
Identity Based Self Delegated Signature - Self Proxy Signatures

S. Sharmila Deva Selvi, S. Sree Vivek, S.Gopinath, C. Pandu Rangan
TCS Lab, Department of CSE,

Indian Institute of Technology Madras (IITM)
Chennai, India

Email: {sharmila,svivek,gopinath,prangan}@cse.iitm.ac.in

Abstract—A proxy signature scheme is a variant of digital
signature scheme in which a signer delegates his signing rights
to another person called proxy signer, so that the proxy signer
can generate the signature of the actual signer in his absence.
Self Proxy Signature (SPS) is a type of proxy signature wherein,
the original signer delegates the signing rights to himself (Self
Delegation), there by generating temporary public and private
key pairs for himself. Thus, in SPS the user can prevent the
exposure of his private key from repeated use. In this paper,
we propose the first identity based self proxy signature scheme.
We give a generic scheme and a concrete instantiation in the
identity based setting. We have defined the appropriate security
model for the same and proved both the generic and identity
based schemes in the defined security model.

Keywords: Identity Based Cryptography, Self-Proxy Signa-
tures, Delegation, Random Oracle Model.

I. INTRODUCTION

The notion of proxy signature schemes dates back to 1996,
proposed by Mambo, Usuda and Okamoto in their seminal
paper [14]. In proxy signature scheme, a user Alice, called
the original signer delegates her signing rights to another
user Bob, called the proxy signer. A verifier can distinguish
between a normal signature and a proxy signature but then
is convinced that the message is authenticated by Alice.
Proxy signatures have a number of applications, including
e-commerce, mobile agents and distributed shared objects.
The original signer Alice sends a signature on the message
warrant which consists the rules governing the delegation to
Bob the proxy signer. Bob can now generate a new proxy
private key with the help of Alice and sign on behalf of Al-
ice. In 1998, Oded Goldreich, Birgit Pfitzmann and Ronald
L. Rivest [5] introduced delegation schemes where a user
delegates certain rights to himself. Their motivation was,
even though a user has a long-term permanent key, which is
used to receive some personalized access rights, the user may
wish to delegate these rights to a new temporary possibly
short-term keys which he creates to use on his laptop when
on travel, to avoid having to store his primary secret key
on the vulnerable laptop. They have succeeded without
relying on special-purpose (e.g., tamper-proof) hardware
installed in the laptop and have proposed several schemes.
However, their schemes work for signatures in the Public
Key Infrastructure (PKI) setting. In Self Proxy Signature
(SPS), a user delegates his signing rights to himself, i.e.

the user can generate multiple pairs of temporary public
and private keys. The lifetime of the temporary keys can be
controlled by creating proper message warrants, depending
on the application.

A. Motivation

Self proxy signatures are used in scenarios where the user
wants to create new key pairs from the existing key pair. The
newly generated key pair is called as ”Temporary Key” pair
and the existing key pair from which the Temporary key pair
is generated is called as ”Permanent Key” pair. It is important
to note that while permanent key pair is generated by PKG
and it is done only once per user, the temporary key pair is
generated by the user and can be done any number of times.
We explain three situations, where self delegation is useful
and these situations commonly arise in practice.

To reduce the probability of exposure of the permanent
private key: Nowadays, numerous internet services such as,
internet banking, home trading, on-line payments, electronic
commercial services and other secure online transactions
rely on Public Key Cryptography. Public key cryptography
plays an important role in the authentication of users in
these systems. This causes a potential security threat, namely
”increase in the probability of the permanent private key
being exposed”. For instance, if the permanent private key is
used in an insecure computing environment such as a public
PC or a friend’s PDA, a malicious program can plunder the
private key by searching the memory where the private key
is stored, or by hijacking the password for decrypting the
enciphered private key. Moreover, this gives room to access
any other online services of the user, which rely on this
plundered permanent private key. It is to be noted that this
situation was discussed in [12].

To create weak Temporary Keys means less number
of bits: This situation is common in secure communica-
tion protocols such as SSL/TLS, where the session key
exchange between a server and its client is done using
Public Key Cryptography. When SSL was designed, United
States export regulations limited RSA encryption key lengths
to 512 bits for exportable applications. Unfortunately, a
512-bit permanent RSA key presents an attractive target
for attack. Thus a server who wish to communicate with



both domestic and exportable clients would like to have
two keys one with 1024 bits and another key with 512
bits. This feature is called ephemeral RSA and this allows
communication between an exportable client and domestic
server with permanent strong key. In this scenario, the server
generates a temporary 512 bit key which is signed with its
strong permanent key.

To significantly improve amortized signature generation
and verification cost: Besides the two reasons mentioned
above, we show a significant reduction in the total signing
cost during the period of validity of temporary keys. For
instance, for signing n messages in our scheme we may
use (2 + n) or (3 + n) scalar point multiplications. While
direct deployment would incur a cost of 2n or 3n point
multiplications. More detailed comparisons are done towards
the end of this paper.

Related Work: In 1996, Mambo et al introduced the concept
of a proxy signature scheme [14]. Since then, many proxy
signature schemes have been proposed [9][11]. The first
multi-proxy signature scheme was proposed in 2000 [7].
In a multi-proxy signature scheme, an original signer could
authorize a proxy signing group as his proxy agent. The
proxy signature on a message on behalf of the original
signer can be generated by the group members only if all the
members in the proxy signing group cooperate. A contrary
concept, proxy multi-signature was introduced by Yi et al.
in 2000 [17]. A proxy multi-signature scheme is one in
which a designated proxy signer can generate the signature
on behalf of a group of original signers. Another kind
of proxy signature scheme is multi-proxy multi-signature
scheme, proposed by Hwang in [8] .

