
A Combinatorial Analysis of HC-128

Goutam Paul1, Subhamoy Maitra2, Shashwat Raizada2

1 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India.

goutam.paul@ieee.org
2 Applied Statistics Unit,

Indian Statistical Institute, Kolkata 700 108, India.
subho@isical.ac.in, shashwat.raizada@gmail.com

Abstract. We show that the knowledge of any one of the two internal
state arrays of HC-128 along with the knowledge of 2048 keystream words
is sufficient to construct the other state array completely in 242 time
complexity. Though our analysis does not lead to any attack on HC-128,
it reveals a structural insight into the cipher. In the process, we theo-
retically establish certain combinatorial properties of HC-128 keystream
generation algorithm. We also suggest a modification to HC-128 that
takes care of the recently known cryptanalytic results with little reduc-
tion in speed.

Keywords: Cryptography, eSTREAM, HC-128, Keystream, State Recovery,
Stream Cipher.

1 Introduction

The stream cipher HC-128 [13] is part of the eSTREAM [4] Portfolio (revision
1, September 2008) in the Software category. The designer, Wu, performed some
security analysis of the cipher [13, Sections 3,4]. Another observation by Dunkel-
man [3] in the eSTREAM discussion forum shows that the keystream words of
HC-128 leak information regarding secret states. A generalization of these re-
sults has been studied in [9]. In [8], it has been shown that the key and IV
setup algorithm can be reversed if both the P,Q arrays are available after the
key scheduling. Recently, a fault analysis on HC-128 has been presented in [7].
None of the existing results on HC-128 disproves the security conjectures of the
designer and frequent use of this cipher in commercial domain is expected.

There are two internal state arrays of HC-128, P and Q, each containing 512
many 32-bit words. The keystream is generated in blocks of 512 words. Within
a block, one of these arrays gets updated and the keystream word is produced
by XOR-ing the updated entry with the sum of two words from the other array.
The role of the two arrays is reversed after every block of 512 keystream words
generation. In this paper, we show that the knowledge of one internal state array
of HC-128 reveals the other. This analysis can serve as a general model to study
stream ciphers that have a similar dual state internal structure.

In Section 3, we show that if one knows one of P and Q completely, then one
can reconstruct the complete other array efficiently. Without loss of generality,
we consider four consecutive blocks B1, B2, B3 and B4 of keystream generation
such that Q is updated in blocks B1 and B3 and P is updated in blocks B2 and
B4. Suppose the keystream words corresponding to all of these four blocks are
known. Henceforth, by the symbols P and Q, we will denote the arrays after the
completion of block B1 and before the start of block B2. After the completion
of block B2, Q remains unchanged and P is updated to, say, PN . After the
completion of block B3, Q would again be updated to, say, QN .

Block B1: Block B2: Block B3:
P unchanged, P updated to PN , PN unchanged,
Q updated. Q unchanged. Q updated to QN .
(Q denotes the updated array)

Block B4, that is not shown in the diagram, would only be used for verifying
if our reconstruction is correct or not.

In Section 3.2, we present Algorithm 1 (called ReconstructState), that takes
as inputs the 512 words of the array P and (assuming that the 2048 keystream
words corresponding to the four blocks B1, B2, B3 and B4 are known) produces
as output 512 words of the array QN . Since the update of an array depends only
on itself, it turns out that from block B3 onwards the complete state becomes
known. The proof of correctness of the algorithm is established through Lemma 2
and Theorems 1, 2 and 3 and the data and time complexity requirements are
analyzed in Theorem 4.

In Section 4, we propose little modification to the existing HC-128 that es-
capes the currently known cryptanalytic results over HC-128. We also argue
the motivation of such design and present performance comparisons with the
existing design of HC-128.

2 Description of HC-128

This is adapted from [13, Section 2]. The following operations are used in HC-
128:

+ : x + y means (x + y) mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232.
� : x� y means (x− y) mod 512.
⊕ : bit-wise exclusive OR.
‖ : concatenation.
� : right shift operator. x� n means x being right shifted n bits.
� : left shift operator. x� n means x being left shifted n bits.
≫ : right rotation operator. x≫ n means
((x� n)⊕ (x� (32− n)), where 0 ≤ n < 32, 0 ≤ x < 232.
≪ : left rotation operator. x≪ n means
((x� n)⊕ (x� (32− n)), where 0 ≤ n < 32, 0 ≤ x < 232.

