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Abstract

Performance in hardware has been demonstrated to be an important factor in the evalu-
ation of candidates for cryptographic standards. Up to now, no consensus exists on how
such an evaluation should be performed in order to make it fair, transparent, practical, and
acceptable for the majority of the cryptographic community. In this report, we formulate
a proposal for a fair and comprehensive evaluation methodology, and apply it to the com-
parison of hardware performance of 14 Round 2 SHA-3 candidates. The most important
aspects of our methodology include the definition of clear performance metrics, the develop-
ment of a uniform and practical interface, generation of multiple sets of results for several
representative FPGA families from two major vendors, and the application of a simple
procedure to convert multiple sets of results into a single ranking. The VHDL codes for
256 and 512-bit variants of all 14 SHA-3 Round 2 candidates and the old standard SHA-2
have been developed and thoroughly verified. These codes have been then used to eval-
uate the relative performance of all aforementioned algorithms using ten modern families
of Field Programmable Gate Arrays (FPGAs) from two major vendors, Xilinx and Altera.
All algorithms have been evaluated using four performance measures: the throughput to
area ratio, throughput, area, and the execution time for short messages. Based on these
results, the 14 Round 2 SHA-3 candidates have been divided into several groups depending
on their overall performance in FPGAs.



Chapter 1

Introduction and Motivation

Starting from the Advanced Encryption Standard (AES) contest organized by NIST in
1997-2000 [1], open contests have become a method of choice for selecting cryptographic
standards in the U.S. and over the world. The AES contest in the U.S. was followed by
the NESSIE competition in Europe [2], CRYPTREC in Japan, and eSTREAM in Europe
[3].

Four typical criteria taken into account in the evaluation of candidates are: security,
performance in software, performance in hardware, and flexibility. While security is com-
monly recognized as the most important evaluation criterion, it is also a measure that is
most difficult to evaluate and quantify, especially during a relatively short period of time
reserved for the majority of contests. A typical outcome is that, after eliminating a fraction
of candidates based on security flaws, a significant number of remaining candidates fail to
demonstrate any easy to identify security weaknesses, and as a result are judged to have
adequate security.

Performance in software and hardware are next in line to clearly differentiate among
the candidates for a cryptographic standard. Interestingly, the differences among the cryp-
tographic algorithms in terms of hardware performance seem to be particularly large, and
often serve as a tiebreaker when other criteria fail to identify a clear winner. For example,
in the AES contest, the difference in hardware speed between the two fastest final candi-
dates (Serpent and Rijndael) and the slowest one (Mars) was by a factor of seven [1][4]; in
the eSTREAM competition the spread of results among the eight top candidates qualified
to the final round was by a factor of 500 in terms of speed (Trivium x64 vs. Pomaranch),
and by a factor of 30 in terms of area (Grain v1 vs. Edon80) [5][6].

At this point, the focus of the attention of the entire cryptographic community is on the
SHA-3 contest for a new hash function standard, organized by NIST [7][8]. The contest is
now in its second round, with 14 candidates remaining in the competition. The evaluation
is scheduled to continue until the second quarter of 2012.

In spite of the progress made during previous competitions, no clear and commonly
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accepted methodology exists for comparing hardware performance of cryptographic algo-
rithms [9]. The majority of the reported evaluations have been performed on an ad-hoc
basis, and focused on one particular technology and one particular family of hardware
devices. Other pitfalls included the lack of a uniform interface, performance metrics, and
optimization criteria. These pitfalls are compounded by different skills of designers, using
two different hardware description languages, and no clear way of compressing multiple
results to a single ranking. In this paper, we address all the aforementioned issues, and
propose a clear, fair, and comprehensive methodology for comparing hardware performance
of SHA-3 candidates and any future algorithms competing to become a new cryptographic
standard. Our methodology is based on the use of FPGA devices from various vendors.
The advantages of using FPGAs for comparison include short development time, wide
availability of tools, and a limited number of vendors dominating the market.

The hardware evaluation of SHA-3 candidates started shortly after announcing the
specifications and reference software implementations of 51 algorithms submitted to the
contest [7][8][10]. The majority of initial comparisons were limited to less than five can-
didates, and their results have been published at [10]. The more comprehensive efforts
became feasible only after NISTs announcement of 14 candidates qualified to the second
round of the competition in July 2009.

Since then, several comprehensive studies have been reported in the Cryptology ePrint
Archive [11][12], at the CHES 2010 workshop [13][14], and during the Second SHA-3 Candi-
date Conference [15][16][17][18]. This report is an extension of our earlier papers presented
at CHES 2010 and the SHA-3 Candidate Conference [13][16]. To our best knowledge, this
is the first report that presents the detailed block diagrams of all 14 Round 2 SHA-3 Can-
didates, and a comprehensive set of results covering two major SHA-3 variants (SHA-3-256
and SHA-3-512) implemented using 10 FPGA families from two major vendors, Xilinx and
Altera.



Chapter 2

Methodology

2.1 Choice of a Language, FPGA Devices, and Tools

Out of two major hardware description languages used in industry, VHDL and Verilog
HDL, we choose VHDL. We believe that either of the two languages is perfectly suited
for the implementation and comparison of SHA-3 candidates, as long as all candidates
are described in the same language. Using two different languages to describe different
candidates may introduce an undesired bias to the evaluation.

FPGA devices from two major vendors, Xilinx and Altera, dominate the market with
about 90% of the market share. We therefore feel that it is appropriate to focus on FPGA
devices from these two companies. In this study, we have chosen to use ten families of
FPGA devices from Xilinx and Altera. These families include two major groups, those
optimized for minimum cost (Spartan 3 from Xilinx, and Cyclone II, III, and IV from
Altera) and those optimized for high performance (Virtex 4, 5, and 6 from Xilinx, and
Stratix II, III, and IV from Altera). Within each family, we use devices with the highest
speed grade, and the largest number of pins.

As CAD tools, we have selected tools developed by FPGA vendors themselves: Xilinx
ISE Design Suite v. 12.3 (including Xilinx XST, used for synthesis) and Altera Quartus I1
v. 10.0 Subscription Edition Software.

2.2 Performance Metrics for FPGAs

Choosing proper performance metrics for the implementation of hash functions (or any
other cryptographic transformations) using FPGAs is a non-trivial task, and no clear con-
sensus exists so far on how these metrics should be defined. Below we summarize our
proposed approach, which we applied in our study.
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Speed.

In order to characterize the speed of the hardware implementation of a hash function, we
suggest using Throughput, understood as a throughput (number of input bits processed
per unit of time) for long messages. To be exact, we define Throughput using the following

formula:
block_size

T (HTime(N + 1) — HTime(N) 2.1)

Throughput =

where block_size is a message block size, characteristic for each hash function, HTime(N)
is a total number of clock cycles necessary to hash an N-block message, T is a clock period,
different and characteristic for each hardware implementation of a specific hash function.

Throughput defined this way is typically independent of N (and thus the size of the
message), as in all hash function architectures we investigated so far, the expression
HTime(N +1) — HTime(N) is a constant that corresponds to the number of clock cycles
between processing of two subsequent input blocks.

The effective throughput for short messages is always smaller, and is expressed by the

formula
N - block_size

T - HTime(N) (22)

Throughputesr =

In this paper, we provide the exact formulas for HTime(N) for each SHA-3 candidate
(see Table [£.2), and values of f = 1/T for each algorithm-FPGA device pair (see Tables
and . Therefore, we provide sufficient information to calculate and compare values
of the effective throughputs for each specific message size, which may be of interest in a
given application.

For short messages, it is more important to evaluate the total time required to process
a message of a given size (rather than throughput). The size of the message can be chosen
depending on the requirements of an application. For example, in the eBASH study of
software implementations of hash functions, execution times for all sizes of messages, from
O-bytes (empty message) to 4096 bytes, are reported, and five specific sizes 8, 64, 576, 1536,
and 4096 are featured in the tables [19]. The generic formulas we include in this paper (see
Table allow the calculation of the execution times for any message size.

In order to characterize the capability of a given hash function implementation for
processing short messages, we present in this study the comparison of execution times for
messages ranging in size from 0 to 1000 bits before padding.

Resource Utilization/Area.

Resource utilization is particularly difficult to compare fairly in FPGAs, and is often a
source of various evaluation pitfalls. First, the basic programmable block (such as CLB
slice in Xilinx FPGAs) has a different structure and different capabilities for various FPGA
families from different vendors. For example, in Virtex 5 and Virtex 6, a CLB slice includes
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four 6-input Look-Up-Tables (LUTSs); in Spartan 3 and Virtex 4, a CLB slice includes two
4-input LUTs. In Cyclone II, III, and IV, the basic programmable block is called Logic
Element (LE); in Stratix II, III, and IV, the basic programmable component has a different
structure and is called ALUT (Adaptive Look-Up Table). Taking this issue into account, we
suggest avoiding any comparisons across family lines. Secondly, all modern FPGAs include
multiple dedicated resources, which can be used to implement specific functionality. These
resources include Block RAMs (BRAMs), multipliers (MULs), and DSP units in Xilinx
FPGAs, and memory blocks, multipliers, and DSP units in Altera FPGAs. In order to
implement a specific operation, some of these resources may be interchangable, but there
is no clear conversion factor to express one resource in terms of the other.

Therefore, we suggest in the general case, treating resource utilization as a vector, with
coordinates specific to a given FPGA family. For example,

Resource_Utilizationgpartans = (#CLBslices,# BRAM s, #MU Ls) (2.3)
Resource_Utilizationcycionerrr = (#LE, #memory_bits, #MU Ls) (2.4)

Taking into account that vectors cannot be easily compared to each other, we have
decided to opt out of using any dedicated resources in the hash function implementations
used for our comparison. Thus, all coordinates of our vectors, other than the first one have
been forced (by choosing appropriate options of the synthesis and implementation tools)
to be zero. This way, our resource utilization (further referred to as Area) is characterized
using a single number, specific to the given family of FPGAs, namely the number of CLB
slices (#C LBslices) for Xilinx FPGAs, the number of Logic Elements (#LFE) for Cyclone
families, and the number of Adaptive Look-Up Tables (#ALUT) in Stratix families.

Unfortunately, in four out of ten families, namely Cyclone II, Cyclone III, Cyclone IV,
and Stratix II, the complete elimination of the use of memory blocks is very difficult, and
might require a substantial redesign of the circuit. This is because these families have
no concept of distributed memory, i.e., memory implemented inside of basic configurable
building blocks of Altera FPGAs, such as Logic Elements or Adaptive Look-Up Tables.
As a result, each time memory is inferred by the VHDL code, this memory is implemented
using memory blocks characteristic for a given family (of the size of 4 kbits in Cyclone II,
9 kbits in Cyclone III and IV, and of the sizes of 512 bytes, 4 kbits, or 512 kbits in Stratix
IT). In our analysis below we neglect these memory requirements, as typically they amount
to a relatively small percentage of memory resources available in target FPGAs.

The resource utilization vector in FPGAs (or even its simplified one-coordinate form,
referred to as Area above) cannot be easily translated to an equivalent area or the number
of transistors in ASICs. Any attempts to define a resource utilization unit that would apply
to both technologies (such as an equivalent logic gate) have been mostly unsuccessful, and
of limited value in practice. The only common denominator is cost, but unfortunately the
prices of integrated circuits, and FPGAs in particular, are not commonly available, and
are affected by multiple non-technical factors (including the number of units ordered, the
relationship between companies, etc.)
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2.3 Uniform Interface

In order to remove any ambiguity in the definition of our hardware cores for SHA-3 candi-
dates, and in order to make our implementations as practical as possible, we have developed
an interface shown in Fig. [2.1h, and described below. In a typical scenario, the SHA core
is assumed to be surrounded by two standard FIFO modules: Input FIFO and Output
FIFO, as shown in Fig. [2.1p. In this configuration, SHA core is an active module, while
a surrounding logic (FIFOs) is passive. Passive logic is much easier to implement, and in
our case is composed of standard logic components, FIFOs, available in any major library
of IP cores.

Each FIFO module generates signals empty and full, which indicate that the FIFO
is empty and/or full, respectively. Each FIFO accepts control signals write and read,
indicating that the FIFO is being written to and/or read from, respectively.

The aforementioned assumptions about the use of FIFOs as surrounding modules are
very natural and easy to meet. For example, if a SHA core implemented on an FPGA
communicates with an outside world using PCI, PCI-X, or PCle interface, the implemen-
tations of these interfaces most likely already include Input and Output FIFOs, which can
be directly connected to a SHA core. If a SHA core communicates with another core im-
plemented on the same FPGA, then FIFOs are often used on the boundary between the
two cores in order to accommodate for any differences between the rate of generating data
by one core and the rate of accepting data by another core.

Additionally, the inputs and outputs of our proposed SHA core interface do not need to
be necessarily generated/consumed by FIFOs. Any circuit that can support control signals
src_ready and src_read can be used as a source of data. Any circuit that can support control
signals dst_ready and dst_write can be used as a destination for data.

The exact format of an input to the SHA core, for the case of pre-padded messages,
is shown in Fig. Two scenarios of operation are supported. In the first scenario,
the message bitlength after padding is known in advance and is smaller than 2%. In this
scenario, shown in Fig.[2.2h, the first word of input represents message length after padding,

clk rst clk rst clk rst clk rst

S o || ||

clk rst ck st clk  rst clk rst
SHA core Input SHA core Output
) FIFO FIFO
w w ext_idata idata _ odata ext_odata
—f—| din dout (s ———F(din dout ’Iw din dout /—din  dout o
w w
fifoin_full fifoin_empty fifoout_full fifoout_empty
——d src_ready  dst_ready pe— +———full empty ———o 5 src_ready dst_ready full empty
. fifoin_write fifoin_read | fifoout_write fifoout_read
«— src_read dst_write f—  ——_lwrite read src_read dst_write write read —

Figure 2.1: a) Input/output interface of a SHA core. b) A typical configuration of a SHA
core connected to two surrounding FIFOs.
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a) b)
w bits w bits
msg_len |last=1 seg_0_len | last=0
msg_len_bp

seg_0

seg_1_len | last=0

message
seg_1

seg_n-1_len | last=1
seg_n-1_len_bp

seg_n-1

Figure 2.2: Format of input data for two different operation scenarios: a) with message
bitlength known in advance, and b) with message bitlength unknown in advance. Nota-
tion: msg_len — message length after padding, msg_len_bp — message length before padding,
seg_i_len — segment i length after padding, seg_i_len_bp — segment i length before padding,
last — a one-bit flag denoting the last segment of the message (or one-segment message),
“|” — bitwise OR.

expressed in bits. This word has the least significant bit, representing a flag called last, set
to one. This word is followed by the message length before padding. This value is required
by several SHA-3 algorithms using internal counters (such as BLAKE, ECHO, Shavite-3,
and Skein), even if padding is done outside of the SHA core. These two control words are
followed by all words of the message.

The second format, shown in Fig. [2:2b, is used when either message length is not known
in advance, or it is greater than 2. In this case, the message is processed in segments
of data denoted as seg 0, seg_1,...,seg_n-1. For the ease of processing data by the hash
core, the size of the segments, from seg 0 to seg_n-2 is required to be always an integer
multiple of the block size b, and thus also of the word size w. The least significant bit of
the segment length expressed in bits is thus naturally zero, and this bit, treated as a flag
called last, can be used to differentiate between the last segment and all previous segments
of the message. The last segment before padding can be of arbitrary length < 2*. This
segment is processed in the same way as the entire message in scenario a). This way there
is no need for any additional signal to distinguish between these two scenarios. Scenario a)
is a special case of scenario b). In case the SHA core supports padding, the protocol can
be even simpler, as explained in [20].

Please note that scenario b) is very similar to the way data is processed by a typical
software API for hash functions, such as [21]. The Update function of the software API
corresponds to processing segments from seg_0 to seg_n-2. The function Final corresponds
to the processing of the last segment of data, seg_n-1.
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2.4 Assumptions and Simplifications

Our study is performed using the following assumptions. Only the SHA-3 candidate vari-
ants with the 256-bit and the 512-bit outputs have been implemented and compared at this
point. Other variants, treated either independently or as combinations of multiple variants
(all-in-one hash cores) may be subjects of future comparisons.

Padding is assumed to be done outside of the hash cores (e.g., in software). All in-
vestigated hash functions have very similar padding schemes, which would lead to similar
absolute area overhead if implemented as a part of the hardware core. The relative area
penalty will be higher for cores with smaller area used for main processing. The complexity
of the padding circuit will also depend on the assumptions regarding the smallest unit of
a message (bit, byte, or word), which may be different for specific applications.

Only the primary mode of operation is supported for all functions. Special modes, such
as tree hashing or MAC mode are not implemented (their implementation would actually
work against the respective candidates, because of the area and speed penalty introduced
by these extra features). There is also no support for providing salt specific to each message.
The salt values are fixed to all zeros in all SHA-3 candidates supporting this special input
(namely BLAKE, ECHO, SHAvite-3, and Skein).

2.5 Optimization Target

We believe that the choice of the primary optimization target is one of the most important
decisions that needs to be made before the start of the comparison. The optimization target
should drive the design process of every SHA-3 candidate, and it should also be used as
a primary factor in ranking the obtained SHA-3 cores. The most common choices are:
Maximum Throughput, Minimum Latency, Minimum Area, Throughput to Area Ratio,
Product of Latency times Area, etc.

Our choice is the Throughput to Area Ratio, where Throughput is defined as Through-
put for long messages, and Area is expressed in terms of the number of basic programmable
logic blocks specific to a given FPGA family. This choice has multiple advantages. First,
it is practical, as hardware cores are typically applied in situations, where the size of the
processed data is significant and the speed of processing is essential. Otherwise, the in-
put/output latency overhead associated with using a hardware accelerator dominates the
total processing time, and the cost of using dedicated hardware (FPGA) is not justified.
Optimizing for the best ratio provides a good balance between the speed and the cost of
the solution.

Secondly, this optimization criterion is a very reliable guide throughout the entire design
process. At every junction where the decisions must be made, starting from the choice of a
high-level hardware architecture down to the choice of the particular FPGA tool options,
this criterion facilitates the decision process, leaving very few possible paths for further
investigation.
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On the contrary, optimizing for Throughput alone, leads to highly unrolled hash func-
tion architectures, in which a relatively minor improvement in speed is associated with
a major increase in the circuit area. In hash function cores, latency, defined as a delay
between providing an input and obtaining the corresponding output, is a function of the
input size. Since various sizes may be most common in specific applications, this parameter
is not a well-defined optimization target. Finally, optimizing for area leads to highly se-
quential designs, resembling small general-purpose microprocessors, and the final product
depends highly on the maximum amount of area (e.g., a particular FPGA device) assumed
to be available.

2.6 Design Methodology

Our design of all 14 SHA-3 candidates followed an identical design methodology. Each
SHA core is composed of the Datapath and the Controller. The Controller is implemented
using three main Finite State Machines, working in parallel, and responsible for the Input,
Main Processing, and the Output, respectively. As a result, each circuit can simultaneously
perform the following three tasks: output hash value for the previous message, process a
current block of data, and read the next block of data. The parameters of the interface are
selected in such a way that the time necessary to process one block of data is always larger
or equal to the time necessary to read the next block of data. This way, the processing of
long streams of data can happen at full speed, without any visible input interface overhead.
The finite state machines responsible for input and output are almost identical for all hash
function candidates; the third state machine, responsible for main data processing, is based
on a similar template. The similarity of all designs and reuse of common building blocks
assures a high fairness of the comparison.

The design of the Datapath starts from the high level architecture. At this point, the
most complex task that can be executed in an iterative fashion, with the minimum overhead
associated with multiplexing inputs specific to a given iteration round, is identified. The
proper choice of such a task is very important, as it determines both the number of clock
cycles per block of the message and the circuit critical path (minimum clock period).

It should be stressed that the choice of the most complex task that can be executed in
an iterative fashion should not follow blindly the specification of a function. In particular,
quite often one round (or one step) from the description of the algorithm is not the most
suitable component to be iterated in hardware. Either multiple rounds (steps) or fractions
thereof may be more appropriate. In Table we summarize our choices of the main
iterative tasks of SHA-3 candidates. Each such task is implemented as combinational
logic, surrounded by registers.

