
Practical consequences of the aberration of
narrow-pipe hash designs from ideal random

functions

Danilo Gligoroski1 and Vlastimil Klima2

1 Faculty of Information Technology, Mathematics and Electrical Engineering,
Institute of Telematics, Norwegian University of Science and Technology, Trondheim,

Norway, e-mail: Danilo.Gligoroski@item.ntnu.no
2 Independent Cryptologist - Consultant, Prague, Czech Republic, e-mail:

v.klima@volny.cz

Abstract. In a recent note to the NIST hash-forum list, the following
observation was presented: narrow-pipe hash functions differ significantly
from ideal random functions H : {0, 1}N → {0, 1}n that map bit strings
from a big domain where N = n + m, m ≥ n (n = 256 or n = 512).
Namely, for an ideal random function with a big domain space {0, 1}N
and a finite co-domain space Y = {0, 1}n, for every element y ∈ Y , the
probability Pr{H−1(y) = ∅} ≈ e−2m ≈ 0 where H−1(y) ⊆ {0, 1}N and
H−1(y) = {x | H(x) = y} (in words - the probability that elements of
Y are “unreachable” is negligible). However, for the narrow-pipe hash
functions, for certain values of N (the values that are causing the last
padded block that is processed by the compression function of these
functions to have no message bits), there exists a huge non-empty subset
Y∅ ⊆ Y with a volume |Y∅| ≈ e−1|Y | ≈ 0.36|Y | for which it is true that
for every y ∈ Y∅, H−1(y) = ∅.
In this paper we extend the same finding to SHA-2 and show conse-
quences of this abberation when narrow-pipe hash functions are em-
ployed in HMAC and in two widely used protocols: 1. The pseudo-
random function defined in SSL/TLS 1.2 and 2. The Password-based
Key Derivation Function No.1, i.e. PBKDF1.

1 Introduction

The importance of cryptographic functions with arbitrary input-length
have been confirmed and re-confirmed numerous times in hundreds of
scenarios in information security. The most important properties that
these functions have to have are collision-resistance, preimage-resistance
and second-preimage resistance. However, several additional properties
such as multi-collision resistance, being pseudo-random function, or being
a secure MAC, are also considered important.

All practical cryptographic hash function constructions have iterative
design and they use a supposed (or conjectured to be close to) ideal

finite-input random function (called compression function) C : {0, 1}m →
{0, 1}l where m > l, and then the domain of the function C is extended
to the domain {0, 1}∗ in some predefined iterative chaining manner.

The way how the domain extension is defined reflects directly to
the properties that the whole cryptographic function has. For exam-
ple domain extension done by the well known Merkle-Damg̊ard con-
struction transfers the collision-resistance of the compression function to
the extended function. However, as it was shown in recent years, some
other properties of this design clearly show non-random behavior (such
as length-extension vulnerability, vulnerability on multi-collisions e.t.c.).

The random oracle model has been proposed to be used in cryptog-
raphy in 1993 by Bellare and Rogaway [1]. Although it has been shown
that there exist some bogus and impractical (but mathematically correct)
protocols that are provably secure under the random oracle model, but
are completely insecure when the ideal random function is instantiated
by any concretely designed hash function [2], in the cryptographic prac-
tice the random oracle model gained a lot of popularity. It has gained
that popularity during all these years, by the simple fact that protocols
proved secure in the random oracle model when instantiated by concrete
“good” cryptographic hash functions, are sound and secure and broadly
employed in practice.

In a recent note to the NIST hash-forum list [3] it was shown that
four of the SHA-3 [4] second round candidates: BLAKE [5], Hamsi [6],
SHAvite-3 [7] and Skein [8] act pretty differently than an ideal ran-

dom function H : D → {0, 1}n where D =
∪maxbitlength

i=0 {0, 1}i and
“maxbitlength” is the maximal bit length specified for the concrete func-
tions i.e. 264− 1 bits for BLAKE-32, Hamsi, and SHAvite-3-256, 2128− 1
bits for BLAKE-64 and SHAvite-3-512 and 299 − 8 bits for Skein.

In this paper we extend that finding also to the current cryptographic
hash standard SHA-2 [9] and we show what are the security consequences
if those hash functions would be used in HMAC and in two widely used
protocols: 1. The pseudo-random function defined in SSL/TLS 1.2 [10]
and 2. The Password-based Key Derivation Function No.1, i.e. PBKDF1
as defined in PKCS#5 v1 [11].

