Near Collisions for the Compress Function of Hamsi-256 Found by Genetic Algorithm

LI Yun-qiang ${ }^{\# 1}$, Wang Ai-lan ${ }^{\# 2}$
\# Electronic Technique Institute, Information Engineering University 450004 Zhengzhou, China
${ }^{1}$ yunqiangli@126.com
${ }^{2}$ yan jun_20082008@126.com

Abstract

Hamsi is one of $\mathbf{1 4}$ remaining candidates in NIST's Hash Competition for the future hash standard SHA3 and Hamsi-256 is one of four kinds of Hamsi. In this paper we present a genetic algorithm to search near collisions for the compress function of Hamsi-256, give a near collision on (256 - 20) bits and a near collision on (256-21) bits with four differences in the chaining value, and obtain a differential path for three rounds of Hamsi-256 with probability $2^{-24}, 2^{-23}$ respectively, which are better than previous work reported about near collisions. key words-Genetic Algorithm; near collisions; hash function; the SHA-3 hash function competition; the compress function of Hamsi-256; Hamsi.

I. Introduction

Hash functions are fundamental components of many cryptographic applications such as digital signatures, random number generation, integrity protection, e-cash etc. For the sake of safety, National Institute of Standards and Technology (NIST) announced the SHA-3 hash function competition to select a new cryptographic hash function to be used as the new standard [1]. In November 2008, NIST received 64 submissions, among these, 51 candidates are considered to meet the minimum submission requirements. In July 2009, NIST announced 14 second round candidates.

Hamsi [2] is one of the second round candidates of the SHA-3 competition. Hamsi includes four kinds of Hash functions, Hamsi-224, Hamsi-256, Hamsi-384 and Hamsi-512. As usual, the research is focus on the 256bit version Hamsi-256. Previous work by Nikolic reported [3] near collisions on (256-25) bits with 14 differences in the chaining value; work by Wang et al. reported [4] near collisions on ($256-23$) bits with 16 differences; work by Aumasson et al reported [5] near collisions on $(256-25)$ bits with six differences in the chaining value. In this paper we present near collisions on $(256-20)$ bits with only four differences in the chaining value by Genetic Algorithm (GA).

This paper is organized as follows. Section 2 briefly details the Hamsi-256 Hash function. Section 3 illustrates how to search near collisions for the compress function of Hamsi-256 by GA. Section 4 gives new collisions and new differential paths for three rounds compress function of Hamsi-256, which are better than previous work about near collisions. Finally, Section 5 summarizes the paper.

II. Description of the Compression Function of Hamsi-256

In this section, we give a brief overview of the compression function of Hamsi-256. For the detail version, the reader may refer to the specification of Hamsi [2].

The compression function of Hamsi-256 inputs a 32 -bit message block and a 256 -bit chaining value and outputs a 256 -bit chaining value. The function acts on a state of 512 bits, which can be considered as both a 4×4 matrix of 32 -bit words and 128 columns each consisting of 4 bits. The compression function is a three round transformation consisting of the following transformations. Addition of Constants, Substitution and Diffusion are considered as a round.

Message Expansion and Concatenation. 32-bit message block is expanded to 256 bits using a linear code $(128,16,70)$ over F_{4}. Then, the expanded message and the chaining value are concatenated to a 512 -bit internal state of Hamsi-256.

Addition of Constants. The state is XOR'ed with predefined constants and a round counter.
Substitution. Each of the 128 columns of the state goes through a 4 x 4 s-box.
Diffusion. A linear transformation L, which inputs four 32-bit words, and outputs four 32-bit words is applied to the four independent diagonals of the state.

Truncation and Feed Forward. The second and fourth row of the state is dropped and the initial CV is feedforwarded to the truncated state.

III. Using Genetic Algorithm to find Near Collisions

GA[6] is inspired by Darwin's theory about evolution and is a powerful tool for global search and optimization. It can solve nonlinear problems by searching all spaces through selection, crossover and mutation operations to obtain the optimal solution.