The next step is an efficient implementation of each combinational block within the
DataPath. In Table we summarize major operations of all SHA-3 candidates that
require logic resources in hardware implementations. Fixed shifts, fixed rotations, and
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Table 2.1: Main iterative tasks of the hardware architectures of SHA-3 candidates opti-
mized for the maximum Throughput to Area ratio

Function Main Iterative Task Function Main Iterative Task
BLAKE G;..Giy3 JH Round function Rg
BMW entire function Keccak Round R
CubeHash one round Luffa The Step Function, Step
ECHO AES round/AES round/ Shabal Two iterations
BIG.SHIFTROWS, BIG.MIXCOLUMNS of the main loop
Fugue 2 subrounds SHAvite-3 AES round
(ROR3, CMIX, SMIX)
Groestl Modified AES round SIMD 4 steps of the
compression function
Hamsi Truncated Non-Linear Skein 4 rounds of
Permutation P Threefish-512

Table 2.2: Major operations of SHA-3 candidates (other than permutations, fixed shifts
and fixed rotations). mADDn denotes a multioperand addition with n operands.

Function NTT | Linear | S-box GF MUL MUL mADD ADD Boolean
code /SUB
BLAKE mADD3 ADD XOR
BMW mADD17 | ADD,SUB XOR
CubeHash ADD XOR
ECHO AES 8x8 x02, x03 XOR
Fugue AES 8x8 x04..x07 XOR
Groestl AES 8x8 | x02..x05, 0x07 XOR
Hamsi LC Serpent XOR
4x4

JH 4x4 x2, x5 XOR
Keccak NOT,AND,XOR
Luffa 4x4 x02 XOR
Shabal x3, xb ADD,SUB | NOT,AND,XOR
SHAVvite-3 AES 8x8 x02, x03 NOT,XOR
SIMD NTT x185, x233 | mADD3 ADD NOT,AND,OR
Skein ADD XOR
SHA-256 mADD5 NOT,AND,XOR
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other more complex permutations are omitted because they appear in all candidates and
require only routing resources (programmable interconnects). The most complex out of
logic operations are the Number Theoretic Transform (NTT) [22] in SIMD, linear code (LC)
[23] in Hamsi, basic operations of AES (8x8 AES S-box and multiplication by a constant
in the Galois Field GF(2%)) in ECHO, Fugue, Groestl, and SHAvite-3; and multioperand
additions in BLAKE, BMW, SIMD, and SHA-256.

For each of these operations we have implemented at least two alternative architectures.
NTT was optimized by using a Fast Fourier Transform (FFT) [22]. In Hamsi, the linear
code was implemented using both logic (matrix by vector multiplications in GF(4)), and
using look-up tables. AES 8x8 S-boxes (SubBytes) were implemented using both look-up
tables (stored in distributed memories), and using logic only (following method described
n [24], Section 10.6.1.3). Multi-operand additions were implemented using the following
four methods: carry save adders (CSA), tree of two operand adders, parallel counter, and
a “+” in VHDL [25]). Finally, integer multiplications by 3 and 5 in Shabal have been
replaced by a fixed shift and addition.

All optimized implementations of basic operations have been applied uniformly to all
SHA-3 candidates. In case the initial testing did not provide a strong indication of supe-
riority of one of the alternative methods, the entire hash function unit was implemented
using two alternative versions of the basic operation code, and the results for a version
with the better throughput to area ratio have been listed in the result tables.

All VHDL codes have been thoroughly verified using a universal testbench, capable
of testing an arbitrary hash function core that follows interface described in Section
[26]. A special padding script was developed in Perl in order to pad messages included in
the Known Answer Test (KAT) files distributed as a part of each candidates submission
package. An output from the script follows a similar format as its input, but includes
apart from padding bits also the lengths of the message segments, defined in Section [2.3
and shown schematically in Fig. 2.2b. The generation of a large number of results was
facilitated by an open source tool ATHENa (Automated Tool for Hardware EvaluatioN)
[26]. This benchmarking environment was also used to optimize requested synthesis and
implementation frequencies and other tool options.



Chapter 3

Comprehensive Designs of SHA-3
Candidates

The designs of all 14 SHA-3 candidates followed the same basic design principle with the
core separated into two main units, the Datapath and the Controller. Only the Datapath
diagrams are provided in this chapter as the Controller can be derived from the Datapath
and the specification of the function, and described using ASM charts. The full specification
of each of the algorithms can be found in [27-41].

3.1 Notations and Symbols

Table provides the notation and symbols that are being used throughout this chapter.

13
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Table 3.1: Notations and Symbols

Word A group of bits used in arithmetic and logic operations, typically
of the size of 32 or 64 bits.
Block A group of words.
Xi] Refers to an array position i in X.
X; Refers to a bit position i in X.
salt Salt values are always assumed to be zero and as a result they are
omitted from the diagrams.
b Block size in bits.
h Hash value size in bits.
w Word size in bits.
1A% Initialization vector
SEXT Sign extension.
ZEXT Zero extension.
<<<R Rotation left by R positions. If R is a constant: fixed rotation;
if R is a variable: variable rotation implemented using a barrel
rotator.
>>>R Rotation right by R positions. If R is a constant: fixed rotation;
if R is a variable: variable rotation implemented using a barrel
rotator.
<<S Shift left by S positions. If S is a constant: fixed shift; if S is a
variable: variable shift implemented using a barrel shifter.
>>S Shift right by S positions. If S is a constant: fixed shift; if S is a
variable: variable shift implemented using a barrel shifter.
I Concatenation. By default, the buses concatenate back to the
same arrangement as before the separation (split) occurs.
SIPO

Serial-in-parallel-out unit.

PISO

Parallel-in-serial-out unit.

switch
endian word

Wordwise endianness switching.

switch
endian byte

Bytewise endianness switching.
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3.2 Basic Component Description
This section describes implementations of selected basic components used in more than

one algorithm. These components include multiplication by 2 in GF(2%), SubBytes, Mix-
Columns, and AES Round.

3.2.1 Multiplication by 2 in the Galois Field GF(2®)

X[7]

161 v17)

05 v/6]

X[4] YI5]

31 Yi4]

X[2] Y/3]

Y[2]

X[1]

——Y/1]

Y[0]

X[o]

Figure 3.1: Basic : x2

3.2.2 Multiplication by n in the Galois Field GF(2?)

Galois Field multiplication by n other than 2 is summarized in Table

Table 3.2: Galois Field Multiplication by n
x3(X) =x2(X) @ X
x4(X) = x2(x2(X))
x5(X) = x4(X) & X
x6(X) = x4(X) & x2(X)
x7(X) = x4(X) @ x3(X)
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3.2.3 AES

AES is a basic building block of many SHA-3 candidates. An AES round consists of three
basic operations, SubBytes, ShiftRows, and MixColumns as shown in Figure The Sub-
Bytes operation, shown in Figure [3.3] performs direct substitution on all bytes of its input.
MixColumns performs multiplication of a constant 4x4 matrix by each word of its input.
A word of AES contains 32 bits or 4 bytes. Hence, four instances of MC (MixColumn) are
required to process the entire AES block of 128 bits, as shown in Figure [3:4. The SBOX
and ShiftBytes operations of AES and their full specifications can be found in [42] and [43].

X

{128

SubBytes
ShiftRows

MixColumns

12
Y

8
E 128 key

128

y
Y

Figure 3.2: Basic : AES Round
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128

i

XOly S X[15Ty
AES AES
SBOX g L L SBOX

yio]

y

Figure 3.3: Basic : AES SubBytes
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a) %

x[0] x[1] x[2] x[3]
32 32 32 32
Y Y Y Y
MC MC MC MC
32 32 32 32
y[0] Y —( NT—— vy y[3]
128
y
b) Note : All buses are 8—bit wide
b0 bl b2 b3

| | | |

el
[\

Y
()3 * ®
\
Wary
* N
Y
¢ -\
=-\1/
Y
=
-]/
Y \ Y Y
b0’ b0’ b2’ b3’

Figure 3.4: Basic : AES MixColumns. a) Applying MixColumns to the entire AES block,
and b) MC: Applying MixColumns to a single word.
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3.3 BLAKE

3.3.1 Block Diagram Description

Figure [3.5| shows the datapath of BLAKE. In this design, the combinational CORE im-
plements one half of the BLAKE’s round [27]. Thus, two clock cycles are necessary to
implement the full round. First, a message block is loaded into SIPO. Once done, the
block is stored in a temporary register, used to hold the message block until this block is
fully processed by the CORE. This temporary register allows the next message block to
be loaded simultaneously into SIPO. The message block msg and the constant ¢ are then
applied as inputs to the function PERMUTE and the obtained output is passed to the
design’s CORE. Simultaneously, the chaining value, CV, is initialized with the the Initial-
ization Vector, I'V, and an input to the CORE, V| is initialized with the value dependent
on the chaining value, the counter, ¢, and a lower half of the constant ¢. The initial value
of V is mixed by the CORE with an output of the block PERMUTE, CM, for twenty
clock cycles (10 rounds). Once this operation is completed, an additional clock cycle is
required for finalization. The output of Finalization is used as the next chaining value, for
intermediate message blocks, or as the final hash value for the last message block.
The Initialization unit performs the following function:

o[0] 1] 0[2] 0[] h[0] h[1] - h[2] h[3]
ofd] w5 6] w[7] | [ h[4] h[5]  h[6] A[7]
v[8]  w[9] w[10] w[11] c[0] c[1] cl2] ¢[3]
v[12] w[13] wv[14] v[15] t[0] @ c[4] t[1]®c[5] c[6] 7]

R'[0] < h[0] & v[0] @ v[8]

R[1] — h[1] ® v[1] & v[9]

h'[2] < h[2] & v[2] © v[10]
h'[3] < h[3] ® v[3] ® v[11]
h'[4] « h[4] ® v[4] ® v[12]
h'[5] < h[5] ® v[5] ® v[13]
h'[6] «— h[6] ® v[6] & v[14]
R'[7] — h[7] @ v[7] & v[15].

In Figure [3.6] an operation of the BLAKE’s PERMUTE module is presented. A new
value of the variable m is selected depending on the round number using a wide multiplexer
preceded by constant permutations. A permutation table is shown in Table The
selection signal of the multiplexer cycles from 0 to 19 (and then again back to 0 for BLAKE-
64) until all BLAKE’s rounds are executed. Each output of the multiplexer is then mixed
with the respective constant using the transformation XOR_-W_CROSS (defined in the
note to Fig. and registered afterwards.
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BLAKE-32 : b=512, h=256
BLAKE-64 : b=1024, h=512

b/2

C
\]
c[0..7] w2 Initialization
din [ 4 > C v
Ccv
64%
b b
SIPO | B | b2
10/
° b
\ v
b2
Y Y
msg constant v
b/2 b2
M > - CORE
PERMUTE "
b
b
\]
1 : . hl
Flnahzipon - 7~

b/2

b/2

PISO

){64

dout

Figure 3.5: BLAKE : Datapath
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Table 3.3: BLAKE : Permutation Constants

ht low
ool 0 1 2 3 4 5 6 7|8 9 10 11 12 13 14 15
oy |14 10 4 & 9 15 13 6|1 12 0O 2 11 7 5 3
oy |11 &8 12 0 5 2 15 13|10 14 3 6 7 1 9 4
o3| 7 9 3 1 13 12 11 14|12 6 5 10 4 0 15 8
o419 O 5 7 2 4 10 15|14 1 11 12 6 8 3 13
o5 | 2 12 6 10 1 8 3|14 13 7 5 15 14 1 9
og |12 5 1 15 14 13 4 10|10 7 6 3 9 2 8 11
o7 |13 11 7 14 12 1 3 9|5 0 15 4 8 6 2 10
og | 6 15 14 9 11 3 O &8 |12 2 13 7 1 4 10 5
o9 |10 2 8 4 7 6 1 5|15 11 9 14 3 12 13 0

The CORE unit is shown in Figure and represents one half of the BLAKE’s round.
As specified in [27], there are two levels of G functions and therefore a permutation between
the first and the second half-round is required. This permutation is performed wordwise
and is shown in Table LVL2 transforms the state matrix (output of 4 parallel G
functions) into a new matrix appropriate for the second half-round. LVL1 is a permutation
inverse to LVL2.

Table 3.4: Blake : Half Round Permutations
LVL2 (forward)

6 v 8 9 10 11 12 13 14 15
7T 4 10 11 8 9 16 12 13 14

input |0 1
output | 0 1

)
6

LVL1 (inverse)
6 7 8 9 10 11 12 13 14 15

input | 0 )
4 5 6 10 11 8 9 13 14 15 12

output | 0

2 3 4
2 37

The G-function in the CORE unit is shown in Figure Note that the XOR oper-
ations used to calculate input values C'Ms; and C'My;41, which are normally depicted as
a part of the G-function, are omitted in our design. These operations were placed as a
part of the PERMUTE unit and therefore skipped here. R1, R2, R3 and R4 are rotating
constants. The values of these constants are shown in Table [B.5

3.3.2 256 vs. 512 Variant Differences

BLAKE-64 doubles the word size of BLAKE-32, thereby increasing the block size as well.
Hence, the IV and the constant are changed from 512 bits to 1024 bits. These values can
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msg BLAKE-32 : b=512,w=32 constant
BLAKE-64 : b=1024,w=64

. small_permute

g b
b b b b 1 b b
\ \
Poou Poiw Poou v
: | —~— small_permute
P O 010w e o o P O 8iow P O9iow 1 5 p
b2 A b2 A b2 b2 A b2 A b2
\ \ \ \ \ \ .
0o 1 2 17 18 19 /<"1
"""""""""""" b/2 b2
- XOR_W | o
i m CROSS c
. Note: :
- hi and low denotes top and bottom b2
- half of the permutation table :
" m=m[0.7]  c¢=c[0.7] : M
oMy = my, Do, :
emy = my,, b i

Figure 3.6: BLAKE : PERMUTE

Table 3.5: BLAKE : Rotation Constants of BLAKE-32
R1 | R2| R3 | R4

16 | 12 8 7

be found in Section 2.2.1 of [27]. BLAKE-64 introduces also an increase in the number of
mixing rounds from 10 to 14. As a result, the number of clock cycles required in our design
for processing a single block of message increases from 21 to 29. The multiplexer selection
signal in the PERMUTE unit loops back when the round number reaches 10. Hence, after
reaching 19, this selection signal goes back to 0. Finally, the rotation constants are adjusted
to reflect the increased word size. These values are described in Table [B.6
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V(0]

VI8]

Vi4] | VI12]
Ly
A B C D

CM[0,1] —<=

em  G_function
F

b/4

V(1]

V9]

V[5] | VI13]
I dh
A B C D

CM[2,3]

em G_function
F

b/4

Vi2]

J( V[G]J( Vi14]

v[10]

CM[4,5] 5=

A B C D

em G_function
F

V3]

23

V[11]

V(7] | V[15]
ik
A B C D

CM[6,7] 5=

em G_function
F

b/4

BLAKE-32 : b=512, w=32

BLAKE-64 : b=1024, w=64 LVL2 LVLI1
w=b/16 permute permute
b
wp
Figure 3.7: BLAKE : CORE
CMai CMai+1
g . BLAKE-32 : w=32
BLAKE-64 : w=64
M1, [T1
A O v g v
] 3 i
2] v
B — N m . NwEeaViEs
\Y v e
v v v " T o
c 11 [T
w L T7w W L] w
— o
D A | #] ] #]
w N v w 7w m W
V] \Y

Figure 3.8: BLAKE : G-function

Table 3.6: BLAKE: Rotating Constants of BLAKE-64

R1 | R2

R3 | R4

32 | 25

16 | 11
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3.4 Blue Midnight Wish (BMW)

3.4.1 Block Diagram Description

Our design for Blue Midnight Wish (BMW) hashes a block of data within one clock cycle.
Since the number of clock cycles necessary to read a block of a message is greater than
the number of clock cycles required to hash it, an additional clock signal is used in the
circuit as shown in Figure This faster clock (io_clk) is used to drive the SIPO and
PISO units, allowing them to read and write data at a faster rate than the operation of
other units in the circuit. The rate of reading and writing is determined by the block size
and the number of cycles required to process a block. Since only one clock cycle is used
to process a message block, the frequency of io_clk is block_size/word_size times higher
than the main clock. This ratio is equal to 8 for BMW-256. BMW requires each message
block to go through the endianness switching before the start of processing. A message
block is then mixed with the chaining value in order to obtain the next chaining value.
Once all blocks of the message are processed, a finalization round is initiated. Since there
is no incoming message block, the chaining value and the input message block are replaced
by the constant and the chaining value, respectively. The descriptions of FO, F1, F2 and
AddElements and its associated logical operations can be found in Table 1.3 and Table
2.2-2.4 in [28].

3.4.2 256 vs. 512 Variant Differences

BMW-512 increases the word size of BMW-256 from 32 to 64 bits. As a result, the block
size is doubled as well. Since the block size increases, the number of clock cycles required
to load a message block also increases for io_clk from 8 cycles to 16 cycles. Furthermore,
logic functions, specifically shifts and rotations, are adjusted to accommodate the increased
word size. These changes are shown in Table 1.3 of [28]. All other operations remain the
same.
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din
BMW-256 : b=512, h=256, w=32 e4$
BMW-512 : b=1024, h=512, w=64

io_clk—p STPO

switch
endian word
b b
Y \
\1_0/
b
b
Y b
L J
Ccv ) b
b "1 FO M $
b b qa
/‘ b
\
H M b a
A - A F1 b b
AddElement
gb
b
a 92 -
F2 v L
hp -
» hp
L J
h
hp b-1..b-h
switch
endian word
h
Y

io_clk—P PISO

64

dout

Figure 3.9: BMW : Datapath
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3.5 CubeHash

3.5.1 Block Diagram Description

A straightforward iterative architecture is used in our design. The datapath of CubeHash
is shown in Figure Due to endianness issue, the input message is required to go
through endianness switching twice. First, the bytewise endianness switching is applied,
which is then followed by the wordwise endianness switching. A word of CubeHash consists
of 32 bits.

For each message, the chaining value A is initialized to IV. The 256 leftmost bits of
the chaining value are xored with an input message block. The state is then transformed
for 16 rounds. A round is described in Figure Swaps used inside of the round are
described in Figure All operations inside the round are performed wordwise. This
process repeats until all message blocks are processed. In the last round of the last message
block, an integer one is xored with the position zero of the chaining value, rp, by activating
the control signal final before the chaining value is inserted back into the state register.
Then, the chaining value is transformed for 160 rounds to get the final hash value. The
hash value is required to go through the endianness switching process again to reach the
correct hash output.

3.5.2 256 vs. 512 Variant Differences

Everything is the same for both variants with the exception of truncation size. CubeHash16/32-
256 truncates the state to 256 bits to obtain the hash value, as opposed to CubeHash16/32-
512 which truncates the state to 512 bits.
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din CubeHash16/32-256 : h=256
% CubeHash16/32-512 : h=512
64
- v
switch
endian byte
64
\i
SIPO A=BIIC 1024
C Ip’= 1P, s, lirpy
(0 256 ZEros
switch 256 768 QD<_,
endian word %6 o b P

D=B’IIC - 69

dout
/‘1164

PISO 1024 P, )
\ i final
h
switch 1024
endian byte ROUND
A p
2 t
h 5 g 1024 p
EE| n
g
© L SN

Figure 3.10: CubeHash : Datapath

27
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Note : All operations are performed wordwise, with w=32

> < = 9
512 512 512 512 512
v 8 2D v B A
L0 v 5 _/ v 3 _/ 512
- \Y »n \ \Y wn Psi1.0
512
\
1024 N 1024
r ——9 512 512 512 512 QHL“P
A
. 512 ‘ sizh T3 512
1023.512 m a
[ ] el & [ ] o | o
L] 512 Sylsell] 512 S
7 )

Figure 3.11: CubeHash : Round

o 1 2 3 0,1 ,2 ,3
4 5 6 7] 4:5 :6:7
8 9 10 11 8 19 110 111
12 13 14 15 12 :13 :14 :15
\_/
SwapC SwapD
C_g__l__2___3_ 0,1 2, 3
4 5 6 7] 4 :5 :6: 7
_8___9__1(2_11_ 8 19 1101 11
Clz 13 14 15 12:13 :14:15

Note : Each index is 32—bit wide

Figure 3.12: CubeHash : Swaps
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3.6 ECHO

3.6.1 Block Diagram Description

ECHO’s top level datapath is shown in Figure A message block is first concatenated
with the chaining value to produce the state matrix. The state matrix is viewed as an array
of 16 words with each word representing 128 bits. The state then goes through 8 iterations
of the ECHO Round. Note that ¢ represents the number of bits hashed so far. This value
also includes bits of the currently processed block. Once the state matrix is thoroughly
mixed, a new chaining value is computed from the state matrix by the BIG.Final unit.