2 Some basic mathematical facts for ideal random
functions

We will discuss the properties of ideal random functions over finite and
infinite domains.3 More concretely we will pay our attention for:

Finite narrow domain: Ideal random functions C : X → Y mapping
the domain of n-bit strings X = {0, 1}n to itself i.e. to the domain
Y = {0, 1}n, where n > 1 is a natural number;

Finite wide domain: Ideal random functions W : X → Y mapping the
domain of n+m-bit stringsX = {0, 1}n+m to the domain Y = {0, 1}n,
where m ≥ n;

Proposition 1. ([3]) Let FC be the family of all functions C : X → Y
and let for every y ∈ Y , C−1(y) ⊆ X be the set of preimages of y i.e.
C−1(y) = {x ∈ X | C(x) = y}. For a function C ∈ FC chosen uniformly
at random and for every y ∈ Y the probability that the set C−1(y) is
empty is approximately e−1 i.e.

Pr{C−1(y) = ∅} ≈ e−1. (1)

�

Corollary 1. ([3]) If the function C ∈ FC is chosen uniformly at ran-
dom, then there exists a set Y C

∅ ⊆ Y such that for every y ∈ Y C
∅ ,

C−1(y) = ∅ and
|Y C

∅ | ≈ e−1|Y | ≈ 0.36|Y |.

�

Proposition 2. ([3]) Let FW be the family of all functions W : X → Y
where X = {0, 1}n+m and Y = {0, 1}n. Let for every y ∈ Y , W−1(y) ⊆ X
be the set of preimages of y i.e. W−1(y) = {x ∈ X | W (x) = y}. For a
function W ∈ FW chosen uniformly at random and for every y ∈ Y the
probability that the set W−1(y) is empty is approximately e−2m i.e.

Pr{C−1(y) = ∅} ≈ e−2m . (2)

�
3 The infinite domain {0, 1}∗ in all practical implementations of cryptographic hash
functions such as SHA-1 or SHA-2 or the next SHA-3 is replaced by some huge

practically defined finite domain such as the domain D =
∪maxbitlength

i=0 {0, 1}i,
where maxbitlength = 264 − 1 or maxbitlength = 2128 − 1.

In what follows for the sake of clarity we will work on bit-strings of
length which is multiple of n. Namely we will be interested on strings
M = M1|| . . . ||Mi where every |Mj | = n, j = 1, . . . , i. Further, we will
be interested in practical constructions of cryptographic hash functions
that achieve a domain extension from a narrow-domain to the full infinite
domain. We will need the following Lemma:

Lemma 1. ([3]) Let FCν be a countable family of functions Cν : X →
Y, ν ∈ N and let C : X → Y is one particular function, where Cν and C
are chosen uniformly at random. Let us have a function Rule : N× Y →
FCν that chooses some particular random function from the family FCν

according to a given index and a value from Y . If we define a function
H : ({0, 1}n)i → Y that maps the finite strings M = M1|| . . . ||Mi to the
set of n-bit strings Y = {0, 1}n as a cascade of functions:

H(M) = H(M1|| . . . ||Mi) = CRule(1,IV)(M1) ◦ CRule(2,CRule(1,IV)(M1))(M2)◦
◦ · · · ◦
◦ CRule(i,CRule(i−1,·)(Mi−1))(Mi)◦
◦ C

(3)
then for every y ∈ Y the probability that the set H−1(y) is empty is
approximately e−1. �

Proposition 3. Let C1 : X → Y, C2 : X → Y are two particular func-
tions, chosen uniformly at random (where X = Y = {0, 1}n). If we define
a function C : X → Y as a composition:

C = C1 ◦ C2 (4)

then for every y ∈ Y the probability P2 that the set C−1(y) is empty is
P2 = e−1+e−1

.

Proof. We can use the same technique used in the proof of Proposition
1 in [3] but extended to two domains (i.e. one intermediate domain Z)
since we have a composition of two functions. Thus let us put the following
notation:

C ≡ C1 ◦ C2 : X
C1−→ Z

C2−→ Y

From Proposition 1 it follows that for every z ∈ Z the probability that
the set C−1

1 (z) is empty is approximately e−1 i.e. the probability that z
has a preimage is (1− Pr{C−1

1 (z) = ∅}) = (1− e−1).
Now, for the probability that the set C−1(y) is empty (for every y ∈ Y)

we have:

Pr{C−1(y) = ∅} =
(
1− 1

2n

)2n(1−Pr{C−1
1 (y)=∅})

≈ e−1+e−1
.

