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Abstract:  a Binomial Sieve Series (BSS) is an infinite  monotonic set of natural numbers,  

b1, b2, .....bn  ( bi < bi+1 )  generated, („naturally‟)  from any two natural numbers (x, y ≤ x) .  If 

one repeatedly counts bi elements over the set X= 1,2,….x (recycled counting)  and eliminates 

each time the element of X that stops each round of counting, then the surviving element of X is 

y.  Every natural number, per any x, is associated with a certain survivor.  We prove that per any 

x all BSS are infinite and approach an equal size, regardless of  the identity of the survivor  

element y.  These infinite series (in count and length) have no simple pattern, their disorder is 

reminiscent of primes.   We suggest some intriguing cryptographic applications based on the 

poor predictability of  the next element in each series, combined with good predictability of the 

computational load to develop the series (by the users and by the cryptanalyst). Using x  as a 

shared secret, and a random, per-session, y, Alice and Bob  may mark successive messages 

between them with the next element of the respective BSS,  thereby mutually authenticating 

themselves throughout their conversation.  Other cryptographic possibilities are outlined. 

 

1.0 Introduction:  

Mathematical insight is often acquired by regarding a known construct as a member of a set, 

which then attracts investigation. Accordingly, we may define a set for which the natural 

numbers is a member.  We are seeking an abstraction which is different from the familiar 

sequence: integers, rationals, irrationals, and complex numbers.  
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We shall define a procedure that would associate any two natural numbers, x and y ≤  x 

with an infinite, rising monotonic series comprised of natural numbers: b1, b2, .....bn ( where bi < 

bi+1 for all i=1,...(n-1), writing as: 

[x:y] = b1, b2, .....bn  

To do so we shall apply a simple sieve operation. The concept of procedural elimination 

of  ordered element according to some rule has been made famous by Eratosthenes (Bokhari 

1987).  It has been applied sporadically in recent years (Chen-98, Heyde-76, Shen-99 and 

Telgarski-88).  This abstract notion is hereby reapplied:  Let x (range) and p (period) be any two 

natural numbers. We shall define the "initial x set" as the ordered set containing: 1,2,3,... x. We 

shall use a cyclical counting operation over the initial x set, namely, counting from 1,2,3,... to x, 

and continuing with 1,2,... --  as many times as desired. (We shall regard this counting method as 

„clockwise‟ and the opposite direction as „counter clockwise‟).  That way we shall count p 

numbers over 1,2… x and identify the member of the initial x set where the counting stopped. 

That member (“the hit”) will be excluded from the initial x set, defining 'the first round x set' 

containing x-1 elements, and being a proper subset of the initial x set. We shall now resume 

counting with the next member of the first-round x set, and end up with some other member of 

the same set as we conclude our counting (“the second hit”). That member will also be removed, 

thereby defining 'the second round x set' containing x-2 members and being a proper subset of 

the 'first round x set'. We can repeat the process for i=1,2...(x-1), defining each round 'the i-round 

x set', containing x-i members. For i=x-1 the resulting '(x-1) x set' will contain one member. We 

shall designate this surviving member, as 'the survivor' or s, and define the above procedure as 

the sieve operation of order zero, writing: 

s = S0(x,p) 

Clearly: 1 ≤ s  ≤ x. Examples: for x=50, and p=35, we get S0(50,35)=3, similarly 

S0(60,9)=30. For x=4 and p=3 we have the initial x set as 1,2,3,4; the first-x-set will be: 1,2,4; 

the second x set will be: 1,4, and the third x set will be: 1, so we may write: S0(4,3)=1  

 If we consider periods, 1,2,3,…p, such that  p >> x then necessarily for some survivors s 

we shall have established a rising monotonic series:   b1< b2 < ....< bn    such that: 

S0(x,b1) = S0(x,b2) =…… S0(x,bn) 
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We refer to such series as binomial sieve series, or BSS. We may now introduce the 

following symbolism:   [x:y] will mark the BSS generated over the range, x, and yielding a 

survivor y;  [x:y](i), will designate the i-th member of the series (bi ) .  So we can write: 

 [x:y] = [x:y](1), [x:y](2), ......  

We may designate for convenience: [x:y](0)=0.  

Examples:  

[35 : 12] = 15, 17, 215, 262, 357, 427, 459, 492...  

[24 : 8] = 7, 25, 88, 115, 125, 155, 160, 178, ...  