The compress function of Hamsi-256 is a nonlinear function and searching its near collisions is an optimal problem, so we can consider to use GA to search its near collisions. In order to use GA , we must designed how to represent a solution, evaluate a solution and produce a new solution about the optimal problem.

Encoding. Encoding process is to design how to represent a solution. The data structure of an individual is represented as follows.

```
struct individual //data structure of individual
{
    unsigned long int diff[9];
    unsigned long int bestin[9];
    int bestweight;
    double fitness;
    bool changeflag;
};
```

Where diff[9] are chromosomes of an individual and represent the input XOR's difference about a 32-bit message and a 256-bit chaining value, bestin[9] store the best input gotten which the hamming distance is smallest about their hash values for the above input difference, bestweight stores the smallest hamming distance, fitness stores the fitness value of the input difference and changeflag records whether the input difference is a new input difference or not.

Evaluation. We use differential analysis method to evaluate every individual. The differential attack is one of the main attacks to hash function and some non-random properties of Hamsi- 256 have been gotten by differential analysis [3-5,7]. The theory base of Evaluation is the fact: if an input difference has a high probability to get a near collision, using random input couples about the input difference, it's easy to find the smallest hamming distance of compress function value couples.

In order to evaluate an individual, firstly we generate a number of random input couples about the input difference. Secondly calculate the hamming distance between compress function value couples for every random input couples. Thirdly find the smallest hamming distance and the correspond input. Finally under the two cases the value of bestweight is instead of the smallest hamming distance and the values of bestin[9] are instead of the correspond input, one case is that the value of changeflag is true, the other case is that the value of changeflag is false and the smallest hamming distance is smaller than the value of bestweight.

New population. Selection, crossover and mutation are used to create a new population. The value of fitness is gotten by 257-bestweight for every individual of current population. We choose Roulette Wheel selection as selection operator, and-or crossover as crossover operator, bit inversion mutation as mutation operator. If an individual in new population isn't a copy individual for current population, the value of changeflag is instead of true.
Now we outline the genetic algorithm for searching near collisions as follows.

Algorithm 1

Step 1 Encoding.
Step 2 Generate initial population, set generation=0.
Step 3 Evaluation.
Step 4 If (generation==maximal generation) goto step 8 .
Step 5 Generate new population, generation++.
Step 6 Evaluation.
Step 7 Keep the current best individual in new population, goto step 4.
Step 8 Hill climbing starts with the current best individual.
Step 9 Output report.
Where the chromosomes are generated randomly and the value of changeflag is set true for every individual in initial population. Hill climbing only change little for the value of bestin[9] and don't change chromosomes about the current best individual.

Parameters in Algorithm 1 are set more detail as follows: the population size is 100, the crossover probability is 0.6 , the mutation probability was 0.01 , the number of random input couples generated in Evaluation process is 2^{10} and the maximal generation is 20000 .

IV. Near Collisions Found for the Compression Function of Hamsi-256

We run Algorithm 1 forty times and got a near collisions on (256-20) bits in Table 1 and a near collisions on
(256-21) bits in Table 2 with only four differences in the chaining value. The chaining value and the message are used hexadecimal representation.

From above collisions, we respectively obtain a differential path for three rounds of Hamsi-256 with probability $2^{-24}, 2^{-23}$ in Table3, Table 4 . We compare our work with previous work reported about near collisions in Table 5 without using message (chaining value) modification technique. The input and the output of Sbox are also used hexadecimal representation.

