates (the only) honest client C':
No action needed.

3. Adv creates an instance S]Bi of S and starts the protocol (recall, B* is corrupt):
Dist follows the protocol.

4. Adv creates an instance SjC of S and starts the protocol:
Dist generates the protocol messages by querying Or. We need this so as to be able
to exploit the win of Adv and translate it into a win of Dist. Therefore, Dist chooses
a random r; €g {0,1}" and queries Or(0,2,7;). (Our convention is to index the calls
to the long-term key with 0.) He then sends (rj, Or(0,2,7;)).

5. Adv creates new (i-th) instance C; of the honest client C.
No action needed from Dist.

6. Adv delivers a message mc, = (74, I\TA\CZ) to an instance C; of honest client C' (al-
legedly) from server S':
Dist verifies MAC as follows. If Dist ever generated and sent the pair (r;, MAC;) =

(74, I\TA\Cz) (this could only have been done in Step where an instance of S was created),
then we consider MAC verified. Otherwise, Dist emulates failure of MAC verification.
Note, by PRFG properties, this action (failure emulation) is indistinguishable from
real execution, and a polytime Adv would not detect a deviation. If MAC was veri-
fied, Dist continues, and chooses r; €g {0,1}". Then Dist calls Op(r;,3,r;) (recall,
7i = r;), and sends 73, Op(r;,3,7;). According to the protocol, Dist outputs (sk, sid),
where sk = Op(r;,4,7;) and sid = (rj,r;). However, Adv is only given sid at this
time, so Dist does not make the above oracle call, but simply gives sid to Adv. We
also note that in the real execution, the key KD is derived from the long-term key,
while in our emulation, we use a random key. This difference, however, cannot be
exploited by a polytime Adv, due to the PRFG properties of F.

7. Adv delivers a message mg; = (fj,fj) to SJC (allegedly) from client C' (recall, C is
honest, and (r;,Op(0,2,r;) is the message previously sent by S]C)
Dist verifies the message similarly to the verification of the message received by Cj,
as follows. Dist accepts the message only if the following holds. Dist must have
generated and sent the pair (7;, fj) in the Step where a message m; was delivered
to an instance C;. Further, this message m; must have contained the randomness
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10.

11.

12.

r;j generated and output earlier by S;. If either of the above two conditions does
not hold, Dist emulates failure of MAC verification. Note, by PRFG properties (a
hybrid argument), this action is indistinguishable from real execution, and a polytime
Adv would not detect a deviation. Now we return to the case when verification
succeeds. According to the protocol, Dist outputs (sk, sid), where sk = Op(rj,4,r;)
and sid = (rj,r;) (recall, 7; = r;). However, Adv is only given sid at this time, so
Dist does not make the above oracle call, but simply gives sid to Adv.

. Adv delivers a message mg, to SJBi (allegedly) from client B (recall, B' is corrupt):

Dist emulates protocols execution according to specification, and responds with the
corresponding output instruction. Recall, in dealing with corrupt clients, Dist does
not use the oracles of the game G, but simply fully follows the protocol.

. Adv sends an open request on a (completed and not failed or challenged) client instance

Cl' Of C:

Recall that C; output sid; = (7, 1;). Dist queries oracle Op(7;,4,r;), and gives the
answer to Adv. Note that there are restrictions on when Dist is allowed to call Op
(Op and O¢ cannot be called with the same parameters). We argue later that we are
not violating them.

Adv sends an open request on a (completed and not failed or challenged) server in-
stance S of S:

Recall that S; output sid; = (rj,7;). Dist queries oracle Op(r;,4,7;), and gives the
answer to Adv. As in 9, we will later argue that we are not violating G’s restrictions.

Adv sends a challenge request on a (completed and not failed or opened) server in-
stance S’jc of S:

Recall, Sjc sent 7, received 7; and output sid; = (rj,7;). Dist queries the challenge
oracle ch = O¢(rj,7;), gives ch to Adv and submits Adv’s output as his answer to
the challenge of G. As in 9 and 10, we will later argue that we are not violating G’s
restrictions when querying Oc(r;, 7).

Adv sends a challenge request on a (completed and not failed or opened) client instance
CP of C:

This is handled symmetrically to the above request 11. Dist queries the challenge
oracle ch = O¢(7;,1;), gives ch to Adv and submits Adv’s output as his answer to the
challenge of G. Again, we will later argue that we are not violating G’s restrictions
when querying O¢ (7, 7;).

We now argue that all calls to O in 9-10, and to O¢ in 11-12 will be legal requests in
G, that is that Dist never calls both O¢(i,r) and Op(i,4,r) for any pair (i,r).

First note that O and O¢ are only called when Adv opens or challenges instances,
respectively. Suppose, Adv challenged a server instance Sjc, and thus caused the call
Oc(rj,7j), where 7; = r; was generated by client C;. We now have to show that Op(r;,4,r;)
was not and will not be called. Consider two possible cases. First, for k # j, Adv opens
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(either earlier or later) a server instance Sy, causing a call Op(rg,4, ;). This is not a prob-
lem, since Prob(r; = ry) is negligible. Second, Adv opens a client instance C’f , thus causing
a call Op(rm,4, 7). Suppose this call is illegal, i.e. 7, = r; and r; = r,. However, in this
case, the session ids output by the parties match. Then S]-C and C’;f are partners, and such
Adv’s behavior is not allowed in KE.

By assumption of the lemma, Adv wins with probability non-negligibly more than 1/2.
It is easy to see that Dist wins whenever Adv wins, except for a negligible fraction of the
time. Therefore, the constructed Dist wins the game G with probability non-negligibly
more than 1/2.

O

Lemma 2 If the PRFG F used in G is secure, then there does not exist a polytime Dist
winning the game G with probability p > 1/2 + &, where § is not negligibly small (in the

security parameter n).

The proof of Lemma 2 is done by a standard hybrid argument, and is omitted.
O
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