[50 : 10] = 11, 39, 139, 143, 149, 183, 239, 281...  

[40 : 20] = 157, 164, 211, 250, 264, 350, 351, 458, ...  

These infinite series may be defined per section. The expression [x:y]{u,v} will define 

the elements [x:y]{u,v}(i), [x:y]{u,v}(i+1),.....[x:y]{u,v}(j) of the series [x:y] such that:  

[x:y]{u,v}(i-1) < u ≤ [x:y]{u,v}(i)  

and:  

[x:y]{u,v}(j) ≤ v < [x:y]{u,v}(j+1)  

for u, v two natural numbers. So we may write:  [40 : 20]{200,400} = 211, 250, 264 

We shall also introduce the nomenclature of  [x:y]{u//n} to indicate the section of [x:y] 

beginning with element i where [x:y]{u,v}(i-1) < u ≤ [x:y]{u,v}(i) and ending with element (i+n-

1).  Similarly [x:y]{u/n} will designate element (i+n-1), where i is defined as above. Enclosing a 

BSS section within vertical lines will imply a count of section elements. Accordingly, since: 

[24:8]{80,160}=88, 115, 125, 155, 160 

We shall write:  5 = |[24:8]{80,160}| 

The basic theorem of binomial sieve series: For any value of x there  is at least one BSS 

which is infinite because every natural number leaves one survivor in the finite range 1 ≤ s ≤ x . 
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We shall now prove that every  survivor defines an infinite BSS, and further prove that for a 

given range, x, the sizes of  the various BSS (per the x survivors) approach equality when more 

natural numbers find their place in the range of x BSS.  The basic theorem of binomial sieve 

series may be written as: 

   
   

               
 

 
 

for all values of x and y. 

Proof: all the natural numbers of the form k1x+1 where k1 is any natural number don‟t 

end up with “1” as their survivor because they “sieve” it out in the first hit.  Among them there 

are numbers of the form:  k2(x-1)+1, and they don‟t end up with “2” as their survivor.  Among 

them there are those of the form k3(x-2)+1, which don‟t end up with “3” as their survivor.  And 

so on, we may point to smaller and smaller sets that don‟t  end up with 1,2,…i as their survivor. 

For i=x-1 we thereby identified numbers that satisfy the following (x-2) equations: 

k1x+1 = k2(x-1)+1 = ….ki(x-i+1)+1… = kx-1(x-x+2)+1 

There are infinite solutions for the k1,k2,….kx-1 values that satisfy these x-2 equations, and 

hence there are infinite numbers that end up with x as their survivor. 

If instead for element x, we focus on some other element  s  (1 ≤ s ≤ x ) we can repeat the 

above analysis with the set of numbers of the form s + k1x+1,  s + k2(x-1) +1, …  and similarly 

prove that there are infinite number of natural numbers that end up with s as their survivor.  

The form of the (x-2) equations that must be solved in order to find the numbers that end 

up with some arbitrary s as their survivor are the same for all s values, and hence the number of 

natural numbers that point to s as their survivor is the same for all s values.  In other words, large 

enough sets of natural numbers are equally distributed among the x possible survivors. This 

proves the basic binomial sieve series theorem. 

Some obvious relationships:  

[1:1] = 1,2,3,4,.... (the natural numbers)  

[2:1] = 2,4,6,8,..... (even natural numbers)  

[2:2] = 1,3,5,7,.... (odd natural numbers)  



~ 5 ~ 
 

These natural binomial sieve series behave in a peculiar way. We may investigate them 

by tracking the numerical difference between successive members. Let's define the 

corresponding interval series:  

[x:y]int= [x:y]int(1), [x:y]int(2),.... 

where:  [x:y]int(i) = [x:y](i) - [x:y](i-1)  

One readily lists:  

[1:1]int= 1,1,1,.... repeating sequence: {1} of size 1  

[2:y]int= 2,2,2... repeating sequence: {2}of size 1 for y=1,2  

[3:y]int has a repeating sequence: {1,5} of size 2 for y=1,2,3  

[4:1]int and [4,3]int have a repeating sequence: {2,1,9} of size 3  

[4:2]int and [4,4]int have a repeating sequence: {1,2,9} of size 3  

It becomes stranger yet: [5:y]int has a repeating sequence: {3, 1, 3, 7, 4, 4, 10, 3, 10, 4, 4, 

7} of size 10, for y=1,2,3,4,5 And for [6:y] there are six distinct patterns, all of size 10:  