TABLE 1 A NEAR COLLISION ON (256 - 20) BITS FOR THREE ROUNDS OF HAMSI-256

TABLE2 A NEAR COLLISION ON (256-21) BITS FOR THREE ROUNDS OF HAMSI-256

TABLE 3 Differential path for three rounds of Hamsi-256 with probability 2^{-24}

round	Sbox input	Sbox output	Prob.
	00000000000000000000000000000000	00020000000000000000000000000000	
$\mathbf{1}$	00020000400000000000000000000000	00000000400000000000000000000000	2^{-6}
	00000000000000000000000000000000	00000000000000000000000000000000	
	00020000400000000000000000000000	00000000000000000000000000000000	
	00000008000000000000000000000000	00000000000000000000000000000000	
$\mathbf{2}$	00000000000000000000000000000000	0000000800000000000000000000000	2^{-3}
	00000000000000000000000000000000	00000000000000000000000000000000	
	00000000000000000000000000000000	00000008000000000000000000000000	
	00000000000080000000000000000200	00000000000000000000000000000000	
$\mathbf{3}$	00000010000000000000000000000000	00000410000080000000000000000201	2^{-15}
	00000000000000020000000000000001	00000010000000020000000000000000	
Truncate	00000400000000000000000000000000	00000400000080020000000000000201	
	$0000100000400000080 a 804040000000$		

TABLE 4 DIFFERENTIAL PATH FOR THREE ROUNDS OF HAMSI- 256 wITH PROBABILITY 2^{-23}

round	Sbox input	Sbox output	Prob.
$\mathbf{1}$	00000000000000000000000000000000	000100000000000000000000000000000	
	00010000200000000000000000000000	00000000200000000000000000000000	2^{-6}
	00000000000000000000000000000000	00000000000000000000000000000000	
$\mathbf{2}$	00010000200000000000000000000000	00000000000000000000000000000000	
	00000004000000000000000000000000	00000000000000000000000000000000	
	00000000000000000000000000000000	000000040000000000000000000000000	2^{-3}
	00000000000000000000000000000000	000000000000000000000000000000000	
$\mathbf{3}$	00000000000000000000000000000000	000000040000000000000000000000000	
	00000000000040000000000000000100	00000000000000000000000000000000	
	00000008000000000000000000000000	00000208000040000000000080000100	2^{-14}
	00000000000000010000000080000000	00000008000040000000000000000000	

TABLE 5 COMPARE OUR WORK WITH PREVIOUS WORK REPORTED ABOUT NEAR COLLISIONS

Whose work	Input difference number	Output difference number	probability
Nikolic's work	14	25	2^{-28}
Wang's work	16	23	2^{-31}
Aumasson's work	6	25	2^{-26}
Our work	4	20	2^{-24}
Our work	4	21	2^{-23}

V Summary

In this study, we present a genetic algorithm to search near collisions of the three round compress function of Hamsi-256, which is one of the 14 second round candidates of the SHA-3 competition. Using the genetic algorithm, we give a near collision on (256-20) bits and a near collision on (256-21) bits with four differences in the chaining value. Using those near collision, we obtain new differential paths which are better previous work.

The genetic algorithm can be use further. On the one hand we can use it directly to get near collision for 4,5,6 rounds compress function of Hamsi-256, on the other hand we can modify it to try to find real collisions of Hamsi-256, which is a difficult and meaning work.

References

[1] NIST. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal Register, 27(212):62212 \{62220, 2007. Available at:http://csrc.nist.gov/ groups / ST/hash/documents/FR Notice Nov07.pdf.
[2] Özgül Kücük. : The hash function Hamsi. Submission to NIST, 2008.
[3] Nikolić I. : Near collisions for the compression function of Hamsi-256. CRYPTO rump session (2009), http://rump2009.cr.yp.to/ $936779 b 3 a f b 9 b 48 a 404 b 487 d 6865091 d . p d f$.
[4] Wang, M., Wang, X., Jia, K., Wang, W.: New pseudo-near-collision attack on reduced-round of Hamsi-256.Cryptology ePrint Archive, Report 2009/484 (2009).
[5] J. P. Aumasson, E. Käsper, L.R. Knudsen et al.: Differential distinguishers for the compression function and output transformation of hamsi-256. Cryptology ePrint Archive, Report 2010/91 (2010).
[6] Xiaoping, C. Liming.: Genetic Algorithm.Theory, Application and Software Implementation.. Xi.an University of Communication Publishers. (2002) (in Chinese).
[7] Calik, C., Turan, M.S.: Message recovery and pseudo-preimage attacks on the compression function of Hamsi-256. Cryptology ePrint Archive, Report 2010/057 (2010)..