Lemma 2. C1, C2, . . . Ck : X → Y are k particular (not necessary dif-
ferent) functions, chosen uniformly at random (where X = Y = {0, 1}n).
If we define a function C : X → Y as a composition:

C = C1 ◦ C2 ◦ . . . ◦ Ck (5)

then for every y ∈ Y the probability Pk that the set C−1(y) is empty is
approximately Pk = e−1+Pk−1, where P1 = e−1.

Proof. The lemma can be proved by using mathematical induction for
the value of k and the Proposition 3.

The Lemma 2 models the probability of some element in Y to have
a preimage if we apply consecutively different random functions defined
over the same narrow domain {0, 1}n. Is the sequence Pk convergent? If
yes, what is the limit value and what is the speed of the convergence?

In this paper we will give answers on these questions, but we have
to stress that the mathematical proofs for some of those answers will be
given elsewhere.4, 5

Lemma 3. Let P1 = e−1 and Pk = e−1+Pk−1. Then the following limit
holds:

lim
i→∞

(log2(1− P2i) + i− 1) = 0 (6)

As a direct consequence of Lemma 3 is the following Corollary:

Corollary 2. The entropy E(C(X)) of the set C(X) = {C(x) | x ∈ X},
where the function C is a composition of 2i functions mapping the domain
{0, 1}n to itself, as defined in (5) is:

E(C(X)) = n+ log2(1− P2i) (7)

�
4 In the initial version of this paper the Lemma 3 was given as a Conjecture, but
in the mean time Zoran Šunić from the Department of Mathematics, Texas A&M
University, USA has proven it for which we express him an acknowledgement.

5 After reading our first version of the paper submited to the eprint archive, we got
an email from Ernst Schulte-Geers from the German BSI for which we express him
an acknowledgement, pointing out that in fact Lemma 3 was known long time ago
from the paper of Flajolet and Odlyzko [13].

The last corollary can be interpreted in the following way: With every
consecutive mapping of a narrow domain {0, 1}n to itself by any random
function defined on that domain, the volume of the resulting image is
shrinking. The speed of the shrinking is exponentially slow i.e. for shrink-
ing the original volume 2n of X = {0, 1}n to an image set with a volume
of 2n−i+1 elements, we will need to define a composition of 2i functions
i.e.,

C = C1 ◦ C2 ◦ . . . ◦ C2i .

3 The narrow-pipe nature of SHA-2 and four SHA-3
candidates

3.1 The case of SHA-2

Let us analyze the iterated procedure defined in SHA-256 (and the case
for SHA-512 is similar)[9]. First, a message M is properly padded:

M ←M ||1000 . . . 000⟨l64⟩

where the 64-bit variable ⟨l64⟩ is defined as the length of the original
message M in bits. Then the padded message is parsed into N , 512-bit
chunks:

M ≡ m0, . . . ,mN−1.

The iterative procedure for hashing the message M then is defined as:

h0 = IV
for i = 0, . . . , N − 1

hi+1 = CompressSHA256(hi,mi)
return hN

where CompressSHA256() is the compression function for SHA-256.
Now, let us hash messages that are extracted from some pool of ran-

domness with a size of 1024 bits. The padding procedure will make the
final block that would be compressed by the CompressSHA256() to be
always the same i.e. to be the following block of 512 bits:

1000 . . . 00010000000000︸ ︷︷ ︸
512 bits

If we suppose that the compression function CompressSHA256() is
ideal, from the Proposition 1 and Lemma 1 we get that there is a huge
set Y∅ ⊆ {0, 1}256, with a volume |Y∅| ≈ 0.36× 2256 i.e.

Pr{SHA-256−1(M) = ∅} = e−1.

On the other hand, for an ideal random function W : {0, 1}1024 →
{0, 1}256 from Proposition 2 we have that

Pr{W−1(M) = ∅} = e−2768 ≈ 0.