[6:1]int has a repeating sequence: {26, 3, 2, 9, 2, 2, 3, 2, 9, 2} 

[6:2]int has a repeating sequence: {17, 1, 2, 2, 11, 2, 3, 2, 11, 9} 

[6;3]int has a repeating sequence: {13, 4, 1, 4, 11, 2, 5, 11, 4, 5} 

[6:4]int has a repeating sequence: {13, 5, 4, 11, 5, 2, 11, 4, 1, 4} 

[6:5]int has a repeating sequence: {17, 9, 11, 2, 3, 2, 11, 2, 2, 1} 

[6:6]int has a repeating sequence: {26, 2, 9, 2, 3, 2, 2, 9, 2, 3} 

The average gap between successive members of a binomial sieve series [x:y] is x, but 

the variance around this average seems to defy a clear sense of order.  The sum of the repeating 

elements above is uniformly 60. 

These binomial sieve series stand apart from the common mathematical structure built as 

an extension of the operation of addition, and as such they are of some non-applicative interest. 

In this discussion we shall focus on cryptographic aspects of these series. 
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2.0  Pattern-Recognition/Cryptanalysis/Compression 

 Given any random looking or arbitrary series expressed, say, as a decimal or similar 

sequence of natural numbers: r1, r2,..., one could construct a matching monotonic rising series, 

M: m1, m2,.... by setting: 

mi = mi-1 + ri  

This constructed M series may be fitted, section by section if necessary with sections of 

the infinite number of infinite BSS.  Say: 

M = [x1:y1]{u1,v1}, [x2:y2]{u2,v2},....  

For example: the monotonic series M =11, 16, 20, 27, 30, 31, 64, 67, 82, 95, 109, 126 

may be faithfully represented as follows: 

[23:4]{10,20},[5:3]{20,31}.[45:7]{60,70},[33:11]{80,130}  

The driving idea is to use as few binomial sieve series as possible. The fewer series the 

more pattern is extracted from the 'random looking series' and prospectively more insight, and 

cryptanalysis capability, is gained. The prospect of representing a random looking series as a 

short list of binomial sections also provides an opening to unbound compression.  

The decomposition of a random looking monotonic series to binomial sections may also 

proceed through a linear combination of  two or more sections of BSS each  with the same 

number of elements.  

 

3.0 Computing-Load Based Cryptography  

The nominal sieve construction of the binomial series is (i) very predictable as to the 

effort needed, and (ii) is very controllable as to same effort. By choosing proper values for x, u 
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and v in the section series [x:y]{u,v} one could dictate the computing load necessary to specify 

the series. The computing load is proportional to the size of x, and to the span (v-u). The risk for 

a computational shortcut can be mitigated by introducing "switch conditions" as follows:  

The above described nominal sieve operation may be modified by introducing some 

condition C(z), where z is the value where a counting round stopped (a „hit‟). If the conditions 

are satisfied, then the counting switches direction. If it were counting upward, (clockwise) it now 

goes downward, (counterclockwise), and vice versa. Such switch conditions will require the 

algorithm to execute the search for the survivor round by round (negating the possibility for 

mathematical shortcut – extracting the survivor without performing the many rounds). The 

condition itself may be controlled as to the computing load for compliance evaluation. 

For example, the nominal value of [5:2]{3,9} is: 5,9. If we introduce the condition that 

the search direction will switch if a counting round stops at a prime number, then the result will 

be: [5:2]{3,9}prime switch= 3,6,9. And since there is no known (or published rather) method for a 

quick determination of primality, it would be possible to use this method on large range, x values 

where the numbers marked by the counting cycle will have to be evaluated tediously as to 

whether they are prime or not. 

Sieve computing works efficiently in dedicated hardware and firmware, and the switch 

conditions may be made volatile and part of the ciphersecret.  

Alice and Bob will exchange the values of x,y,u, and v and use these value (along with 

any applicable switch conditions) to generate a shared key in the form of the at-will size of the 

respective binomial series. This shared key will be usable for any purpose, including a one time 

pad configuration. The exchanged values could be such that if exchanged at time point T1, then 

Alice and Bob will need until time point T2 to compute the full series (the shared key). They 

could then use the shared key to exchange short lived secrets until time point T3. By properly 

choosing the values of T1, T2 and T3, Alice and Bob will insure that even if their adversary will 

right away guess the values of x, y, u and v -- he will not have time to compute the shared key 

(provided the adversary uses a computing machine with known, or properly estimated 

performance).  