This operation is described as follows:

v'[0] < v[0] ® m[0] ® m[4] ® m[8] &
V'[1] «— v[1] @ m[1] & m[5] ® m[9] ®
V'[2] — v[2] ® m[2] & m[6] ® m[10] &
V'[3] «— v[3] ® m[3] & m[7] & m[11] &
. O M p 64
din =~ & ® > m v —~= dout
64 n P Té
£
9
R vl
ECHO-256:
p=1536 ﬁf
q=>512
2048
% >
25
[ONe)
ECHO-512 : —
p=1024
q=1024
q

Figure 3.13: ECHO : Datapath

In Figure [3.14] operations inside of the ECHO round are shown. In our design, each
ECHO round is executed in three clock cycles. BIG.SubBytes is performed in the first two
clock cycles and BIG.ShiftRows and BIG.MixColumns in the third cycle. BigSubBytes
operation is shown in Figure |3.15] The unit takes in the state matrix and the message
length counter, ¢, and produces the next state. In the first clock cycle of the round



30

E. Homsirikamol, M. Rogawski, and K. Gaj

c
64 2048
Y
C X
BIG.SubBytes

y

2048

X
% 2048

2048

Y

X

BIG.ShiftRows
y

X

BIG.MixColumns
y

2048

Figure 3.14: ECHO : Round

operation, the key is chosen to be the length counter plus the numbers between 0 and 15.
These added values follow the word number. Hence, the fourteenth word gets the key as
¢+ 14. In the next cycle, salt is selected as the key. Since in our implementation, salt is

not used, zero is selected instead.

x[0]
, key=c’ll0 128
64 c
zeros 02 o
1|64 64 AES
o o 07‘> key found

2
c 128
64
}( 64

Zeros

28 128 128
key=c’ll0

Zeros

Figure 3.15: ECHO : BIG.SubBytes

c’ 64
X <’ 7E108
AES 64 64 |1
° round key <74@ o Lss o
128 .A - ¢
64/1/ /1/

15

Two operations are performed in the third cycle of a round. First, BIG.ShiftRows is
performed. This operation is equivalent to the word permutation given in Table Next,
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BIG.MixColumns transforms the permuted state to obtain the final value of a round. In
Figure [3.16] a diagram of BIG.MixColumns is shown. BIG.MixColumns separates the
state into 4 blocks, each block containing 4 128-bit words. A byte of data from each word
is selected to go through the AES MixColumns. All data is then combined together to

produce the final state.

Table 3.7: ECHO : BIG.ShiftRows
Word o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Permuted Word | O 5 10 15 4 9 14 3 &8 13 2 7 12 1 6 11

Note: Buses size are 8—bit wide unless specified otherwise

+H

2048

X [0]
512 X[1] X[2] X[3]
R D G .
fMC 128 128 128 128 1 512 512 512
: X’[0] X’[1] X’[2] X’[3]
‘0-.-15‘ ‘0---15‘ ‘0000]5‘ ‘0...[5
[ | | | L
1 T
* T
© | b0 b1 b2 b3 b0 bl b2 b3 :
1 AES L] ® L] AES 1
- MixColumn MixColumn : MC MC MC
© | b0 b1’ b2 b3 b0’ b’ b2’ b3’
| !J i
. - 512 512 512
1]
yior A5 y yi2l .
Cor ) -
12048
y

Figure 3.16: ECHO : BIG.MixColumns

3.6.2 256 vs. 512 Variant Differences

ECHO-512 differs from ECHO-256 in its message block and chaining value sizes. The
message block is reduced from 1536 bits to 1024. On the other hand, the chaining value is
increased from 512 to 1024 bits. The number of rounds changes from 8 to 10. All other
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operations, except BIG.Final, remain the same. The BIG.Final operation of ECHO-512 is

described below:

PR e A A e )

— i — — —

Pl S i B i e

~ -~ -~ ~ ~ =
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3.7 Fugue

3.7.1 Block Diagram Description

Fugue-256 : b=960, h=256 size of Os : b—h
Fugue-512: b=1152, h=512 size of IV : h
din
b { 32
Y
Word b ' din
Selection °[= F ROUND
s’ p
N OsllIV
' ECE .
b \i Y
PISO 1 0/

Figure 3.17: Fugue : Datapath

In Figure [3.17 the datapath of Fugue is shown. For every message, the state register
is initialized to zeros concatenated with the h-bit IV. The state is viewed as a matrix of
4 by X bytes, where X is the number of columns in the matrix, dependent on the block
size of Fugue. For Fugue-256, the block size is equal to 960 bits. Hence, the matrix have
dimensions 4 x 30. The state is mixed with input message blocks through the ROUND
unit. Once all message blocks are processed, the state goes through ADDFO0 followed by
Word Selection. For Fugue-256, Word Selection is described below:

g — SHL3| S]]
S[15] || S[16..18].

A round of Fugue is shown in Figure [3.18 The path through the ROUND unit is
selected based on the sequence of operations as described in Section 4.3.5 of Fugue-256 in
[31]. TIX operates in parallel as follows:

S'[0] = din
1] = S[1] & S[24
S'[8] = S[8] & din
§'[10] = S[10] @ S]0].
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Fugue-256 :b=960,d =1

: b) s
Fugue-512:b=1152,d=2 : *
Note : All bus sizes are equal Y Y
to b unless noted. : ADDEO ADDFI1
: F
a) din r - Y
yi’ ¢ : RORI5 ROR14
: I |
din S
TIX
s’ 1 0 1
1
Y SR S 5
1 0/ . s :
RN l :
f ; ! !

ADDFO ADDFI1 ADDF2 ADDF3

5 ADDF/RORF : |
CMIX O : r—*—q R2R9 ROFS

l L P 01 et §
K%::f7 F 5 1 N0 1Lt
b ; RORY |

Figure 3.18: Fugue : a) Round, b) ADDF/RORF for Fugue-256, c) ADDF/RORF for
Fugue-512.
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Table 3.8: Fugue-256: ADDFi Operation

i y

S SH=sme s
S'[15] = S[15] & S[0]

S =5 e 50
S'[16] = S[16] & S[0]

ROR3 and CMIX are performed consecutively.
RORn sets

S’[i] = S[(i — n) mod 30], for i = 0..29 in Fugue-256, and
S'[i] = S[(i — n) mod 36], for i = 0..35 in Fugue-512.

As such, RORn can be considered as >>> (n  32).
CMIX operates as follows:

S0 = S[0] ® S[4]
s = S[] @S5
S'2l=  S[2] @ s[6]
S'[15] = S[15] @ S[4]
S'[16] = S[16] @ S[5]
S'[17 = S[17] @ S[6).

The ADDF0 and ADDF1 operations are defined in Table

Finally, the SMIX operation is described in Figure [3.19] The SMIX operation affects
only the first 128-bits of the state. These 128 bits are split into 16 bytes. These bytes are
transformed using AES SBOX, and the resulting vector of 16 bytes is used as an input to
the Matrix Multiplier. The Matrix Multiplier performs multiplication of a constant matrix
by an input vector. The value of the constant matrix is shown in Table Empty
positions in this table correspond to the values zero. All multiplications are defined as
multiplications in GF(29).

3.7.2 256 vs. 512 Variant Differences
Fugue-512 increases the state size to 4 x 36 bytes, which is equivalent to 1152 bits. Addi-

tionally, TIX, CMIX, ADDF/RORF and Word Selection have been modified. TIX is now
performed in parallel as follows:
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Table 3.9: Fugue: Matrix Multiplier Table
| X[0] | X[1] | X[2] | X[3] | X[4] | X[5] | X[6] | X[7] | X[8] | X[9] | X[10] | X[11] | X[12] | X[13] | X[14] | X[15]

YOl [ 1] 4] 7 [1]1 1 1
Y[i 1 1147 1 1
Y2 i i 71| 1 | 4 i
Y[3 1 1 1 i |7 [ 1 1
Y[ i 7 | 1|1 1
Y[5 1 1] 4| 7 1
Y[6 i i 7| 1 i
Y | 4 | 7 | 1 1 1
Y[8 7 6 | 4 | 7 1
Y[9 7 1 [ 6 | 4 | 7
YOO [ 7 | 1 | 6 | 4 7
Y[i1 714 7|16 7
Y[i2 i i 5 | 4 | 7 | 1
Y 1| 5 | 4 | 7 1 1
V(14 i 7 | 1|5 | 4 4
Y[i5 1 5 | 4 | 7| 1 5
S’[0] = din

S'[1] = S[1] @ S[24]

S'[4] = S[4] @ S[27]

S7] = S[7] @

S'0] = S[0] ® S[4]

S'[1] = S[1] @ S[5]

§'12] = S[2] @ S[6]
S'[18] = S[18] & S[4]
S'[19] = S[19] @ S[5]
§'120] = S[20] @ S[6).

The ADDFi operations, for ¢ = 0..3 are defined in Table
Finally, Word Selection is performed as follows:

o S-3] [ S[E] ] S[]] S[10..12] ||
S[18] || S[19..21] || S[27] || S[10..12].
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Figure 3.19: Fugue : SMIX
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Table 3.11: Groestl: Matrix Multiplier Table
\ [ Blo] [ B[] [ B[2] [ B[3] | B[4] | B[5] | B[6] [ B[7] |
B’ 2 3 5 5
B

B
B
B
B
B
B

NG W N = O

WOy NN
NN N W

NN W k| O W o 3

QYN[ NN W | U W

DN Qo W= | O WO U T
= O W O | N N
QU =T DO D] Qo W
R SIR IRV TS i, SV

Q| | Ut
Ut W| Ut

3.8 Groestl

3.8.1 Block Diagram Description

Groestl is an example of another SHA-3 candidate based on AES. A block diagram in
Figure [3.20] shows datapath used in our design. As opposed to a straightforward design, a
pipelined architecture is applied. The pipeline register is inserted between SubBytes and
ShiftBytes operations. A message block is xored with an initialized chain register to create
an input for the operation P in the first cycle of processing. In the next cycle, an input
message is loaded directly to the state register as an input to the operation Q. At the same
time when the first stage of the pipeline starts executing the operation Q, the second stage
of the pipeline continues the execution of the operation P. The first stage of the pipeline
consists of the ADD_SUB unit. The second stage of the pipeline consists of the ShiftBytes
and MixBytes units. A part of the function P is always performed one cycle ahead of the
corresponding part of function Q. Finalization in this design takes two clock cycles. First,
the chaining value is xored with the final value of P, while Q is being still processed. In
the subsequent cycle the final result of Q is mixed with the chaining value as well. The
entire process is repeated until all blocks of a message are thoroughly mixed. Finally, a
hash value is taken from the bottom half of the chaining value.

Figure describes how the AddConstant and SubBytes are performed in our design.
A round number is xored with the first byte of a message in the P operation. In the Q

operation, a complemented round number is xored into the 8th byte. After that, all bytes
go through the SBOX of AES.

ShiftBytes operation is performed by rotating all bytes in row ¢ to the right by oy,
where o is given as ¢ = [0,1,2,3,4,5,6,7]. Figure describes MixBytes operation.
The MixBytes operation splits an input into b/64 64-bit words. Each word becomes an
input into Groestl matrix multiplication. The constant matrix multiplication table used
in Groestl is given in Table All operations are performed in GF(2%), the same as in
AES, as shown in Table



40 E. Homsirikamol, M. Rogawski, and K. Gaj

din

Groestl-256 : b=512
Groestl-512 : b=1024

) b
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dout X
MixBytes
y
[

Figure 3.20: Groestl : Datapath
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Groestl-256 : b=512
Groestl-512 : b=1024

41

x[b/8-1]

8
round J‘() (0] J‘() ;
3 X round ; RX[ ]
x[1] x[6] x[8]
0 1 0 1
8 8 8 8 8
AES AES e © o AES AES AES
SBOX SBOX SBOX SBOX SBOX
8 8 8 8

Figure 3.21: Groestl : AddConstant and SubBytes

3.8.2 256 vs. 512 Variant Differences

In Groestl-512 the block size is doubled. This means that the state size is increased

by a factor of two as well.

All basic operations of Groestl remain the same with the

exception of ShiftRows. The ShiftRows rotation constants for each row are now changed
to o =10,1,2,3,4,5,6,11]. Finally, the number of rounds for Groestl-512 is increased to

14.
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Figure 3.22: Groestl : MixBytes
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3.9 Hamsi

3.9.1 Block Diagram Description

The datapath of Hamsi is shown in Figure For every message block, an expanded
message is concatenated with the chaining value to form a state. This state is viewed as
an array of 32-bit words. The state is transformed through P or P; rounds, using ACC,
Substitution Layer and Diffusion Layer in each round. For Hamsi-256, P and Py are equal
to 3 and 8, respectively. Py is selected as a number of rounds during processing of the last
block of a message. After completing all rounds, the state is truncated and xored with the
previous chaining value to form a new one.

In Figure Message Expansion is shown. Message Expansion expands an input
word of the size of w bits to an output of the size of half of the block size b/2. Each word
is split into an array of bytes. Each byte becomes an input to a ROM-based look-up table,
which produces a 32-bit output. The outputs from w/8 neighboring look-up tables are
xored together to produce a portion of the overall output of the Message Expansion. All
ROMs contain different dataset values, which can be obtained from a reference software
implementation included in the submission package of [33].

Concatenation is performed as follows:

= m|0..1][|¢[0..3]||m[2..5]||c[4..7]||m][6..7]

ACC refers to Addition of Constants and Counter step. This step can be described by
the following sequence of operations:

1] =s[l]@al]®c
s'[i] = s[i] ® afi]
for =0, 2..15.

Substitution Layer is shown in Figure An input is split into four equal blocks.
Then the corresponding bits of each block form an input to the Hamsi SBOX. This SBOX
is defined in Table B.12

DO

ab
\ 6
\ A

3.12:
|
|

| 0]1
IS[X]H8\6\7\ |

The Diffusion Layer is based on the logic function L, shown in This function
performs the following sequence of operations:

(s[0], s[5], s[10], s[15]) = L(s[0], s[5], s[10], s[15])
(s[1], s[6], s[11], s[12]) = L(s[1], s[6], s[11], s[12])
(s[2], s[7], (8], s[13]) = L(s[2], s[7], (8], s[13])
(s[3], s[4], s[9], s[14]) = L(s[3], s[4], s[9], s[14])
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Hamsi—256 : b=512,w=32
Hamsi-512 : b=1024,w=64

din v
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b

Y
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Figure 3.23: Hamsi : Datapath
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Hamsi—256 : b=512, w=32 m_in
Hamsi-512 : b=1024, w=64 . %
EXP_I
w
w w
8 /l/ 8 8 /l/
EXP_7{15 EXP_8{16
ROM ROM ROM e o o -T1S) -8{16)
32 /i/ 32 /] C 2 32 J 32 /i/
32 32 32 32
|1
b/2
m_exp

Figure 3.24: Hamsi : Message Expansion

Finally, Truncation is performed as follows:

y = s[0..3] || s[8..11]

3.9.2 256 vs. 512 Variant Differences

An input to Hamsi-512 is increased to 64 bits. As a result, the size of ROMs used in the

Message Expansion unit is increased as well. Similar to Hamsi-256, the data to populate

these ROM-based look-up tables can be found in the reference software implementation.

The rest of the operations remain largely the same with the following exceptions: Concate-

nation, Addition of Constants and Counter, Diffusion Layer, and Truncation.
Concatenation of Hamsi-512 is performed as follows:

g — mI0-1][c0.3]]Im(2. 5] [c[4..7], m[6..9]|]e..9]|
m[10..11][|¢[10..13]||m[12..13]||c[14..5][|m[14..15]

The Addition of Constants and Counter step is defined as follows:
Sl =s[l]@all]®e
s'[i] = s[i] ® afi]
for i=0, 2..31.

Diffusion Layer of Hamsi-512 is defined using the following sequence of operations:
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X
X
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b/4 b/4 b4 b/4
X [0] X [1] X [2] X [3]
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Hamsi e o o e o o Hamsi
SBOX SBOX
b0’ bl’ b2’ b3’ b0’ bl’ b2’ b3’

b/4 b/4 b/4 b/4

y

Figure 3.25: Hamsi : Substitution Layer
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Note : All bus sizes are 32 bits
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Truncation of Hamsi-512 is performed as follows:

y = 5[0..7] || 5[16..23]
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3.10 JH

3.10.1 Block Diagram Description

The block diagram of JH is shown in Figure At the beginning of computations, the
three registers shown in the diagram are initialized respectively with C_IV, first message
block, and an initial state dependent on IV and the first message block. The internal
state, held by the rightmost register, is transformed using the round transformation RS8
for 36 rounds. In each of these rounds, a different round constant, Cr, generated using
transformation R6, is used. Once processing is completed, the output from RS is degrouped
and its lower half is xored with the message block stored in the temporary register, to
create a new chaining value, dgc. If there are more message blocks, the upper half of
the chaining value is xored with the next block, and the result processed through the
group transformation. The aforementioned steps are repeated until all message blocks are
processed. The hash value is taken from the new chaining value of the last block processed.
The operations Group and Degroup are permutations shown in Figure |3.28

In Figure [3.29] a generic description of a JH round Rn is shown. The same unit is
used for R6 and R8. The differences are the sizes of the input r, and the round constant
Cr. These sizes are equal to y and y/4 bits respectively, where y = 4 - 28 = 1024 for R8
and y=4-26 = 256 for R6. In the JH Round Rn, an input is viewed as an array of 2" 4-bit
blocks. These blocks go through either Sy or S; S-boxes, defined in Table

Next, outputs from these S-boxes are selected by the corresponding bit of the round
constant, Cr. Two consecutive outputs form an input to the linear transformation unit, L.
A diagram of this unit is shown in Figure The transformed outputs are then permuted
by the PERMUTE unit. PERMUTE can be described by a series of permutations given
by the code below. z, y and k refer to input, output and the size of the round constant,
respectively.

for i = k/4—1 downto 0 d N
ixd + 0) <= x(i*4 + 0
ixd + 1) <= x(i*x4 + 1);
3
2

IS

ixd 4+ 2) <= x(i*x4 +
a(ixd + 3) <= x(i*x4 +

end for;

for i = k/2—1 downto 0 do
b(i) <= a(ix*2);
b(i' 4+ k/2) <= a(i*2 + 1);

for i :Yk/271 downto 0 do

i) <= b(i);
en}(li( f)or; (i)
for i = k/4—1 downto 0 do
y(ix2 4+ k/2) <= b(i*x2 + 1 4+ k/2);
y(i*2 + 1+ k/2) <= b(i*2 + k/2);
end for;

NN

3.10.2 256 vs. 512 Variant Differences

All operations are the same for both variants. The only exception is the output selection
function of JH-512, where 512 bits of the chaining value are selected instead of 256 bits in
JH-256.
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Figure 3.27: JH : Datapath
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Figure 3.28: JH : Group and Degroup Operations
Table 3.13: JH: SBOX
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Figure 3.29: JH : Rn
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Figure 3.30: JH : Linear Transformation
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3.11 Keccak

3.11.1 Block Diagram Description

Keccak is based on four basic logic operations: xor, and, not and rotate. Based on the
authors’ recommendations, Keccak-1600 is chosen as a candidate for SHA-3. For Keccak-
256, an input message block has the size of 1088 bits. The datapath is shown in Figure
For every message block, an input is zero-extended to produce a 1600-bit state. This
state can be viewed as a 5x5 array of 64-bit words as shown in Figure An extended
input is xored with the chaining value. For the first message block, the chaining value is
zero. The state is then transformed using Keccak Round for 24 rounds. Finally, a hash
value is selected from the chaining value of the last message block. The description of the
Keccak’s Round is shown in Figures

din
Keccak—256 : r = 1088
64 Keccak-512 : 1= 576
SIPO

1600

A 1600 0 [<*“ zeros

1600

0 1 CV h-1.0
h

b PISO

64

Round dout

1600 /i/ cv

Figure 3.31: Keccak : Datapath
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Figure 3.32: Keccak : State
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X Note: All buses size are 64 bits unless specified otherwise.
1600 Numbers are location of register.
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Figure 3.33: Keccak : Round Part 1

95



56 E. Homsirikamol, M. Rogawski, and K. Gaj

Note: All buses size are 64 bits unless specified otherwise.
1600 Numbers are location of register.
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3.11.2 256 vs. 512 Variant Differences

All operations are the same for both variants. The only exception is the output selection
of Keccak-512, where 512 bits of the chaining value are selected instead of 256 bits in

Keccak-256.
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3.12 Luffa

3.12.1 Block Diagram Description

The datapath of Luffa is shown in Figure For every message block, an input block
is injected into the chain value via the Message Injection (MI) unit. The initial chaining
value is equal to IV. The MI unit is shown in Figure [3.361 The Galois field multiplication
(x2), used in the MI unit, is also shown in Figure

The state is then rotated wordwise using the Tweak operation shown in Figure [3.37
The number of positions by which each word is rotated depends on the position of the
word in the input to the T'weak function. Next, the state is transformed through the Step
function for 8 rounds. A diagram of the Step function is shown in Figure [3:38 The Step
function consists of SubCrumb, MixWord and AddConstant operations. SubCrumb and
MixWord are shown in Figures[3.39 and [3.40] respectively. AddConstant is an addition of a
constant to the first and the fifth word of the state array. The constant is selected depending
on the round number. The values of these constants can be found from Appendix B of
[36]. The process repeats itself until all message blocks are fully injected. Once processing
is completed, the state’s 256-bit blocks are xored together to form the hash value.

