
Finding discrete logarithms with a set orbit

distinguisher

Robert P. Gallant
Memorial University (SWGC)

rpgallant@swgc.mun.ca

June 28, 2010

Abstract

We consider finding discrete logarithms in a group G when the help of
an algorithm D that distinguishes certain subsets of G from each other is
available. For a group G of prime order p, if algorithm D is polynomial-
time with complexity c(log(p)), we can find discrete logarithms faster than
square-root algorithms. We consider two variations on this idea and give
algorithms solving the discrete logarithm problem in G with complex-

ity O(p
1
3 log(p)3 + p

1
3 c(log(p)) and O(p

1
4 log(p)3 + p

1
4 c(log(p)) in the best

cases. When multiple distinguishers are available logarithms can be found
in polynomial time. We discuss natural classes of algorithms D that dis-
tinguish the required subsets, and prove that for some of these classes no
algorithm for distinguishing can be efficient. The subsets distinguished
are also relevant in the study of error correcting codes, and we give an
application of our work to bounds for error-correcting codes.

AMS classification: 11T71, 94A60,11Y16
Keywords: Discrete logarithm problem, complexity, sparse polynomial, quadratic

residue codes.
This research was supported by NSERC grant 327473-06.

1 Introduction

Let G be a group with generator G of prime order p. Since G generates G, for
any element W ∈ G there is a unique integer w ∈ [0, p− 1] such that W = Gw.
The integer w is said to be the discrete logarithm of W to the base G. An
algorithm computing the discrete logarithm of W to the base G, for a randomly
chosen element W ∈ G, is said to solve the discrete logarithm problem (DLP)
in G. The DLP is fundamental in cryptography, see [12, 16] for example. In
cryptographic protocols based on the DLP one uses a group where it is assumed
that solving the DLP is computationally difficult. For such protocols the group
is usually a prime-order multiplicative subgroup of a finite field or a prime order

1

subgroup of an elliptic curve group, and a standard assumption in these groups
is that algorithms solving the discrete logarithm problem require at least Θ(

√
p)

bit operations.1

In Section 2 we outline algorithms for computing discrete logarithms. The
theme in each case is that given a polynomial-time algorithm D that can dis-
tinguish the orbits of a prime-order group G (under exponentiation) from each
other, we can find discrete logarithms in less than Θ(

√
p) operations.

It is easy enough to construct algorithms that distinguish the required orbits.
What is not clear is how small the complexity of such algorithms may be. A
lower bound on the complexity of distinguishing these orbits could be obtained
from assuming a lower bound on the complexity of solving the the discrete
logarithm problem, and using the algorithms of this paper as a reduction. Such
an approach is taken in [6], for example. Similarly the algorithms in this paper
imply that an assumed lower bound of Θ(

√
p) for the complexity of the discrete

logarithm problem implies a complexity of at least Θ(
√
p) for any such algorithm

D. We discuss a polynomial reduction also. In Section 3, our main focus is
to determine lower bounds on the complexity of such an algorithm D, under
assumptions about the type of algorithm, instead of assumptions about the
difficulty of the DLP. There we discuss natural approaches to constructing such
algorithms, such as evaluating indicator polynomials. We give lower bounds on
the sparsity of the relevant polynomials.

The orbits we consider, and polynomials zero on these orbits, are connected
with error correcting codes. In [4] a generalization of quadratic residue codes is
considered, and a bound on the minimal distance of such codes is given. There
the author states “Ideally, we would like to see this qth-root bound hold for all
codewords ...”. In Section 3.3 we show how our bound from Section 3.2 can be
interpreted as such a qth-root bound.

Many works study the connections between problems and assumptions used
in cryptography, such as relating the complexity of the Diffie-Hellman Problem
to that of the DLP (See [9, 11] for example.) Works such as [7, 10] consider
polynomials solving cryptographic problems and bound their degree or sparsity,
as do the results of this paper.

The One-More Diffie-Hellman Problem [1] (see [11] also) and the Strong
Diffie-Hellman Problem [2], are variants of the standard Diffie-Hellman Problem
where certain additional information is also available, and in the same sense we
are considering the discrete logarithm problem when additional information (the
distinguisher algorithm) is available.

The algorithms in [6, 5] improve square-root algorithms for finding discrete
logarithms when additional information such as a ‘static Diffie-Hellman’ oracle
is available. In the mindset of this paper, those algorithms are given a discrete
logarithm challenge W and use the additional information to first compute a
power of W , where the power in the same orbit (under exponentiation by a
particular element α ∈ F∗p) as the group generator. Thus these papers can be

1Even for subgroups of finite fields, where subexponential-time index calculus techniques
are available, the sizes of the field and subgroup are often chosen so that this assumption is
reasonable.

2

viewed as special case of what we consider here, and so the distinguishers we
consider here are fundamentally related to the discrete logarithm problem. An
important distinction between those works and ours is that such distinguishers
help find logarithms of arbitrary elements in the group, whereas with a static
Diffie-Hellman oracle, the oracle ‘knows’ just one specific logarithm and is not
useful for finding other logarithms.

2 Finding Discrete Logarithms using an Orbit
Distinguisher

For concreteness, we assume the group G in which we are finding discrete log-
arithms is a multiplicative subgroup of a finite field, though the algorithms of
this section apply to any group. In the case of elliptic curve groups pairings can
be used to map the problem of distinguishing orbits to the case we consider.

We begin by stating the standard assumptions that will be used in the paper.