The concept of identity based cryptography was intro-
duced by Adi Shamir in his seminal work [16] in the year
1984. The core idea of identity based cryptography is to
use any arbitrary string that uniquely identifies a user as
his public key. Identity based cryptography serves as an
efficient alternative to Public Key Infrastructure (PKI) based
systems, where the certificate management and verification
of the validity of a user public key are too cumbersome.
Although, the concept of self proxy was touched upon by
Boldyreva et al. [2], they are not using any temporary keys
for carrying out delegations. Only the permanent keys were
used for both original and proxy signing and verification.
This is a PKI based system. However, this system is shown
to have weaknesses by Malkin et al. [13] and they proposed
a new scheme based on key insulated signature schemes. To
the best of our knowledge, there is no identity based self
delegated signature scheme available in the literature and
ours is the first attempt in this direction. Kim et al. [10]
have proposed a PKI based self proxy signature scheme.

Our Contribution: Our contribution in this paper is three
fold. First, we give a formal security model for identity based
self proxy signatures. Next, we show that the scheme by Kim

et al. [10] is existentially forgeable and finally, we propose
a generic identity based self proxy signature scheme and a
concrete instantiation of the same. We formally prove the
security of both the generic and concrete schemes in the
newly proposed security model. Both our proofs rely on the
random oracle assumption.

II. PRELIMINARIES

We review the basic requirements and assumptions used
in our paper in this section.

A. Bilinear Pairing
Let G1 be an additive cyclic group generated by P , with

prime order q, and G2 be a multiplicative cyclic group of the
same order q. A bilinear pairing is a map ê : G1×G1 → G2

with the following properties.
• Bilinearity. For all P,Q,R ∈R G1 and a, b ∈R Z∗

q

– ê(P + Q, R) = ê(P,R)ê(Q,R)
– ê(P,Q + R) = ê(P,Q)ê(P,R)
– ê(aP, bQ) = ê(P,Q)ab

• Non-Degeneracy. There exist P,Q ∈ G1 such that
ê(P,Q) $= IG2 , where IG2 is the identity element of
G2.

• Computability. There exists an efficient algorithm to
compute ê(P,Q) for all P,Q ∈ G1.

B. Computational Assumptions
In this section, we review the computational assumptions

related to bilinear maps that are relevant to the protocols we
discuss.

1) Computation Diffie-Hellman Problem (CDHP)::
Given (P, aP, bP ) ∈ G3

1 for unknown a, b ∈ Z∗
q , the CDH

problem in G1 is to compute abP .

Definition. The advantage of any probabilistic polynomial
time algorithm A in solving the CDH problem in G1 is
defined as

AdvCDH
A = Pr

[
A(P, aP, bP ) = abP | a, b ∈ Z∗

q

]

The CDH Assumption is that, for any probabilistic polyno-
mial time algorithm A, the advantage AdvCDH

A is negligibly
small.

C. Notations:
QA: An identity based public key of a user with identity
IDA.
DA: An identity based private key of a user with identity
IDA.
PA: A non-identity based public key of a user with identity
IDA and also Temporary public of the same user.
UA: A non-identity based private key of a user with identity
IDA and also Temporary private of the same user.
Ppub: Master public key used by the PKG of the identity
based system.



σwar: An identity based warrant signature.
σsp: A non-identity based proxy signature. σ: Self proxy
signature which is a combination of 〈σwar,σsp〉.

III. REVIEW AND WEAKNESS OF SELF PROXY
SIGNATURE SCHEME BY KIM ET AL. [10]

We review the scheme due to Kim et al. [10] and propose
the weakness of the scheme in this section. Let (xa, ya) be
the original public and private key of the signer Alice. The
relation between (xa, ya) is ya=gxa .
Self Proxy Key Generation: The signer Alice chooses
k, xt ∈ Z∗

q and computes r = gk mod p and yt = gxt mod
p. Alice computes xp = k +(xa +xt)H(mw) mod q as the
temporary self proxy private key and computes yp = gxp

mod p as the corresponding public key.
Signing: The signer Alice chooses k′ ∈ Z∗

q randomly and
computes r′=gk′

mod p, s′ = k′ + xpH(m) mod q and
sends (m, (r′, s′), r,mw, yt) to the verifier Bob.
Verification: The verifier Bob recovers the self proxy public
key yp as yp = r(yayt)H(mw) mod p and checks whether
gs′ ?= r′yH(m)

p mod p. If the equality holds, the verifier Bob
accepts (r′, s′) as the valid self proxy signature.

A. Weakness of Self Proxy Signature Scheme By Kim et al.
The forger F can produce any number of forged signa-

tures by using a single signature on a message m signed by
the original signer. This is shown below:

Let s′ = k′+xpH(m) mod q be the signature on message
m, where r′ = gk′

mod p, this signature is obtained during
the training phase of the forgery game.

The forger F divides the signature component s′ with
H(m) and multiplies it with H(m∗) and thus obtains s∗ =
k′ H(m∗)

H(m) + xpH(m∗). F computes r∗ = r′
H(m∗)
H(m) mod p.

Now, (m∗, (r∗, s∗), r,mw) is a valid signature on m∗. Hence
a forgery.