3.12.2 256 vs. 512 Variant Differences

Luffa-512 increases the state array size from 3 to 5. This means that the state’s size is
equal to 1280 bits. The Message Injection block is also redefined appropriately, as shown
in Figure Since the finalization process only produces 256 bits at a time, the chain
value is hashed with another message block of value zero to produce the second half of a
512-bit hash value.
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Luffa-256 : b=768, h=256,j=3
Luffa-512: b=1280, h=512, j=5
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Figure 3.35: Luffa : Datapath
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Figure 3.36: Luffa : MI — Message Injection (256 bits)
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Luffa—256 : b=768, j=3
Luffa-512: b=1280, j=5
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61



62 E. Homsirikamol, M. Rogawski, and K. Gaj

Luffa-256 : j=0..2 x[j] S \.
Luffa-512 : ]j= 0.4 i Note : All buses are 32
256 P .
i bits unless specified
432 32 132 132 £32 {32 132 132
\ v 4 \ 4 4 v v v

\ 4 v \4 A\ 4 \4 \4 v \4
x[0] x[1] x[2] x[3] x[0] x[1] x[2] x[3]
SubCrumb SubCrumb
y[0] yl1] y[2] y[3] y[0] y[1] y[2] y[3]

fV[ixWord
C d

32 E 32
CO[J] ? C4[]] 9
\ v \ 4
Al0] All] Al2] A[3] Al4] A[5] Al6] Al7]

1432 432 1432 132 1432 132 432 1432

y y \ 4 \ 4 \ 4 A 4
i256
ylijl

Figure 3.38: Luffa : Step function
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3.13 SHA-2

3.13.1 Block Diagram Description

Our design of SHA-2 is based on [44]. A diagram of our SHA-2 circuit is shown in Figure
The detailed definitions of all SHA-2 operations shown in our diagram can be found
in [37].

Wi
SHA-2 Message Scheduler
JAN JAN JAN JAN JAN JAN JAN JAN JAN A A A A A A A
@

¥ CSA‘ ‘CSA‘
| E—

din

Figure 3.42: SHA2 : Message Scheduler

3.13.2 256 vs. 512 Variant Differences

The differences between the two variants include: change in the word size from 32 bits to
64 bits, word selection in the Message Scheduling unit, different operations Yy and ¥, and
different constants Kj;.
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3.14 Shabal

3.14.1 Block Diagram Description

The block diagram of Shabal is shown in Figure [3.44] Our design of Shabal is a modified
version of the design by Detrey et al. [45] Apart from adjusting the design to conform to
our interface, there are two main modifications. The first modification is the scheduling
for the following operation :

Ali mod 12] « Ali mod 12] + C[(i+3) mod 16].

In the design by Detrey, the aforementioned operation starts in the 16th clock cycle. We
begin the computation in the 19th clock cycle. This change should allow better utilization
of Xilinx shift registers, as the output from C[3] is no longer required.

The second modification is the block counter, W. A one-stage shift register is used
instead of 16-stage shift register. The 16-stage shift register was used to reduce the com-
plexity of the controller in Detrey’s design. However, as our interface and protocol are
different, this advantage is reduced. Furthermore, a larger number of stages may cause an
adverse effect for Altera families, as they are not able to utilize the same optimizations as
Xilinx families (namely, shift register mode of Xilinx LUT).

3.14.2 256 vs 512 Variant Differences

There is no difference between the two variants except that different initialization vectors
are used for all state registers in the 512-bit variant.
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3.15 SHAvite-3

3.15.1 Block Diagram Description

SHAvite-3 works like a block cipher. Three round keys are generated for every round,
based on an input message block. The datapath of SHAvite-3-256 is shown in Figure [3.45
For SHAvite-3-256, a block of message contains 512 bits, and 128 bits are loaded into
the key generation unit at a time. For every message, the state register S and the chain
value CV are initialized to IV. The state register is then processed for 12 rounds. When
the processing is completed, the obtained output is xored with the current chain value to
generate a new chain value. If it is the last block of the message, the bottom half of the
chain value is used as a hash value.

SHAvite-3-256 :
b=256,d=64,e=128 6
b
SHAvite-3-512 : (] b
b=512,d=128,e=256 \ 0 1 X
. —— IV N
din Y Y
0 1
64
% b b
y
ent SIPO b
e S b
)(d Y Y bi cv
cnt msg e T
keyx > keyx PISO
Keygen ROUND
key > > key 64
p
b

Figure 3.45: SHAvite-3: Datapath

The SHAvite-3 ROUND unit is shown in Figure Each main round, executed by
the ROUND unit, consists of 3 internal rounds. At the beginning of each main round, the
top half of the state is xored with the round key, keyx. The result is applied to the input
of the AES round. All internal rounds are provided with a key from the key generation
unit, with the exception of the last internal round where the string of zeros is used as a
key. After executing three internal rounds, the obtained result is xored with the bottom
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half of the state and concatenated back to create a new state. This process is repeated
until all 12 main rounds are completed. As a result, 36 clock cycles are required to hash a
single message block.

Note: r

r=LIR

p=L"IIR %25"

128 128
L keyx R
128

v AES

E ; . = 128 128
128 128 128 |© | o
128 key

128 128} } 128 128

key  zeros

128

Figure 3.46: SHAvite-3: Round (256 bits)

The key generation unit is shown in Figure Key and/or keyx are generated for
each main round using this circuit.

3.15.2 256 vs. 512 Variant Differences

SHAvite-3-512 has the state size doubled compared to SHAvite-3-256. The basic operation
in the top level datapath remains the same. The number of main rounds is increased from
12 to 14. The ROUND unit is also doubled in size. Figure illustrates changes in the
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ROUND unit for SHAvite-3-512. The same operation as Rounds56 is performed with the
exception that the number of internal rounds is increased from 3 to 4. Figure[3.49] describes
a new key generation circuit. Once again, one can find similarity in terms of the design,
with the exception that all major building blocks are duplicated. Note that in this design
four clock cycles are required to load a 1024-bit message block, 256 bits per clock cycle.
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3.16 SIMD

3.16.1 Block Diagram Description

The block diagram of SIMD is shown in Figure |3.50L The design executes four steps at
a time, and requires 9 clock cycles to process a message block. The Message Expansion
unit requires a total of 8 clock cycles to fully expand a message block. Assuming that the
message block is expanded, the first block of the message is xored with IV and used as a
state. This state is transformed for 9 clock cycles (or four and a half rounds). If there is
more than one message block, the chaining value is xored with a new message block and
the same process is repeated again. The final hash value is obtained by truncating the
chaining value. Both the input message block and the output hash value are required to
switch their endianness in order to maintain correct operation.

As opposed to majority of other SHA-3 candidates, the core unit of SIMD requires an
output of the Message Expansion unit instead of the SIPO unit. Hence, we can consider
the Message Expansion unit as a separate module requiring an additional controller. This
special controller is introduced between the FSM1 and FSM2 units allowing them to operate
independently. The Message Expansion unit is separated into two parts, the NTT unit and
the Concatenated Code and Permutation (CP) unit. The NTT unit is based on a folded
7-stage DF'T that uses its first stage, referred to as DF'T stage onwards, as a basic building
block. First, each byte of an input is zero-extended to 9-bits and permuted by o¢. The
permuted values are inserted into the D F'T" stage together with its respective twiddle factor
as a second input. The twiddle factor is chosen based on the DFT stage number, which
can be calculated using the following VHDL code:

type halfptsx8 is array (natural range <>) OF std_logic_vector (7 downto 0); N
function twiddle_gen (point : integer; pts : integer) return halfptsx8 is
variable twiddle_factor : halfptsx8( 0 to pts/2 —1 ) := twiddle_factor_gen( pts );
variable y : halfptsx8( 0 to pts/2 —1 );
variable step : integer := (pts/point);
variable cur_-step : integer := 0;
begin
if ( step = pts/2 ) then
step = 0;
end if;
for i in 0 to pts/2—1 loop
y(i) := twiddle_-factor (cur_step);
cur_step := cur_step 4 step;
if (cur_-step >= pts/2) then
cur_step := cur_step — pts/2;
end if;
end loop;
return H
end twiddle_gen;
=4

The function takes two inputs, point and pts, and returns one output, y. The value of
point is equal to 25999¢t1 where stage is the number of the current DFT stage executed
by the unit. The variable pts represents the maximum value of the variable point. For
SIMD-256, pts is always equal to 128 as there are seven stages of DFT with 128 points.
For SIMD-512, pts is always equal to 256.

The main building block of NTT, referred to as DFT stage, is shown in Figure [3.52
This unit is built using several repetitions of the butterfly unit. The input is viewed as an
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Figure 3.50: SIMD : Datapath
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array of 9 bit values. Two consecutive values go into each butterfly unit, and their outputs
are combined to form a result. In a Butterfly unit, a modulo 257 reduction is applied to
ensure that there is no bit growth. The Modulo 257 unit is shown in Figure [3.53

Our DFT unit is based on a 7-stage FFT (Fast Fourier Transform) for the 256-bit
variant of SIMD, and on an 8-stage FFT for the 512-bit variant of SIMD. Before the input
data enters the first stage of FF'T, its 9-bit words are rearranged using the permutation
0g. After each pass through the DFT stage, another permutations o; is used to rearrange
inputs to make them ready for the next stage of FFT. All permutations can be described
using the following pseudocode:

oo(X) = M(X)

01(X) = P2(X)

op(X) = Pk+1(Pk_1(X)) for k=2..stage no-1
Olast (X) = Ps;;ge,no—l(X)

Y = M(X) can be defined as follows:

|
IS

for i=0 to pt—1 loop ?
y(i) = x(bit_mirror(i)) |
end loop \
=4

where bit_mirror(i) is a function that converts i to binary, inverts the order of bits, and
converts the result back to an integer.
Y = P,,(X) is defined as follows:

s N N
| pt = 2"stage_no |
| group.size = 2"m |
| groups = pt/group_size |
| for i in 0 to groups—1 loop |
| for j in 0 to group-size/2—1 loop |
| yEgroup,size*i-{»Q*j) <= x(group-sizexi+j); |
| yv(group-sizexi+2xj+1) <= x(group-sizexit+jtgroup-size /2); |
| end loop; |
jend loop; \
S =4
Y = P, }(X) is defined as follows:
s N N
| pt = 2"stage_no |
| group_size = 2'm |
| groups = pt/group_size |
| for i in 0 to groups—1 loop |
| for j in 0 to group-size/2—1 loop |
| yggroup,size*i-kj <= x(group-sizexi42xj) ; |
| yv(group_sizexit+jt+group-size /2) <= x(group-sizexi4+2xj+1); |
| end loop; |
1end loop \
[AS =4

where, stage no is 7 and 8, for 256 and 512-bit variant, respectively.

The final operation of the NTT unit involves an addition between the output of the
DFT and an addition factor. Addition factor final is selected if the expanded message block
is the last block of the message. Addition factor and addition factor final can be calculated
using the following VHDL function, where final is high for calculation of addition factor
final and pts is equal to 128 for SIMD-256 and 256 for SIMD-512:
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Figure 3.53: SIMD : Modulo 257

5
type ptsxl0 is array (natural range <>) OF std-logic-vector (9 downto 0);
function af_gen ( final : integer; pts : integer ) return ptsx1l0 is
variable y : ptsx10(0 to pts—1);
variable beta_i : std_logic_vector (17 downto 0);
variable beta : std-logic-vector (7 downto 0);
begin
if ( pts = 128 ) then
beta := conv_std_logic_vector (98,8);
else
beta := conv_std_logic_vector (163,8);
end if;
y(0) := conv_std_logic_vector (1,10);
for i in 1 to pts—1 loop
beta_-i := y(i—1) = beta;
beta_i := conv_std_-logic_vector ((conv_integer(beta_-i) mod 257),18);
y(i) := beta_.i(9 downto 0);
end loop;
if ( final = 1 ) then
if ( pts = 128 ) then
beta := conv_std-logic_-vector (58,8);
else
beta := conv_std_-logic_vector (40,8);
end if;
beta-i := "000000000000000001";
for i in 0 to pts—1 loo
y(i) := y(i) + beta_i(9 downto 0);
beta_i := beta-i(9 downto 0) =% beta;
beta_i := conv_std_logic_vector ((conv_integer(beta_i) mod 257),18);
end loop;
end if;
return y;
end af_gen;
=

The last step of the Message Expansion unit is to perform Concatenated Code and
Permute. These operations are described in Section 1.2.2 of [40]. A diagram of Concat
Permute (CP) is shown in Figure [3.54 To reduce the resource requirements in Concate-
nated Code, Permute is performed first. An input is viewed as an array of 9 bit values. For
SIMD-256, this array size is equal to 128. Permute 1 forms a matrix of 32 x 4 of 18 bits
each. This doubles the size of an input. The permutation of Permute 1 is given as follows:

with0 < j <3
x[8i + 2j] || z[8¢ + 25 + 1] when 0<i<15
7 =< x[8i+2j — 128] || 2[8i +2j — 64] when 16 <i <23
x[8i + 27 — 191] || z[8i + 2j — 127] when 24 <i < 31

Next, the matrix Z’ is permuted to form W’ in Permute 2. The permutation table is
given in Table [3.14 where W/ = 7",

A multiplexer selects appropriate data depending on the cycle number. A selected
value is viewed as an array of 4 x 4 with 18 bits at each location. Each 18-bit value is

split in half and entered into Lift module shown in Figure An output from the Lift
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Table 3.14: SIMD: Permute 2

| cycle | 0 [ 1 [ 2 [ 3 |
1 0 1 213 4 | 516 9 10|11 |12 13|14 | 15
P(i) 4 16 0] 2 4 | 513 1 1511 )12 8 9 |13 |10 | 14
| cycle | 4 | 5 [ 6 | 7 |
1 16 | 17 |18 |19 (20 |21 |22 |23 124|125 |26 |27 |28 29| 30| 31
P@) || 1718 |23 20| 22|21 |16 |19 | 30|24 |25 |31 27|29 28|26

oo

module is then multiplied by a constant. The constant is 185 for the first four cycles and
233 for the last four cycles. The outputs are combined back into a 4 x 4 matrix of 32-bit
words.

8
SIMD-256 : b=512, c=1152 233 =]
SIMD-512:  b=1024, c=2304 g ]
185 —<= 0
3 16
9 ' 8 16
x Lift v X
] ] ] 32
Permute 2
L] L] L]
) . g
Z 2%c o o o
Permute 1
16
9 8
e . * Lift v X “
* | NOTE: ! ++ T @
x 1 e=2tbs2by8 * Lift ¥ S

Figure 3.54: SIMD : Concatenate and Permute (CP)

The core operation of our SIMD’s design is the Half Round module. This module is
equivalent to four steps of the SIMD round. A block diagram of the Half Round operation
is shown in Figure[3.56] Half Round is based of 16 QS units with quarterstep as their core.
quarterstep is shown in Figure There are four inputs to quarterstep. ain comes from
its adjacent quarterstep controlled by a multiplexer. w comes from the message expansion
unit. r and s are rotation constants depending on the round number. Additionally, phi
is selected to perform IF or M AJ depending on the round number. These constants are
given as follows:
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Figure 3.55: SIMD : Lift

PIORO R0

IF T ™
IF ™1 Uup) Round TQ T1 T9o T3
IF  m 73 0 3 23 17 27
IF 73 m 1 28 19 22 7
MAJ my m 2 29 9 15 5
MAJ 1 up) 3 4 13 10 25
MAJ my w3
MAJ T3 ™0

Due to the each step’s non-uniform structure of permutation, the inputs to each mux
inside of QS in Figure [3.56] are defined as follows:

in 0 to 3 loop — row
y in 0 to feistel_-ladder_-no —1 loop ——column
for m in 0 to permute_size—1 loop —muz input
mux(x,y)(m) <= aout( x, p ((4+*mfx) mod permute_size)(y) );
end loop;
end loop;
end loop;

-
]

r x
for

——————-3
| —]

where, feistel_ladder_no is a number of Feistel Ladders, which is 4 for SIMD-256 and
8 for SIMD-512; permute_size is a size of permutation p (defined below), which is equal
to feistel_ladder_no-1 (3 for SIMD-256 and 7 for SIMD-512); and mux(z,y)(m) refers to
the mux input m of the quarter step(x,y).

Finally, the permutation p used in the above formulas is given below:

pO3G) =581
pW() =5 @2
pP()=j®3.

3.16.2 256 vs. 512 Variant Differences

The biggest change in SIMD-512 is the increase in the block size. This change causes
the size of NTT to increase. DFT now requires 8 stages instead of 7 and the size of the
butterfly increases by a factor of two. In the CP unit, Permute 1 is defined as follows:
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with0 < j <7
2[8i + 24 || #[8i + 2j + 1] when 0<i<15
7!l = { x[8i+2j — 256] || x[8i +2j — 128] when 16 <i <23
2[8i + 25 — 383] || 2[8i + 2 — 255] when 24 <i < 31

Additionally, the number of Feistel Ladders is increased from 4 to 8, and thus, the
number of the @S units in Half Round increases from 16 to 32 (see Fig. |3.56)). The
inputs to the Ain muxes are defined by the same pseudocode as before, but the size and
the definition of permutation p changes. The size of the permutation is now 7, and its
definition is given below.

pOG) =j@1
PG =j®6
PP =j@2
PP =j®3
PV =j@5
PO =T
pOG) =04
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3.17 Skein

3.17.1 Block Diagram Description

The datapath of Skein is shown in Figure This diagram is based on the Skein-512-256
construction. The datapath of Skein can be separated into two main parts, key generation
and the Skein’s round. The round includes a layer of 64-bit additions and 4x unrolled MIX
and PERMUTE unit. An input message block is used to initialize the internal state of
Skein. This state is viewed as an array of eight 64-bit words. For every message block, a
subkey is added to the state once for every 4 rounds of the MIX and PERMUTE operation.
The total number of rounds for Skein-256 is 72. Because of the 4x unrolled architecture,
these rounds are executed in 18 clock cycles. Then, the finalization is performed after the
last round is executed. The finalization is performed at the end of each message block
processing, in order to generate a new chaining value. This operation is equivalent to an
addition between the state and the key, followed by an xor with the current message block.

64 512

Skein—256 : b=512,h =256
Skein—512:b=512,h =512

din

SIPO
switch
endian word

switch
endian byte

tweak
512
128
64 64 64 tw
? kout keygen
64 o4 64 ]
(O i
1 a 512
H c o e ks
64 64 o4 f 0 1}
H 512 /‘/512
v
*{0] X1 oee oee x(7]
MIX and PERMUTE b-1.b-h - u
= 2
yl0] yi1] oo cee 971 § g ﬁ E» h
64 64 ° ° ° % 2
PISO
64
|1
o dout

Figure 3.58: Skein : Datapath
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The key generation unit takes two input sources, the chaining value and the tweak.
The chaining value acts as a key to the key generation unit. It is computed from the
previous message block or taken as an initialization vector at the beginning of the message.
A tweak is controlled by the controller. Its full specification can be found under Section
3.4 of [41]. In Figure a key generation unit for our design is shown. s is the subkey
counter. It gets reset for every new message block.