Two tables P and Q, each with 512 many 32-bit elements are used as internal
states of HC-128. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization

vector IV [0, . . . , 3] are used, where each entry of the array is a 32-bit element.
Let st denote the keystream word generated at the t-th step, t = 0, 1, 2,

The following six functions are used in HC-128:

f1(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3),
f2(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10),
g1(x, y, z) = ((x≫ 10)⊕ (z≫ 23)) + (y≫ 8),
g2(x, y, z) = ((x≪ 10)⊕ (z≪ 23)) + (y≪ 8),

h1(x) = Q[x(0)] + Q[256 + x(2)],

h2(x) = P [x(0)] + P [256 + x(2)].

Here x = x(3)‖x(2)‖x(1)‖x(0), x is a 32-bit word and x(0) (least significant
byte), x(1), x(2) and x(3) (most significant byte) are four bytes.

The key scheduling of HC-128 is as follows.

Key and IV Setup:

1. Let K[0, . . . , 3] be the secret key and IV [0, . . . , 3] be the initialization vector.
Let K[i + 4] = K[i] and IV [i + 4] = IV [i] for 0 ≤ i ≤ 3.
2. The key and IV are expanded into an array W [0, . . . , 1279] as follows.

W [i] = K[i], for 0 ≤ i ≤ 7;
= IV [i− 8], for 8 ≤ i ≤ 15;
= f2(W [i− 2]) + W [i− 7]

+f1(W [i− 15]) + W [i− 16] + i, for 16 ≤ i ≤ 1279.
3. Update the tables P and Q with the array W as follows.

P [i] = W [i + 256], for 0 ≤ i ≤ 511
Q[i] = W [i + 768], for 0 ≤ i ≤ 511

4. Run the cipher 1024 steps and use the outputs
to replace the table elements as follows.

For i = 0 to 511, do
P [i] = (P [i] + g1(P [i� 3], P [i� 10], P [i� 511]))⊕ h1(P [i� 12]);

For i = 0 to 511, do
Q[i] = (Q[i] + g2(Q[i� 3], Q[i� 10], Q[i� 511]))⊕ h2(Q[i� 12]);

The keystream is generated using the following steps.

The Keystream Generation Algorithm:

i = 0;
repeat until enough keystream bits are generated
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat

3 Reconstruction of One Internal Array from Another

We introduce a few notations for the ease of analysis. We describe them first
and then move on to the actual strategy.

3.1 Our Notations and Problem Formulation

As discussed in Section 1, we consider four consecutive blocks B1, B2, B3 and
B4. In B1 and B3, Q is updated. Let Q denote the updated array after the
completion of block B1 and let QN be the new array after Q is updated in block
B3. In B1, P remains unchanged and in B2, it is updated to PN . Let sb,i denote
the i-th keystream word produced in block Bb, 1 ≤ b ≤ 4, 0 ≤ i ≤ 511.

The update of P (or Q) depends only on itself, i.e.,

PN [i] =


P [i] + g1(P [509 + i], P [502 + i], P [i+ 1]), for 0 ≤ i ≤ 2;
P [i] + g1(PN [i− 3], P [502 + i], P [i+ 1]), for 3 ≤ i ≤ 9;
P [i] + g1(PN [i− 3], PN [i− 10], P [i+ 1]), for 10 ≤ i ≤ 510;
P [i] + g1(PN [i− 3], PN [i− 10], PN [i− 511]), for i = 511.

(1)

Thus, if one knows the 512 words of P (or Q) corresponding to any one block,
then one can easily derive the complete P (or Q) array corresponding to any
subsequent block.

Consider that the keystream words sb,i, 1 ≤ b ≤ 4, 0 ≤ i ≤ 511, are observ-
able. We formulate a special state reconstruction problem as follows.

Given the partial state information P [0 . . . 511],
reconstruct the complete state (PN [0 . . . 511], QN [0 . . . 511]).

Since the update of each of P and Q depends only on P and Q respectively,
once we determine PN and QN , we essentially recover the complete state infor-
mation for all subsequent steps.

3.2 State Reconstruction Strategy

Our state reconstruction proceeds in five phases. The First Phase would be to
determine PN from P using (1).

The keystream generation of block B2 follows the equation

s2,i =

{
h1(P [500 + i])⊕ PN [i], for 0 ≤ i ≤ 11;
h1(PN [i− 12])⊕ PN [i], for 12 ≤ i ≤ 511.