3.2 The case of the Second round SHA-3 candidates BLAKE,
Hamsi, SHAvite-3 and Skein

In [3] it was shown that the second round candidates BLAKE, Hamsi,
SHAvite-3 and Skein all manifest abberations from ideal random func-
tions defined over wider domains. The basic method how this was shown
was the fact that for certain lengths of the messages that are hashed, the
final padding block does not contain any bits from the message, and thus
acts as an independent random function defined over a narrow domain
X = {0, 1}n that is mapped to itself.

4 Practical consequences of the observed abberations of
the narrow-pipe designs

We point out several concrete protocols that are widely used and where
the observed abberations of narrow-pipe hash designs from the ideal ran-
dom function will be amplified due to the iterative use of hash functions
in those protocols.

4.1 Reduced entropy outputs from narrow-pipe hash
functions

The first practical consequence is by direct application of the Lemma 2.
Let us consider the following scenario: We are using some hash func-

tion that gives us 256 bits of output, and we have a pool of randomness
of a size of 220 blocks (where the block size is the size of message blocks
used in the compression function of that hash function). The pool is con-
stantly updated by actions from the user and from the running operating
system. We need random numbers obtained from that pool that will have
preferably close to 256 bits of entropy.

If we use narrow-pipe hash design, then depending on the nature of
the distribution of the entropy in the randomness pool, we can obtain
outputs that can have outputs with entropy as low as 237 bits or outputs
with entropy close to 256 bits.

More concretely, if the distribution of the entropy in the pool is some-
how concentrated in the first block (or in the first few blocks), then from

the Lemma 2 we have that the entropy of the output will not be 256 bits
but “just” slightly more than 237 bits. We say “just” because having 237
bits of entropy is really high enough value for any practical use, but it is
much smaller than the requested value of 256 bits of entropy. In a case
of more uniform distribution of the entropy in the whole pool of random-
ness, the narrow-pipe hash design will give us outputs with entropies close
to 256 bits. The cases where due to different reasons (users habits, user
laziness, regularity of actions in the operating system, to name some),
the pool is feeded with randomness that is concentrated more on some
specific blocks, the outputs will have entropy between 237 and 256 bits.

On the other hand, we want to emphasize, if in all this scenarios we
use wide-pipe hash design, the outputs will always have close to 256 bits
of entropy, regardless where the distribution of the entropy in the pool
will be.

From this perspective, we can say that although the consequences can
be just of theoretical interest, there are real and practical scenarios where
the abberation of narrow-pipe hash design from ideal random functions
can be amplified to some more significant and theoretically visible level.

4.2 Reduced entropy outputs from HMACs produced by
narrow-pipe hash functions

HMAC [12] is one very popular scheme for computing MAC - Message
Authentication Codes when a shared secret is used by the parties in the
communication. We are interested in a possible loss of entropy in the
HMAC construction if we use narrow-pipe hash constructions.

Proposition 4. Let a message M be of a size of 256 bits and has a full
entropy of 256 and let “secret” is shared secret of 256 bits. If in HMAC
construction we use a narrow-pipe hash function that parses the hashed
messages in 512 blocks, then mac = HMAC(secret,M) has an entropy
of 254.58 bits.

Proof. Let we use the hash function SHA256 that has the compression
function CompressSHA256(). From the definition of HMAC we have
that

mac = HMAC(secret,M) = hash((secret⊕opad)||hash((secret⊕ipad)||M))

where ⊕ is the operation of bitwise xoring and || is the operation of string
concatenation.

Computing of mac will use four calls of the compression function
CompressSHA256() in the following sequence:

1. h1 = CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)
2. h2 = CompressSHA256(h1,M ||CONST256) ≡ C2(h1), where

CONST256 = 1000 . . . 000100000000︸ ︷︷ ︸
256 bits

.

3. h3 = CompressSHA256(iv256, (secret⊕ opad)) ≡ C3(iv256)
4. mac = h4 = CompressSHA256(h3, h2||CONST256) ≡ C4(h3)

For a fixed secret key “secret” the value h1 will be always the same
and will be obtained with C1(iv256). The function C2 depends from the
message M that has a full entropy of 256 bits, thus C2 is not one function
but it represent a whole class of 2256 random functions mapping 256
bits to 256 bits. Thus, we can consider that any call of the function C2

decreases the entropy of h2 to 256 + log2(1− P1).
For the value h3 we have a similar situation as for h1. Similarly as