In Figure [3.60] a 4-times unrolled MIX and PERMUTE unit is shown. This unit is
based on 16 instantiations of the MIX operation. The MIX operation is shown in Figure
The rotation constants are given in Table The round number is calculated
modulo 8. The permutation executed between each round of MIX is also given in Table

3.16

Table 3.15: Skein: Rotation Constants, Ny, is the number of words

Ny 8

J o 1 2 3

0 |[46 36 19 37
1 33 27 14 42
2 17 49 36 39
3 |4 9 54 56
4 1139 30 34 24
5) 13 50 10 17
6 |25 29 39 43
7 8 35 56 22

Table 3.16: Skein: Permutation
xJo 1 2 3 4 5 6 7|

ly[2 1 4 7 6 5 0 3]

3.17.2 256 vs. 512 Variant Differences

Skein-512 as submitted to the SHA-3 contest is based on Skein-512-512. The same design
as used in Skein-256 is applied to Skein-512, with the exception of the output register
(PISO), where 512-bit instead of 256-bit register is used.
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Note: All buses are 64 bits, except of r, where r is a single big line
r
x[0] x[1] x[2] x[3] l x[4] x[5] x[6] x[7]

A B A B

T OMIX(19,34) MIX(37,24)
C C D

A B A B

T MIX(46,39) MIX(36,30)
C C D

A B A B
T MIX(33,13) MIX(27,50) r
C c D

A B

T MIX(14,10) MIX(42,17)
C C D

A B A B A B
T MIX(17,25) MIX(49,29) r T MIX(36,39) MIX(39,43) r
C D C D C D C D
A B A B A B A B
T MIX(44,8) MIX(9,35) [ = " MIX(54,56) MIX(56,22) r
C D C D C D C D
y[0] ylij yl2] yl3] yl4] yl5] yl6] Y71

Figure 3.60: Skein : Round

Note: All buses are 64 bits, except of r, where r is a single bit line
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Figure 3.61: Skein : Mix



Chapter 4

Design Summary and Results

4.1 Design Summary

The major parameters of both hash function variants (with a 256-bit and a 512-bit output)
are summarized in Table (4.1l

In Table[4.2] we provide the I/O Data Bus Widths, and the exact formulas for the Hash
Function Execution Time (in clock cycles) and Throughput (in Mbits/s) for our designs of
all SHA-3 candidates and the current standard, SHA-2. The equations are derived from
the analysis of block diagrams of the respective designs, and have been confirmed through
simulation. All numerical values of timing parameters presented in this report are based
on these equations.

The I/O Data Bus Width, w, is a feature of our interface described in Section It is
the size of the data buses, din and dout, used to connect the SHA core with external logic
(such as Input and Output FIFOs). The parameter w has been chosen to be equal to 64,
unless there was a compelling reason to make it smaller. The value of 64 was considered
to be small enough so that the SHA cores fit in all investigated FPGAs (even the smallest
ones) without exceeding the maximum number of user pins. At the same time, setting this
value to any smaller power of two (e.g., 32) would increase the time necessary to load input
data from the input FIFO and store the hash value to the output FIFO. In some cases,
it would also mean that the time necessary for processing a single block of data would be
smaller than the time of loading the next block of data, which would decrease the overall
throughput. The only exceptions are Fugue-256, Hamsi-256, and Fugue-512, for which we
choose w=32, because they all have block size equal to 32 bits, and thus cannot be sped up
by using a wider I/O data bus. Similarly, SHA-256 can start processing data after receiving
just one 32-bit word, and cannot be easily sped-up by using a wider input data bus. In
case of BMW and SIMD-512, an additional faster i/o clock was used on top of the main
clock shown in Fig. [2.1h. This faster clock is driving input/output interfaces of the SHA
core, as well as surrounding FIFOs. The ratio of the i/o clock frequency to the main clock

90
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frequency was selected to be 8 for BMW-256 and 16 for BMW-512, so the entire block of
message (512 bits for BMW-256 and 1024 for BMW-512) can be loaded in a single clock
cycle of the main clock (8 and 16 cycles of the fast i/o clock, respectively). For SIMD-512,
this ratio was chosen to be 2, which was sufficient to assure that the time of loading the
next message block was smaller than the time of processing of the current block.

The next column of Table contains the detailed formulas for the number of clock
cycles necessary to hash N blocks of the message after padding. The formulas include the
time necessary to load the message length, load input data from the FIFO, perform all
necessary initializations, perform main processing, perform all required finalizations, and
then send the result to the output FIFO. Finally, the last column (per each hash function
variant) contains the formula for the circuit throughput for long messages as defined by

Equation ([2.1).

Table 4.1: Major parameters of the 256-bit and 512-bit variants of all SHA-3 candidates
and the current standard, SHA-2. Values different between 256-bit and 512-bit variants
are shown in bold. The first approximations of the predicted area ratio (512 vs. 256-bit
variant) and the predicted throughput ratio (512 vs. 256-bit variant) are given in the last
two_columns.

256-bit variant 512-bit variant Predicted | Predicted
state | Block | Round | Word | State | Block | Round | Word Area Thr
size size no size size size no size Ratio Ratio

BLAKE 512 512 10 32 | 1024 1024 14 64 2 1.43
BMW 512 512 16 32 | 1024 1024 16 64 2 2
CubeHash | 1024 256 16 32 1024 256 16 32 1 1
ECHO 2048 | 1536 8 32 2048 | 1024 10 32 1 0.53
Fugue 960 32 2 32 | 1152 32 4 32 1.2 0.5
Groestl 512 512 10 64 | 1024 1024 14 64 2 1.43
Hamsi 512 32 3 32 | 1024 64 6 32 2 1
JH 1024 512 36 64 1024 512 36 64 1 1
Keccak 1600 | 1088 24 64 1600 576 24 64 1 0.53
Luffa 768 256 8 32 | 1280 256 8 32 1.67 1
Shabal 1408 512 48 32 1408 512 48 32 1 1
SHAVvite-3 512 512 36 32 | 1024 1024 56 32 2 1.29
SIMD 512 512 36 32 | 1024 1024 36 32 2 2
Skein 512 512 72 64 512 512 72 64 1 1
SHA-2 256 512 64 32 512 1024 80 64 2 1.6

4.2 Relative Performance of the 512 and 256-bit Variants of
the SHA-3 Candidates

In the last two columns of Table we provide the first rough approximation of the
predicted area ratio (512 vs. 256-bit variant) and the predicted throughput ratio (512 vs.
256-bit variant). In general, the area of the circuit optimized for the maximum throughput
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Table 4.2: The I/O Data Bus Width (in bits), Hash Function Execution Time (in clock
cycles), and Throughput (in Mbits/s) for the 256-bit and 512-bit variants of all SHA-3
candidates and the current standard, SHA-2. T denotes the clock period in us. Values
different between 256-bit and 512-bit variants are shown in bold.

256-bit variants 512-bit variants

Function I/0 Bus Hash Time Throughput | I/O Bus Hash Time Throughput

width [cycles] [Mbit/s] width [cycles] [Mbit/s]
BLAKE 64 2+8+21-N+4 512/(21-T) 64 24+16+29-N+8 1024/(29-T)
BMW 64 2+8/8+N+1+4/8 512/T 64 2+16/16+N+1+8/16 1024/T
CubeHash 64 2+4+16-N+160+4 256/(16-T) 64 244+416-N+160+8 256/(16-T)
ECHO 64 3+24425-N+1+4 1536/(27-T) 64 34+16+31-N+1+8 1024/(31-T)
Fugue 32 242-N+37+8 32/T 32 2+4-N+85+16 32/(4-T)
Groestl 64 3+8+21-N+4 512/(21-T) 64 34+16+429-N+8 1024/(29-T)
Hamsi 32 3+1+3-(N-1)+6+8 32/(3T) 64 3+1+6-(N-1)+12+8 64/(6-T)
JH 64 3+8+36-N+4 512/(36-T) 64 3+8+36-N+8 512/(36-T)
Keccak 64 3+17+24-N+4 1088/(24-T) 64 3+9+24-N+8 576/(24-T)
Luffa 64 34+449-N+9+1+4 256/(9-T) 64 34+449-N+2-9+148 256/(9-T)
Shabal 64 3+8+1+25-N+3-25+4 | 512/(25-T) 64 34+8+4+1+25-N+3-49+4-8 512/(25-T)
Shavite-3 64 3+8+37-N+4 512/(37-T) 64 3+164+57-N+8 1024/(57-T)
SIMD 64 34+8+8+9-N+4 512/(9-T) 64 3+16/2+9+9-N+8/2 1024/(9-T)
Skein 64 24+8+19-N+4 512/(19-T) 64 2+8+19-N+8 512/(19-T)
SHA-256 32 24+1465-N+8 512/(65-T) 64 24+1+81-N+8 1024/(81-T)

to area ratio is most affected by the state size. As a result, the predicted area ratio between
the 512 and 256-bit variants can be roughly approximated as shown in Eq. below.

Predicted_Area_Ratios /256 =

State_sizesio

State_sizeass

Additional factors that can affect the actual area ratio include:

e message block size, which determines the size of the input shift register,

e output size, which determines the size of the output shift register,

(4.1)

e logic of the main round, which may be more complex in case of a 512-bit variant of
a function,

e logic required for message expansion or key generation, which may be more complex
in case of a 512-bit variant of a function,

e logic required for initialization and finalization, which may not follow the datapath

width,

e size of the control unit, which is likely to remain constant between two variants, but
typically contributes only small percentage to the total circuit area.
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Similarly, the throughput ratio between 512 and 256-bit variants can be estimated
under the assumption that the critical path, and thus the clock period, are similar in both
variants.

Block_sizes12

Th
Predicted Throughput_Ratiosys /s = 512 _ Round-nosia (4.2)

Block_sizeass
Thr256 Round_noasg

In the actual circuits, the clock period, 7', may change due to the increase in the critical
path in case of a 512-bit variant of a function. For both predictions, the actual results will
most likely vary and be dependent on a particular FPGA family, and selected tools.

Based on the above predictions, we can divide the 15 investigated algorithms into 6
major groups:

e Group 1: area and throughput are not affected by the change of the output size:
CubeHash, JH, Shabal, Skein.

Group 2: area and throughput both double: BMW, SIMD.

Group 3: area and throughput both increase, but area increases more: BLAKE,
Groestl, SHAvite-3, and SHA-2.

Group 4: area stays the same and throughput decreases: EFCHO, Keccak.
e Group 5: area increases and throughput stays the same: Hamsi, Luffa.
e Group 6: area increases and throughput decreases: Fugue.

From the point of view of the throughput to area ratio, Groups 1 and 2 are the best,
followed by Groups 3, 4, and 5, and ending with the Group 6, with the worst trend. Among
the Groups 1 and 2, belonging to the Group 2 is less desirable, especially for the algorithms
that already take significant area for a 256-bit variant, such as BMW and SIMD.

4.3 Results

In Tables [£.3]and [£.4] the actual performance measures of the 256 and 512-bit variants of
all investigated algorithms are reported for the case of Xilinx Virtex 5 and Altera Stratix
ITI, respectively. The corresponding results for the remaining 8 families are provided in
Appendix [A]

In Tables and [£.7] the absolute results obtained for our implementations of the
current standard SHA-2 are summarized. The results are repeated across ten selected
FPGA families. The abbreviations used in this paper to denote 10 selected FPGA families
from Xilinx and Altera are summarized in Table K5l These abbreviations will be used
consistently in all tables included in this chapter. In terms of the design, an architecture
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Table 4.3: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Xilinx Virtex 5 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 | ratio 512 256 | ratio 512 | 256 | ratio | 512 | 256 | ratio
BLAKE 99.68 | 128.90 | 0.77 | 3,520 | 3,143 1.12 ] 3,064 | 1,523 | 2.01 | 1.15 | 2.06 0.56
BMW N/A| 830| N/JA| NJA| 4250 N/A| NJ/A | 4855 | N/A|N/A| 088 | N/A
CubeHash | 269.69 | 274.05 0.98 | 4,315 | 4,385 0.98 734 684 1.07 | 5.88 | 6.41 0.92
ECHO 235.50 | 184.30 1.28 | 7,779 | 11,323 0.69 | 5,044 | 4,982 1.01 | 1.54 | 2.27 0.68
Fugue 221.58 | 218.44 1.01 1,773 | 3,495 0.51 979 708 1.38 | 1.81 | 4.94 0.37
Groestl 292.10 | 323.40 | 0.90 | 10,314 | 7,885 1.31 | 3,138 | 1,597 1.96 | 3.29 | 4.94 0.67
Hamsi 182.10 | 285.88 0.64 1,942 3,049 0.64 1,900 720 2.64 | 1.02 | 4.24 0.24
JH 394.48 | 380.81 1.04 | 5,610 | 5,416 1.04 | 1,104 | 1,018 1.08 | 5.08 | 5.32 0.96
Keccak 285.23 | 282.73 1.01 | 6,845 | 12,817 0.53 | 1,257 | 1,272 0.99 | 5.45 | 10.08 0.54
Luffa 240.33 | 340.72 0.71 | 7,691 | 9,692 0.79 | 1,960 949 | 2.07 | 3.92 | 10.21 0.38
Shabal 214.92 | 214.92 1.00 | 1,719 | 1,719 1.00 283 283 1.00 | 6.08 | 6.08 1.00
SHAvite-3 | 213.80 | 235.10 | 0.91 | 3,841 | 3,253 1.18 | 2,090 | 1,076 1.94 | 1.84 | 3.02 0.61
SIMD 43.40 | 54.90 | 0.79 | 4,938 | 3,123 1.58 | 19,639 | 8,922 220 | 0.25 | 0.35 0.72
Skein 119.09 | 117.95 1.01 | 3,209 | 3,178 1.01 | 1,716 | 1,621 1.06 | 1.87 | 1.96 0.95
SHA-2 183.70 | 190.90 | 0.96 | 2,322 | 1,504 1.54 838 418 | 2.00 | 2.77 | 3.60 0.77

Table 4.4: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Stratix III FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHZz] [ALUTS]

512 256 | ratio | 512 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 89.53 | 118.98 0.75 | 3,161 | 2,901 1.09 | 7,086 | 3,635 1.95 | 0.45 | 0.80 0.56
BMW N/A | 1238 N/JA | N/A| 6339| N/A| N/A|12,619| N/A | N/A | 050 | N/A
CubeHash | 204.21 | 232.88 0.88 | 3,267 | 3,726 0.88 | 1,930 | 1,922 1.00 | 1.69 | 1.94 0.87
ECHO 247.40 | 233.32 1.06 | 8,172 | 14,335 0.57 | 21,187 | 20,723 1.02 | 0.39 | 0.69 0.56
Fugue 199.80 | 207.43 0.96 | 1,598 | 3,319 0.48 | 2,783 | 2,397 1.16 | 0.57 | 1.38 0.41
Groestl 202.27 | 220.65 0.92 | 7,142 | 5,380 1.33 | 12,355 | 6,350 1.95 | 0.58 | 0.85 0.68
Hamsi 187.55 | 280.98 0.67 | 2,001 | 2,997 0.67 | 6,401 | 2,308 2.771 0.31 | 1.30 0.24
JH 390.63 | 387.75 1.01 | 5,556 | 5,515 1.01 | 3,709 | 3,525 1.05 | 1.50 | 1.56 0.96
Keccak 304.60 | 273.37 1.11 | 7,310 | 12,393 0.59 | 3,979 | 4,213 0.94 | 1.84 | 2.94 0.62
Luffa 268.10 | 301.30 0.89 | 8,579 | 8,570 1.00 | 6,891 | 3,032 227 | 1.24 | 2.83 0.44
Shabal 109.66 | 109.66 1.00 877 877 1.00 | 1,744 | 1,744 1.00 | 0.50 | 0.50 1.00
SHAvite-3 | 226.60 | 245.52 0.92 | 4,071 | 3,397 1.20 | 5,619 | 3,042 1.85 | 0.72 | 1.12 0.65
SIMD 49.82 | 54.89 0.91 | 5,668 | 3,123 1.82 | 53,623 | 25,728 2.08 | 0.11 | 0.12 0.87
Skein 90.34 | 92.87 | 0.97 | 2,434 | 2,503 0.97 | 4,794 | 4,645 1.03 | 0.51 | 0.54 0.94
SHA-2 162.42 | 205.09 0.79 | 2,053 | 1,615 1.27 | 2,164 | 1,049 2.06 | 0.95 | 1.54 0.62
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Table 4.5: Abbraviations used to denote Xilinx and Altera families in the subsequent tables.

Xilinx Altera

Family | Notation Family Notation
Spartan 3 S-3 Cyclone 11 C-11
Virtex 4 V-4 Cyclone II1 C-I11
Virtex 5 V-5 Cyclone IV C-IV
Virtex 6 V-6 Stratix II S-11

Stratix III S-111

Stratix IV S-1vV

Table 4.6: Results for the reference implementation of SHA-256 (architecture with

rescheduling)
Xilinx Families Altera Families
FPGA Family S-3 V-4 V-5 V-6 C-I1 | C-II1 | C-IV S-11 S-I11 S-1V
Max. Clk Freq. [MHz] 79.96 157.88 190.90 270.56 | 108.68 | 118.75 | 126.50 150.31 205.09 217.63
Throughput [Mbit/s] 629.84 | 1243.61 | 1503.70 | 2131.18 | 856.06 | 935.38 | 996.43 | 1183.98 | 1615.48 | 1714.25
Area 857 861 418 335 1686 1685 1681 981 1049 1052
Throughput/Area Ratio 0.73 1.44 3.60 6.36 0.51 0.56 0.59 1.21 1.54 1.63

Table 4.7: Results for the reference implementation of SHA-512 (architecture with

rescheduling)
Xilinx Families Altera Families
FPGA Family S-3 V-4 V-5 V-6 C-11 C-I11 C-1V S-11 S-111 S-1V
Max. Clk Freq. [MHz] 67.68 | 128.25 | 183.70 | 238.83 86.41 94.86 99.75 | 123.03 | 162.42 | 188.71
Throughput [Mbit/s] 855.61 | 1621.33 | 2322.33 | 3019.28 | 1092.39 | 1199.22 | 1261.04 | 1555.34 | 2053.31 | 2385.67
Area 1973 1952 838 538 3307 3315 3296 2033 2164 2165
Throughput/Area Ratio 0.43 0.83 2.77 5.61 0.33 0.36 0.38 0.77 0.95 1.10
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by Chaves et al. [44], [46] is selected, as it is considered one of the best known SHA-2
architectures, and is optimized specifically for the maximum throughput to area ratio.

Tables and summarize the clock frequencies of the implemented algorithms
across ten selected FPGAs. For some combinations algorithm-FPGA family the imple-
mentation was not possible. This was because the amount of required resources exceeded
the amount of resources available in the biggest device of a given family, or because the
tools were not able to finish implementation within less than 48 hours. These cases are
denoted by ‘N/A’ in the following tables. Specifically, BMW-256 did not fit in Cyclone II
and Spartan3 due to the routing congestion, and BMW-512 was implemented successfully
in only two out of ten FPGA families (Stratix III and Stratix IV). These problems were
due to multi-operand additions exhausting all available routing resources. For SIMD in
Spartan 3 and SIMD and ECHO in Cyclone II, resource utilization exceeded the available
resources of the largest FPGA device in a given family.