Assumptions 1. Assume G is a multiplicative subgroup of the finite field Fq,
with generator G of prime order p. Further assume p = AB + 1, for integers
A,B > 2, with gcd(A,B) = 1. Assume w ∈ Fp is primitive, and that α = wB

and β = wA.

Element α ∈ F∗p has multiplicative order ordp(α) = A, and similarly ordp(β) =
B. Because gcd(A,B) = 1, the elements α and β generate F∗p, so any ele-
ment of F∗p can be written as αiβj for appropriate integers i, j. Since G has
order p, exponentiation of elements in G by elements of Fp is well-defined.
Thus, G consists of the identity element ‘1’ along with the elements in the set
{Gαiβj |0 6 i < A, 0 6 j < B}.

Consider the action on G of the function taking x → xβ . The image of
element Gα

iβj

is Gα
iβj+1

, and as βB = 1, we see for each i, 0 6 i < A, the
set Oi = {Gαiβj |0 6 j < B} is an orbit under the action of this function.
The orbits partition G; there are A orbits of size B, and one orbit of size 1
(the orbit containing the identity element ‘1’ in G). Raising element Gα

iβj

in
orbit Oi to a power αxβy (an element of F∗p) will result in an element in orbit
Oi+x mod A, which will be a different orbit if x is nonzero modulo A. Later we
use the following consequence of this.

Lemma 2. If λ ∈ F∗p has A | ordp(λ), and R in G has order p, then no two of
the elements R,Rλ, Rλ

2
, . . . , Rλ

A−1
are in the same orbit Oi, and each orbit of

size B contains exactly one of these elements.

Proof. Suppose λ = αiβj and R = Gα
aβb

. If Rλ
u

and Rλ
v

are in the same
orbit, then αaαiu = αaαiv, so that i(u−v) = 0 mod A. As ordp(λ) is a multiple
of A, we have gcd(i, A) = 1, and thus u = v mod A.

The orbits Oi do not depend on the particular element of order B we use for
exponentiation, since any element of order B is a power of any other element of

3

order B in F∗p. For the rest of this paper, by ‘B-orbit of G’ we mean an orbit of
G of size B under the action of exponentiation by an element β in F∗p of order B
as described above. We will sometimes say ‘orbit’ when the value B and group
G is clear.

We now consider two different ways that an algorithm might distinguish
the orbits of G from each other, and in each case exploit this to find discrete
logarithms in G.

2.1 Type-1 Distinguisher: indicator for a single orbit

Suppose for a fixed orbit S of G there exists an algorithm D such that on input
element X ∈ G, the algorithm D

1. outputs 1 if X ∈ S, and

2. outputs 0 if X /∈ S.

We will call such an algorithm a type-1 distinguisher for G. It is simply an
indicator function for the orbit S.

Observe that if one is given such an algorithm D that determines whether
an input X in the group is in one particular orbit of S, then, fixing an exponent
e at random, and forming the algorithm that on input X returns D(Xe), one
obtains an algorithm that distinguishes a random orbit of G.

Given a type-1 distinguisher D for G, we will want to know ‘which’ orbit it
distinguishes, in that we we want to know, for a given generator G of G, the
unique integer a in [0..A− 1] such that D(Gα

a

) = 1. It is possible to find which
orbit is distinguished by checking each D(Gα

i

), for i = 0 . . . A− 1. In the worst
case this will take A calls to the distinguisher.

We will assume function c is an upper bound on the time-complexity of D,
meaning that when D is given an input of length l then D requires at most
c(l) operations to complete. In particular, when G has order p we assume that
evaluating D at any element X ∈ G requires at most c(log(p)) bit operations.
We will say D is a polynomial-time algorithm if there exists a polynomial h such
that c(l) 6 h(l) for all allowable input lengths l.2

The following algorithm takes as input W ∈ G, and outputs the integer
w ∈ [0, p − 1] such that Gw = W . The loops in steps 2 and 3 serve to place a
power G′ of G and a power W ′ of W in the orbit S distinguished by D, and
then in step 4 a Baby-Step-Giant-Step search is applied inside S to find the
logarithm of W ′ to the base G′.

Algorithm 1, with inputs (W,G, p, α,A, β,B) and which may evaluate D:

1. If W = 1 then the algorithm outputs w = 0 and exits.
2To use the notion of polynomial-time, we assume algorithm D distinguishes an orbit in

a group of size p for infinitely many primes p. If one has such a distinguisher for only a
single group, the algorithm here may still be of interest provided the computational cost of
the distinguisher is less than the cost of p1/6 exponentiations in the group.

4

2. For each u ∈ [0, 1, . . . , A− 1]:

• If D(Gα
u

) = 1 then goto 3

3. For each v ∈ [0, 1, . . . , A− 1]:

• If D(Wαv

) = 1 then goto 4

4. Set J = d
√
Be. Set G′ = Gα

u

, W ′ = Wαv

. Find an element from the sets

{(G′β
iJ

, i)|i = 0 . . . J − 1}

and
{(W ′β

−i

, i)|i = 0 . . . J − 1}

with first coordinates equal (as group elements). The second coordinates
provide integers m,n such that G′β

mJ

= W ′β
−n

.

5. Thus Gα
uβmJ

= Wαvβ−n

, which gives the logarithm of W to the base G,
namely αuβmJ

αvβ−n (mod p), which is output by the algorithm.