C2(), the function C4() is a class of random functions that depends of
the value h2. Since we have already determined that the entropy of h2 is
256 + log2(1 − P1), it follows that for computing the entropy of mac we
can apply the Corollary 2 obtaining that entropy E(mac) is

E(mac) = 256 + log2(1− P2),

where P1 =
1
e , and P2 = e−1+ 1

e which gives us the value E(mac) = 254.58.
�

What is the difference if we use a double-pipe hash function instead
of narrow-pipe in Proposition 4? The first difference is off course the fact
that the initialization variable in the compression function as well as the
intermediate variables h1, h2, h3 and h4 are 512 bits long, and we will
need final chopping. Then, under the assumption that the compression
function acts as ideal random function mapping 512 bits to 512 bits, and
having the entropy of the message M to be 256, we have that the entropy
of h2 is also 256 (not 256+log2(1−P1)). The same applies for the entropy
of h4 which will give us that the entropy of mac after the chopping will
be 256 bits.

Proposition 5. Let a message M be of a size of 512 bits and has a full
entropy of 512 and let “secret” is shared secret of 256 bits. If in HMAC
construction we use a narrow-pipe hash function that parses the hashed
messages in 512 blocks, then mac = HMAC(secret,M) has an entropy
of 254.58 bits.

Proof. Let we use the hash function SHA256 that has the compression
function CompressSHA256(). From the definition of HMAC we have
that

mac = HMAC(secret,M) = hash((secret⊕opad)||hash((secret⊕ipad)||M))

where ⊕ is the operation of bitwise xoring and || is the operation of string
concatenation.

Computing of mac will use five calls of the compression function
CompressSHA256() in the following sequence:

1. h1 = CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)
2. h2 = CompressSHA256(h1,M) ≡ C2(h1)
3. h3 = CompressSHA256(h2, CONST512) ≡ C3(h2), where

CONST512 = 1000 . . . 0001000000000︸ ︷︷ ︸
512 bits

.

4. h4 = CompressSHA256(iv256, (secret⊕ opad)) ≡ C4(iv256)
5. mac = h5 = CompressSHA256(h4, h3||CONST256) ≡ C5(h4),

where
CONST256 = 1000 . . . 000100000000︸ ︷︷ ︸

256 bits

.

Above, we consider the call of the functionCompressSHA256(iv256,
(secret ⊕ ipad)) as a call to an ideal random function C1 : {0, 1}256 →
{0, 1}256 that will map the 256-bit value iv256 to the 256-bit value h1.
The function C2 is a specific one. Actually, since it depends from the
message M that has a full entropy of 512 bits, C2 is not one function but
it represent a whole class of 2512 random functions mapping 256 bits to
256 bits. Thus, we can consider that there is no entropy loss for h2 i.e. it
has a full entropy of 256 bits.

For the value h3 we start to consider the entropy loss again from the
value 256. The call to the function C3 will decrease the entropy of h3
to 256 + log2(1 − P1). For a fixed secret key “secret” the value h4 will
be always the same and will be mapped with C5(h4) to the final value
mac. Similarly as C2(), the function C5() is a class of random functions
that depends of the value h3. Since we have already determined that
the entropy of h3 is 256 + log2(1 − P1), it follows that for computing
the entropy of mac we can apply the Corollary 2 obtaining that entropy
E(mac) is

E(mac) = 256 + log2(1− P2),

where P1 =
1
e , and P2 = e−1+ 1

e which gives us the value E(mac) = 254.58.
�

Again, if we are interested to know what will happen if we use a
double-pipe hash function in the Proposition 5, we can say that the en-
tropy of the 512-bit variable h3 will start to decrease from the value 512
and will be 512+log2(1−P1), and the entropy of h5 will be 512+log2(1−
P2), that after the final chopping will give us a mac with full entropy of
256.

4.3 Loss of entropy in the pseudo-random function of
SSL/TLS 1.2

SSL/TLS 1.2 is one very popular suit of cryptographic algorithms, tools
and protocols defined in [10]. Its pseudo-random function PRF which is
producing pseudo-random values based on a shared secret value “secret”,
a seed value “seed” (and by an optional variable called “label”) is defined
as follows:

PRF (secret, label, seed) = P<hash>(secret, label || seed), (8)

where the function P<hash>(secret, seed) is defined as:

P<hash>(secret, seed) = HMAC<hash>(secret, A(1) || seed) ||
HMAC<hash>(secret, A(2) || seed) || (9)

HMAC<hash>(secret, A(3) || seed) ||
. . .

and where A(i) are defined as:

A(0) = seed

A(i) = HMAC<hash>(secret, A(i− 1)). (10)

Proposition 6. Let “secret” is shared secret of 256 bits. The entropy
E(A(i)) of the i-th value A(i) as defined in the equation (10) for the hash
function SHA-256 can be computed with the following expression:

E(A(i)) = 256 + log2(1− P2i) (11)

where the values P2i are defined recursively in the Lemma 2.