(2)

Since h1(x) = Q[x(0)] +Q[256 + x(2)], we can rewrite (2) as

Q[li] +Q[ui] = s2,i ⊕ PN [i] (3)

where for 0 ≤ i ≤ 11, li = (P [500 + i])(0) and ui = 256 + (P [500 + i])(2)

and for 12 ≤ i ≤ 511, li = (PN [i− 12])(0) and ui = 256 + (PN [i− 12])(2).

}
(4)

Here li, ui and the right hand side s2,i⊕PN [i] of system (3) of equations are
known for all i = 0, 1, . . . , 511. Thus, there are 512 equations in ≤ 512 unknowns.
Simply applying Gauss elimination would require a complexity of 5123 = 227.
However, according to Lemma 1, a unique solution does not exist for any such
system and hence we have to take a different approach to solve the system.
Though the proof of Lemma 1 is simple, we include here for easy reference.

Lemma 1. Suppose r + s linear equations are formed using variables from the
set {x1, x2, . . ., xr, y1, y2, . . ., ys}. If each equation is of the form xi + yj = bij
for some i in [1, r] and some j in [1, s], where bij’s are all known, then such a
system does not have a unique solution.

Proof. Consider the (r + s) × (r + s) coefficient matrix A of the system with
the columns denoted by C1, . . . , Cr+s, such that the first r columns C1, . . . , Cr
correspond to the variables x1, . . . , xr and the last s columns Cr+1, . . . , Cr+s
correspond to the variables y1, . . . , ys. Every row of A has the entry 1 in exactly
two places and the entry 0 elsewhere. The first 1 in each row appears in one of
the columns C1, . . . , Cr and the second 1 in one of the columns Cr+1, . . . , Cr+s.
After the elementary column transformations C1 ← C1 + . . .+ Cr and Cr+1 ←
Cr+1 + . . . + Cr+s, the two columns C1 and Cr+1 has 1’s in all the rows and
hence become identical. This implies that the matrix is not of full rank and hence
unique solution does not exist for the system. ut

The left hand side of every equation in system (3) is of the form Q[li] + Q[ui],
where 0 ≤ li ≤ 255 and 256 ≤ ui ≤ 511. Taking r = s = 256, xi = Q[i − 1],
1 ≤ i ≤ 256 and yj = Q[255 + j], 1 ≤ j ≤ 256, we see that Lemma 1 directly

applies to this system, establishing the non-existence of a unique solution. At
this stage, one could remove the redundant rows to find a linear space which
contains the solution. However, it is not clear how many variables need to be
guessed to arrive at the final solution. Below we formulate a graph theoretic
approach to derive the entries of the array Q efficiently, by guessing the value of
only a single variable.

Definition 1. System (3) of 512 equations can be represented in the form of a
bipartite graph G = (V1, V2, E), where V1 = {0, . . . , 255}, V2 = {256, . . . , 511}
and for each term Q[li] + Q[ui] of (3), there is an edge {li, ui} ∈ E, li ∈ V1
and ui ∈ V2. Thus, |E| = 512 (counting repeated edges, if any). We call such
a graph G with the vertices as the indices of one internal array of HC-128 the
index graph of the state of HC-128.

Lemma 2. Let M be the size of the largest connected component of the index
graph G corresponding to block B2. Then M out of 512 words of the array Q
can be derived in 232 search complexity.

Proof. Consider any one of the 512 equations of System (3). Since the sum
Q[li] +Q[ui] is known, knowledge of one of Q[li], Q[ui] reveals the other. Thus,
if we know one word of Q at any index of a connected component, we can
immediately derive the words of Q at all the indices of the same component.
Since this holds for each connected component, we can guess any one 32-bit
word in the largest connected component correctly in 232 attempts and thereby
the result follows. ut

Since the arrays P,Q and the keystream of HC-128 are assumed to be ran-
dom, our index graph G can be considered to be a random bipartite graph.
Theoretical analysis of the size distribution of the connected components of ran-
dom finite graphs is a vast area of research in applied probability and there have
been several works [6, 12, 10, 5, 2] in this direction under different graph models.
In [12], the model considered is a bipartite graph G(n1, n2, T) with n1 vertices
in the first part, n2 vertices in the second one and the graph is constructed by T
independent trials, each of them consists of drawing an edge which joins two ver-
tices chosen independently of each other from distinct parts. This coincides with
our index graph model of Definition 1 with n1 = |V1|, n2 = |V2| and T = |E|.

