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Abstract
We study the verification of set operations in the model of authenticated data structures, namely

the problem of cryptographically checking the correctness of outsourced set operations performed by
an untrusted server over a dynamic collection of sets that are owned (and updated) by a trusted source.
We present a new authenticated data structure scheme that allows any entity to publicly verify the cor-
rectness of primitive sets operations such as intersection, union, subset and set difference. Based on a
novel extension of the security properties of bilinear-map accumulators as well as on a primitive called
accumulation tree, our authenticated data structure is the first to achieve optimal verification and proof
complexity (i.e., only proportional to the size of the query parameters and the answer), as well as optimal
update complexity (i.e., constant), and without bearing any extra asymptotic space overhead. Queries
(i.e., constructing the proof) are also efficient, adding a logarithmic overhead to the complexity needed
to compute the actual answer. In contrast, existing schemes entail high communication and verification
costs or high storage costs as they recompute the query over authentic data or precompute answers to all
possible queries. Applications of interest include efficient verification of keyword search and database
queries. We base the security of our constructions on the bilinear q-strong Diffie-Hellman assumption.

Keywords: Authenticated structures, outsourced verifiable computation, pairing-based cryptography.

1 Introduction
Providing integrity guarantees in third-party data management settings is an active area of research, espe-
cially in view of the growth in usage of cloud computing (e.g., Amazon web services). In such settings,
verifying the correctness of outsourced computations performed over remotely stored data becomes a cru-
cial property for the trustworthiness of cloud services. Such a verification process should incur minimal
overheads to the clients or otherwise the benefits of computation outsourcing are dismissed; ideally, compu-
tations should be verified without having to locally rerun them or to utilize too much extra cloud storage.

In this paper, we study the verification of outsourced operations on general sets and consider the fol-
lowing problem. Assuming that a dynamic collection of m sets S1, S2, . . . , Sm is remotely stored at an un-
trusted server, we wish to publicly verify primitive queries on these sets, such as intersection, union and set
difference. For example, for the query requesting the intersection of t sets specified by indices i1, i2, . . . , it
between 1 and m, we wish to design techniques that allow any client to cryptographically check the correct-
ness of the returned intersection Si1∩Si2∩. . .∩Sit . In addition, we wish the verification of any set operation
be operation-sensitive, meaning that the required complexity depends only on the (description and outcome
of the) operation, and not on the sizes of the involved sets. For example, if |Si1 ∩ Si2 ∩ . . . ∩ Sit | = δ then
we would like the verification cost to be proportional to t + δ. This achieves optimality, as the query and
the answer require O(t + δ) complexity. Applications of interest include computations related to keyword
search and database queries, which boil down to set operations.
∗Research performed while the author was at Boston University.
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Relation to outsourced verifiable computation. Recent works on outsourced verifiable computation [2, 11,
17] achieve operation-sensitive verification of general functionalities. Although such approaches completely
cover set operations as a special case, clearly meeting our goal with respect to optimal verifiability, they
are inherently inadequate to meet our other goals with respect to public verifiability and dynamic updates,
both important properties in the context of data querying. Indeed, the works in [2, 11, 17] are primarily
designed to provide secrecy of the outsourced computations, and as such, the client makes use of some secret
information to outsource the computation as a circuit and in an encrypted form. This secret information
is also used in the verifying computation, therefore effectively supporting only one verifier; instead, we
seek for schemes that allow any client to query the sets collection and verify the returned results. Finally,
in [2, 11, 17], the description of the circuit is fixed at the initialization of the scheme, therefore effectively
supporting no updates in the outsourced data; instead, we seek for schemes supporting efficient updates.