The computations required by this algorithm are at most: 2A exponenti-
ations of elements of G to the power α, 2J exponentiations of elements of G
to the power β, 2A evaluations of D, 2A+1 comparisons, the cost of finding
elements from two sets each of size at most J with a common first coordinate
(which can be done using merge sort with at most O(J log(J)) comparisons of
group elements), and a constant number (independent of p) of multiplications in
F∗p. Assuming each exponentiation can be done in at most O(log(p)3) bit opera-
tions, and recalling that J = d

√
Be, we find this algorithm thus has complexity

O(A log(p)3 +
√
B log(p)3 +Ac(log(p))).

If both A and
√
B are both approximately p1/3, which can happen if p−1 fac-

tors appropriately, then the algorithm complexity isO(p1/3 log(p)3+p1/3c(log(p)),
which, if D is a polynomial-time algorithm, is asymptotically less than p1/2.

If c is an exponential function in log(p), it is still possible for this algorithm
to be asymptotically smaller than p1/2, for example, A ≈ p1/3, B ≈ p2/3, and
c(log(p)) ≈ p1/7. Thus there may be distinguisher algorithms D with non-
polynomial complexity for which this algorithm finds logarithms faster than
square-root algorithms.

Clearly the use of precomputed powers of G and W can improve the loga-
rithmic factors in the algorithm. See Appendix A for a technique for dealing
with the large storage requirement.

Is it possible to have a polynomial-time algorithm D with the required prop-
erties? In Section 3 we discuss these issues further, but the “devil’s advocate”
might argue the affirmative as follows. For a coset of a subgroup of order p
in F∗q , there is a polynomial of the form xp − C that is zero on the coset and
nonzero at other elements of F∗q . Thus one can efficiently distinguish one coset
from the others. Arguably, the special property of the coset that allows for such
an easily-evaluated polynomial to test for inclusion in the coset is the closure of

5

the subgroup. But the orbits of x → xβ on G have a similar closure property
(closure under exponentiation by the power β) so perhaps this feature can be
exploited to efficiently distinguish these orbits.

With the exception of the distinguisher D, the algorithm above is generic, in
the sense of [15]. One can implement a distinguisher D that is also generic, and
(unsurprisingly) the natural way gives a distinguisher with complexity O(

√
B),

and so we do not contradict the lower bound in [15].3 In Section 3 we discuss
the possibility of other, efficient, distinguishers; for example, perhaps a short
straight-line program for the indicator polynomial of orbit S exists. However
such a distinguisher would certainly use field addition as well as field multipli-
cation, and so would require operations not available through a generic-group
oracle, and so again we do not contradict [15].

2.2 Type-2 Distinguisher: identifies the the containing or-
bit

In this variation, we consider a more powerful, but still somewhat natural, way
that the orbits might be distinguished. Here we consider distinguishers that can
tell us ‘which’ orbit of size B contains a given element X ∈ G.

Suppose there exists an algorithm D, taking as input an element of G, and
giving as output a bitstring such that

1. the outputs D(u) and D(v) are the same if u and v are in the same orbit,
and

2. the outputs D(u) and D(v) are different if u and v are in different orbits.

We will call such an algorithm a type-2 distinguisher for G.
As before we suppose evaluating algorithmD costs at most c(log(p)). Whereas

in Section 2.1 the algorithm D could distinguish one of the orbits from the oth-
ers, here we assume D can distinguish any two orbits from each other, and in
fact ‘label’ (with the bitstring output) the orbit in which an element lies, which
is requiring considerably more of algorithm D.

The following algorithm takes as input W ∈ G, and outputs the integer
w ∈ [0, p − 1] such that Gw = W . It is similar to the previous algorithm, but
leverages the fact that D can now label the orbit in which an element lies to
perform an initial square-root search to find an orbit containing a power G′

of G and a power W ′ of W (instead of the linear search used in the previous
algorithm.)

Algorithm 2, with inputs (W,G, p, α,A, β,B) and which may evaluate D:

1. If W = 1 then the algorithm outputs w = 0 and exits.
3We may interpret the lower bound in [15] as a proof that in the generic group model no

distinguisher can be polynomial-time.

6

2. Set K = d
√
Ae. Find an element from the sets

{(D(Gα
iK

), i)|i = 0 . . .K − 1}

and
{(D(Wα−i

), i)|i = 0 . . .K − 1}
with first coordinates equal. The second coordinates provide integers m,n
such that D(Gα

mK

) = D(Wα−n

), and therefore Gα
mK

and Wα−n

are in
the same orbit.

3. Set J = d
√
Be. Set G′ = Gα

mK

, W ′ = Wα−n

. Find an element from the
sets

{(G′β
iJ

, i)|i = 0 . . . J − 1}
and

{(W ′β
−i

, i)|i = 0 . . . J − 1}
with first coordinates equal (as group elements). The second coordinates
provide integers u, v such that G′β

uJ

= W ′β
−v

.

4. Thus Gα
mKβuJ

= Wα−nβ−v

, which gives the logarithm of W to the base
G, namely αmKβuJ

α−nβ−v (mod p), which is output by the algorithm.

The computations required by Algorithm 2 are at most: 2K exponentiations
of group elements to the power α, 2J exponentiations of group elements to the
power β, 2K evaluations of D, the cost of finding the set elements with com-
mon first coordinates which is O(K log(K) + J log(J)), and a constant num-
ber (independent of p) of multiplications in F∗p. As before, assuming the ex-
ponentiations cost O(log(p)3) we find the complexity of Algorithm 2 is thus
O(
√
A log(p)3 +

√
B log(p)3 +

√
Ac(log(p))).