Proof. We can use the same technique described in the previous subsec-
tion and in the proof of Proposition 4. Since we have two volume compres-
sive calls of the compression function, and since the computation of A(i)
depends on the value of the previous value A(i − 1) in the computation
of A(i) we have 2i times shrinking of the entropy. �

As a direct consequence of the previous Proposition we have the fol-
lowing:

Corollary 3. Let the size of “A(i) || seed” is 512 bits, and let “secret” is
shared secret of 256 bits. For the i-th part PRFi = HMACSHA−256(secret,
A(i) || seed) as defined in the equation (9) the entropy E(PRFi) can be
computed with the following expression:

E(PRFi) = E(PRFi) = 256 + log2(1− P2i+3) (12)

Proof. Computing of PRFi will use five calls of the compression function
CompressSHA256() in the following sequence:

1. h1 = CompressSHA256(iv256, (secret⊕ ipad)) ≡ C1(iv256)
2. h2 = CompressSHA256(h1, A(i) || seed) ≡ C2(h1)
3. h3 = CompressSHA256(h2, CONST1024) ≡ C3(h2), where

CONST1024 = 1000 . . . 0010000000000︸ ︷︷ ︸
512 bits

.

4. h4 = CompressSHA256(iv256, (secret⊕ opad)) ≡ C4(iv256)
5. PRFi = h5 = CompressSHA256(h4, h3||CONST256) ≡ C5(h4),

where
CONST256 = 1000 . . . 000100000000︸ ︷︷ ︸

256 bits

.

Similarly as in Proposition 5 we can see that the function C2 is a
specific one since it depends from A(i) || seed. For a given and fixed seed,
the entropy of “A(i) || seed” is the entropy of A(i) and from Proposition
6, it is E(A(i)) = 256 + log2(1 − P2i) bits. From here it follows that the
entropy of h2 is E(h2) = 256 + log2(1− P2i+1).

For the value h3 we further have E(h2) = 256 + log2(1 − P2i+2). For
a fixed secret key “secret” the value h4 will be always the same and will
be mapped with C5(h4) to the final value PRFi, with an entropy

E(PRFi) = 256 + log2(1− P2i+3).

�

For illustration we can say that the entropy of E(PRF1) = 253.463,
but the entropy of E(PRF60) = 250.00.

On the other hand, having in mind the discussions about the different
attitude of double-pipe hash function in used HMACs, it is clear that
with double-pipe hash designs we will not face this kind of entropy loss.

4.4 Loss of entropy in the PBKDF1

The Password-Based Key Derivation Function number 1 is defined in
PKCS#5 v1 [11] and is frequently used in many software products that
are generating keys (further used for different cryptographic operations)
from passwords.

In its definition the following iterative process is used:

T1 = Hash(P || S)
for i = 2 to Count

Ti+1 = Hash(Ti)
return TCount

where P is the password value and S is an 8 byte salt.
As a direct consequence of Lemma 2 and the Corollary 2 we have the

following corollary:

Corollary 4. If the hash function used in PBKDF1 is a hash function
with a compression function that is mapping n-bits to n-bits, then the
entropy E(TCount) of the value TCount can be computed with the following
expression:

E(TCount) = n+ log2(1− PCount) (13)

where the values PCount are defined recursively in the Lemma 2. �
What is interesting, is that in different standards and programmers

manuals the recommended values of Count are in the range from 210 to
224. That means that the loss of entropy in the final value TCount will be
from 10 to 24 bits if we use narrow-pipe hash designs, and there will be
no entropy loss if we use wide-pipe hash design.