IV. GENERIC FRAMEWORK AND SECURITY MODEL FOR
IDENTITY BASED SPS (IBSPS)

In this section, we give the generic framework and
the security model for identity based self proxy signature
scheme. The basic idea behind the construction of an Identity
Based Self Proxy Signature (IBSPS) scheme is to extract an
identity based private key from the PKG and construct a
temporary private key / public key pair using the identity
based permanent private key and the system parameters. It
is to be noted that the temporary key pairs are generated
by user without any interaction from the PKG. The PKG
works once for each user and generates permanent key of
the user. The temporary public key and the warrant details
for the session are signed with the identity based private key
of the user and the message is signed with the corresponding
temporary private key. Thus, the signature on the message

consists of two components now; (a) the signature on the
message with the temporary private key (b) the identity
based signature on the temporary public key and the warrant
details.

A. Generic Framework for IBSPS

An identity based self proxy signature scheme consists of
the following nine algorithms: Setup, Extract, GenTemp-
Key, WarrantSign, WarrantVerify, ProxySign, ProxyVer-
ify, SPSSign and SPSVerify. The algorithms are described
below:
Setup: This is a combination of an identity based system
setup and a non-identity based initialize algorithm. The input
to this algorithm is the security parameter 1κ. The PKG run’s
this algorithm to produce the public parameters params,
which is published globally and the master private key Msk,
kept secret by the PKG. The public parameters include a
master public key Ppub, cryptographic hash functions and
the definition of the groups used in the scheme.
Extract: This algorithm is executed by the PKG. It is
executed once for each user at the time of registration with
the PKG. The PKG takes the master private key Msk and
the identity IDA of user A as input and computes the private
key DA corresponding to the identity IDA.
GenTempKey: The user who wants to generate temporary
private / public key pairs for various sessions executes this
algorithm. The algorithm takes params as input and pro-
duces the temporary (private key, public key) pair (UA, PA).
WarrantSign: This algorithm is executed by each user in
the system to generate the signature on the message warrant
mw, which is publicly verifiable (mw consists of the details
regarding the duration of the delegation and the public key
for the current duration). The algorithm when executed by
user A, takes the user identity IDA, the message warrant
mw, temporary public key PA, the corresponding private
key DA, and params as input and outputs the identity based
signature σwar on the message warrant mw.
WarrantVerify: In order to verify the validity of the mes-
sage warrant mw, a verifier executes this algorithm. The
input to this algorithm are params, the signer identity IDA,
the message warrant mw and the signature σwar on mw by
the signer. This algorithm returns True if σwar is a valid
signature on mw, otherwise returns False.
ProxySign: The input to this algorithm are params, the
temporary proxy private key UA and the actual message to
be signed m. This algorithm is executed by the signer to
generate a signature (σsp) on m using the temporary proxy
private key generated by the GenTempKey algorithm.
ProxyVerify: The input to this algorithm are params, the
signer identity IDA, the temporary public key PA corre-
sponding to user A and the signature σsp on message m.
This algorithm is executed by a verifier who wants to verify



the validity of σsp on m. The output is True if σsp is a
valid signature on m, otherwise outputs False.
SPSSign: The self proxy signature generation algorithm is
executed by the signer with identity IDA. The input to
this algorithm are the identity IDA, the permanent private
/ public key pair (DA, QA), the temporary private / public
key pair (UA, PA), a message warrant mw and the message
m to be signed. It is to be noted that σwar is not executed
each time during the generation of an SPS but it is executed
once for each session and is reused. The signature generation
procedure is given below:
• σwar ← WarrantSign(mw, PA, IDA, DA).
• σsp ← ProxySign(m,PA, IDA, UA)

The signature σ = 〈mw,m, σwar,σsp〉 is the output of this
algorithm.
Note: If the warrant sign was already generated for a session
by executing WarrantSign(mw, PA, IDA, DA) with the
temporary private / public key pair (UA, PA), the signer can
directly call ProxySign(m,PA, IDA, UA) to get σsp.
SPSVerify: In order to verify the validity of an iden-
tity based SPS σ=〈mw,m, σwar,σsp〉, the verifier checks
whether the message warrant mw is valid by checking
WarrantV erify(σwar, IDA,mw) ?= True and whether
the signature on message m is valid by checking
ProxyV erify(σsp, IDA,m, PA) ?= True. If both the
checks are valid this algorithm outputs True else it outputs
False.

B. Security Model for the Unforgeability of IBSPS
Unforgeability is the most general notion of security for

any digital signature scheme. Unforgeability ensures that
the digital signature scheme is secure against a forger who
can forge the signature of a legitimate user. The stronger
notion of unforgeability is existential unforgeability against
adaptively chosen messages and identity (only for identity
based schemes) attacks. We propose the security model for
identity based SPS in this section. The formal definition
for the unforgeability of an IBSPS is defined as a game
(EUF-IBSPS-CMA) between a challenger C and a forger F
described below:
Setup Phase: C runs the Setup algorithm with the security
parameter 1κ and sends the system parameters params to
F .
Training Phase: F performs polynomially bounded number
of queries, as described below in an adaptive manner (i.e.,
each query may depend on the responses to the previous
queries).
Extract query : F produces an identity IDA as input to
this oracle and obtains the identity based private key DA

corresponding to the identity IDA from C.
GetTempKey query: F produces an identity IDA and re-
ceives from C the temporary private, public keys UA and
PA corresponding to IDA.