IfA andB are both about p1/2, the complexity of Algorithm 2 isO(p1/4 log(p)3+
p1/4c(log(p)). If D is a polynomial-time algorithm, then Algorithm 2 has com-
plexity smaller than p1/2, though as before it is possible for this to occur
with c an exponential function also. (For example, A ≈ p1/2, B ≈ p1/2, and
c(log(p)) = p1/5.)

2.3 Multiple distinguishers give a polynomial reduction to
DLP

In the previous sections, we considered having access to only one distinguisher
for an orbit under a single given exponent β. In this section, we consider the
case that p− 1 is smooth, and for several distinct values of B dividing p− 1, we
have a type-1 distinguisher for an orbit of length B in G. In this case we can
find discrete logarithms in G in a polynomial number of steps.

Lemma 3. Suppose p is prime with p − 1 = AB, and that w is primitive in
Fp, and α = wB, β = wA, and that G generates a group G of order p in Fq.
Suppose X = Gw

x

, and that Xαd

and Gα
c

are in the same length-B orbit of G
under exponentiation to power β. Then x = B(c− d) mod A.

7

Proof. Since (Gw
x

)α
d

and Gα
c

are in the same length-B orbit, there is an integer
i such that Gw

xαd

= (Gα
c

)β
i

and so wxαd = αcβi (in Fp), and so wx = αc−dβi,
and thus wx = wB(c−d)+Ai and so, as w has order p − 1 = AB, we have
x = B(c− d) +Ai mod AB and thus x = B(c− d) mod A.

Theorem 4. Suppose G ∈ Fq generates a group G of prime order p, and that w
is primitive in Fp, and that p−1 = A1A2A3...Ak, with the Ai pairwise relatively
prime, and for each Bi = (p − 1)/Ai we have a Bi-orbit (type-1) distinguisher
DBi . Then given an arbitrary element X in G, X 6= 1, there is an algorithm
to find an integer x satisfying X = Gw

x

requiring at most 2Ai calls to each
distinguisher DBi

, and a number of bit operations and group multiplications
that are at most a polynomial in log(p).

Proof. Consider the following algorithm which takes as input (G, p,w,A1, A2, . . . , Ak, X)
and which may evaluate the distinguishers DB1 , DB2 , . . . , DBk

:

1. for i = 1, 2 . . . , k do

(a) Set αi = wBi , βi = wAi .

(b) Determine ci such that DBi
(Gα

ci) = 1

(c) Determine di such that DBi
(Xαdi) = 1. Observe that since Gα

ci and
Xαdi are in the same orbit, the previous lemma gives x = Bi(ci −
di) mod Ai.

2. Use the Chinese Remainder Theorem to explicitly find the unique positive
integer x ∈ [0, p− 1] such that x = Bi(ci − di) mod Ai for i ∈ 1, . . . , k.

3. Output this x.

The complexity claims are easily verified.

Clearly an algorithm that can find discrete logarithms in G can be used to
efficiently construct a distinguisher DBi

. Thus this theorem can be viewed as a
polynomial-time reduction between the problem of distinguishing the Bi-orbits
and finding discrete logarithms in G.

2.4 A connection to a conjecture of Boneh and Lipton

In the previous section we considered having access to multiple distinguishers
DBi . In this section we discuss whether having access to a single distinguisher
can give a polynomial time algorithm for finding discrete logarithms.

A type-1 distinguisher D identifies when an element X ∈ Fq is in a particular
B-orbit, say the orbit consisting of elements Gα

aβj

, for j = 0 . . . B − 1. As
noted earlier to determine the value of a we can evaluate the distinguisher at
A elements of the form Gα

i

. When X is in the distinguished orbit, the element
x ∈ Fp satisfying X = Gx can be written as x = αaβj for some j, and so as β

8

has order B this implies the value x is a root of tB − αaB = 0; namely when
t = x this equation is satisfied.

It may be helpful to interpret the previous paragraph as follows: D(X) = 1
when the discrete logarithm (to the base G) of X is in a particular coset of
the order B subgroup of F∗p, namely the same coset of the subgroup 〈β〉 as the
element αa.

We continue by focusing on a special case. Suppose B = (p−1)/2 and D is a
type-1 distinguisher for the orbit consisting of elements Gα

0βj

, j = 0 . . . , B− 1,
and that for an element X ∈ 〈G〉, we have D(X) = 1. This tells us that the
unique x ∈ Fp satisfying X = Gx has the property that it can be written as
x = α0βj for some j; or in other words that x = βj for some j, which implies
that xB−1 = 0 since β has order B. In this case this means (since B = (p−1)/2)
that the discrete logarithm x is a quadratic residue in Fp. So this distinguisher
determines whether the discrete logarithm (to the base G) of its input X is a
quadratic residue in Fp.

Similarly, suppose also that the product XG 6= 1 and D(X ·G) = 0; then we
know XG = Gx+1 must lie in the orbit Gα

1βj

(since in this case there are only
two orbits of length B) and so (x+1)B−αB = 0. In this case α has order A = 2,
and gcd(A,B) = 1 so B is odd and so the equation is simply (x+ 1)B + 1 = 0.
In other words x+ 1 is a quadratic non-residue in Fp.

We could continue in this way (determining the orbit containingX2G,X3G, . . .)
to find several polynomials (of degree (p − 1)/2, but that have very short
straight-line programs) which all have x as a root. If it were possible to easily
find this common root (by taking gcd’s, for example) we would have the desired
logarithm x.