Table 4.8: Clock frequencies of all SHA-3 candidates (256-bit variants) and SHA-256 ex-
pressed in MHz (post placing and routing)

Xilinx Families Altera Families
FPGA Family S-3 V-4 V-5 V-6 C-1I | C-IIT1 | C-IV S-1I S-IIT | S-IV
BLAKE 44.43 | 84.93 | 128.90 | 136.24 | 53.67 | 61.52 | 61.70 | 100.67 | 118.98 | 126.23
BMW N/A 5.00 | 12.00 | 15.21 N/A 6.79 7.06 | 10.35 | 12.38 | 12.08
CubeHash 94.76 | 196.04 | 274.05 | 328.19 | 114.05 | 137.70 | 137.50 | 177.21 | 232.88 | 250.06
ECHO 78.06 | 138.01 | 184.30 | 224.67 N/A | 116.59 | 113.43 | 161.50 | 233.32 | 228.73
Fugue 79.56 | 137.63 | 218.44 | 272.41 | 95.63 | 111.22 | 109.03 | 142.84 | 207.43 | 125.99
Groestl 102.61 | 204.33 | 323.40 | 347.34 | 131.08 | 144.38 | 149.57 | 176.24 | 220.65 | 205.76
Hamsi 105.05 | 200.97 | 285.88 | 298.60 | 146.43 | 171.59 | 170.85 | 191.06 | 280.98 | 274.73
JH 142.47 | 276.93 | 380.81 | 415.46 | 172.92 | 227.07 | 225.38 | 294.90 | 387.75 | 410.17
Keccak 108.90 | 230.42 | 282.73 | 286.21 | 134.43 | 155.57 | 155.64 | 210.17 | 273.37 | 286.04
Luffa 138.10 | 289.35 | 340.72 | 322.17 | 171.59 | 199.20 | 199.24 | 215.80 | 301.30 | 316.16
Shabal 93.63 | 185.01 | 214.92 | 300.66 | 144.97 | 183.82 | 194.06 | 91.84 | 109.66 | 111.74
SHAvite-3 79.05 | 145.75 | 235.10 | 178.89 | 93.86 | 110.24 | 110.64 | 162.89 | 245.52 | 231.05
SIMD N/A | 40.13 | 54.90 | 60.23 | 23.02 | 26.37 | 26.77 | 42.62 | 54.89 | 57.77
Skein 37.86 | 68.16 | 117.95 | 132.31 | 46.35 | 54.90 | 57.13 | 73.94 | 92.87 | 98.82
SHA-512 79.96 | 157.88 | 227.58 | 270.56 | 108.68 | 118.75 | 126.50 | 150.31 | 212.27 | 217.63

Modern FPGA families are created using different fabrication process, layout, and basic
resources, which make comparison across several families in absolute terms difficult, if not
impossible. To mitigate this problem, the normalized results are defined and calculated to
provide a more direct comparison. A normalized result is calculated by dividing an absolute
result for a SHA-3 candidate by the corresponding result for the reference implementation
of the current standard SHA-2 with the same strength. Normalized results have no units,
and can be reasonably compared across multiple families of FPGAs. An overall normalized
result is a geometric mean of normalized results for all investigated FPGA families.

Tables and summarize normalized results for the 256-bit variants of all
SHA-3 candidates in terms of throughput, area, and throughput to area ratio, respectively.
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Table 4.9: Clock frequencies of all SHA-3 candidates (512-bit variants) and SHA-512 ex-
pressed in MHz (post placing and routing)

Xilinx Families Altera Families
FPGA Family | S-3 V-4 V-5 V-6 C-II | C-III | C-IV | S-II S-III | S-IV
BLAKE 34.76 | 68.52 | 99.68 | 103.47 | 38.57 | 45.77 | 47.06 | 71.27 | 89.53 | 106.07
BMW N/A N/A N/A N/A N/A N/A N/A N/A 9.59 9.89
CubeHash 98.74 | 202.63 | 269.69 | 317.36 | 110.02 | 137.46 | 137.70 | 158.60 | 204.21 | 220.70
ECHO N/A | 173.31 | 235.50 | 158.40 N/A | 110.44 | 107.71 | 173.73 | 247.40 | 255.95
Fugue 74.58 | 137.46 | 221.58 | 234.69 | 91.68 | 104.64 | 104.20 | 137.70 | 199.80 | 65.64
Groestl 91.64 | 203.34 | 292.10 | 312.01 | 124.67 | 127.10 | 139.12 | 175.90 | 202.27 | 214.45
Hamsi 73.21 | 160.18 | 182.10 | 185.12 | 81.83 | 114.13 | 121.71 | 132.64 | 187.55 | 177.34
JH 123.21 | 256.64 | 394.48 | 412.54 | 172.71 | 220.85 | 224.37 | 294.81 | 390.63 | 388.65
Keccak 114.19 | 230.84 | 285.23 | 338.18 | 134.97 | 165.32 | 150.35 | 204.21 | 304.60 | 285.55
Luffa 94.51 | 202.88 | 240.33 | 195.73 | 141.08 | 167.03 | 172.35 | 189.74 | 268.10 | 264.62
Shabal 93.63 | 185.01 | 214.92 | 300.66 | 144.97 | 183.82 | 194.06 | 91.84 | 109.66 | 111.74
SHAvite-3 71.71 | 134.25 | 213.80 | 180.21 | 80.32 | 95.85 | 96.38 | 142.78 | 226.60 | 216.40
SIMD N/A | 36.73 | 43.40 | 46.30 N/A | 22.04 | 2274 | 34.33 | 49.82| 51.93
Skein 37.46 | 63.94 | 119.09 | 138.52 | 46.22 | 54.90 | 55.98 | 70.55 | 90.34 | 99.09
SHA-512 67.68 | 128.25 | 183.70 | 238.83 | 86.41 | 94.86 | 99.75 | 123.03 | 162.42 | 188.71

In terms of throughput, the best performance is accomplished by ECHO, Keccak, and
Luffa, followed by Groestl, BMW, and JH. Only Shabal is slightly slower than SHA-256 in
terms of throughput. At the same time, it is the only candidate that outperforms SHA-
256 in terms of area. The other candidates offering relatively low area include CubeHash,
Hamsi, Fugue, and Luffa. BMW, SIMD, and ECHO have their areas over 10 times bigger
than the area of SHA-256. In terms of the throughput to area ratio, the best performers
are Luffa, Keccak, CubeHash, and Shabal, which are the only candidates outperforming
SHA-256. The worst results in terms of this measure, belong to ECHO, BMW, and SIMD,
which loose to SHA-256 by a factor of at least 3.

In Fig. we present a two dimensional diagram, with the Overall Normalized Area on
the X-axis and the Overall Normalized Throughput on the Y-axis. The algorithms seem to
fall into several major groups. Group with the high normalized throughput (>5), medium
normalized area (<4), and the high normalized throughput to area ratio (>1.5), include
Keccak and Luffa. Groestl, BMW, and ECHO, have all high normalized throughput (>3.5),
but their normalized area varies significantly from about 5 in case of Groestl, through 11
for BMW, up to over 23 in case of ECHO. SIMD is both relatively slow (less then 1.75
times faster than SHA-256) and big (more than 20 times bigger than SHA-256). The last
group includes 8 candidates covering the range of the normalized throughputs from 0.99
to 3.2, and the normalized areas from 0.87 to 4.1.

Tables[d.13] [4.14] and [4.15|summarize normalized results for the 512-bit variants of all
SHA-3 candidates in terms of throughput, area, and throughput to area ratio, respectively.
Five candidates, Keccak, CubeHash, Shabal, JH, and Luffa outperform SHA-512 in terms
of the throughput to area ratio. Two more candidates, Groestl and Skein, have the overall
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Table 4.10: Throughput of all SHA-3 candidates (256-bit variants) normalized to the

throughput of SHA-256
Xilinx Families Altera Families Geometric Means

Family S-3 | V-4 | V-5 | V-6 | C-II | C-III | C-IV | S-II | S-III | S-IV | Xilinx | Altera | Overall
ECHO 7.61 | 6.82 ] 6.32 | 6.48 | N/A 7.66 6.99 | 838 | 857 | 820 6.79 7.94 7.41
Keccak 7.84 | 840 | 7.15 | 6.09 | 7.12 7.54 7.08 | 8.05 7.41 7.56 7.32 7.45 7.40
Luffa 6.24 | 6.62 | 5.41 | 4.30 | 5.70 6.06 5.69 | 5.18 | 5.13 | 5.25 5.57 5.49 5.52
Groestl 3.97 | 4.01 | 4.40 | 3.97 | 3.73 3.76 3.66 | 3.63 | 3.22| 293 4.08 3.47 3.71
BMW N/A | 2.06 | 3.43 | 3.65 | N/A 3.72 3.63 | 448 | 3.79 | 3.61 2.95 3.83 3.48
JH 3.22 | 3.17 | 3.02 | 2.77 | 2.87 3.45 3.22 | 354 | 3.30 | 3.40 3.04 3.29 3.19
CubeHash | 2.41 | 2.52 | 2.45 | 2.46 | 2.13 2.36 221|239 | 223 | 233 2.46 2.27 2.35
Fugue 2.02 | 1.77 | 1.95 | 2.05 | 1.79 1.90 1.75 | 1.93 1.98 | 1.18 1.94 1.73 1.81
Hamsi 1.78 | 1.72 | 1.70 | 1.49 | 1.82 1.96 1.83 | 1.72 1.79 | 1.71 1.67 1.80 1.75
SIMD N/A | 1.84 | 1.74 | 1.61 | 1.53 1.60 1.53 | 2.05 1.87 | 1.92 1.73 1.74 1.73
BLAKE 1.72 | 1.67 | 1.75 | 1.56 | 1.53 1.60 1.51 | 2.07 1.73 | 1.80 1.67 1.70 1.69
SHAvite-3 | 1.74 | 1.62 | 1.81 | 1.16 | 1.52 1.63 1.54 | 1.90 | 2.03| 1.87 1.56 1.74 1.66
Skein 1.62 | 1.48 | 1.77 | 1.67 | 1.46 1.58 1.55 | 1.68 1.50 | 1.55 1.63 1.55 1.58
Shabal 1.19 | 1.19 | 0.96 | 1.13 | 1.35 1.57 1.56 | 0.62 0.52 | 0.52 1.11 0.91 0.99

Table 4.11: Area (utilization of programmable logic blocks) of all SHA-3 candidates (256-
bit variants) normalized to the area of SHA-256

Xilinx Families Altera Families Geometric Means

Family S-3 | V-4 | V-5 | V-6 | C-II | C-III | C-IV | S-II | S-III | S-IV | Xilinx | Altera | Overall
Shabal 0.77 | 0.74 | 0.66 | 0.75 | 0.49 0.62 0.62 | 1.78 1.65 | 1.67 0.73 0.99 0.87
CubeHash 1.75 1.74 1.59 1.96 1.94 1.99 1.95 1.97 1.82 1.83 1.75 1.91 1.85
Hamsi 2.08 2.07 1.67 1.76 2.00 2.01 2.01 2.36 2.19 2.18 1.89 2.12 2.02
Fugue 291 2.90 1.65 2.17 3.59 3.60 3.59 2.44 2.27 3.43 2.34 3.10 2.77
Luffa 3.01 3.07 2.21 3.26 2.57 2.66 2.59 3.14 2.87 2.88 2.85 2.78 2.81
JH 454 | 4.34 | 2.37| 2.86| 3.81 3.85 3.86 | 3.58 | 3.34| 3.36 3.40 3.63 3.53
Keccak 3.93 | 4.02 | 296 | 3.60| 3.81 4.05 385 | 4.33| 3.99 | 4.01 3.60 4.00 3.84
SHAvite-3 | 4.69 | 4.69 | 250 | 2.61| 6.01 6.02 6.04 | 3.09| 2.88| 2.78 3.46 4.19 3.88
BLAKE 4.57 | 4.54 | 354 | 3.81| 4.15 4.23 4.15 | 3.71 | 3.44 | 3.46 4.09 3.84 3.94
Skein 4.04 4.06 3.77 3.71 3.86 3.96 4.01 4.74 4.40 4.42 3.89 4.22 4.09
Groestl 8.97 8.93 3.71 4.16 3.47 3.51 3.69 3.76 6.01 5.93 5.93 4.26 4.87
BMW N/A | 11.39 | 10.12 9.20 | N/A | 11.61 | 11.64 | 12.88 | 11.95 | 11.99 10.20 12.00 11.29
SIMD N/A | 22.52 | 20.75 | 23.76 | 15.44 | 15.53 | 15.56 | 26.30 | 24.36 | 24.46 22.31 19.70 20.53
ECHO 30.47 | 30.19 | 11.59 | 15.55 | N/A | 41.20 | 41.21 | 21.14 | 19.62 | 19.75 20.18 26.83 23.64
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Table 4.12: Throughput to Area Ratio of all SHA-3 candidates normalized to the through-
put to area ratio of SHA-256

Xilinx Families Altera Families Geometric Means

Family S-3 | V-4 | V-5 | V-6 | C-II | C-III | C-IV | S-II | S-III | S-IV | Xilinx | Altera | Overall
Luffa 2.07 | 2.16 | 2.45 | 1.32 | 2.22 2.28 2.19 | 1.65 1.79 | 1.82 1.95 1.98 1.97
Keccak 1.99 | 2.09 | 242 | 1.69 | 1.87 1.86 1.84 | 1.86 1.86 | 1.89 2.03 1.86 1.93
CubeHash | 1.37 | 1.45| 1.54 | 1.26 | 1.10 1.19 1.13 | 1.22 1.22 1.28 1.40 1.19 1.27
Shabal 1.53 | 1.62 | 1.46 | 1.51 2.76 2.53 2.50 | 0.35 0.32 0.31 1.53 0.92 1.13
JH 0.71 | 0.73 | 1.28 | 0.97 | 0.75 0.90 0.831 099 | 099 | 1.01 0.89 0.91 0.90
Hamsi 0.85 | 0.83 | 1.02 | 0.85 | 0.91 0.97 091 | 0.73| 0.82] 0.78 0.89 0.85 0.86
Groestl 0.44 | 0.45 | 1.18 | 0.96 | 1.08 1.07 0.99 | 097 | 0.54 | 0.49 0.69 0.81 0.76
Fugue 0.69 | 0.61 | 1.18 | 0.94 | 0.50 0.53 049 | 0.79 | 0.87 | 0.34 0.83 0.56 0.65
SHAvite-3 | 0.37 | 0.35 | 0.73 | 0.45 | 0.25 0.27 0.25 | 0.62 0.71 | 0.67 0.45 0.41 0.43
BLAKE 0.38 | 0.37 | 0.49 | 0.41 | 0.37 0.38 0.36 | 0.56 | 0.50 | 0.52 0.41 0.44 0.43
Skein 0.40 | 0.36 | 0.47 | 0.45 | 0.38 0.40 0.39 | 0.35 0.34 | 0.35 0.42 0.37 0.39
ECHO 0.25 | 0.23 | 0.55 | 0.42 | N/A 0.19 0.17 | 040 | 0.44 | 0.42 0.34 0.30 0.31
BMW N/A | 0.18 | 0.34 | 0.40 | N/A 0.32 0.31 | 0.35 0.32 | 0.30 0.29 0.32 0.31
SIMD N/A | 0.08 | 0.08 | 0.07 | 0.10 0.10 0.10 | 0.08 | 0.08 | 0.08 0.08 0.09 0.08

Table 4.13: Throughput of all SHA-3 candidates (512-bit variants) normalized to the
throughput of SHA-512

Xilinx Families Altera Families Geometric Means

Family S-3 | V-4 | V-5 | V-6 | C-II | C-III | C-IV | S-II | S-III | S-IV | Xilinx | Altera | Overall
BMW N/A|N/A|N/A|N/A| N/JA| N/A| N/A|N/A| 478| 4.25 N/A 4.51 4.51
Groestl 3.78 | 4.43 | 444 | 3.65| 4.03 3.74 3.90 | 3.99 | 348 | 3.17 4.06 3.71 3.84
Luffa 3.53 | 4.00 | 3.31 | 2.07 | 4.13 4.46 4.37 | 390 | 4.18 | 3.55 3.14 4.09 3.68
ECHO N/A | 353 | 3.35| 1.73 | N/A 3.04 2.82 | 3.69 | 398 | 3.54 2.74 3.39 3.13
Keccak 3.20 | 3.42 | 2.95| 2.69 | 2.97 3.31 2.86 | 3.15 3.56 | 2.87 3.05 3.11 3.09
JH 2.05 | 225 | 242 | 1.94 | 2.25 2.62 2.53 | 2.70 2.71 2.32 2.16 2.51 2.36
SIMD N/A | 258 | 213 | 1.74 | N/A 2.09 2.05 | 2.51 2.76 | 2.48 2.12 2.36 2.27
CubeHash | 1.85 | 2.00 | 1.86 | 1.68 | 1.61 1.83 1.75 | 1.63 1.59 | 1.48 1.84 1.65 1.72
SHAvite-3 | 1.51 | 1.49 | 1.65 | 1.07 | 1.32 1.44 1.37 | 1.65 1.98 | 1.63 1.41 1.55 1.49
BLAKE 1.43 ] 149 | 1.52 | 1.21 | 1.25 1.35 1.32 | 1.62 1.54 | 1.57 1.41 1.43 1.42
Skein 1.18 | 1.06 | 1.38 | 1.24 | 1.14 1.23 1.20 | 1.22 1.19 1.12 1.21 1.18 1.19
Hamsi 091 | 1.05| 0.84 | 0.65| 0.80 1.02 1.03 | 0.91 0.97 | 0.79 0.85 0.91 0.89
Shabal 0.88 | 0.91 | 0.74| 0.80 | 1.06 1.23 1.23 | 0.47 | 043| 0.37 0.83 0.70 0.75
Fugue 0.70 | 0.68 | 0.76 | 0.62 | 0.67 0.70 0.66 | 0.71 0.78 | 0.22 0.69 0.58 0.62
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Table 4.14: Area (utilization of programmable logic blocks) of all SHA-3 candidates (512-
bit variants) normalized to the area of SHA-512

Xilinx Families Altera Families Geometric Means

Family S-3 | V-4 | V-5 | V-6 | C-II | C-III | C-IV | S-II | S-III | S-IV | Xilinx | Altera | Overall
Shabal 034 032 0.34] 047 0.25 0.32 0.32 | 0.86 | 0.81| 0.81 0.36 0.49 0.44
CubeHash | 0.90 | 0.91 | 0.88 | 1.34| 1.07 1.10 1.08 | 095| 0.89 | 0.89 0.99 0.99 0.99
Keccak 1.52 1.55 1.50 2.20 | 1.71 1.71 1.73 1.96 1.84 1.84 1.67 1.80 1.74
Fugue 1.67 1.55 1.17 1.67 | 2.27 2.27 2.28 1.40 1.29 3.00 1.50 2.00 1.78
JH 1.92 1.94 1.32 2.00 | 2.04 2.06 2.07 1.82 1.71 1.72 1.77 1.90 1.85
Skein 1.83 | 1.88 | 2.05| 252 | 2.06 2.08 212 | 237 | 222 221 2.05 2.17 2.12
Hamsi 2.21 2.21 2.27 281 | 2.39 2.39 2.40 3.20 2.96 2.95 2.36 2.70 2.56
Luffa 2.85 | 2.77| 234 | 3.43| 2.99 3.03 3.05 | 3.43 | 3.18| 3.20 2.82 3.14 3.01
SHAvite-3 | 4.04 | 4.08 | 249 | 2.71| 6.15 6.13 6.17 | 2.77 | 2.60 | 2.59 3.25 4.04 3.70
BLAKE 3.75 | 3.88 | 3.66 | 4.94 | 4.18 4.20 4.29 | 3.49 | 3.27| 3.27 4.02 3.76 3.86
Groestl 7.71 7.84 3.74 542 | 4.91 5.85 4.00 3.50 5.71 5.73 5.92 4.86 5.26
ECHO N/A | 1338 | 6.02 | 7.01 | N/A | 21.09 | 21.20 | 10.43 | 9.79 | 9.79 8.27 13.49 11.23
BMW N/A| N/A| N/JA| N/JA| N/A| N/A| N/A | N/A | 11.64 | 11.49 N/A 11.57 11.57
SIMD N/A | 20.63 | 23.44 | 31.14 | N/A | 16.57 | 16.62 | 26.44 | 24.78 | 24.66 24.69 21.36 22.55

Table 4.15: Throughput to Area
put to area ratio of SHA-512

Ratio of all SHA-3 candidates normalized to the through-

Xilinx Families Altera Families Geometric Means

Family S-3 | V-4 | V-5 | V-6 | C-II | C-III | C-IV | S-II | S-III | S-IV | Xilinx | Altera | Overall
Keccak 211 ] 220 | 1.97 | 1.22 1.73 1.93 1.66 | 1.61 1.94 1.56 1.83 1.73 1.77
CubeHash | 2.04 | 2.21 | 2.12 | 1.25 | 1.51 1.66 1.62 | 1.72 1.78 | 1.66 1.86 1.66 1.73
Shabal 2.60 | 2.82 | 2.19 | 1.71 | 4.25 3.88 3.87 | 0.55 0.53 | 0.46 2.29 1.43 1.73
JH 1.07 | 1.16 | 1.83 | 0.97 | 1.10 1.27 1.22 | 1.48 1.58 | 1.35 1.22 1.32 1.28
Luffa 1.24 | 144 | 1.42 | 0.61 | 1.38 1.47 1.43 | 1.14 1.31 1.11 1.11 1.30 1.22
Groestl 0.49 | 0.56 | 1.19 | 0.67 | 0.82 0.64 097 | 1.14 | 0.61 | 0.55 0.69 0.76 0.73
Skein 0.64 | 0.57 | 0.67 | 0.49 | 0.55 0.59 0.56 | 0.52 0.54 | 0.51 0.59 0.54 0.56
SHAvite-3 | 0.37 | 0.36 | 0.66 | 0.40 | 0.21 0.23 0.22 | 0.60 | 0.76 | 0.63 0.43 0.38 0.40
BMW N/A|N/A|N/A|N/A| N/A| N/A| N/A|N/A| 041]| 0.37 N/A 0.39 0.39
BLAKE 0.38 | 0.38 | 0.41 | 0.24 | 0.30 0.32 0.31 | 046 | 0.47 | 0.48 0.35 0.38 0.37
Fugue 0.42 | 0.44 | 0.65 | 0.37 | 0.30 0.31 0.29 | 0.50 | 0.61 | 0.07 0.46 0.29 0.35
Hamsi 0.41 | 048 | 0.37 | 0.23 | 0.33 0.42 0.43 | 0.28 | 0.33 | 0.27 0.36 0.34 0.35
ECHO N/A | 0.26 | 0.56 | 0.25 | N/A 0.14 0.13 | 0.35 0.41 | 0.36 0.33 0.25 0.28
SIMD N/A | 0.12 | 0.09 | 0.06 | N/A 0.13 0.12 | 0.09 | 0.11 | 0.10 0.09 0.11 0.10
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Figure 4.1: Relative performance of all Round 2 SHA-3 Candidates (256-bit variants) in
terms of the overall normalized throughput and the overall normalized area (with SHA-256
used as a reference point).)

normalized ratio higher than 0.5. In terms of throughput, only five candidates, BMW,
Groestl, Luffa, ECHO, and Keccak, outperform SHA-512 by a factor larger than 3. The
additional six candidates have a normalized throughput in the range from 1 to 3. Three
candidates, Hamsi, Shabal, and Fugue, are slower than SHA-512. In terms of area, only
Shabal and CubeHash, in their 512-bit variants, are smaller than SHA-512. The spread of
results is much larger than in the case of throughput, with the smallest SHA-3 candidate,
Shabal, less than half the size as SHA-512, and the largest SIMD, lagging behind by a factor
of over 22. The group following CubeHash in terms of area, including Keccak, Fugue, JH
Skein, and Hamsi, covers the range between 1.7 and 2.6, and includes only one candidate,
Keccak, which excels also in terms of speed.