WarrantSign query: F gives an identity IDA, a message
warrant mw and the temporary public key PA corresponding
to IDA as input. C computes and returns the warrant sign
σwar to F .
ProxySign query: F submits a message m, a signer identity
IDA and the corresponding temporary public key PA as
input and requests the proxy sign on m. C generates the
proxy signature σsp only if PA was not chosen by F and
returns σsp to F .
Existential Forgery: At the end of the Training Phase, F
produces a forgery σ∗ = 〈mw,m, σ∗sp,σ

∗
war〉 for an identity

ID∗ with temporary public key PID∗ . F wins the EUF-
IBSPS-CMA game if the forgery σ∗ submitted by F meets
one of the following constraints:
Case 1: - The warrant signature σ∗war is a valid forgery
and F should not have queried the WarrantSign oracle with
(ID∗,m∗

w, PID∗ , QID∗) as input and has not queried the
permanent private key corresponding to ID∗.
Case 2: - The proxy signature σ∗sp is a valid forgery
and F should not have queried the ProxySign oracle with
(ID∗,m∗, PID∗) as input and has not queried the temporary
private key corresponding to P ∗

ID.

V. GENERIC IDENTITY BASED SPS SCHEME
(Gen IBSPS)

In this section, we propose the generic construction
for identity based SPS scheme (Gen IBSPS) and
prove the unforgeability of Gen IBSPS. We make
use of an identity based signature scheme and a
non-identity based signature scheme as the basic
building blocks for our generic construction. Let
the identity based signature scheme be denoted as
IBS = 〈IBS.Setup, IBS.Extract, IBS.Sig, IBS.V er〉,
and the non-identity based signature be de-
noted as nonIBS = 〈nonIBS.Initialize,
nonIBS.KeyGen, nonIBS.Sig, nonIBS.V er〉. As
security requirements, we require both the schemes, IBS
and nonIBS should be existentially unforgeable under
adaptive chosen message attack. Examples of IBS can
be one of the schemes from [4], [6], [15], [1], [16] and
nonIBS can be Schnorr, EC-DSA or BLS [3] signature.

A. The Generic Scheme

As described in the previous section the generic self proxy
signature scheme consists of the following nine algorithms:
Setup(1κ): The PKG publishes the system parameters
params after executing IBS.Setup(1κ) and
nonIBS.Initialize(1κ) algorithms.
Extract(IDA): The PKG executes DA =
IBS.Extract(IDA) and sends the permanent private
key DA to the user A, through a secure channel and the
permanent public key QA can be computed publicly.



GenTempKey(params, IDA): This algorithm generates
the temporary private / public key pair for a given identity
IDA is obtained as (UA, PA) = nonIBS.KeyGen(IDA).
WarrantSign(mw, PA, IDA, DA): The warrant signature is
generated as σwar=IBS.Sig(mw, PA, IDA, DA)
WarrantVerify(mw, IDA,σwar): Verification of
the warrant signature (σwar) on the message
warrant mw is performed as {True,False}
?= IBS.V er(mw, PA, IDA,σwar)
ProxySign(m, IDA, PA, UA): The proxy signature on
the message m by user with identity IDA and
temporary private key UA is generated as σsp =
nonIBS.Sig(m, IDA, PA, UA)
ProxyVerify(m, IDA, PA,σsp): The verification of the
proxy signature σsp on message m with respect to the
identity IDA and temporary public key PA is performed
as {True,False} ?= nonIBS.V er(m,PA, IDA,σsp)
SPSSign(mw,m, IDA, PA, UA, QA, DA): This algorithm
uses the WarrantSign and ProxySign algorithms to
generate the warrant signature σwar and proxy signature σsp.
The self proxy signature on the message m and message
warrant mw can be described as σ = 〈mw,m, σwar,σsp〉
SPSVerify(mw,m, QA, PA,σ): The output of this algo-
rithm is True if both True← WarrantV erify(σwar) and
True← ProxyV erify(σsp); else output False.
Note: It is to be noted that, the proof of unforgeability of
Gen IBSPS is given in the selective identity model.

B. Proof of Unforgeability of Gen IBSPS

Theorem 1: If there exists a forger F , who is capable
of breaking the EUF-Gen IBSPS-CMA security of the
Gen IBSPS scheme with a non-negligible advantage, then
we can efficiently construct an algorithm C, which is capable
of breaking the EUF-CMA security of the underlying IBS or
nonIBS scheme with the same advantage. Proof: The proof
for unforgeability of the Gen IBSPS scheme is viewed as
an interactive game between algorithms B1, B2, C and F ,
as shown in Fig. 1. Algorithm B1 represents the challenger
for the IBS scheme and B2 represents the challenger for
the nonIBS scheme. B1 and B2 challenges the algorithm
C to forge the IBS and the nonIBS systems respectively.
Let F be a forger, who is capable of breaking the EUF-
Gen IBSPS-CMA security of the Gen IBSPS scheme.
Algorithm C can make use of F to forge either IBS or
nonIBS. We briefly summarize the roles of B1, B2, C and
F below.
• B1 and B2 acts as the challengers for IBS and

nonIBS schemes respectively.
• C acts as forger for both IBS and nonIBS schemes.
• C also acts as the challenger for the forger F .
F is assumed to be capable of breaking the

EUF-Gen IBSPS-CMA security of Gen IBSPS
scheme.