But no method for efficiently finding the common root is known in this
scenario. A similar situation is discussed in [3], where the authors define the
signature of x ∈ Fp as the vector

sig(x) =
((

x

p

)
,

(
x+ 1
p

)
, . . . ,

(
x+ k

p

))
where k = d2 log2 pe, and conjecture that for sufficiently large p, any two distinct
x, y have sig(x) 6= sig(y). They also state that there is no known polynomial
time algorithm for finding x given sig(x).

In summary, in Section 2 we considered how algorithms capable of distin-
guishing orbits of group G under exponentiation can help solve the discrete
logarithm problem in G. We now turn our attention to direct consideration of
how difficult it might be to find such distinguishers.

3 Distinguishing Orbits Efficiently

The algorithms in the previous section required an algorithm D that distin-
guished the orbits of G under the action of exponentiation by a fixed integer.
In this section we discuss some natural ways one might implement such an
algorithm, and in a few cases give lower bounds on the resulting complexity.

9

3.1 An indicator polynomial for an orbit

Given any B-orbit S in G, the polynomial IS(x) =
∏
r∈S(x − r) is zero on S

and nonzero on G \ S. For any polynomial h(x) ∈ Fq[x] with no zeros in G \ S,
the polynomial f(x) = h(x)IS(x) is also zero on S and nonzero on G \ S. An
algorithm determining whether such a polynomial is nonzero at a point (such as
‘evaluate the polynomial using Horner’s rule and test if the result equals zero’)
is thus a type-1 distinguisher, as in Section 2.1. To be useful for finding discrete
logarithms, the orbit size would be rather large, for example approximately p2/3.
In this case the degree of f will be large. Can any such polynomial be evaluated
efficiently, that is, in time at most some polynomial in log(p)?

This can occur if f has relatively few nonzero coefficients, but it is unclear
whether one can find an orbit S and a polynomial h such that h(x)IS(x) is rel-
atively sparse. In Section 3.2 we give a lower bound on the number of nonzero
coefficients in a polynomial that is zero on an orbit, and this lower bound par-
tially settles this question.

Another possibility is that there are polynomials zero on S and nonzero on
G\S having many nonzero coefficients but that can still be evaluated efficiently.
For example, perhaps a polynomial of this form can have a short straight-line
program. This possibility seems open.

Given the A different orbits of G of size B, we can construct (using inter-
polation) many polynomials D(x) such that D(u) = D(v) if u and v are in the
same orbit, and D(u) 6= D(v) if u and v are in different orbits. Algorithms eval-
uating such polynomials are type-2 distinguishers. In Section 3.4 we show such
a polynomial must have at least B nonzero coefficients. It is unknown whether
a polynomial with this property can be represented by an efficient straight-line
program.

The previous examples are straightforward ways one might try to construct
a type-1 or type-2 distinguisher, but there are many other approaches. As a
final example: perhaps one can find an efficient function that produces a square
2/3 of the time on some ‘random’ half of the orbits, and only 1/3 of the time
on the other half. Such a function can be used to create an efficient type-2
distinguisher.

We are not suggesting that efficient versions of such distinguishers exist.
We simply note that such distinguishers do not seem to have been considered
before in this context, and that if it is possible for them be computationally
efficient then there are implications for the discrete logarithm problem. We now
show that some of the possible ways to implement distinguishers can never be
efficient.

3.2 Sparsity of a polynomial zero on an orbit

In this section we give a lower bound on the number of nonzero coefficients in
a polynomial that is zero on an orbit.

We use the following fact which we state without proof.

10

Lemma 5. Let F be a field, and let p a positive integer. Let f ∈ F [x] have the
form f(x) =

∑n
i=0 fix

i. Then f(x) is divisible by (xp−1) if any only if for each
integer r ∈ [0, p− 1] we have ∑

{j|j≡r mod p}

fj = 0.

Informally this says that the polynomial f(x) is a multiple of (xp− 1) if and
only if the polynomial resulting from reducing every exponent of x modulo p is
the zero polynomial.

Theorem 6. Assume G is a multiplicative subgroup of prime order p of the
finite field Fq, and that p − 1 = AB for integers A,B > 2 with gcd(A,B) = 1,
and that integers α, β satisfy 1 < α, β < p and ordp(α) = A and ordp(β) = B.
Assume that f ∈ Fq[x] is zero on an orbit S of size B of the function x → xβ

on group G, but not zero everywhere on G. Then the number of nonzero terms

in f(x) is at least A

√
φ(p−1)
A−1 (with φ the totient function.)

Proof. To begin we assume the polynomial f has degree less than p. Since f is
not zero everywhere on G, we can write f(x) =

∑s
i=1 aix

ei , with each ai 6= 0,
and s > 1. By Lemma 2, for any λ ∈ F∗p of order p − 1, and any element ζ
in G of order p, one of ζ, ζλ, ζλ

2
, ζλ

3
, . . . , ζλ

A−1
is in S, and so the polynomial

w(x) = f(x)f(xλ)f(xλ
2
) . . . f(xλ

A−1
) is zero at ζ. Since w(x) is zero at each

element of order p in G, it must be a multiple of the polynomial (xp−1)/(x−1),
and so the remainder of polynomial w(x) upon division by xp − 1 is either 0 or
c(1 + x+ x2 + . . . xp−1), for some c ∈ F∗q .

