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Abstract

In the model of Perfectly Secure Message Transmission Schemes (PSMTs),
there are n channels between a sender and a receiver, and they share no
key. An infinitely powerful adversary A can corrupt (observe and forge)
the messages sent through some subset of n channels. For non-threshold
adversaries called Q%, Kumar et al. showed a many round PSMT [8].

In this paper, we show round efficient PSMTs against Q?-adevrsaries.
We first give a 3-round PSMT which runs in polynomial time in the size
of the underlying linear secret sharing scheme. We next present a 2-round
PSMT which is inefficient in general. (However, it is efficient for some
special case.)
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1 Introduction

The model of Perfectly Secure Message Transmission schemes (PSMT) was in-
troduced by Dolev et al. [4]. In this model, there are n channels between a
sender and a receiver, and they share no key. The sender wishes to send a
secret s to the receiver while an infinitely powerful adversary A can corrupt
(observe and forge) the messages sent through some subset of n channels. A
PSMT is a scheme which satisfies perfect privacy and perfect reliablity. Perfect
privacy means that A learns no information on s. Perfect reliability means that
the receiver can output § = s correctly.

A threshold adversary can corrupt ¢ out of n channels. Dolev et al. showed
that there exists a 1-round PSMT if and only if n > 3t + 1 [4], and there exists
a 2-round PSMT if and only if n > 2t 4+ 1 [4]. For n > 3t + 1, they also showed
an efficient 1-round PSMT [4].



For n = 2t + 1, on the other hand, Srinathan et al. showed that n is a
lower bound on the transmission rate of 2-round PSMT [12]. After the works of
[11, 1], Kurosawa and Suzuki [9] gave a polynomial-time 2-round PSMT with
the transmission rate O(n).

On the other hand, a non-threshold adversary A is characterized by an
adversary structure I' which is the family of subsets of n channels that A can
corrupt. I' is said to be Q2 if

for any B;, B; € T, and @3 if
(BnUB;UB;) #{1,---,n}

for any By, B;, Bj € T' [6]. We say that an adversary A is Q2 if the I' is Q?,
and A is Q3 if the T' is Q3. We also define the maximal adversary structure I't
as follows.

't ={B|BeTl and B ¢7T for any B’ D B}.

Desmedt et al. showed that a 1-round PSMT exists if and only if an ad-
versary A is Q3 [5]. However, their scheme was inefficient. Kurosawa showed
an efficient 1-round PSMT which runs in polynomial time in the size of the
underlying linear secret sharing scheme [10].

Kumar et al. showed a many round PSMT against Q?-adversaries [8].

In this paper, we show round-efficient PSMTs against Q?-adversaries. We
first give a 3-round PSMT which runs in polynomial time in the size of the
underlying linear secret sharing scheme. We next present a 2-round PSMT
which is inefficient in general. (However, it is efficient if |T"]| is small.) Our first
scheme is based on the verifiable secret sharing scheme of [2, 3|, and our second
scheme is based on the secret sharing scheme of [7].

We also show how to achieve a reliable broadcast functionality efficiently in
this model.

threshold adversary | non-threshold adversary
l-round | n > 3t+1 [4] Q3 [5, 10]
2-round | n>2t+1 [4, 9] Q? but not poly (this paper)
3-round Q? and poly (this paper)

Table 1: Round complexity of PSMT

For B € {1,---,n}, B° denotes the complement of B. That is, B¢ =
{1,---,n}\ B.



Kumar et al. [8] | Our scheme (poly) | Our scheme (not poly)

# of rounds many 3 2

Table 2: PSMT against Q?-adevrsaries

2 Preliminaries

2.1 Secret Sharing Scheme

In a secret sharing scheme, the dealer distributes a secret s to m participants
P = {P1, -, P,} in such a way that some subsets of the participants can
reconstruct s while the other subsets of the participants have no information on
s. A subset of the participants who can reconstruct s is called an access set.
The family of access sets is called an access structure.

Definition 2.1 An access structure ¥ is monotone if A € ¥ and A’ D A, then
A eX.
2.2 Linear Secret Sharing Scheme (LSSS)

A secret sharing scheme for any monotone access structure X can be realized by
a linear secret sharing scheme (LSSS) (see [7]). Let M be an £ x e matrix over a
finite field F and ¢ : {1,---,¢} — {1,---,n} be a labeling function, where ¢ > e
and ¢ > n.

Distribution algorithm:

1. To share a secret s € F, the dealer first chooses a random vector g€ F¢~!

and computes a vector
S
vT=Mx| . |, 1
(%) 2

where 7 = (vy,---,v0)T.
2. Let
LSSS(s, p) = (sharey, - - -, share,), (2)
where share; = {v; | ¥(j) = i}. The dealer gives share; to P; as a share
fori=1,---,n.

Reconstruction algorithm: A subset of participants A can reconstruct the
secret s if and only if (1,0,---,0) is in the linear span of

Ma ={m; | ¢(j) € A},

where m; denots the jth row of M.