Setup Phase: During this phase the algorithm B2 generates
a set of private / public key pairs 〈Pi, Ui〉, for i = 1 to n and
sends them to the challenger C. C stores the tuple 〈i, Pi, Ui〉
in a list F1. B1 challenges C to generate a forgery of an IBS
signature for the identity ID∗ on any arbitrary message. B2

challenges C to generate a forgery of a nonIBS signature
for the identity ID∗ with temporary public key PID∗ . C
gives ID∗ and PID∗ to F . F should not query the Extract
oracle with ID∗ as input and should not query the temporary
private key UID∗ corresponding to PID∗ .
Training Phase: The following oracle accesses are provided
by B1 to C.
IBS.Extract(IDi): On input an identity IDi, B1 returns the
corresponding identity based private key Di if ID $= ID∗.
B1 maintains the list L1 to store 〈IDi, Di〉.
IBS.Sig(m,Pi, IDi, Qi): With (m,Pi, IDi, Qi) as input,
B1 responds with an identity based signature σwar on
the message m. B1 maintains L2 to store the tuple
〈m,Pi, IDi, Qi,σwar〉.
The following oracle access is provided by B2 to C.
nonIBS.Sig(m, IDi, Pi): On giving (m, IDi, Pi) as input,
B2 responds with a non-identity based sign σsp on mes-
sage m. B2 maintains the list L3 to store the tuple
〈m, IDi, Pi,σsp〉.
F has access to all the following oracles during the EUF-
Gen IBSPS-CMA game, which are controlled by C.
Extract(IDi): In order to respond to this query by F , C
checks if IDi $= ID∗, if so then C queries B1 with IDi as
input, i.e. queries IBS.Extract(IDi) to B1. B1 returns Di to
C. C stores the tuple 〈IDi, Di〉 into the list F2 and returns
Di to F .
GenTempKey(IDi): To respond to this query by F , C fetches
into the list F1 for the tuple of the form 〈i, Pi, Ui〉 and
returns both (Pi, Ui) to F .
WarrantSign(mw, Pi, IDi, Qi): For this query by F , C
queries B2 for the identity based signature on mw with
inputs (mw, Pi, IDi, Qi) as IBS.Sig(mw, Pi, IDi, Qi). The
response of the query, namely the signature σwar is returned
to C and C sends it to F .
ProxySign(m, IDi, Pi): For this query by F , C queries B2 as
nonIBS.Sig(m, IDi, Pi) for the non-identity based signature
on m with (m, IDi, Pi) as input. B2 returns σsp to C which
is send to F as response.
Forgery Phase: At the end of the training phase, F produces
a forgery σ∗ = 〈m∗,m∗

w,σ∗war,σ
∗
sp〉 and gives it to C. C

verifies the forgery and responds as follows:
Case 1: If F has not queried the WarrantSign oracle with
m∗

w, PID∗ , ID∗, Q∗ as input but has query the ProxySign



Figure 1. Relation among (B1, B2), C and F

oracle with m∗, ID∗, PID∗ as input then C submits σ∗war to
B1.
Case 2: If F has queried the WarrantSign oracle with
m∗

w, PID∗ , ID∗, Q∗ as input did not query the ProxySign
oracle with m∗, ID∗, PID∗ as input then C submits σ∗sp to
B2.
Analysis: Due to lack of space, we skip the formal proba-
bility analysis but the following is easy to see. Suppose ε is
the advantage of F in the EUF-Gen IBSPS-CMA game,
which is denoted as Advwins

F = ε.
• If the forgery falls into Case 1, then C is capable of

forging the underlying IBS scheme with almost the
same advantage ε.

• If the forgery falls into Case 2, then C is capable of
forging the underlying nonIBS scheme with almost
the same advantage ε.

VI. A CONCRETE IBSPS SCHEME

In this section, we provide a concrete instantiation of
Gen IBSPS scheme and prove the security of the scheme
in the proposed security model. We have used a variant of
the IBS signature scheme in [15] and the nonIBS scheme
in [3], to construct our concrete IBSPS scheme.

A. The Scheme
The algorithms in the IBSPS scheme are described below:

Setup(1κ):
Let G1 be an additive group and G2 be a multiplicative

group both of same prime order q. The PKG chooses
a generator P ∈R G1, picks three cryptographic hash
functions defined as H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ ×
G1×G1×G1 → G1 and H3 : {0, 1}∗×Z∗

q×G1×G1 → G1

and chooses a bilinear pairing ê : G1×G1 → G2. The PKG
computes Ppub = sP , where,s ∈R Z∗

q is the master private
key.

Extract(IDA): Given a user’s identity IDA as input the
PKG computes QA = H1(IDA) ∈ G1 and DA= sH1(IDA)
and sends DA to the user A.
GenTempKey(params, IDA): The signer generates his
temporary private / public key pair by choosing xA ∈R Z∗

q

and computing PA = xAP . Now, the temporary private /
public key pair of the user is 〈PA, UA = xA〉.
WarrantSign(mw, PA, IDA, DA): The warrant signature
on the warrant mw is generated as follows.
• Compute R = rP , where r ∈R Z∗

q .
• Vwar = DA + rH2(mw, R, QA, PA).
• σwar = 〈Vwar, R, PA〉 is the warrant signature.

Note: Warrant signature is independent of the message and
hence need to be computed only once for the entire validity
period of the warrant.
WarrantVerify(mw, IDA,σwar): Given the identity IDA

of the signer, a message warrant mw and a warrant signature
σwar on mw, this algorithm returns True if the following
check holds; otherwise returns False.

ê(Vwar, P ) ?= ê(R,H2(mw, R, PA, QA))ê(Ppub, QA)

ProxySign(m, IDA, PA, UA): Given a pair of temporary
keys 〈PA, UA〉 the self proxy sign on a message m with
warrant mw by the user with identity IDA, the proxy
signature can be generated as
• Vsp = xAH3(m,PA,α, IDA) where α ∈R Z∗

q (Note
that xA = UA).