In general, let n1 ≥ n2, α = n2

n1
, β = (1− α) lnn1, n = n1 + n2. Let ξn1,n2,T

and χn1,n2,T respectively denote the number of isolated vertices and the number
of connected components in G(n1, n2, T). We have the following result from [12].

Proposition 1. If n→∞ and (1+α)T = n lnn+Xn+o(n), where X is a fixed
number, then Prob (χn1,n2,T = ξn1,n2,T + 1) → 1 and for any k = 0, 1, 2, . . . ,

P rob (ξn1,n2,T = k)− λke−λ

k! → 0, where λ = e−X(1+e−β)
1+α .

In other words, if n is sufficiently large and n1, n2, T are related by (1 + α)T =
n lnn+Xn+ o(n), then the graph contains one giant connected component and
isolated vertices whose number follows a Poisson distribution with parameter λ
given above.

Corollary 1. If M is the size of the largest component of the index graph G,
then the mean and standard deviation of M is respectively given by E(M) ≈
442.59 and sd(M) ≈ 8.33.

Proof. For our index graph, n1 = n2 = 256, n = n1 + n2 = 512, T = 512,
α = n2

n1
= 1, β = (1− α) lnn1 = 0. The relation (1 + α)T = n lnn+Xn+ o(n)

is equivalent to (1+α)
n T = lnn + X + o(n)

n . As n → ∞, the ratio o(n)
n → 0 and

hence X → (1+α)
n T − lnn. Substituting α = 1, T = 512 and n = 512, we get

X ≈ −4.24. By Proposition 1, the limiting distribution of the random variable

ξn1,n2,T is Poisson with mean (as well as variance) λ = e−X(1+e−β)
1+α ≈ e4.24 ≈

69.41. Moreover, in the limit, χn1,n2,T = ξn1,n2,T +1 and this implies that all the
vertices except the isolated ones would be in a single giant component. So M =
n−ξn1,n2,T and the expectation E(M) = n−E(ξn1,n2,T) = n−λ ≈ 512−69.41 =
442.59. Again, the variance V ar(M) = V ar(n − ξn1,n2,T) = V ar(ξn1,n2,T) = λ,

giving sd(M) = sd(ξn1,n2,T) =
√
λ ≈ 8.33. ut

Simulations with 10 million trials, each time with 1024 consecutive words of
keystream generation for the complete arrays P and Q, gives the average of the
number ξn1,n2,T of isolated vertices of the index graph of the state of HC-128
as 69.02 with a standard deviation of 6.41. These values closely match with the
theoretical estimates of the mean λ ≈ 69.41 and standard deviation

√
λ ≈ 8.33

of ξn1,n2,T derived in Corollary 1.
Again from Corollary 1, theoretical estimates of the mean and standard de-

viation of the size M of the largest component is 442.59 and 8.33 respectively.
From the same simulation described above, the empirical average and standard
deviation of M are found to be 407.91 ≈ 408 and 9.17 respectively.

In the limit when n → ∞, each vertex is either an isolated one or part of
the single giant component. In practice, on the other hand, except the isolated
vertices (≈ 69 in number) and the vertices of the giant component (≈ 408 in
number), the remaining few (≈ 512 − 69 − 408 = 35 in number) vertices form
some small components. However, the low (9.17) empirical standard deviation
of M implies that the empirical estimate 408 of E(M) is robust. We would see
later that as a consequence of Theorem 2, any M > 200 is sufficient for our
purpose.

If C = {y1, y2, . . . , yM} be the largest component of G, then we can guess
the word corresponding to any fixed index, say y1. As explained in the proof of
Lemma 2, each guess of Q[y1] uniquely determines the values of Q[y2], . . . , Q[yM].
According to Corollary 1 and the discussion following it, we can guess around
408 words of Q in this method. This is the Second Phase of our solution.

We use the following result, which we call Propagation Theorem, to determine
the remaining unknown words.

Theorem 1 (Propagation Theorem). If Q[y] is known for some y in [0, 499],
then m = b 511−y12 c more words of Q, namely, Q[y+12], Q[y+24], . . . , Q[y+12m],
can all be determined from Q[y] in a time complexity that is linear in the size of
Q.