We accordingly study our problem in the model of authenticated data structures. A typical setting where
an authenticated data structure can be employed involves three participating entities, usually referred to as
three-party model [39] (see Corollary 1): A trusted party called source, owns a data structure (a collection
of sets in our case), that is replicated along with some cryptographic information to one or more untrusted
parties, called servers. Clients issue data structure queries to the servers and wish to publicly verify the
answers received by the servers, based only on the trust they have in the source. This trust is conveyed
through a time-stamped signature on a digest of the data structure (e.g., the roothash of a Merkle tree), that
is made available by the source. Updates are performed both by the source and the server. Variations of this
model include (a) the two-party model [33], where the source keeps only a small state (i.e., the digest) and
performs both the updates and the queries/verifications—this model is directly comparable to the model of
outsourced verifiable computation [2, 11, 17], see Corollary 2; (b) the memory checking model [7], where a
memory of n cells being accessed through read/write operations is to be verified. However, the absence of
the notion of proof computation in memory checking (it is just a storage device) as well as the requirement
for public verifiability1 in authenticated data structures make these models fundamentally different.
Achieving operation-sensitive verification. In this work, we design authenticated data structures for the
verification of set operations in an operation-sensitive manner, that is, with proof and verification complexity
depending only on the description and outcome of the operation and not on the size of the sets involved.
Conceptually, this property is similar to the property of super-efficient verification that has been studied in
certifying algorithms [22] and certification data structures [20, 40] (as well as in the context of outsourced
verifiable computation [2, 11, 17]), where an answer can be verified in complexity asymptotically less than
the complexity required to produce it. Whether the above optimality property is achievable for set operations
(with linear storage) was posed as an open problem in [13]. We close this problem in the affirmative.

All existing schemes for verifying outsourced set operations fall into the following two rather straight-
forward and highly inefficient solutions. Either short proofs for the answer of every possible set operation
query are precomputed allowing for highly imbalanced schemes: optimal verification overhead at the client
comes at the cost of exponential storage and update overheads at the source and the server—an undesirable
trade-off, as it is against storage outsourcing. Or integrity proofs for all the elements of the sets participating
in the query are given to the client who locally verifies the set operation: in this case verification complexity
can be linear in the problem size—an undesirable feature, as it is against computation outsourcing.
Intuition of our construction. We achieve optimal verification complexity by departing from the above ap-
proaches as follows. We first reduce the problem of verifying set operations to the problem of verifying the
validity of some more primitive relations on sets, namely subset containment and set disjointness. Then for
each such primitive relation we employ a corresponding cryptographic primitive to optimally verify its va-
lidity. In particular, we extend the bilinear-map accumulator to optimally verify subset containment, inspired
by [35]. We then employ the extended Euclidean algorithm over polynomials in combination with subset

1Memory checking might require secret memory, e.g., see the PRF construction in [7].
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Table 1: Asymptotic access and group complexities of various schemes defined by algorithms
{genkey, setup, update, refresh, query, verify}, for a sets collection data structure of m sets: The sum of
sizes of all the sets is M , 0 < ε < 1 is a constant, “Generic CR” stands for “Generic Collision Resistance”
and upd is the update information, output by update(). We show complexities for an intersection query on
t = O(1) sets, outputting an intersection δ elements. All sizes of the intersected and updated sets are Θ(n).

setup() update() & query() verify() & upd assumption
refresh() proof Π(q)