Alternatively, Alice and Bob will use such values for x,y,u and v that both Alice and Bob 

may need to spend a well measured short time to compute the shared key. Albeit such measured 
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time will pose an acceptable delay. Alas, for a cryptanalyst checking a range of possibilities, this 

computing burden, spread over the range of options, will be prohibitive.  

 

3.1 Cryptanalysis of Computing Load Based Cryptography of Binomial Series 

 The shared key may be used by Alice and Bob as pseudo one time pad key, or as a 

frequently changed block cipher key, etc. But for the purpose of cryptanalysis we shall assume 

that the shared key is exposed to the adversary, who now tries to expect the following bits of the 

key string.  

Assuming a decimal representation of the key, and a full concatenation, it should be 

relatively easy for the adversary who knows that this cipher is used, to identify the rising 

monotonic series. So, if the exposed key looks like: 78126172177265276, then we assume that 

the adversary would readily list the following monotnic rising series: 78, 126, 172, 177, 265, 

276, and the adversarial task ahead is to recognize that this series is generated by: [49 : 

19]{50,300}.  

On the face of it the adversary may start to test sieve operations beginning with the period 

value of 78, and checking for x=1,2,... and y=1,2,....x, ending up with a list of candidates: [x1:y1], 

[x2:y2],...[xk:yk] that comply with the period of 78. For every x=1,2,3,.... there is some value of y 

such that [x:y]{78,78}=78, hence the value of k is as large as the examined x range. For all those 

k possibilities the cryptanalyst will compute: [xi:yi]{126,126}, and discard all the empty lists. If 

all the lists are empty, the cryptanalyst will increase the examined x range and repeat the above 

until at least one list is not empty. The non empty lists will then be examined for 

[xi:yi]{172,172}. If all the lists are empty, the cryptanalyst will have to examine higher x values, 

otherwise the next number in the list (177) will be checked, and so on, until the cryptanalyst 

finds x, y, u, and v values that are consistent with the given list. Once these values are at hand, 

the rest of the series can be computed and the cryptanalysis is complete -- unless there are more 

than one sets of x,y,u, and v that produce the same list, and the one used is different.  

In this nominal case, the size of x is the main factor for the cryptanalysis burden, since x 

can be determined by Alice and Bob they are in a good position to anticipate the lead time they 

may have before their secret is compromised. Albeit, the cryptanalyst may very well estimate the 
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size of x. The average gap between successive numbers on the binomial list is x (dictated by the 

basic theorem). By computing the average gap, the size of x may be well estimated. 

  

3.2 Countermeasures for Binomial Series Cryptanalysis:  

Alice and Bob may deny the cryptanalyst the ready estimate of the size of x, and a ready 

sieve testing of the apparent monotonic series by using a secret linear combination of several 

binomial series.  

Alice and Bob agree on the following secret values: xi, yi, ui, fi and n, for i=1,2,3...k. then 

each constructs the following linear combination: L = l1, l2,...ln. where:  

                   

   

   

 

 for j=1,2,..n 

So, for example: Alice and Bob agree on: x1 = 49, y1 = 19, u1 = 126, f1 = 2, x2=14, y2=5, 

u2 = 200, f2 = 4, n=3. They first compute the two constituent binomial series: (i) [49 : 

19]{126//3} = 126, 172, 177 and (ii): [14:5]{200//3} = 210, 211, 214 then they compute the 

members of the linear combination series:  

   l1 =   1092 = 2*126 + 4*210        l2= 1188 = 2*172 + 4*211      l3=1210 = 2*177 + 4*214   

It is easy to see that the composite series will always be rising monotonic. The 

cryptanalyst might not suspect that the series is a linear combination and try in vain to look for a 

generating pair for it. Alternatively, the cryptanalyst might not know whether the series is a 

composite of two binomial series, or more and he will have to check a prohibitive variety of 

linear combinations of proper binomial series.  

The linear combination option offers a means to reduce computation, without allowing 

brute force cryptanalysis to ease up proportionally. If Alice and Bob use a shared secret in the 

form of the range, x, and its size is 8 digits (to inhibit brute force attack), then the parties 

computation efffort will be proportional to 10
8
. If the same number is interpreted as two four 
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digits numbers that are lined in a linear combination then the computation effort will only be 

proportional to 10
4
 . The brute force approach will still have to contend with eight digits. 