Definition 2.2 We say that the above (M,v) is a monotone span program
which realizes 3.

The size of the LSSS is defined as ¢ which is the total number of field elements
that are distributed by the dealer.

3 How to Broadcast

Suppose that there are n channels between a sender S and a receiver R, and
there exists a Q2 adversary A who is characterzed by an adversary structure
I'. Here we assume that ¥ = I' is monotone. This means that if B € I'" and
B’ C B, then B’ € T.

In this section, we show how to achieve a reliable broadcast functionality
efficiently in this model. We say that S broadcasts x if she sends = through all
n channels. Since A corrupts some subset of channels, R receives z; through
channel i for i = 1,---,n, where x; = x or z; # x.

It is known that if A corrupts ¢ out of n = 2t + 1 channels, then R can
recover x by simply taking the majority vote. Hence a naive approach of R
would be as follows. Let 'V = {By, By, -+, Br}.

Fori=1,---,L, do;
if x; = xo for some x( for all j € By,
then output zy and stop.

However, this algorithm is very inefficient because L is large in general. For
exampl, if A corrupts t out of n = 2t + 1 channels, then L = (Qttﬂ) which is
exponential.

3.1 Proposed Algorithm of Receiver

Now our algorithm of R is as follows.

Fori=1,---,n, do;
Let C; = {j | z; # xi}.
IfC;, el
then output x; and stop.

This algorithm is very efficient and runs in O(n?T), where T' denotes the time
to check if C; € T'. (See Fig.1.)
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Figure 1: Example of Broadcast, where C, = {4,5}

3.2 Correctness

The correctness of our algorithm is given by the following lemmas.
Lemma 3.1 R outputs some x;.

(Proof.) It is enough to show that C; € I" for some i. Suppose that A corrupts
B € T. Then for each i ¢ B,
C;=Bel.

This means that the Lemma holds.
Q.E.D.

Lemma 3.2 If B€T, then B¢ ¢T. (That is, B°€ X.)

(Proof.) Suppose that B € T. On the other hand, BU B¢ = {1,---,n}.
Therefore B¢ € I" because I' is Q2.
QED.

Lemma 3.3 If R outputs x;, then z; = x.

(Proof.) Suppose that A corrupts some B € I'. Suppose that R outputs z;
such that x; # x. Then i € B clearly because z; # x.

On the other hand, we have z; = x for all j € B°. Hence if j € B¢, then
xj = x # x;. This means that

Ci={j|z; #xi} 2 B,

Therefore we have C; ¢ I' from Lemma 3.2. However this contradicts to our
algorithm of R.
Q.E.D.



4 Efficient 3-Round PSMT against Q?>-Adversary

In this section, we show a polynomial-time 3-round PSMT against Q?-adversary
structures I'. Let (M, 1) be a monotone span program which realizes the access
structure ¥ = I'°. For simplicity, we assume that ¢ = n and (i) = ¢ for
i=1,---,n. Hence

my

M =

ﬁin
is an n x e matrix over a finite field F. In what follows, (17, 77 ) denotes the inner
product of two vectors 17 and ¥, where 7 denotes transpose.

4.1 Protocol

The 1st Round: For a secret s € F, the sender S chooses an e x e symmetric
matrix E = {e;;} such that e; ; = s randomly. S then computes

—

=M-E (3)

—

Un

and sends ¥; through channel i for each 7.

Note that (M - E) - M1 is a symmetric matrix because F is a symmetric
matrix. Hence
(@, ) = (T5,7m7). (4)
The 2nd Round: Suppose that receiver R received ¥} through channel i for
i=1,---,n. R broadcasts all (i, j) such that
(@, m7) # (T5,m7).
The 3rd Round: For each (i, j) that R broadcast, S broadcasts b;; = bj; such
that
bij = (Ui, ) = (Tj,17] ) = bjs.

We say that channel i is bad if (7}, 7] ) # by; for some j # i. Otherwise we
say that channel 7 is good. Let BAD be the set of all bad channels, and GOOD
be the set of all good channels.

Wlog, let GOOD = {1,---,t}. Then R reconstructs s by applying the re-
construction algorithm of the LSSS to v} ,---,v; ¢, where @} = (v; 1, -+, v} ).

» Yi,e
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Figure 2: The 1st round of Our 3-Round PSMT

4.2 Security Proofs

Theorem 4.1 The above protocol satisfies perfect privacy.

(Proof.) An adversary A can corrupt some subset of channels B € I'. Note
that B is a non-access set of the LSSS. Hence in the 1st round, A learns no
information on s. (Note that only the first element of ¥; is related to s.)

If R broadcasts (4, j) in the 2nd round, then A corrupted channel i or channel
j. Hence A already knows the value of

Hence A gains no information in the 3rd round even if S broadcasts b;;. Thus
A learns no information on s.

Q.E.D.
Suppose that an adversary A corrupts B € T
Lemma 4.1 B€ is an access set of the LSSS.
(Proof.) From Lemma 3.2.
Q.E.D.