In Fig. we presents a two dimensional diagram, with the Overall Normalized Area
on the X-axis and the Overall Normalized Throughput on the Y-axis. Five algorithms
outperform SHA-512 in terms of the throughput to area ratio. Out of them Luffa is the
fastest and most area consuming, while Shabal is the slowest and the smallest. SIMD is
approximately 18 times worse than Keccak in terms of the throughput to area ratio, and
ECHO is more than 6 times worse. The implementations of these algorithms are not likely
to scale to the same performance region as implementations of majority of other candidates,
even if significantly trading speed for reduced area.

A throughput based on the performance for long messages does not reliably describe
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Figure 4.2: Relative performance of all Round 2 SHA-3 Candidates (512-bit variants) in
terms of the overall normalized throughput and the overall normalized area (with SHA-512

used as a reference point).)
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Figure 4.3: Execution time vs. message size for short messages up to 1,000 bits. 256-bit

variants of all SHA-3 Candidates and SHA-256 in Virtex 5.
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Figure 4.4: Execution time vs. message size for short messages up to 1,000 bits. 512-bit
variants of all SHA-3 Candidates and SHA-512 in Virtex 5.

the behavior of the developed hash modules for short messages. For some applications, an
algorithm that can perform particularly well for short messages may be favored over an
algorithm that is exceptionally good for long messages, but terribly slow for short ones.
In Figure [4.3] we present the execution time as a function of the message length, varying
between 0 and 1000 bits, for 256-bit variants of all SHA-3 candidates and SHA-256. Similar
graphs for 512-bit variants of all algorithms are presented in Figure 4.4, Message sizes used
in these diagrams represent sizes before padding. Padding is assumed to be done outside
of a hash core (e.g., in software), and its time is not included in the execution time.

For the 256-bit variants of all algorithms, the only one performing worse than SHA-
256 for all message sizes in the investigated range is Shabal. BMW, SIMD, and CubeHash
perform worse most of the time. The best performers are Luffa, Keccak, Groestl, ECHO,
and JH. For the 512-bit variants, the worst performing algorithms are Shabal, Fugue, SIMD,
CubeHash. BMW was not implemented in Virtex 5 because of the routing congestion. The
best performers are the same as in the SHA-256 case, with the addition of Skein.

In Figures we demonstrate the influence of the message size on ranking
of candidates in terms of the throughput and throughput to area ratio. We consider the
following four message sizes: 40 bytes, 576 bytes, 1500 bytes, and “long”. 1500 bytes
is the Maximum Transmission Unit (MTU) for Ethernet v2, 576 bytes is the Maximum
Transmission Unit (MTU) for Internet IPv4 Path, 40 bytes is the smallest packet size
popular in the computer-network protocols. “Long” messages are messages long enough, so
that any initialization and finalization execution time overheads can be neglected compared
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Figure 4.5: Throughput as a function of the message size for all SHA-3 Candidates (256-bit
variants) and SHA-256 in Virtex 5. Investigated message sizes are: 40 bytes, 576 bytes,
1500 bytes, and “long”
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Figure 4.7: Throughput as a function of the message size for all SHA-3 Candidates (512-bit
variants) and SHA-512 in Virtex 5. Investigated message sizes are: 40 bytes, 576 bytes,
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to the basic message processing time. Based on these figures, the influence of the message
size on ranking of candidates, compared to ranking for ideal “long” messages is relatively
small for 1500 byte packets. For 576 byte packets, already several algorithms change their
positions. For 40-byte packets, the influence is already quite strong. For example, as shown
in Figure for 512-bit variants of all algorithm, the ranking of the first 5 candidates
in terms of throughput is reversed for 40-byte packets compared to the ranking for long
messages.

In Figure we summarize all our results for both 256 and 512 variants of all algo-
rithms. Each variant of each algorithm is characterized using four performance measures:
the throughput to area ratio, throughput, area, and the execution time for short messages.
The performance is graded on the 3-point scale and denoted using the following color
code: green — best, yellow — medium, red—worst. The best performing algorithms are those
that have the largest number of green boxes (high scores), and no red box (low scores)
associated with them. Additionally, taking into account that our designs are intended as
high-speed designs, and not low-cost designs, the throughput to area ratio and throughput
are treated as two primary performance measures, while area and the execution time for
short messages are considered as secondary criteria. Under these assumptions, the two
best performing candidates are Keccak and Luffa, scoring high in 7 out of 8 categories.
These two algorithms are followed by JH and Groestl, which excel in 5 and 4 categories,
respectively, mostly throughput and the execution time for short messages in both function
variants. SIMD is the worst performing algorithm so far, with the low scores in 6 out of
8 categories. Additionally, ECHO and BMW perform quite poorly in 4 categories, mostly
area and throughput to area ratio. Out of the remaining candidates, the ones with the
highest potential are CubeHash and Shabal, excelling in terms of area and throughput to
area ratio for both variants of the algorithm.
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Figure 4.9: Summary of major features of all SHA-3 candidates in terms of performance
in FPGAs. Color code: green - best, yellow - medium, red - worst. The performance is
characterized using four metrics: throughput to area ratio, throughput, area, and execution
time for short messages.



Chapter 5

Results from Other Groups

5.1 Best Results from Other Groups

The most comprehensive results published by other groups come from Baldwin et al. [15],
Matsuo et al. [18], and Guo et al. [47]. All these groups have published results for all
14 Round 2 candidates. Majority of published results concern 256-bit variants of the
candidates, implemented using Xilinx Virtex 5 FPGAs. Additionally, several other groups
have published results regarding either individual candidates or a subset of candidates.
Out of these publications, the most important ones are the papers by Detrey et al. [48]
about Shabal, Gauravaram et al. [32] about Groestl, and Lu et al. [49] about ECHO.

Sometimes, results published by other groups are somewhat difficult to compare with
our results because of different assumptions used. In particular, the basic designs by Bald-
win et al. [15] include padding. In the comparison below, we use Baldwin’s results obtained
under the assumption that padding was done in software, These modified results have been
included in the Baldwin’s presentation at the Second SHA-3 Candidate Conference. At the
same time, it should be noted that one of the main assumptions that limits the throughput
and throughput to area ratio of the Baldwin’s designs, is his assumption about the 32-bit
input/output interface compared to our 64-bit input/output interface. Since the influence
of the interface cannot be easily quantified without the detailed knowledge of the designs,
in this comparison, we take into account only original results obtained by Baldwin using
his 32-bit interface.

Table presents the best published results in terms of the throughput to area ratio
for 256-bit variants of the SHA-3 Round 2 Candidates, and contrasts them with the best
results reported in this paper. The implementation platform is Xilinx Virtex 5 family,
because majority of papers from other groups target this particular family. This table
demonstrates that the GMU results are the best in terms of the throughput to area ratio
for all candidates except BMW, Groestl, Shabal, and SHAvite-3. The exact reasons why
our designs are inferior to other group’s designs for these particular four algorithms will be
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investigated in the future.

In Figure the best results from other groups have been summarized using the
throughput vs. area graph. Please note that no proper post-place-and-route results seem
to be available for Skein-512-256, i.e., Skein with the 512-bit state and 256-bit output size.
Instead, majority of groups published by mistake results for Skein-256-256.

Table 5.1: Comparison of the best designs from other groups in terms of the Throughput
to Area Ratio with designs presented in this paper. All designs concern 256-bit variants of
the SHA-3 candidates.

Other Groups This Paper
Area Thr Thr/Area Source Area Thr Thr/Area

(CLB slices) | (Mbit/s) (CLB slices) | (Mbit/s)
BLAKE 1660 2676 1.61 Matsuo et al. [18 1523 3143 2.06
BMW 4350 8704 2.00 Matsuo et al. [18 4353 6141 1.41
CubeHash 590 2960 5.02 Matsuo et al. [18 684 4385 6.41
ECHO 9333 14860 1.59 Lu et al. [49 4982 11323 2.27
Fugue 1689 914 0.54 Baldwin et al. [15 708 3495 4.94
Groestl 1722 10276 5.97 | Gauravaram et al. [32 1597 7885 4.94
Hamsi 718 1680 2.34 Matsuo et al. [18 720 3049 4.24
JH 1291 3380 2.62 Baldwin et al. [15 1018 5416 5.32
Keccak 1433 8397 5.86 Matsuo et al. [18 1272 12817 10.08
Luffa 1048 7424 7.08 Matsuo et al. [18 949 9692 10.21
Shabal 153 2051 13.41 Detrey et al. [48 283 1719 6.08
SHAvite-3 1063 3382 3.18 Matsuo et al. [18 1076 3253 3.02
SIMD 3987 835 0.21 Matsuo et al. [18 8922 3123 0.35

5.2 Best Results

The best results (including our results and results from other groups) in terms of the
throughput to area ratio for 256-bit variants of all SHA-3 Round 2 candidates in Xilinx
Virtex 5 are summarized in Table A corresponding throughput vs. area diagram is
shown in Figure In Figure [5.3] we rank all candidates in terms of the throughput to
area ratio. The best results are obtained by Shabal, Luffa, and Keccak, followed by Cube-
Hash, Groestl, and JH. In Figure we take exactly the same implementations (selected
because of the superior throughput to area ratio) and rank them according to the highest
throughput. In Figure [5.5] we rank the same implementations in terms of minimum area.
These graphs demonstrate that for Luffa, Keccak, Groestl, and JH, their high throughput
to area ratio comes from high throughput and medium area. For CubeHash, the good ratio
is the result of small area and medium throughput. Shabal is by far the best in terms of
area and the worst in terms of throughput.

There is no significant change in an overall ranking of SHA-3 Round 2 candidates in
terms of the throughput to area ratio compared to the ranking based exclusively on our
own results, with the exception of Shabal, which demonstrates the best throughput to area
ratio, when the result by Detrey et al. is taken into account. Additionally, Shabal will most
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Figure 5.1: Best published results vs. GMU results for all Round 2 SHA-3 Candidates
(256-bit variants) in terms of throughput to area ratio in Xilinx Virtex 5

likely retains its lead in comparison of 512-bit variants, as there is practically no functional
change between 256 and 512-bit variants of this algorithm.
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Table 5.2: Best results in terms of the Throughput to Area Ratio for 256-bit variants of
all SHA-3 Round 2 candidates in Xilinx Virtex 5.

Area Thr Thr/Area Source
(CLB slices) | (Mbit/s)
BLAKE 1523 3142.7 2.06 GMU
BMW 4350 8704 2.00 Matsuo et al. [18]
CubeHash 684 4384.8 6.41 GMU
ECHO 4982 11323.39 2.27 GMU
Fugue 708 3494.98 4.94 GMU
Groestl 1722 10276 5.97 | Gauravaram et al. [32]
Hamsi 720 3049.39 4.24 GMU
JH 1018 5415.96 5.32 GMU
Keccak 1272 12816.87 10.08 GMU
Luffa 949 9691.59 10.21 GMU
Shabal 153 2051 13.41 Detrey et al. [48]
SHAvite-3 1063 3382 3.18 Matsuo et al. [18]
SIMD 8922 3123.2 0.35 GMU
Skein 1621 3178.44 1.96 GMU
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Figure 5.2: Best results for all Round 2 SHA-3 Candidates (256-bit variants) in terms of
throughput vs. area in Virtex 5
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Chapter 6

Conclusions and Future Work

Our evaluation methodology, applied to 14 Round 2 SHA-3 candidates, has demonstrated
large differences among competing candidates.

For the 256-bit variants of the SHA-3 candidates, the ratio of the best result to the
worst result was equal to about 7.5 in terms of the throughput (Keccak vs. Shabal), over
27 times in terms of area (Shabal vs. ECHO), and about 25 in terms of our primary
optimization target, the throughput to area ratio (Luffa vs. SIMD). Only four candidates,
Luffa, Keccak, CubeHash, and Shabal, have demonstrated the throughput to area ratio
better than the current standard SHA-256. Out of these four algorithms, Keccak and Luffa
have also demonstrated very high throughputs, while Shabal and CubeHash outperformed
other candidates in terms of minimum area. Shabal is the only candidate that outperforms
SHA-256 in terms of area, and at the same time the only one loosing to SHA-256 in terms
of throughput.

For the 512-bit variants, the ratio of the best result to the worst result was equal to
about 7 in terms of the throughput (BMW vs. Fugue), over 50 in terms of area (Shabal
vs. SIMD), and about 18 in terms of our primary optimization target, the throughput to
area ratio (Keccak vs. SIMD). Five candidates, Keccak, CubeHash, Shabal, JH, and Luffa,
have demonstrated the throughput to area ratio better than the current standard SHA-512.
Out of these algorithms, Luffa, Keccak, and JH have also demonstrated high throughputs,
while Shabal and CubeHash outperformed other candidates in terms of minimum area.
Almost all candidates, except Fugue, Shabal, and Hamsi, outperform SHA-512 in terms
of the throughput, but only two, Shabal and CubeHash, match SHA-512 in terms of the
area.

Future work will include the evaluation of the remaining variants of SHA-3 candidates
(such as variants with 224 and 384 bit outputs, and an all-in-one architecture). The uni-
form padding units will be added to each SHA core, and their cost estimated. We will also
investigate the influence of synthesis tools from different vendors (e.g., Synplify Pro from
Synopsys). The evaluation may be also extended to the cases of hardware architectures
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optimized for the minimum area (cost), maximum throughput (speed), or minimum power
consumption. Fach algorithm will be also evaluated in terms of its suitability for imple-
mentation using dedicated FPGA resources, such embedded memories, dedicated multi-
pliers, and DSP units. Our methodology can be also applied to the implementations of
MACs based on the SHA-3 candidates (in particular, HMAC), with added countermeasures
against side channel attacks. Finally, an extension of our methodology to the standard-cell
ASIC technology will be investigated.
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Appendix A

Absolute Results for Ten FPGA
Families

Table A.1: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Xilinx Spartan 3 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 | ratio | 512 | 256 ratio 512 256 | ratio | 512 | 256 | ratio
BLAKE 34.76 | 44.43 0.78 | 1227 | 1083 1.13 | 7390 | 3913 1.89 | 0.17 | 0.28 0.60
BMW N/A| N/A | N/A | N/A | N/A N/A| N/A| N/A| N/A | N/A | N/A | N/A
CubeHash | 98.74 | 94.76 1.04 | 1580 | 1516 1.04 | 1785 1502 1.19 | 0.89 | 1.01 0.88
ECHO N/A | 78.06 | NJA | N/A | 4796 N/A | NJA | 26117 | N/A | NJA | 018 | N/A
Fugue 74.58 | 79.56 0.94 | 597 | 1273 0.47 | 3286 | 2494 1.32 | 0.18 | 0.51 0.36
Groestl 91.64 | 102.61 0.89 | 3236 | 2502 1.29 | 15210 | 7686 1.98 | 0.21 | 0.33 0.65
Hamsi 73.21 | 105.05 0.70 | 781 | 1121 0.70 | 4353 | 1784 2.44 | 0.18 | 0.63 0.29
JH 123.21 | 142.47 0.86 | 1752 | 2026 0.86 | 3789 | 3894 0.97 | 0.46 | 0.52 0.89
Keccak 114.19 | 108.90 1.05 | 2741 | 4937 0.56 | 2991 3371 0.89 | 092 | 1.46 0.63
Luffa 94.51 | 138.10 0.68 | 3024 | 3928 0.77 | 5625 | 2576 2.18 | 0.54 | 1.52 0.35
Shabal 93.63 | 93.63 1.00 | 749 | 749 1.00 664 664 1.00 | 1.13 | 1.13 1.00
SHAvite-3 | 71.71 | 79.05 0.91 | 1288 | 1094 1.18 | 7965 | 4017 1.98 | 0.16 | 0.27 0.59
SIMD N/A | NJ/A | N/A | N/A | N/A N/A | N/A| N/A | NJA | N/A | N/A| NJ/A
Skein 37.46 | 37.86 0.99 | 1009 | 1020 0.99 | 3618 | 3460 1.05 | 0.28 | 0.29 0.95
SHA-2 67.68 | 79.96 0.85 | 856 | 630 1.36 | 1973 857 2.30 | 043 | 0.73 0.59
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Table A.2: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)

when implemented in Xilinx Virtex 4 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 | ratio | 512 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 68.52 | 84.93 | 0.81 | 2419 | 2071 1.17 | 7566 | 3913 1.93 | 0.32 | 0.53 0.60
BMW NJA | 500 | NJA | NJA | 2560 NJA | NJA | 9806 | NJA | NJA | 026 | NJ/A
CubeHash | 202.63 | 196.04 1.03 | 3242 | 3137 1.03 | 1769 | 1495 1.18 | 1.83 | 2.10 0.87
ECHO 173.31 | 138.01 1.26 | 5725 | 8479 0.68 | 26114 | 25990 1.00 | 0.22 | 0.33 0.67
Fugue 137.46 | 137.63 1.00 | 1100 | 2202 0.50 | 3023 | 2494 1.21 | 0.36 | 0.88 0.41
Groestl 203.34 | 204.33 1.00 | 7180 | 4982 1.44 | 15312 | 7691 1.99 | 0.47 | 0.65 0.72
Hamsi 160.18 | 200.97 | 0.80 | 1709 | 2144 0.80 | 4311 | 1785 2.42 | 0.40 | 1.20 0.33
JH 256.64 | 276.93 | 0.93 | 3650 | 3939 0.93 | 3789 | 3738 | 1.01| 0.96 | 1.05 0.91
Keccak 230.84 | 230.42 1.00 | 5540 | 10445 0.53 | 3029 | 3457 | 0.88 | 1.83 | 3.02 0.61
Luffa 202.88 | 289.35 0.70 | 6492 | 8230 0.79 | 5412 | 2643 | 2.05 | 1.20 | 3.11 0.39
Shabal 185.01 | 185.01 1.00 | 1480 | 1480 1.00 633 633 1.00 | 2.34 | 2.34 1.00
SHAvite-3 | 134.25 | 145.75 | 0.92 | 2412 | 2017 1.20 | 7968 | 4042 | 1.97 | 0.30 | 0.50 0.61
SIMD 36.73 | 40.13 | 0.92 | 4179 | 2283 1.83 | 40261 | 19391 2.08 | 0.10 | 0.12 0.88
Skein 63.94 | 68.16 | 0.94 | 1723 | 1837 0.94 | 3662 | 3499 1.05 | 0.47 | 0.52 0.90
SHA-2 128.25 | 157.88 0.81 | 1621 1244 1.30 1952 861 2.27 | 0.83 | 1.44 0.58