 

4.0 Authentication Solutions  

The binomial series may serve Alice and Bob to 

mutually authenticate one to the other by prefacing each 

message with the next item of a secret shared BSS. An 

adversary without knowledge of the [x:y] generating pair 

will be unable to foretell the next number on the binomial 

sieve series and will be unable to pretend to either Alice 

or Bob that he is the other party. Since the series is 

infinite it can be used for long term on going 

communication, between two centers or organizations or, 

say,  between a merchant and a customer. Both parties 

will need to remember the last number they have used, and send the next number in the series for 

each message they send over to the opposite party. This procedure will also guard against loss, or 

error.  

The above described bilateral authentication may be extended to multilateral mutual 

authentication. Alice, Bob, Carla, and David may be chatting or exchanging messages with 

mutual visibility. Each party will mark every one of its messages with the next entry on the 

binomial list. There are standard means to prevent a collision that can be used here too. The 

marked messages will serve as an organizer and as a protection from a hacker who might 

otherwise pose as a proper member of the group and participate with harmful messages.  

4.1 Initial Authentication 

The binomial series can also be used for initial authentication. Alice initiates a 

conversation with Bob. Bob then needs to identify Alice. Alice and Bob may share the range, x, 

value for BSS. Bob will challenge Alice with a period of choice, p. Alice will invoke the sieve 

operation with x and p and compute the survivor s, such that [x:s]{p,p}=p. She will then compute 

the next item on the list [x:s]{p/2}, and convey it to Bob as her proof. If Bob gets the right 
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answer (which he computes much the same) then he is confident that he is communicating with 

Alice, and in reply he sends the next item: [x:s]{p/3}. Alice computes the same, and if Bob sent 

her the right number she becomes confident that she indeed communicates with Bob. Neither one 

could have responded properly without knowledge of the value of x -- the shared secret that is 

not exposed in the mutual authentication process.  

The next time around when Alice initiates a conversation, (or Bob initiates one with 

Alice), Bob will randomly choose another period p as a challenge, and same for the third 

conversation and on.  

4.2  Authentication Cryptanalysis 

 We envision an adversary privy to the challenges and the responses, trying to deduce the 

value of the range, x, so he can pose as Alice to Bob the next time around.  

Alice initiates the conversation. Let Bob's challenge be designated as b1. Alice proof be 

designated as a1, and Bob's proof to Alice as b2. The adversary knows: b1, a1, and b2. He now 

searches for a value x, so that in conjunction with 1 ≤ y ≤ x will satisfy: [x:y]{b1/1}=b1;  

[x:y]{b1/2}=a1; [x:y]{b1/3}=b2   

Since every x is associated with some value y that satisfies the b1 equation, the adversary 

will have to list the full range of possibilities for x (from x=1 to some indefinite high value for 

x). Next, the adversary will have to examine all the identified pairs (x,y) to sort out those that 

satisfy the a1 equation, and among them to find the one (or perhaps more) that also satisfy the b2 

equation. If Alice and Bob conduct more conversations based on the same shared secret x, then 

the adversary will surely have enough equations to pin point the value of x.  

It would seem that cryptanalysis is straight forward, alas the choice of the size of x may 

be such that the above cryptanalysis will last too long, and by the time it is complete, Alice and 

Bob switch to another value of x. Suppose x is chosen such that Alice and Bob will need to use 

10 seconds of computing time to develop their response. Ten seconds delay seems a reasonable 

burden for the sake of security. Now if x is limited to be up to a size of 999,999, then the 

adversary using comparable computing power will need to dedicate more than 115 days (24 

hours days) to exercise the above strategy. For a seven digit x, the cryptanalysis time is 1157 

days. Alice and Bob will surely change their shared secret by then.  
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4.3 Authentication cryptanalysis countermeasures  

There are quite a few countermeasures against the above described cryptanalysis:  

 linear combination  

 clockwise-counter clockwise switching conditions  

 skipping elements in the series  

 random initial pattern  

 variant end point  

Linear combinations, and switching conditions were discussed earlier. The other 

measures are discussed below. The implementation of these countermeasures may be done 

through method-key diffusion mode, explained ahead.  