Proof. Consider block B1. Following our notation in Section 3.1, the equation
for keystream generation is

s1,i = h2(Q[i− 12])⊕Q[i], for 12 ≤ i ≤ 511.
Written in another way, it becomes

Q[i] = s1,i ⊕
(
P
[
(Q[i− 12])(0)

]
+ P

[
256 + (Q[i− 12])(2)

])
.

Setting y = i− 12, we have, for 0 ≤ y ≤ 499,

Q[y + 12] = s1,y+12 ⊕
(
P
(

[Q[y])(0)
]

+ P
[
256 + (Q[y])(2)

])
(5)

This is a recursive equation, in which all s1 values and the array P are completely
known. Clearly, if we know one Q[y], we know all subsequent Q[y + 12k], for
k = 1, 2, . . ., as long as y+ 12k ≤ 511. This means k ≤ 511−y

12 . The number m of
words of Q that can be determined is then the maximum allowable value of k,
i.e., m = b 511−y12 c. ut

By recursively applying (5) to the words of the Q array determined from
the maximum size connected component of the index graph, we derive many
of around 104(= 512 − 408) unknown words in the array. This is the Third
Phase of our solution. If we imagine the words initially labeled as ‘known’ or
‘unknown’, then this step can be visualized as propagation of the ‘known’ labels
in the forward direction. Even after this step, some words remain unknown.
However, as Theorem 2 implies, we observe that through this propagation, all
the words Q[500], Q[501], . . . , Q[511] can be ‘known’ with probability almost 1.

Theorem 2. After the Third Phase, the expected number of unknown words
amongst Q[500], Q[501], . . ., Q[511] is approximately 8·(1− 43

512)M+4·(1− 42
512)M ,

where M is the size of the largest component of the index graph G.

Proof. After the Second Phase, exactly M words Q[y1], Q[y2], . . ., Q[yM] are
known corresponding to the distinct indices y1, y2, . . ., yM in the largest com-
ponent C of size M in G. Since G is a random bipartite graph, each of indices
y1, y2, . . . yM can be considered to be drawn from the set {0, 1, . . . , 511} uniformly
at random (without replacement). We partition this sample space into 12 disjoint
residue classes modulo 12, denoted by, [0], [1], . . . , [11]. Then, each of the indices
y1, y2, . . . , yM can be considered to be drawn from the set {[0], [1], . . . , [11]} (this
time with replacement; this is a reasonable approximation becauseM � 12) with
probabilities proportional to the sizes of the residue classes. Thus, for 1 ≤ j ≤M ,
Prob(yj ∈ [r]) = 43

512 if 0 ≤ r ≤ 7 and 42
512 if 8 ≤ r ≤ 11.

Let mr = 1, if none of y1, y2, . . . , yM are from [r]; otherwise, let mr = 0.
Hence, the total number of residue classes from which no index is selected is

Y =

11∑
r=0

mr. Now, in the Third Phase, we propagate the known labels in the

forward direction using (5) (see Theorem 1, the Propagation Theorem). The
indices {500, 501, . . . , 511} are to the extreme right end of the array Q and
hence they also form the set of “last” indices where the propagation eventually
stops. Further, each index in the set {500, 501, . . . , 511} belongs to exactly one

of the sets [r]. Hence, the number of unknown words amongst Q[500], Q[501],
. . ., Q[511] is also given by Y .

We have,

E(mr) = Prob(mr = 1) =

{
(1− 43

512)M for 0 ≤ r ≤ 7;
(1− 42

512)M for 8 ≤ r ≤ 11.

Thus, E(Y) =

11∑
r=0

E(mr) = 8 · (1− 43
512)M + 4 · (1− 42

512)M . ut

Substituting M by its theoretical mean estimate 443 as well as by its empirical
mean estimate 408 yields E(Y) ≈ 0. In fact, for any M > 200, the expression (1−
43
512)M+4·(1− 42

512)M for E(Y) becomes vanishingly small. Our experimental data
also supports that in every instance, none of the words Q[500], Q[501], . . . , Q[511]
remains unknown.

Remarks:

1. The probability that one particular 8-bit pattern is missing from 512 many
randomly selected 8-bit segments of the P array, that are used to form the
indices ui’s in (3), is (1−2−8)512 ≈ 0.13. Assuming that the missing unknown
is equally likely to be one of {Q[256], . . . , Q[511]}, the probability that there
is one missing unknown and it is in {Q[500], . . . , Q[511]} is ≈ 0.13 · 12

256 ≈
0.0061. Thus, one may be tempted to conclude that the probability that at
least one of {Q[500], . . . , Q[511]} remains unknown is non-negligible.
However, we like to point out that the analysis in the above paragraph corre-
sponds to the unknown values in (3), i.e., after the First Phase of the solution.
On the other hand, the analysis in Theorem 2 corresponds to the unknown
values after we have propagated the known indices using the Propagation
Theorem, i.e., after the Third Phase of the solution.