4.5 SHA-2 and narrow-pipe SHA-3 candidates would
suffer from the same successful attack exploiting the
narrow-pipe abberation

There is one more inconvenience with narrow-pipe hash designs that di-
rectly breaks one of the NIST requirements for SHA-3 hash competition
[4]. Namely, one of the NIST requirement is: “NIST also desires that the
SHA-3 hash functions will be designed so that a possibly successful attack
on the SHA-2 hash functions is unlikely to be applicable to SHA-3.”

Now, from all previously stated in this paper it is clear that if an attack
is launched exploiting narrow-pipe weakness of SHA-2 hash functions,
then that attack can be directly used also against narrow-pipe SHA-3
candidates.

5 Conclusions and future cryptanalysis directions

We have shown that SHA-2 and the narrow-pipe SHA-3 candidates differ
significantly from ideal random functions defined over huge domains. The
first consequence from this is that they can not be used as an instantiation
in security proofs based on random oracle model.

Further, as an interesting research direction we point to investigations
of the stability of the limit in the equation (6). Namely, for the ideal
random functions the Corollary 2 says that we need 2i applications of the
functions in order to decrease the entropy of the final image for i−1 bits.
However, our initial experiments show that if we work with some concrete
compression function, then the exact value of the number e ≈ 2.7182818...
has to be replaced by some other concrete value e±ϵ. And then, the speed
of the entropy loss can increase dramatically faster than with the case of
an ideal random function.

We have shown also several other consequences of using these func-
tions as PRFs or KDFs or MACs (or HMACs). Namely, the outputs from
those functions differ significantly from outputs of ideal random functions
and have less entropy than it would be expected.

Acknowledgement

We would like to thank Jean-Philippe Aumasson (from the team of BLAKE
hash function), and Orr Dunkelman (from the team of SHAvite-3 hash
function) for their great comments, and precise remarks that have im-
proved the text significantly. We would like also to thank Zoran Šunić
from the Department of Mathematics, Texas A&M University, USA, for
his proof of Lemma 3, as well as Ernst Schulte-Geers from the German
BSI, pointing out that in fact Lemma 3 was known long time ago from
the paper of Flajolet and Odlyzko [13].

References

1. M. Bellare and P. Rogaway: “Random oracles are practical: A paradigm for de-
signing efficient protocols,” in CCS 93: Proceedings of the 1st ACM conference on
Computer and Communications Security, pp. 6273, 1993.

2. R. Canetti, O. Goldreich, S. Halevi: “The random oracle methodology, revisited”,
30th STOC 1998, pp. 209–218.

3. D. Gligoroski: “Narrow-pipe SHA-3 candidates differ significantly from ideal random
functions defined over big domains”, NIST hash-forum mailing list, 7 May 2010.

4. National Institute of Standards and Technology: “Announcing Request for
Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family”. Federal Register, 27(212):62212–62220, November 2007. Avail-
able: http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

(2009/04/10).
5. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, Raphael C.-W. Phan: “SHA-3

proposal BLAKE, Submission to NIST (Round 2)”. Available: http://csrc.nist.
gov/groups/ST/hash/sha-3/Round2/documents/BLAKE_Round2.zip (2010/05/03).

6. Özgül Kücük: “The Hash Function Hamsi, Submission to NIST (Round 2)”. Avail-
able: http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Hamsi_

Round2.zip (2010/05/03).
7. Eli Biham and Orr Dunkelman: “The SHAvite-3 Hash Function, Submission

to NIST (Round 2)”. Available: http://csrc.nist.gov/groups/ST/hash/sha-3/
Round2/documents/SHAvite-3_Round2.zip (2010/05/03).

8. Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, Jesse Walker: “The Skein Hash Function Family, Sub-
mission to NIST (Round 2)”. Available: http://csrc.nist.gov/groups/ST/hash/
sha-3/Round2/documents/Skein_Round2.zip (2010/05/03).

9. NIST FIPS PUB 180-2, “”Secure Hash Standard”, National Institute of Standards
and Technology, U.S. Department of Commerce, August 2002.

10. T. Dierks, E. Rescorla: “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246, August 2008.

11. RSA Laboratories. PKCS #5 v2.1: “Password-Based Cryptography Standard”, 5
October 2006.

12. H. Krawczyk, M. Bellare and R. Canetti: “HMAC: Keyed-Hashing for Message
Authentication”, RFC 2104, February 1997.

13. P. Flajolet and A. M. Odlyzko: “Random Mapping Statistics”, EUROCRYPT
(1989), pp. 329–354