Table A.3: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)

when implemented in Xilinx Virtex 5 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 | ratio 512 256 | ratio 512 | 256 | ratio | 512 | 256 | ratio
BLAKE 99.68 | 128.90 0.77 | 3,520 | 3,143 1.12 | 3,064 | 1,523 2.01 | 1.15 | 2.06 0.56
BMW N/A| 830| N/JA| NJA| 4250 | N/A| N/A | 4855 | N/A|N/A| 088 | N/A
CubeHash | 269.69 | 274.05 0.98 | 4,315 | 4,385 0.98 734 684 1.07 | 5.88 | 6.41 0.92
ECHO 235.50 | 184.30 1.28 | 7,779 | 11,323 0.69 | 5,044 | 4,982 1.01 | 1.54 | 2.27 0.68
Fugue 221.58 | 218.44 1.01 1,773 | 3,495 0.51 979 708 1.38 | 1.81 | 4.94 0.37
Groestl 292.10 | 323.40 0.90 | 10,314 | 7,885 1.31 | 3,138 | 1,597 1.96 | 3.29 | 4.94 0.67
Hamsi 182.10 | 285.88 0.64 | 1,942 | 3,049 0.64 | 1,900 720 2.64 | 1.02 | 4.24 0.24
JH 394.48 | 380.81 1.04 | 5,610 | 5,416 1.04 | 1,104 | 1,018 1.08 | 5.08 | 5.32 0.96
Keccak 285.23 | 282.73 1.01 | 6,845 | 12,817 0.53 | 1,257 | 1,272 0.99 | 5.45 | 10.08 0.54
Luffa 240.33 | 340.72 0.71 | 7,691 | 9,692 0.79 | 1,960 949 2.07 | 3.92 | 10.21 0.38
Shabal 214.92 | 214.92 1.00 | 1,719 | 1,719 1.00 283 283 1.00 | 6.08 | 6.08 1.00
SHAvite-3 | 213.80 | 235.10 0.91 | 3,841 | 3,253 1.18 | 2,090 | 1,076 194 | 1.84 | 3.02 0.61
SIMD 43.40 | 54.90 0.79 | 4,938 | 3,123 1.58 | 19,639 | 8,922 220 | 0.25 | 0.35 0.72
Skein 119.09 | 117.95 1.01 | 3,209 | 3,178 1.01 | 1,716 | 1,621 1.06 | 1.87 | 1.96 0.95
SHA-2 183.70 | 190.90 0.96 | 2,322 | 1,504 1.54 838 418 2.00 | 2.77 | 3.60 0.77
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Table A.4: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Xilinx Virtex 6 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 | ratio 512 256 ratio 512 | 256 | ratio | 512 | 256 | ratio
BLAKE 103.47 | 136.24 | 0.76 | 3654 | 3322 1.10 | 2658 | 1275 2.08 | 1.37 ] 2.61 0.53
BMW NJA | 1521 | NJA| NJA| 7788 | NJA | NJA | 3081 | NJ/A | N/A | 253 | N/A
CubeHash | 317.36 | 328.19 | 0.97 | 5078 | 5251 0.97 723 | 655 1.10 | 7.02 | 8.02 0.88
ECHO 158.40 | 224.67 | 0.71 | 5232 | 13804 0.38 | 3774|5209 | 0.72| 1.39 | 2.65 0.52
Fugue 234.69 | 272.41 0.86 | 1877 | 4358 0.43 901 | 726 1.24 | 2.08 | 6.00 0.35
Groestl 312.01 | 347.34 | 0.90 | 11017 | 8468 1.30 | 2914 | 1392 2.09 | 3.78 | 6.08 0.62
Hamsi 185.12 | 298.60 0.62 1975 | 3185 0.62 1513 | 588 257 | 1.31 5.42 0.24
JH 412.54 | 415.46 | 0.99 | 5867 | 5909 0.99 | 1075 | 959 1.12 | 5.46 | 6.16 0.89
Keccak 338.18 | 286.21 1.18 | 8116 | 12975 0.63 | 1185 | 1207 | 0.98 | 6.85 | 10.75 0.64
Luffa 195.73 | 322.17 | 0.61 | 6263 | 9164 0.68 | 1843 | 1091 1.69 | 3.40 | 8.40 0.40
Shabal 300.66 | 300.66 1.00 | 2405 | 2405 1.00 251 | 251 1.00 | 9.58 | 9.58 1.00
SHAvite-3 | 180.21 | 178.89 1.01 3237 | 2475 1.31 1456 | 873 1.67 | 2.22 | 2.84 0.78
SIMD 46.30 | 61.35 | 0.75| 5268 | 3490 1.51 | 16754 | 7960 210 | 031 ] 0.44 0.72
Skein 138.52 | 132.31 1.05 | 3733 | 3565 1.05 | 1355 | 1243 1.09 | 2.75 | 2.87 0.96
SHA-2 238.83 | 270.56 | 0.88 | 3019 | 2131 1.42 538 | 335 1.61 | 5.61| 6.36 0.88

Table A.5: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Cyclone II FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [LEs]

512 256 | ratio | 512 | 256 ratio 512 256 | ratio | 512 | 256 | ratio
BLAKE 34.76 | 53.67 0.65 | 1362 | 1309 1.04 | 13832 | 7001 1.98 | 0.10 | 0.19 0.53
BMW N/A | NJA | NJA | N/A | N/A N/A | N/A| NJA| NJA | N/A | N/A| NJ/A
CubeHash | 98.74 | 114.05 0.87 | 1760 | 1825 0.96 | 3537 | 3276 1.08 | 0.50 | 0.56 0.89
ECHO N/A | NJA | NJA | NJ/A | N/A N/A | N/A| N/A| N/A | N/A |[N/A| NJ/A
Fugue 74.58 | 95.63 0.78 | 733 | 1530 0.48 | 7518 | 6057 1.24 | 0.10 | 0.25 0.39
Groestl 91.64 | 131.08 0.70 | 4402 | 3196 1.38 | 16229 | 5849 2.77 | 0.27 | 0.55 0.50
Hamsi 73.21 | 146.43 0.50 | 873 | 1562 0.56 | 7893 | 3371 2.34 | 0.11 | 0.46 0.24
JH 123.21 | 172.92 0.71 | 2456 | 2459 1.00 | 6756 | 6420 1.05 | 0.36 | 0.38 0.95
Keccak 114.19 | 134.43 0.85 | 3239 | 6094 0.53 | 5658 | 6419 0.88 | 0.57 | 0.95 0.60
Luffa 94.51 | 171.59 0.55 | 4515 | 4881 0.92 | 9873 | 4330 2.28 | 0.46 | 1.13 0.41
Shabal 93.63 | 144.97 | 0.65 | 1160 | 1160 1.00 827 827 1.00 | 1.40 | 1.40 1.00
SHAvite-3 | 71.71 | 93.86 0.76 | 1443 | 1299 1.11 | 20346 | 10134 2.01 | 0.07 | 0.13 0.55
SIMD NJA | 23.02 | NJA | N/A | 1310 N/A | NJ/A [ 26026 | N/A [N/A | 005 | N/A
Skein 37.46 | 46.35 0.81 | 1246 | 1249 1.00 | 6798 | 6509 1.04 | 0.18 | 0.19 0.95
SHA-2 67.68 | 108.68 0.62 | 1092 | 856 1.28 | 3307 | 1686 1.96 | 0.33 | 0.51 0.65
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Table A.6: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Cyclone ITI FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [LEs]

512 256 | ratio | 512 | 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 45.77 | 61.52 0.74 | 1616 | 1500 1.08 | 13932 | 7121 1.96 | 0.12 | 0.21 0.55
BMW NJ/A | 679 | NJA | NJA | 3476 NJA | NJ/A | 19562 | NJA | NJA | 018 | NJ/A
CubeHash | 137.46 | 137.70 1.00 | 2199 | 2203 1.00 | 3653 | 3345 1.09 | 0.60 | 0.66 0.91
ECHO 110.44 | 116.59 | 0.95 | 3648 | 7163 0.51 | 69916 | 69423 1.01 | 0.05 | 0.10 0.51
Fugue 104.64 | 111.22 0.94 | 837 | 1780 0.47 | 7523 | 6059 1.24 | 0.11 | 0.29 0.38
Groestl 127.10 | 144.38 | 0.88 | 4488 | 3520 1.27 1 19389 | 5907 | 3.28 | 0.23 | 0.60 0.39
Hamsi 114.13 | 171.59 | 0.67 | 1217 | 1830 0.67 | 7932 | 3388 | 2.34| 0.15 | 0.54 0.28
JH 220.85 | 227.07 | 0.97 | 3141 | 3229 0.97 | 6825 | 6481 1.05 | 0.46 | 0.50 0.92
Keccak 165.32 | 155.57 1.06 | 3968 | 7053 0.56 | 5680 | 6823 | 0.83 | 0.70 | 1.03 0.68
Luffa 167.03 | 199.20 | 0.84 | 5345 | 5666 0.94 | 10055 | 4482 2.24 | 0.53 | 1.26 0.42
Shabal 183.82 | 183.82 1.00 | 1471 | 1471 1.00 1049 1049 1.00 | 1.40 | 1.40 1.00
SHAvite-3 | 95.85 | 110.24 | 0.87 | 1722 | 1525 1.13 | 20326 | 10145 2.00 | 0.08 | 0.15 0.56
SIMD 22.04 | 26.37 | 0.84 | 2508 | 1500 1.67 | 54917 | 26171 2.10 | 0.05 | 0.06 0.80
Skein 54.90 | 54.90 1.00 | 1479 | 1479 1.00 | 6886 | 6667 1.03 | 0.21 | 0.22 0.97
SHA-2 94.86 | 118.75 0.80 | 1199 | 935 1.28 | 3315 | 1685 1.97 | 0.36 | 0.56 0.65

Table A.7: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Cyclone IV FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [LEs]

512 256 | ratio | 512 | 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 47.06 | 61.70 0.76 | 1662 | 1504 1.10 | 14138 | 6977 2.03 | 0.12 | 0.22 0.55
BMW N/A | 7.06 | NJA | N/A | 3615 N/A | NJA | 19561 | N/JA | N/A [0.18 | N/A
CubeHash | 137.70 | 137.50 1.00 | 2203 | 2200 1.00 | 3550 | 3270 1.09 | 0.62 | 0.67 0.92
ECHO 107.71 | 113.43 0.95 | 3558 | 6969 0.51 | 69882 | 69269 1.01 | 0.05 | 0.10 0.51
Fugue 104.20 | 109.03 0.96 | 834 | 1744 0.48 | 7517 | 6033 1.25 | 0.11 | 0.29 0.38
Groestl 139.12 | 149.57 0.93 | 4912 | 3647 1.35 | 13183 | 6195 2.13 | 0.37 | 0.59 0.63
Hamsi 121.71 | 170.85 0.71 | 1298 | 1822 0.71 | 7920 | 3375 2.35 | 0.16 | 0.54 0.30
JH 224.37 | 225.38 1.00 | 3191 | 3205 1.00 | 6817 | 6496 1.05 | 0.47 | 0.49 0.95
Keccak 150.35 | 155.64 0.97 | 3608 | 7056 0.51 | 5696 | 6469 0.88 | 0.63 | 1.09 0.58
Luffa 172.35 | 199.24 0.87 | 5515 | 5667 0.97 | 10056 | 4362 2.31 | 0.55 | 1.30 0.42
Shabal 194.06 | 194.06 1.00 | 1552 | 1552 1.00 | 1048 | 1048 1.00 | 1.48 | 1.48 1.00
SHAvite-3 | 96.38 | 110.64 0.87 | 1731 | 1531 1.13 | 20340 | 10154 2.00 | 0.09 | 0.15 0.56
SIMD 22.74 | 26.77 | 0.85 | 2587 | 1523 1.70 | 54786 | 26157 2.09 | 0.05 | 0.06 0.81
Skein 55.98 | 57.13 0.98 | 1509 | 1540 0.98 | 7001 | 6741 1.04 | 0.22 ] 0.23 0.94
SHA-2 99.75 | 126.50 0.79 | 1261 | 996 1.27 | 3296 | 1681 1.96 | 0.38 | 0.59 0.65
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Table A.8: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Stratix II FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [ALUTS]

512 256 | ratio | 512 | 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 71.27 | 100.67 | 0.71 | 2517 | 2454 1.03 | 7087 | 3635 1.95 | 0.36 | 0.68 0.53
BMW NJA | 10.35 | NJA | NJA | 5299 NJA | NJ/A | 12636 | N/A | N/A | 042 | NJ/A
CubeHash | 158.60 | 177.21 0.89 | 2538 | 2835 0.89 | 1933 | 1929 1.00 | 1.31 | 1.47 0.89
ECHO 173.73 | 161.50 | 1.08 | 5739 | 9923 0.58 | 21206 | 20734 | 1.02 | 0.27 | 0.48 0.57
Fugue 137.70 | 142.84 | 0.96 | 1102 | 2285 0.48 | 2856 | 2398 1.19 | 0.39 | 0.95 0.40
Groestl 175.90 | 176.24 1.00 | 6211 | 4297 1.45 | 7121 | 3686 1.93 | 0.87 | 1.17 0.75
Hamsi 132.64 | 191.06 | 0.69 | 1415 | 2038 0.69 | 6507 | 2315 2.81 | 0.22 | 0.88 0.25
JH 294.81 | 294.90 1.00 | 4193 | 4194 1.00 | 3697 | 3516 1.05| 1.13 | 1.19 0.95
Keccak 204.21 | 210.17 | 0.97 | 4901 | 9528 0.51 | 3990 | 4245 0.94 | 1.23 | 2.24 0.55
Luffa 189.74 | 215.80 | 0.88 | 6072 | 6138 0.99 | 6974 | 3078 | 2.27 | 0.87 | 1.99 0.44
Shabal 91.84 | 91.84 1.00 | 735 | 735 1.00 | 1749 | 1749 1.00 | 0.42 | 0.42 1.00
SHAvite-3 | 142.78 | 162.89 | 0.88 | 2565 | 2254 1.14 | 5625 | 3031 1.86 | 0.46 | 0.74 0.61
SIMD 34.33 | 42.62 0.81 | 3906 | 2425 1.61 | 53750 | 25798 | 2.08 | 0.07 | 0.09 0.77
Skein 70.55 | 73.94 | 0.95| 1901 | 1992 0.95 | 4812 | 4654 1.03 | 0.40 | 0.43 0.92
SHA-2 123.03 | 150.31 0.82 | 1555 | 1184 1.31 | 2033 981 2.07 | 0.77 | 1.21 0.63

Table A.9: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Stratix III FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHZz] [ALUTS]

512 256 | ratio | 512 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 89.53 | 118.98 0.75 | 3,161 | 2,901 1.09 | 7,086 | 3,635 1.95 | 0.45 | 0.80 0.56
BMW N/A | 1238 N/JA | N/A| 6339| N/A| N/A|12,619| N/A | N/A | 050 | N/A
CubeHash | 204.21 | 232.88 0.88 | 3,267 | 3,726 0.88 | 1,930 | 1,922 1.00 | 1.69 | 1.94 0.87
ECHO 247.40 | 233.32 1.06 | 8,172 | 14,335 0.57 | 21,187 | 20,723 1.02 | 0.39 | 0.69 0.56
Fugue 199.80 | 207.43 0.96 | 1,598 | 3,319 0.48 | 2,783 | 2,397 1.16 | 0.57 | 1.38 0.41
Groestl 202.27 | 220.65 0.92 | 7,142 | 5,380 1.33 | 12,355 | 6,350 1.95 | 0.58 | 0.85 0.68
Hamsi 187.55 | 280.98 0.67 | 2,001 | 2,997 0.67 | 6,401 | 2,308 2.771 0.31 | 1.30 0.24
JH 390.63 | 387.75 1.01 | 5,556 | 5,515 1.01 | 3,709 | 3,525 1.05 | 1.50 | 1.56 0.96
Keccak 304.60 | 273.37 1.11 | 7,310 | 12,393 0.59 | 3,979 | 4,213 0.94 | 1.84 | 2.94 0.62
Luffa 268.10 | 301.30 0.89 | 8,579 | 8,570 1.00 | 6,891 | 3,032 227 | 1.24 | 2.83 0.44
Shabal 109.66 | 109.66 1.00 877 877 1.00 | 1,744 | 1,744 1.00 | 0.50 | 0.50 1.00
SHAvite-3 | 226.60 | 245.52 0.92 | 4,071 | 3,397 1.20 | 5,619 | 3,042 1.85 | 0.72 | 1.12 0.65
SIMD 49.82 | 54.89 0.91 | 5,668 | 3,123 1.82 | 53,623 | 25,728 2.08 | 0.11 | 0.12 0.87
Skein 90.34 | 92.87 | 0.97 | 2,434 | 2,503 0.97 | 4,794 | 4,645 1.03 | 0.51 | 0.54 0.94
SHA-2 162.42 | 205.09 0.79 | 2,053 | 1,615 1.27 | 2,164 | 1,049 2.06 | 0.95 | 1.54 0.62
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Table A.10: Major performance measures of SHA-3 candidates (512-bit and 256-bit vari-
ants) when implemented in Altera Stratix IV FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [ALUTS]

512 256 | ratio 512 256 ratio 512 256 | ratio | 512 | 256 ratio
BLAKE 106.07 | 126.23 0.84 | 3745 | 3078 1.22 | 7084 | 3635 1.95 | 0.53 | 0.85 0.62
BMW N/A 12.08 | N/A | 10127 | 6185 1.64 | 24882 | 12614 1.97 | 0.41 | 0.49 0.83
CubeHash | 220.70 | 250.06 0.88 | 3531 | 4001 0.88 | 1936 | 1925 1.01 | 1.82 | 2.08 0.88
ECHO 255.95 | 228.73 1.12 | 8455 | 14053 0.60 | 21191 | 20781 1.02 | 0.40 | 0.68 0.59
Fugue 65.64 | 125.99 0.52 525 | 2016 0.26 | 6505 | 3606 1.80 | 0.08 | 0.56 0.14
Groestl 214.45 | 205.76 1.04 | 7572 | 5017 1.51 | 12416 | 6243 1.99 | 0.61 | 0.80 0.76
Hamsi 177.34 | 274.73 0.65 1892 | 2930 0.65 | 6391 2292 2.79 1 0.30 | 1.28 0.23
JH 388.65 | 410.17 0.95 | 5527 | 5834 0.95 | 3723 | 3533 1.05 | 1.48 | 1.65 0.90
Keccak 285.55 | 286.04 1.00 | 6853 | 12967 0.53 | 3983 | 4219 0.94 | 1.72 | 3.07 0.56
Luffa 264.62 | 316.16 0.84 | 8468 | 8993 0.94 | 6923 | 3034 2.28 | 1.22 | 2.96 0.41
Shabal 111.74 | 111.74 1.00 894 894 1.00 1752 1752 1.00 | 0.51 | 0.51 1.00
SHAvite-3 | 216.40 | 231.05 0.94 | 3888 | 3197 1.22 | 5600 | 2929 1.91 | 0.69 | 1.09 0.64
SIMD 51.93 | 57.77 0.90 | 5908 | 3286 1.80 | 53388 | 25736 2.07 | 0.11 | 0.13 0.87
Skein 99.09 | 98.82 1.00 | 2670 | 2663 1.00 | 4793 | 4645 1.03 | 0.56 | 0.57 0.97
SHA-2 188.71 | 217.63 0.87 | 2386 | 1714 1.39 | 2165 1052 2.06 | 1.10 | 1.63 0.68
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