Suppose for some λ ∈ F∗p of order p− 1 the remainder is c(1 + x+ x2 + . . .+
xp−1), for some c ∈ F∗q . The number of nonzero coefficients in the remainder of
w(x) upon division by xp − 1 is at most the number of nonzero coefficients in
w(x) itself. Since w(x) has at most sA nonzero coefficients, and the remainder
of w(x) upon division has p nonzero coefficients, we have sA > p and so s >
A
√
p > A

√
φ(p− 1)/(A− 1).

Otherwise suppose for every primitive λ ∈ F∗p the remainder of w(x) after
division by xp − 1 is 0. A typical monomial in the expansion of w(x) is

au0au1 . . . auA−1x
eu0+eu1λ+...euA−1λ

A−1

and is identified with the tuple (u0, u1, . . . , uA−1) ∈ {1, 2, . . . , s}A.
By Lemma 5, for any primitive λ ∈ F∗p and r ∈ {0, 1, 2, . . . p − 1}, the sum

Sλ,r =
∑
au0au1 . . . auA−1 is zero, where the sum is over (u0, u1, . . . , uA−1) ∈

{1, 2, . . . , s}A such that the equation eu0 + eu1λ+ · · ·+ euA−1λ
A−1 = r holds in

Fp. In particular, since each ai is nonzero each sum either contains no terms at
all or at least two terms.

We focus on those sums involving a particular term, say a1a1 . . . a1 = aA1 .
We count the number N of pairs (λ, t) where λ is primitive in F∗p and t is a tuple
in the set {1, 2, . . . , s}A \ {{1}A}, say t = (u0, u1, . . . , uA−1), that identifies a
term au0au1 . . . auA−1 occurring in some sum Sλ,r with the term aA1 .

11

For each primitive λ ∈ F∗p, the term aS1 occurs in some sum Sλ,r, and that
sum contains at least one other term, so the number of pairs N is at least
φ(p− 1).

How often can a given a given tuple (u0, u1, . . . , uA−1) from {1, 2, . . . , s}A \
{{1}A} occur in such a pair? If this tuple occurs in a sum Sλ,r with aA1 , then
we have eu0 + eu1λ+ . . . euA−1λ

A−1 = e1 + e1λ+ · · ·+ e1λ
A−1, and there are at

most A− 1 such values λ. Hence the number of pairs N 6 (sA − 1)(A− 1).
Thus we have φ(p− 1) 6 (sA− 1)(A− 1) which gives the bound in this case.
Finally, given a polynomial f of arbitrary degree that is zero on an orbit

S of size B, the remainder R of this polynomial after division by xp − 1 has
f(r) = R(r) for each r ∈ G, and R has no more nonzero terms than does f . So
the remainder polynomial R is also zero on orbit S, and is not zero everywhere
on G, and has degree less than p, and so the above argument gives a lower
bound on the number of nonzero terms in R, and this is also a lower bound on
the number of nonzero terms in f .

If, as in the theorem statement, a polynomial f with s nonzero coefficients
is zero on an orbit under exponentiation by an element β of order B in F∗p, and
if hB also divides p − 1, then one can use f to construct a polynomial having
at most sh nonzero coefficients that is zero on an orbit under exponentiation
by an element of order hB. So the number of nonzero coefficients in this new
polynomial is bounded by the theorem. One may use this idea to obtain a
minor improvement in the bound of the theorem, where A in the denominator
is replaced by the smallest prime-power dividing A.

One could also obtain a minor improvement to the bound by considering
those λ with order a multiple of A instead of just primitive λ, as we have in the
proof.

We must have A less than than log(p) for this bound to rule out the possi-
bility of a sparse polynomial that is zero on an orbit giving rise to an efficient
distinguisher, which means the bound is of limited use in this application. In
particular, the bound does not rule out the cryptographically interesting pos-
sibility of a polynomial having few nonzero coefficients, and that is zero on an
orbit of size approximately p2/3. However in the next section we show how this
this bound gives a connection between the discrete logarithm problem and error
correcting codes.

3.3 Connection to quadratic residue codes

Theorem 6 provides a lower bound on the number of nonzero coefficients in a
polynomial that is zero on an orbit under exponentiation. Such polynomials
occur in the study of error correcting codes.

For our purposes, a quadratic residue code may be defined as follows. As-
sume p, l are primes with p odd and l a quadratic residue modulo p, and
that Fq is a finite extension of Fl containing a primitive pth root of unity r,
and that Q is the set of quadratic residues modulo p. Then the polynomial
g(x) =

∏
e∈Q(x − re) is in Fl[x]. Polynomials in Fl[x] that are a multiple of

12

g(x) have the common set of zeros {re|e ∈ Q}. Such polynomials that also have
degree less than p are the quadratic residue code of length p over Fl. The mini-
mum number of nonzero coefficients among such polynomials is the distance of
the code, and so any bound on the minimum number of nonzero coefficients in
such polynomials is a bound on the minimum distance of the code.

The common root set {re|e ∈ Q} of these polynomials is an orbit in under
exponentiation by an element β ∈ F∗p of order (p − 1)/2. Thus Theorem 6 can
be applied. In this case, one obtains the well-known square-root bound for such
codes [8]. Indeed, the first part of the proof of Theorem 6 is a typical proof of
the square-root bound.

In [4] a generalization of quadratic residue codes called lth-power residue
codes is considered, and a lower bound on their minimum distance is proved.