2. Changing bytes 1 or 3 of Q[y] yields no change in equation (5). Combining
this with the Second Phase, we could form a new set of equations and at-
tempt to solve them. However, as Theorem 2 establishes, this is not required;
propagation of known Q[y] values in steps of 12 covers all the unknowns.

Next, we use the following result to determine the entire QN array.

Theorem 3. Suppose the complete array PN and the 12 words Q[500], Q[501],
. . ., Q[511] from the array Q are known. Then the entire QN array can be re-
constructed in a time complexity linear in the size of Q.

Proof. Following our notation in Section 3.1, the equation for the keystream
generation of the first 12 steps of block B3 is s3,i = h2(Q[500 + i]) ⊕ QN [i],
0 ≤ i ≤ 11. Expanding h2(.), we get, for 0 ≤ i ≤ 11,

QN [i] = s3,i ⊕
(
PN

[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

])
.

Thus, we can determine QN [0], QN [1], . . . QN [11] from Q[500], Q[501], . . . Q[511].
Now, applying Theorem 1 on these first 12 words of QN , we can determine all
the words of QN in linear time (in size of Q). ut

Applying Theorem 3 constitute the Fourth Phase of our solution.
After QN is derived, we need to verify its correctness. For this, we update PN

as it would be updated in block B4 and generate 512 keystream words with this
PN and the derived QN . If the generated keystream words entirely match with
the observed keystream words {s4,0, s4,1, . . . , s4,511} of block B4, then our guess
is correct. This verification is the Fifth (and final) Phase of the algorithm. If
we find a mismatch, then we repeat the procedure with the next guess, i.e., with
another possible value in [0, 232 − 1] of the word Q[y1].

Once QN is correctly determined, the words of the Q array for all the suc-
ceeding blocks can be deterministically computed from the update rule for Q.

The above discussion is formalized in Algorithm 1, called ReconstructState
(see the last page).

Theorem 4. The data complexity of Algorithm 1 is 216 and its time complexity
is 242.

Proof. For the First Phase, we do not need any keystream word. For each of
the Second, Third, Fourth and Fifth Phases, we need a separate block of 512
keystream words. Thus, the required amount of data is 4 · 512 = 211 no. of 32
(= 25)-bit keystream words.

From Step 1 in the First Phase up to Step 7 of the Second Phase, the total
time required is linear in the size of P (or Q), i.e., of complexity 29. Step 8 in
the Second Phase of Algorithm 1 can be performed through depth-first search
which requires O(|V1| + |V2| + |E|) time complexity. For |V1| = 256, |V2| = 256
and |E| = 512, the value turns out to be 210. After this, the guess in Step 10
of Algorithm 1 consumes 232 time and for each such guess, the complete Phases
3, 4 and 5 together take time that is linear in the size of the array Q, i.e., of
complexity 29. Thus, the total time required is 29 + 210 + 232 · 29 < 242. ut

Note that for system (3) of equations, one must verify the solution by first
generating some keystream words and then matching them with the observed
keystream, as is done in the Fifth Phase of Algorithm 1. During Step 10 in the
Second Phase, one may exploit the cycles of the largest component to verify
correctness of the guess. If the guessed value of a variable in a cycle does not
match with the value of the variable derived when the cycle is closed, we can
discard that guess. However, in the worst case, all the 232 guesses have to be tried
and if there is no conflict in a cycle, the guess has to be verified by keystream
matching. Thus, it is not clear if there is any significant advantage by detecting
and exploiting the cycles and so we have not considered this in the description
of the algorithm.

4 Design Modification with respect to Known
Observations

We have two design goals:

– to guard against the available analysis in literature and

– not to sacrifice the speed in the process.

Thus, we attempt to keep the same structure as the original HC-128 with mini-
mal changes.

Apart from the present paper, we are aware of three other works on the anal-
ysis of keystream generation algorithm of HC-128, one by the designer Wu [13],
the next as in [9] and the most recent one from [7].