Skipping Elements in the series:  The initial authentication procedure (as described) 

calls for Alice and Bob, each in his or her turn, providing the other with the next item on the 

respective binomial sieve list. This could be changed to any, (k-th), element on the list. Namely, 

given the shared secret, x, Bob will challenge Alice with p, leadidng Alice to compute the 

survivor S0(x,p), and then instead of proving herself to Bob by sending [x:S0(x,p)]{p/1}, she will 

send [x:S0(x,p)]{p/k} where k is also a shared secret along with x. Bob will then prove his 

identity to Alice by sending her [x:S0(x,p)]{p/(k+j)}, where j is also part of the shared secret. 

This add-on will increase the brute force analysis effort facing the adversary.  

Random Initial Pattern: for a range, x, one could attach an x bits long "mask" bit string 

such that any number from 1 to x corresponds to a single bit on the mask such that any number 

(1,2,...x) corresponding to a binary digit of value zero will be eliminated a-priori, before the 

sieve operation begins. This mask will be part of the shared secret designed to further complicate 

the task of the cryptanalyst.  

Example: Nominally we have: S0(4,3)=1, but if we mask it with binary "11" (1011), then 

the sieved range changes from 1-2-3-4 to 1-3-4 and the result Smasked(4,3)=2.  

Variant End Point: The nominal sieve operation concludes with the last survivor of the 

initial range. We can in turn stop the sieve operation earlier. We can stop it in the next to last 

surviving number, or even earlier. We can run the sieve operation with a condition to stop it 

when the counting of the period hits a prime number, or a number of any property, or 
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altarnatively to stop it after a certain number of cyclical rounds. Such variability will be part of 

the shared secret, also designed to further complicate the task of the cryptanalyst.  

 

 

4.4 Method/Key Diffusion Mode 

Traditionally cryptography has developed with a clear distinction between the method, 

(procedure, algorithm), and the cryptographic key. The former was in the open, subject to review 

and analysis and the latter comprised the complete and full secrecy of the operation. Recent 

thinking challenged this tradition (e.g. Samid 2001, YouDeny.com, US Patent 6,823,068), and 

introduced a fuzzy line between the two. While he strives to identify the key in order to crack a 

cryptogram, it is equally necessary to identify the method used. The key itself may be uncovered 

using 'brute force' but an ingenious method defies exposure by a 'dumb computer' and makes the 

cat-and-mouse 'game' between cryptographer and cryptanalyst into a pure race of imagination 

and creativity. All the countermeasures discussed here against an aggressive cryptanalysis may 

be activated or de-activated by a special data element that is part of the 'secret key'. It is true 

about the bit mask, the end point variant, the clockwise/counterclockwise shifting, etc.  

 

4.5  Hierarchy Oriented Authentication:  

 The binomial series can be used to manage communication security in a hierarchical 

organization where upper echelon people need to communicate without exposure to lower 

echelon individuals. We shall use the linear combination method. We shall describe an 

organizational configuration where the top echelon is level 0, the one below is level 1, then 

further down level 2, until level t -- the bottom one. We shall associate a shared echelon secret in 

the form of the BSS generating x and y. This will define x1, x2, ... xt.and y1, y2, ... yt.   Members 

of each echelon will be privy to all the shared secrets in all the echelon below them. When 

members of echelon i communicate with each other they will use a linear combination formula 

that includes xi, xi+1, ...xt, and yi, yi+1, ...yt and where the k-th element of the combined series is 

computed as:  
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Any communicating party will use the next item in line in the combined list, and each 

will check that the communication they receive from fellow echelon members carries the 

appropriate marker from the combined series.      Members of echelon i are unaware of xi-1  and 

yi-1 and hence cannot participate in conversations among the higher i-1 echelon. But they can 

participate in any conversation running among lower echelon agents. To address a higher 

echelon person, the lower echelon agent will use his known secrets, which are known upwardly, 

and a conversation may be struck using the same or different message counter.   

5.0 Closing Notes:  

Binomial Sieve Series are infinite in the third power: each series is infinite, for each 

range (x) there are x series, and x is any  natural number. They are generated in a „natural‟ way 

(very little arbitrariness), and their apparent lack of order is reminiscent of the disorderly 

appearance of primes in the scale of natural numbers (is there a BSS that generates a long 

enough section of the primes?). Intuitively BSS represent an enticing subject matter for research. 

But even now, when the sequence shown by BSS is a puzzle, they appear to offer an effective 

cryptographic tool, which may find its place in the growing tool box of mathematical means to 

face the challenge of handling a mutually mistrustful situation.  
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