That generalization is as follows, though we point out that our description
differs somewhat, and in particular, the role of q in [4] is played by l in the
description below. Assume primes p, l with l|p − 1, and assume l is an lth
power residue mod p. Suppose w generates F∗p. Partition F∗p into sets Ai,
0 6 i < l, where Ai consists of those elements in F∗p whose logarithm to the
base w is congruent to i modulo l. (So the Ai’s can be thought of as the cosets
of the subgroup 〈wl〉 in F∗p.) Suppose r is a primitive pth root of unity in
a finite extension Fq of Fl. The ideal in the ring Fl[x]/(xp − 1) generated by
the polynomial

∏
a∈Ai

(x − ra) is the lth power residue code Ai, and the ideal
generated by the polynomial (x−1)

∏
a∈Ai

(x−ra) is the lth power residue code
Āi

Suppose a is an arbitrary element of the set Ai. Clearly awl ∈ Ai also,
because a ∈ Ai implies that the logarithm logw(a) of a to the base w is congruent
to i modulo l, and so we have logw(awl) = logw(a) + l = i mod l also, so
awl ∈ Ai. Thus set Ai is closed under multiplication by wl, and so the roots of
the polynomial

∏
a∈Ai

(x− ra) are closed under exponentiation to the power wl.
Similarly the polynomials that make up any lth power residue code are closed
under exponentiation by wl. Thus again we can apply Theorem 6 here.

On p.412 of [4], the author discusses a known lth-root bound that applies
to some of the codewords in a lth power residue code (namely those codewords
in Ai \ Āi,) and writes he “would like to see a lth-root bound hold for all
codewords”. The reason that the existing lth-root bound does not apply to all
codewords lies in the possibility that minimal length codewords in Ai have the
root r0 = 1. This is the precisely the situation that the second part of the proof
of Theorem 6 deals with, and indeed that theorem applies to all polynomials in
a lth power residue code.

Therefore, taking G to be the order-p subgroup of F∗q generated by r, and
assuming B = (p − 1)/l and A = l are relatively prime, and taking β = wl,
where w is primitive in Fp, then we can apply Theorem 6 to any polynomial in
Ai, thus obtaining the following lower bound for the minimum distance of a lth
power residue code, which is an improvement on the bound in [4] (for fixed l
and as p→∞).

Theorem 7. If primes p,l are primes with (p−1)/l and l relatively prime, then

13

the minimum distance of a lth-power residue code of length p satisfies

dmin(Ai) > l

√
φ(p− 1)
l − 1

.

3.4 Polynomials constant on orbits

Here we characterize the structure of polynomials f constant on the orbits of
size B, by which we mean f(u) = f(v) if u, v are in the same orbit. Algorithms
that evaluate such polynomials are type-2 distinguishers. The characterization
given results in a lower bound on the number of nonzero coefficients in such
polynomials.

Lemma 8. Assume G is a multiplicative subgroup of prime order p of the finite
field Fq, and that p−1 = AB for integers A,B > 2 with gcd(A,B) = 1, and that
integers α, β satisfy 1 < α, β < p and ordp(α) = A and ordp(β) = B. Further
suppose f ∈ Fq[x] is constant on the orbits of x→ xβ on G. Then f(xβ)− f(x)
is divisible by (xp − 1).

Proof. Let r ∈ G. Since f is constant on the orbits of x → xβ , we have
f(rβ) = f(r). Hence (x−r) is a factor of f(xβ)−f(x) in Fq[x]. Since this is true
for an arbitrary r in G, we have

∏
r∈G(x−r) = (xp−1) divides f(xβ)−f(x).

The following theorem describes the structure of polynomials that are con-
stant on the orbits.

Theorem 9. Let F be a field, let p be a prime such that p − 1 = AB for
integers A,B > 2, let f ∈ F [x] have deg(f) < p, and let integers α, β satisfy
1 < α, β < p and ordp(α) = A, ordp(β) = B. Then f(xβ)− f(x) is divisible by
(xp − 1) if and only if there exist C, ci ∈ F such that

f(x) = C +
A−1∑
a=0

ca

B−1∑
b=0

xβ
bαa

.

Proof. The “if” direction is trivial, so assume f(xβ)− f(x) is divisible by (xp−
1). Further assume f(x) =

∑p−1
i=0 cix

i, and so f(xβ) =
∑p−1
i=0 cix

iβ . Since
f(xβ)− f(x) is divisible by (xp− 1), by Lemma 5 we know that the polynomial∑p−1
i=0 cix

(iβ mod p)−
∑p−1
i=0 cix

i must be the zero polynomial. Since iβ and jβ are
in different residue classes modulo p if 0 6 i < j < p, we see that for each integer
n ∈ [0, p − 1] we have cn∗ − cn = 0, where the integer n∗ ∈ [0, p − 1] satisfies
βn∗ ≡ n mod p, that is n∗ = (nβ−1 mod p). In other words, cnβ−1 = cn, where
we understand that subscripts are taken modulo p. Similarly cnβ−2 = cnβ−1 , so
cnβ−2 = cn, and so on. Hence any two coefficients cu and cv will be equal if
u and v are in the same orbit of Fp under the action of multiplication by β−1.
But since 1 < β < p, multiplication by β is a bijection on Fp and so the orbits
of multiplication by β−1 are the same as the orbits of multiplication by β. This
gives the form of the polynomial in the theorem statement.