The works [13, 9] exploit the fact that h1(.) as well as h2(.) makes use of
only 16 bits from the 32-bit input. Our current work also uses this fact to form
equation (3), that eventually leads to reconstruction of the state. Thus, all of
these results indicate that the form of h1(.), h2(.) need to be modified so as to
incorporate all the 32 bits of their inputs. In our new versions of these functions
(equation (6)), we suggest XOR-ing the entire input with the existing output
(sum of two array entries). However, certain precautions may need to be taken
so that other security threats do not come into play.

We replace h1 and h2 as follows.

hN1(x) = (Q[x(0)] +Q[256 + x(2)])⊕ x,
hN2(x) = (P [x(0)] + P [256 + x(2)])⊕ x.

}
(6)

We need to modify the update functions g1 and g2 with the twin motivation
of preserving the internal state as well as making sure that the randomness of
the keystream is ensured. We propose the following:

gN1(x, y, z) =
(
(x≫ 10)⊕ (z≫ 23)

)
+Q[(y � 7) ∧ 1FF],

gN2(x, y, z) =
(
(x≪ 10)⊕ (z≪ 23)

)
+ P [(y � 7) ∧ 1FF].

}
(7)

We keep f1 and f2 the same as in original HC-128.
We include a randomly chosen word from the Q array in the update of P

array elements and a randomly chosen word from the P array while updating
the Q array elements. This would ensure that each new block of P (or Q) array
is dependent on the previous block of Q(or P) array. Thus, our analysis of
Section 3 would not apply and the internal state would be preserved even if half
the internal state elements are known.

Likewise, in the equation of the distinguisher proposed by the designer [13,
Section 4], the term P [i�10] will get replaced by some random term of Q array.
With this replacement, it is not obvious how a similar distinguishing attack can
be mounted. The similar situation will happen for the distinguishers proposed
in [9].

Now let us concentrate on the fault attack presented in [7]. The fault analysis
in [7] assumes that if a fault occurs at Q[f] in the block in which P is updated,
then Q[f] is not referenced until step f − 1 of the next block (in which Q would
be updated). This assumption does not hold for our design due to our nesting use
of P and Q in the updates of one another (equation (7)). Thus, on our modified
design, the fault position recovery algorithm given in [7, Section 4.2] would not
work immediately. In particular, Lemma 1 and Lemma 2 of [7] would not hold
on our modified cipher.

The security of any stream cipher is always a conjecture. We have tried to
circumvent the known weaknesses of HC-128. The way we have modified the
design, it appears that no new security holes are introduced. However, the new
design is open to the community for further analysis.

4.1 Performance Evaluation

We evaluated the performance of our new design using the eSTREAM testing
framework [1]. The C-implementation of the testing framework was installed in
a machine with Intel(R) Pentium(R) D CPU, 2.8 GHz Processor Clock, 2048
KB Cache Size, 1 GB DDR RAM on Ubuntu 7.04 (Linux 2.6.20-17-generic) OS.
A benchmark implementation of HC-128 and HC-256 [14] is available within
the test suite. We implemented our modified version of HC-128, maintaining the
API compliance of the suite. Test vectors were generated in the NESSIE [11]
format. The results presented below correspond to tests with null IV using the
gcc-3.4 prescott O3-ofp compiler.

HC-128 Our Proposal HC-256
Stream Encryption 4.13 4.29 4.88
(cycles/byte)

The encryption speed of our proposed design is of the same order as that
of original HC-128. We also observe that the extra array element access in the
new update rules (equation (7)) as compared to the original update rules does
not affect the performance much. HC-128 was designed as a lightweight version
of HC-256. The idea of cross-referencing each other in the update rules of P
and Q has also been used in the design of HC-256 and that is why the half
state exposure does not reveal the full state in case of HC-256. However, our
modification to HC-128 removes the known weaknesses of HC-128 but keeps the
speed much better than HC-256, with only little reduction in speed compared
to HC-128.

5 Conclusion

The eSTREAM candidate HC-128 uses two internal arrays, each containing 512
many 32-bit words. In this paper, we show that one of the two arrays is redun-
dant in the sense that if one knows only one array completely and has access to
2048 consecutive keystream words then the other array can be completely recon-
structed in 242 time complexity. This reveals that the security margin of HC-128
with two internal arrays is equivalent to that with one internal array, when the
same structure and operations are considered. As a remedy, we propose a design
modification of HC-128. We also evaluate the performance of our proposal in the
eSTREAM testing framework and compare the speed with that of HC-128 and
HC-256.