Lemma 4.2 B¢ C GOOD. Hence GOOD is also an access set of the LSSS.

(Proof.) If channel i is bad, then it is clear that ¢ € B. This means that
BAD C B. Therefore
GOOD = BAD® D B*.

Hence GOOD is an access set of the LSSS from Lemma 4.1.
Q.E.D.



Lemma 4.3 For any pair of good channels i and j, it holds that

= (@, m7).

(_', _’T) g

Ty, M

(Proof.) Suppose that there exist a pair of good channels 4 and j such that the
above equation does not hold. Then R broadcasts the (i, j), and S broadcasts
bij = bj;. This means that by; # (7,7 ) or bj; # (;,m] ). Hence channel 7 is
bad or channel j is bad. This is a contradiction.

Q.E.D.

Lemma 4.4 Without loss of generality, assume that GOOD = {1,---,t}. Then
there exists a vector & = (s',p') such that

(vi,lv e 7U1§,1)T = MO : fT7

where

—

my
My =
gy
That is, (v} 1, -,v;1) is a share vector of the LSSS with M.

(Proof.) From Lemma 4.3, there exists a;; such that

(mivﬁa;’T) = (d’mgT) = Q4

for any (,7) such that i € GOOD and j € GOOD. Let Uy = {a;;} beat xt
symmetric matrix. Then Uy can be written as

Up =My Vo =V - Mg,

where Vo = [077, -+, 7).
On the other hand, GOOD is an access set from Lemma 4.2. Therefore there
exists a vector @y such that dg - My = (1,0,---,0). Hence
do-Upy = do-My-Vo=(1,0,---,0)- Vo = (v] 1, v )
Now
Uy = ao- Vg -M§ =%-M]

where ¥ = d@p - V' . Therefore,
/ / = T
(Ul,l""vvtl) =z M.
Q.E.D.

Theorem 4.2 The above protocol satisfies perfect reliability.



(Proof.) The receiver R received v = (v;,,---,v;.) through channel i for

t =1,---,n. Suppose that an adversary A corrupté B € T. Wlog, let B¢ =
{1,---,k}. Then it is clear that ¢, = ¥; for ¢ = 1,---k. Hence the original
secret s is obtained if we apply the reconstruction algorithm of the LSSS to
(v 1,---,v,) from Lemma 4.1.

On the other hand, B¢ C GOOD from Lemma 4.3. Hence, wlog, let GOOD =
{1,---,t}, where t > k. Suppose that s’ is obtained by applying the reconstruc-
tion algorithm of the LSSS to (vjq,---,v; ;). Then it must be that s’ = s
because B¢ C GOOD. Hence R can compute s correctly.

Q.E.D.

4.3 Efficiency

In the 1st round, the sender sends ¢ - e field elements. (Remember that M is an
¢ x e matrix.) In the 2nd round, the receiver sends O(¢?n) elements of Z,. In
the 3rd round, the sender sends O(¢?n) field elements.

It is easy to see that the sender and the receiver run in polynomial time in
the size of the LSSS (which is ¢).

5 2-Round PSMT against Q?-Adversary

In this section, we show a 2-round PSMT for @?-adversaries. It is ineffi-
cient in general. However, it is efficient if L = |['"| is small, where I'" =
{By, Ba,--+, B} is the maximal adversary structure (such that I' is Q?).

5.1 Protocol
Let s € F be a secret of the sender S. Let OK be 0.
The 1st Round: For ¢ = 1,---, L, R chooses r; € F randomly, and sends r;

through all channels belonging to Bf. (In other words, R broadcasts r;
over Bf.)

The 2nd Round: 1. Fori=1,---,L, S adds 7 to OK if she received some
identical r; through all channels belonging to BY.
2. S computes ¢ =5+, ok i
3. S broadcasts ¢ and OK.

Finally R computes § such that

S§=c— E T

i€OK



Sender o) - Receiver

Figure 3: The 1st round of the proposed 2-Round PSMT, where B; = {1, 2}

5.2 Security Proofs

Theorem 5.1 The above protocol satisfies perfect privacy.

(Proof.) Suppose that an adversary A corrupted B; € I'. Then A does not know
r; because R sent r; through all channels belonging to Bf. Further S receives
r; correctly through all channels belonging to Bj. Hence j € OK. Therefore S
learns no information on s from ¢ because r; works as the one-time pad.
Q.E.D.

Theorem 5.2 The above protocol satisfies perfect reliability.

(Proof.) We show that r, = r; if i € OK. Suppose that an adversary A corrupted
Bj € T'. Then there exists some channel k such that k € B \ B; because I is
Q2. This means that S receives r; correctly through the channel k.

Hence if ¢ € OK, then it must be that S received r; correctly through all
channels belonging to Bf. Therefore 7} = r; if i € OK. It implies that R
computes s correctly.

Q.E.D.

5.3 Efficiency

In the 1st round, the receiver sends O(nL) field elements. In the 2nd round, the
sender sends O(n) field elements and O(nL) elements of Zj,.
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