• σsp is 〈Vsp,α〉

ProxyVerify(m, IDA, PA,σsp): Given the Self Proxy sig-
nature σsp and the temporary public key PA check whether:

ê(Vsp, P ) ?= ê(PA,H3(m,PA,α, IDA))

If the check holds, return True; otherwise return False.



SPSSign(m,mw, IDA, PA, UA, QA, DA): In order to gen-
erate a self proxy signature σ, the user with identity IDA,
permanent key pair (QA, DA), temporary key pair (PA, UA),
a message warrant mw and a message m to be signed, the
user performs the following:
• σwar ← WarrantSign(mw, PA, IDA, DA).
• σsp ← ProxySign(m,PA, IDA, UA)

Output the self proxy signature σ = 〈σwar,σsp〉.
Note: If the warrant sign σwar on the tuple
(mw, PA, IDA, DA) was already generated this need
not be recomputed for every message, the signer need to
call only the algorithm ProxySign(m,PA, IDA, UA) to
generate σsp.
SPSVerify(m,mw, QA, PA,σ): If the output of the al-
gorithm WarrantV erify(mw, IDA,σwar) = True and
ProxyV erify(m, IDA, PA,σsp) = True then output
True else output False.

B. Security Proof for IBSPS

Theorem 2: If there exists a forger F who is capable of
breaking the EUF-IBSPS-CMA security of the IBSPS scheme
with non-negligible advantage, then we can efficiently con-
struct an algorithm C, which can solve CDHP with almost
the same advantage of F .
Proof: The challenger C is given a random instance of
CDHP, say (P, aP, bP ), C’s aim is to compute abP .
Let us assume that there is a forger F who is capable
of breaking the EUF-IBSPS-CMA security of our iden-
tity based self proxy signature scheme IBSPS. C simu-
lates the system with the following oracles H1, H2, H3,
Extract, GenTempKey, WarrantSign, ProxySign and
SPSSign. The forger F can query these oracles which are
controlled by the challenger C. Each oracle maintains a list
to maintain the consistency of the replies to the queries.
Setup: C sets up the system parameters in the following
way.
• C chooses the groups G1 and G2 and the generator

P ∈ G1 as given in the CDHP instance.
• Sets the master public key Ppub = bP , which is a part

of CDHP instance. It is to be noted that C does not
know b.

• Models all the hash functions as random oracles.
• Selects a bilinear map ê : G1 ×G1 → G2.
• Delivers (ê, G1, G2, P, Ppub) to F as params.

Training Phase: F performs polynomially bounded number
of queries, in an adaptive manner (i.e., each query may
depend on the responses to the previous queries) during this
phase.
H1 Oracle: Let qH1 be the number of queries asked by F .
C selects a random index γ, where 1 ≤ γ ≤ qH1. C doesn’t
reveal γ to F . When F generates the γth query to this
oracle, C decides to fix the corresponding identity (IDγ) as

the target identity for the challenge phase. C maintains a list
L1 to consistently reply the H1 oracle queries. C replies as
follows.
• Searches in list L1 and checks whether a matching tuple

corresponding to IDi exists. If it exists, C returns the
value xiP .

• Otherwise, C performs the following:
– If IDi = IDγ then, sets H1(IDi) = aP and adds

tuple 〈IDγ , aP,⊥,⊥〉 to L1.
– If IDi $= IDγ then, chooses xi ∈R Z∗

q , sets
H1(IDi) = xiP , computes Di = xiPpub and adds
the tuple 〈IDi, xiP, xi, Di〉 to the list L1.

H2 Oracle:(mw, R, Pi, Qi). Let L2 be the list associated
with this oracle. If the oracle was not queried previously
with (mw, R, Pi, Qi) as input, C chooses r ∈R Z∗

q , computes
Hi

2 = rP , adds the tuple 〈mw, r, R, Pi, Qi,Hi
2〉 to the list L2

and returns Hi
2 to F . If the tuple 〈mw, r, R, Pi, Qi〉 already

exists in L2 then returns the corresponding Hi
2 to F .

H3 Oracle:(m, IDi,α, Pi). Let L3 be the list associated
with this oracle. If (m, IDi,α, Pi) was queried previously, C
returns Hi

3 retrieved from the tuple 〈m, IDi,α,⊥,Hi
3〉 which

is already stored in the list L3. If the tuple does not exist,
C performs the following:
• If IDi $= IDγ then, chooses Hi

3 ∈R G1, adds the tuple
〈m, IDi,α, Pi,⊥,Hi

3〉 to the list L3 and returns Hi
3 to

F .
• If IDi = IDγ then, chooses z ∈R Z∗

q , computes
Hi

3=zbP adds the tuple 〈m, IDi,α, Pi, z,Hi
3〉 to the list

L3 and returns Hi
3 to F .

Extract Oracle(IDi): For any given identity IDi $= IDγ , C
searches for the private key Di in list L1, corresponding to
IDi and returns it to F . If IDi = IDγ , F aborts.
WarrantSign Oracle(mw, IDi, Pi): F queries the warrant
signature on a warrant mw for a signer with identity IDi.
• If IDi $= IDγ , C responds as per the WarrantSign

algorithm by creating new temporary keys Ui = ki,
Pi = kiP , where ki ∈R Z∗

q . C adds the tuple
〈IDi, Pi, ki〉 to the list L4.