References

1. C. D. Cannière. eSTREAM testing framework. Available at
http://www.ecrypt.eu.org/stream/perf [last accessed on April 22, 2010].

2. C. Cooper and A. Frieze. The Size of the Largest Strongly Connected Component
of a Random Digraph with a Given Degree Sequence. Combinatorics, Probability
and Computing, vol. 13, no. 3, 2004, pages 319-337.

3. O. Dunkelman. A small observation on HC-128.
http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143 Date: November
14, 2007 [last accessed on April 22, 2010].

4. http://www.ecrypt.eu.org/stream/ [last accessed on April 22, 2010].
5. J. Hansen and J. Jaworski. Large components of bipartite random mappings. Ran-

dom Structures & Algorithms, vol. 17, no. 3-4, October 2000, pages 317-342.
6. I. B. Kalugin. The number of components in a random bipartite graph. Diskretnaya

Matematika, vol. 1, no. 3, 1989, pages 62-70.
7. A. Kircanski and A. M. Youssef. Differential Fault Analysis of HC-128. Africacrypt

2010, pages 360-377, vol. 6055, Lecture Notes in Computer Science, Springer.
8. Y. Liu and T. Qin. The key and IV setup of the stream ciphers HC-256 and HC-

128. International Conference on Networks Security, Wireless Communications and
Trusted Computing, pages 430-433, 2009.

9. S. Maitra, G. Paul and S. Raizada. Some Observations on HC-128. Pre-Proceedings
of the International Workshop on Coding and Cryptography (WCC), May 10-15,
2009, Ullensvang, Norway, pages 527-539. An extended version of this paper is
accepted in Designs, Codes & Cryptography.

10. M. Molloy and B. Reed. The Size of the Giant Component of a Random Graph
with a Given Degree Sequence. Combinatorics, Probability and Computing, vol. 7,
1998, pages 295-305.

11. New European Schemes for Signatures, Integrity, and Encryption. Available at
https://www.cosic.esat.kuleuven.be/nessie [last accessed on April 22, 2010].

12. A. I. Saltykov. The number of components in a random bipartite graph. Diskret-
naya Matematika, vol. 7, no. 4, 1995, pages 86-94.

13. H. Wu. The Stream Cipher HC-128.
http://www.ecrypt.eu.org/stream/hcp3.html [last accessed on April 22, 2010].

14. H. Wu. A New Stream Cipher HC-256. FSE 2004, pages 226-244, vol. 3017,
Lecture Notes in Computer Science, Springer. The full version is available at
http://eprint.iacr.org/2004/092.pdf [last accessed on April 22, 2010].

Input: P [0 . . . 511].
Output: PN [0 . . . 511], QN [0 . . . 511].

First Phase:
for i← 0 to 511 do1

Determine PN [i] using (1);2

end

Second Phase:
Form a bipartite graph G = (V1, V2, E) as follows;3

V1 ← {0, . . . , 255}; V2 ← {256, . . . , 511}; E ← ∅;4

for i← 0 to 511 do5

Determine li and ui using (4);6

E ← E ∪ {li, ui};7

end
Find all connected components of G;8

Let C = {y1, y2, . . . , yM} be the largest component with size M ;9

Guess Q[y1] and thereby determine Q[y2], . . . , Q[yM] from (3); and10

for each such guess of Q[y1], repeat the Third, Fourth and Fifth
Phases below;

Third Phase:
for j ← 1 to M do11

y ← yj ;12

while y ≤ 499 do13

if Q[y + 12] is still unknown then14

Q[y + 12]←15

s1,y+12 ⊕
(
P
[
(Q[y])(0)

]
+ P

[
256 + (Q[y])(2)

])
;

end
y ← y + 12;16

end

end

Fourth Phase:
for i← 0 to 11 do17

QN [i]←18

s3,i ⊕
(
PN

[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

])
;

y ← i;20

while y ≤ 499 do21

QN [y + 12]←22

s3,y+12 ⊕
(
PN

[
(QN [y])(0)

]
+ PN

[
256 + (QN [y])(2)

])
;

y ← y + 12;23

end

end

Fifth Phase:
With the new QN , generate 512 keystream words by updating PN ;24

Verify correctness of the guess in Step 10 by matching these25

keystream words with the observed keystream words of block B4;

Algorithm 1: ReconstructState