14

This last result shows that a non-constant polynomial that is constant on
the orbits (of x → xβ) must have at least B nonzero coefficients. Thus, the
algorithm D of Section 2.2 , if constructed by evaluating such a polynomial
using Horner’s rule (or other ‘one-coefficient-at-a-time’ based approaches) would
require at least B operations, and so the complexity of Algorithm 2 from that
section would be at least Θ(

√
AB) which is not an improvement on a square

root algorithm.

4 Acknowledgements

The author would like to thank the reviewers of earlier versions of this paper, in
particular Alfred Menezes, Stephen Galbraith, and Edlyn Teske. Thanks also
to N. Hynes, C. Dawe, and I. Payne.

References

[1] Alexandra Boldyreva. Efficient threshold signature, multisignature and
blind signature schemes based on the gap-Diffie-Hellman-group signature
scheme. In Proceedings of PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer-Verlag, 2003.

[2] Dan Boneh and Xavier Boyen. Short signatures without random oracles and
the SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–
177, April 2008.

[3] Dan Boneh and Richard Lipton. Searching for elements in black box fields
and applications. In In Advances in Cryptology-Crypto96, LNCS1109,
pages 283–297. Springer-Verlag, 1996.

[4] P. Charters. Generalizing binary quadratic residue codes to higher power
residues over larger fields. Finite Fields and Their Applications, 15(3):404–
413, June 2009.

[5] Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem.
Advances in Cryptology — EUROCRYPT 2006, LNCS, 4004:1–11, 2006.

[6] R. P. Gallant D. R. L. Brown. The static Diffie-Hellman problem.
eprint.iacr.org/2004/306.ps, 2004.

[7] Eike Kiltz and Arne Winterhof. Polynomial interpolation of cryptographic
functions related to Diffie-Hellman and discrete logarithm problem. Dis-
crete Appl. Math., 154(2):326–336, 2006.

[8] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes, volume 16 of North-Holland Mathematical Library. North-Holland,
1977.

15

[9] Ueli M. Maurer and Stefan Wolf. The Diffie–Hellman protocol. Des. Codes
Cryptography, 19(2-3):147–171, 2000.

[10] Wilfried Meidl and Arne Winterhof. A polynomial representation of
the Diffie-Hellman mapping. Appl. Algebra Eng. Commun. Comput.,
13(4):313–318, 2002.

[11] Alfred J. Menezes and Neal Koblitz. Another look at non-standard discrete-
log and Diffie-Hellman problems. Journal of Mathematical Cryptology,
2(4):311–326, 2008.

[12] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of applied cryptography. CRC Press, 1997.

[13] M. J. Wiener P. C. van Oorschot. Parallel collision search with cryptana-
lytic applications. Journal of Cryptology, 12:1–28, 1999.

[14] D. Shanks. Class number, a theory of factorization and genera. Proc. Symp.
Pure Math., 20:415–440, 1971.

[15] V. Shoup. Lower bounds for discrete logarithms and related problems. Ad-
vances in Cryptology — EUROCRYPT 1997, LNCS, 1233:256–266, 1997.

[16] Douglas R. Stinson. Cryptography: theory and practice. CRC Press, 1995.

A Pollard-rho approach

The algorithms in Section 2 used a variant of Shanks’ Baby-Step-Giant-Step
algorithm [14], which, though simple to describe, requires much storage and is
not linearly parallelizable. We outline how the algorithm in Section 2.1 could
be implemented using 2m parallel processors and a central processor, using the
ideas of [13], which addresses these deficiencies. The algorithm in Section 2.2
can also be so modified.

Given a generator G of G, an element W ∈ G, where G has order p = AB+1,
and W = Gw for some w ∈ [0, p− 1].

Let α, β be elements of F∗p with ordp(α), the multiplicative order of α in Fp,
equal to A, and ordp(β) = B, and gcd(A,B) = 1, so that α, β generate F∗p.
Then w = αw1βw2(modp) for some integers w1, w2. We find w1, w2, and hence
w.

Steps 1,2, and 3 are as before. Steps 4 and 5 are replaced by the following.

4. Set G′ = Gα
u

, W ′ = Wαv

. Since D(G′) = D(W ′) = 1, both G′ and W ′

are in the orbit distinguished by D.

(a) On processors 1 . . .m, start the processor by picking a random integer
r ∈ [0 . . . B − 1] and forming the tuple (G′β

r

, r, G′).

(b) On processors m+ 1 . . . 2m, start the processor by picking a random
integer r ∈ [0 . . . B − 1] and forming the tuple (W ′β

r

, r,W ′).

16

(c) On all processors, perform the following walk: Given tuple (P, k, ∗),
compute a pseudo-random number r determined (only) from a canon-
ical representation of the element P , and replace tuple (P, k, ∗) by
the tuple (P β

r

, (r + k) mod B, ∗).
(d) If the new element P β

r

is distinguished (for example, it contains
a specific bit pattern in its canonical representation) then send this
tuple to the central processor, and restart this processor as above.

(e) After approximately
√
B walk “steps” in total , we expect the central

processor will receive different tuples containing the same first coor-
dinate. When this happens, with probability 1/2 one tuple was sent
from the first half of the processors, and the other tuple was sent
from the other half. So we have tuples (M,m,G′) and (M,n,W ′)
with G′β

m

= W ′β
n

, which gives Gα
uβm

= Wαvβn

.

5. As Gα
uβm

= Wαvβn

, we have the discrete logarithm of W to the base G
is αuβm

αvβn mod p.

17