• If IDi = IDγ , C responds as follows.
– Chooses k, y ∈R Z∗

q .
– Computes Vwar = ykPpub and Pi = kaP .
– Computes R = kPpub and Hi

2 = −k−1Qi +yP . In
this case C does not query the H2 oracle, instead it
sets the value for the hash computation and stores
it in the list.

– Returns the signature σwar = (mw, Vwar, Pi) to
F .

The correctness of σwar follows from the
validity check in the WarrantVerify algorithm :
ê(Vwar, P ) ?= ê(R,H2(w,R, PA, Qi))ê(Ppub, Qi). Here,
the L.H.S ê(Vwar, P ) = ê(ykbP, P )



R.H.S= ê(H,R)ê(Qi, Ppub)
= ê(−k−1Qi + yP, kbP )ê(aP, bP )
= ê(k(−k−1Qi + yP ), bP )ê(aP, bP )
= ê(−aP + ykP, bP )ê(aP, bP )
= ê(ykP, bP )=ê(ykbP, P )=L.H.S

Thus, it is clear that σwar generated in this way is a valid
signature by user with identity IDi on warrant mw.
GenTempKey Oracle(IDi): F produces an identity IDi to C
and queries the corresponding the temporary private, public
keys Ui and Pi. C responds to F as follows:
• If IDi $= IDγ then, C chooses ki ∈R Z∗

q , set Pi = kiP ,
adds the tuple 〈IDi, Pi, ki〉 to list L4 and returns Pi.

• If IDi = IDγ then, C chooses ki ∈R Z∗
q , set Pi =

kiaP , adds 〈IDi, Pi, ki〉 to list L4 and returns Pi.
ProxySign Oracle(m, IDi, Pi): F queries this oracle with
(m, IDi, Pi) where IDi is signer’s identity, Pi is the signer’s
temporary public key and m is the message to be signed,
C searches L4 and retrieves the tuple 〈IDi, Ui, Pi〉 and
responds as follows:
• If the signer’s identity IDi $= IDγ , the challenger C

proceeds as per the ProxySign algorithm.
• If IDi = IDγ , C performs the following:

– Chooses z,α ∈R Z∗
q .

– Computes Vsp = zPi

– Computes Hi
3 = zP and stores the tuple

〈m, IDi,α, Pi,⊥,Hi
3〉 in list L3. (Note that C did

not query H3 oracle, instead it sets the value for
the hash computation)

– Returns σsp = (m,Vsp, )
Forgery Phase: At the end of the training phase, F produces
a forgery σ∗ = 〈m∗,m∗

w,σ∗war,σ
∗
sp〉 on identity ID∗ and

gives σ∗ and ID∗ to C. Here m∗
w is the message warrant,

m∗ is the message, ID∗ is the identity of the signer,
σ∗war = 〈V ∗

war, R
∗, PID∗〉 is the warrant signature and

σ∗sp = 〈V ∗
sp,α

∗〉 is the proxy signature. C verifies the forgery
and obtains the solution for the CDHP instance in either one
of the following cases:
Case 1: Assume that F has not queried the WarrantSign
oracle with (m∗

w, PID∗ , ID∗, Q∗) as input but queried the
ProxySign oracle with (m∗, ID∗, PID∗) as input. C makes
use of σ∗war to solve the CDHP instance as follows:
• σ∗war = 〈V ∗

war, R
∗, PID∗〉 is the warrant signature.

• C retrieves the tuple 〈m, r,R, Pi, Qi,Hi
2〉

from the list L2 and checks whether
ê(V ∗

war, P ) ?= ê(aP, bP )ê(Hi
2, P ).

• If the above check holds then C computes V ∗
war−rP =

abP .
The above computation is correct because C has set Ppub =
bP and the public key of IDγ as aP . Moreover, C has set
Hi

2 = rP corresponding to the message, which is retrievable
from the list L2. Thus, V ∗

war = abP + rP and computing
V ∗

war − rP reveals abP .

Case 2: Assume that F has queried the WarrantSign oracle
with (m∗

w, PID∗ , ID∗, Q∗) as input but did not query the
ProxySign oracle with (m∗, ID∗, PID∗) as input. C makes
use of σ∗sp to solve the CDHP instance as follows:
• σ∗sp = 〈V ∗

sp,α
∗〉 is the proxy signature.

• C knows that V ∗
sp = kizabP . This is because the

GenTempKey oracle has set Pi = kiaP and the H3

oracle has set Hi
3 = zbP for the corresponding α∗,

when IDi = IDγ .
• C now retrieves the tuple 〈IDi, Pi, ki〉 from the list L4

and the tuple 〈m, IDi,α, Pi, z,Hi
3〉 from the list L3.

• Checks whether α = α∗ and ê(V ∗
sp, P ) ?= ê(Pi,Hi

3).
• If the above check holds then, C computes

z−1k−1
i V ∗

sp = abP .
Analysis: Let E1 be the event in which C aborts when F
queries the private key corresponding to ID∗ and E2 be
the event in which IDγ is not chosen as the target identity
by F for generating the forgery. Suppose F has made qH1

number of H1 Oracle queries and qE number of Extract
Oracle queries, then:

Pr[E1]=
qE

qH1

and Pr[E2]=
1

qH1 − qE
.

Therefore, Pr[Fwins
EUF−IBSPS−CMA]=[¬E1 ∧ E2]=[

1− qE

qH1

]
.

[
1

qH1 − qE

]
=

1
qH1

.

Thus the challenger C solves the CDHP instance with
almost the same probability as the forger F wins the EUF-
IBSPS-CMA game. !

VII. CONCLUSION

We have introduced the notion of identity based self proxy
signature scheme, wherein a signer creates temporary private
key / public key pair which is controlled by a corresponding
message warrant. The message warrant and the temporary
public key are signed with the permanent identity based
private key of the signer and the signature on the message is
signed with the temporary private key. The temporary private
key is revoked in appropriate time intervals. We have given
a generic construction for identity based SPS, proposed
the formal security model, given a concrete instantiation
and proved it in the random oracle model. Several specific
schemes can be constructed by choosing a specific identity
based scheme for warrant signing and a non-identity based
signature scheme for message signing.

For example, in section VI-A, we have used a variant
of the IBS signature scheme in [15] for warrant signing
and the nonIBS scheme in [3] for message signing. Other
possible combinations are, we may use CC [4], FH [6], SOK
[15] for warrant signing and Schnorr, EC-DSA, BLS [3]
signatures for message signing. The table in Fig. 4. sum-
marizes the complexity figures for each of this combination.
We observe that, if self proxy signatures are generated in a



Figure 2. Complexity Figure for IBS Schemes per Signature and per Session

Figure 3. Complexity Figure for nonIBS Schemes per Signature

Figure 4. Complexity Figure of IBSPS per Signature and per Session
Legend - [BP - Bilinear Pairing, PM - Scalar Point Multiplication]



session the total operation count turns out to be n + c for
some constant c for our schemes. For example, if signatures
on warrant is generated using CC [4] and the proxy signature
is generated by Schnorr scheme, then the total number of
scalar point multiplication is 2+n for signing and 1+n for
verifying (See row 1 of Fig. 4.). However, direct application
of CC [4] scheme results in 2n scalar point multiplication
during signing and n during verification. Thus our method
has significantly reduced the computational complexity from
2n to n + 2 during signing. The complexity figure for other
combination of schemes in our generic scheme is given in
Fig. 4.

REFERENCES

[1] Paulo S. L. M. Barreto, Benoı̂t Libert, Noel McCullagh,
and Jean-Jacques Quisquater. Efficient and provably-secure
identity-based signatures and signcryption from bilinear
maps. In Advances in cryptology ASIACRYPT05, volume
3788 of Lecture Notes in Computer Science, pages 515–532.
Springer, 2005.

[2] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warin-
schi. Secure proxy signature schemes for delegation of
signing rights. Cryptology ePrint Archive, Report 2003/096,
2003. eprint.iacr.org.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures
from the weil pairing. In Advances in Cryptology - ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, pages 514–532. Springer, 2001.

[4] Jae Choon Cha and Jung Hee Cheon. An identity-based
signature from gap diffie-hellman groups. In Public Key
Cryptography - PKC 2003, volume 2567 of Lecture Notes
in Computer Science, pages 18–30. Springer, 2003.

[5] Oded Goldreich, Birgit Pfitzmann, and Ronald L. Rivest. Self-
delegation with controlled propagation - or - what if you lose
your laptop. In Advances in Cryptology - CRYPTO 1998,
volume 1462 of Lecture Notes in Computer Science, pages
153–168. Springer, 1998.

[6] Florian Hess. Efficient identity based signature schemes based
on pairings. In Selected Areas in Cryptography, SAC - 2002,
volume 2595 of Lecture Notes in Computer Science, pages
310–324. Springer, 2003.

[7] SHIN-JIA Hwang and CHIU-CHIN Chen. New multi-
proxy multi-signature schemes. Applied mathematics and
computation, Elsevier, New York, vol. 147(no. 1):57–67, 2004.

[8] SHIN-JIA Hwang and C. Shi. A simple multi-proxy signature
scheme. In Proceedings of the 10th National Conference on
Information Security, pages 134–138, 2000.

[9] Seungjoo Kim, Sangjoon Park, and Dongho Won. Proxy
signatures, revisited. In Information and Communication
Security (ICICS - 1997), volume 1334 of Lecture Notes in
Computer Science, pages 223–232. Springer, 1997.

[10] Young-Seol Kim and Jik Hyun Chang. Self proxy signature
scheme. IJCSNS International Journal of Computer Science
and Network Security, vol. 7(no. 2):335–338, 2007.

[11] Byoungcheon Lee, Heesun Kim, and Kwangjo Kim. Strong
proxy signature and its applications. In The 2001 Symposium
on Cryptography and Information Security - SCIS 2001, 2001.

[12] Younho Lee, Heeyoul Kim, Yongsu Park, and Hyunsoo Yoon.
A new proxy signature scheme providing self-delegation. In
Information Security and Cryptology - ICISC 2006, volume
4296 of Lecture Notes in Computer Science, pages 328–342.
Springer, 2006.

[13] Tal Malkin, Satoshi Obana, and Moti Yung. The hierarchy
of key evolving signatures and a characterization of proxy
signatures. In Advances in Cryptology - EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages
306–322. Springer, 2004.

[14] Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy
signatures for delegating signing operation. In ACM Confer-
ence on Computer and Communications Security ACMCCS-
96, pages 48–57, 1996.

[15] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosysytems
based on pairing. In In Symposium on Cryptography and
Information Security - SCIS 2000, 2000.

[16] Adi Shamir. Identity-based cryptosystems and signature
schemes. In CRYPTO - 1984, pages 47–53. Springer, 1984.

[17] Lijang Yi, Guoqiang Bai, and Guozhen Xiao. Proxy multi-
signature scheme: A new type of proxy signature scheme.
Electronic letters, vol. 36(Issue. 6):527–528, 2000.