[13, 41] m+M log n+ logm n+ logm n+ logm 1 Generic CR

[29] m+M m+M n n n Strong RSA

[32] mt +M mt 1 δ mt D. Log

this m+M 1 n log3 n+mε logm δ 1 Bilinear q-Strong DH

containment proofs to provide a novel optimal verification test for set disjointness. The intuition behind our
technique is that disjoint sets can be represented by polynomials mutually indivisible, therefore there exist
other polynomials so that the sum of their pairwise products equals to one—this is the test to be used in
the proof. However, transmitting (and processing) these polynomials is bandwidth (and time)-prohibitive
and does not lead to operation-sensitivity. Taking advantage of bilinearity properties, we can compress their
coefficients in the exponent and still use them in a meaningful way, i.e., compute an internal product. This
is why although using a conceptually simpler RSA accumulator [6] would lead to a mathematically sound
solution, a bilinear-map accumulator [31] is essential for achieving the desired complexity goal.
Authenticated data structure scheme. To formally describe our solutions and prove their properties we use
an authenticated data structure scheme, which (informally) comprises a collection of algorithms {genkey,
setup, update, refresh, query, verify} such that (a) genkey() produces the secret and public key of the sys-
tem; (b) setup() initializes (i.e., computes) the authenticated data structure auth(D), on input a plain data
structure D; (c) having access to the secret key, update() updates the authenticated data structure digest
(e.g., the roothash of a Merkle tree), so that it could be used later for query verification; (d) without having
access to the secret key, refresh() updates the authenticated data structure as a whole, so that it could be
used later for query execution; (e) query() computes cryptographic proofs Π(q) for answers α(q) to data
structure queries q; (f) verify() processes the proof Π(q) and the answer α(q) and either accepts or rejects
the answer. Note that both query() and verify() are required to have no access to the secret key. The formal
definition of all the algorithms above and the properties they should satisfy (correctness/security) are given
in Definition 1. We note that both a three-party protocol [39] (see Corollary 1) and a two-party protocol [33]
(see Corollary 2) can be realized via an authenticated data structure scheme.
Complexity model. To explicitly measure complexity with respect to the number of primitive cryptographic
operations, without considering the dependency on the security parameter, we adopt the complexity model
used in memory checking [7, 14].2 The access complexity of an algorithm is defined as the number of
memory accesses this algorithm performs on the authenticated data structure stored in an indexed memory
of n cells, in order for the algorithm to complete its execution. We require that each memory cell can
store up to O(poly(log n)) bits, a word size used in Blum’s original memory checking work [7] but also in
subsequent work [14]. For example, a Merkle tree [27] has O(log n) update access complexity since the
update algorithm needs to read and write O(log n) memory cells of the authenticated data structure, each
cell storing exactly one hash value. In our context, the group complexity of a data collection (e.g., proof
group complexity) is defined as the number of elementary data objects (e.g., group elements or elements in
Zp) contained in that object. Whenever it is clear from the context, we omit the terms “access” and “group”.
Related work. The great majority of authenticated data structures involve the use of cryptographic hash-

2This model was only implicitly used in the literature of the authenticated data structures: here, “access complexity” is used
instead of “query complexity” (it also avoids ambiguity when referring to the query() algorithm of the authenticated data structure).
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ing [3, 7, 19, 21, 25, 26, 30] or other primitives [18, 34, 35] to hierarchically compute over the outsourced
data one or more secure digests. Most of these schemes incur verification costs that are proportional to the
time spent to produce the query answer, thus not achieving operation sensitivity. Some bandwidth-optimal
and operation-sensitive solutions for verification of various (e.g., range search) queries appear in [3, 20].

Despite the fact that privacy-related problems for set operations have been extensively studied in the
cryptographic literature (e.g., [9, 15]), existing work on the integrity dimension of set operations appears
mostly in the database literature. In [13], the importance of coming up with an operation-sensitive scheme
is identified. In [29], possibly the closest in context work to ours, set intersection, union and difference are
authenticated with linear verification and proof costs. Same linear asymptotic bounds are achieved in [41].
In [32], a different approach is taken: In order to achieve operation-sensitivity, expensive pre-processing and
exponential space are required (i.e., answers to all possible queries are signed). Finally, related to our work
are non-membership proofs, both for the RSA [23] and the bilinear-map [4, 12] accumulators.
Contributions. Our main result (Theorem 1) is the first authenticated data structure that achieves optimal
verification of the sets operations intersection, union, subset and set difference (as well as optimal updates).
This closes an open problem posed in [13]. Our scheme is proved secure under the bilinear extension of
the q-strong Diffie-Hellman assumption (see, e.g., [8]). In the Appendix, we give applications (Section 11)
of our construction to the authentication of keyword-search queries and database queries (e.g., equi-join),
as long as some experimental results showing practicality (Section 12). A comparison of our work with
existing schemes appears in Table 1. The detailed proofs of our results appear in the Appendix.

2 Preliminaries
In the following, we denote with k the security parameter and with neg(k) a negligible function3.
Bilinear pairings. Let G be a cyclic multiplicative group of prime order p, generated by g. Let also G be a
cyclic multiplicative group with the same order p and e : G×G→ G be a bilinear pairing with the following
properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab for all P,Q ∈ G and a, b ∈ Zp; (2) Non-degeneracy:
e(g, g) 6= 1; (3) Computability: There is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G. We
denote with (p,G,G, e, g) the bilinear pairings parameters, output by a PPT algorithm on input 1k.
The bilinear-map accumulator. Let (p,G,G, e, g) be a tuple of bilinear pairing parameters. The bilinear-
map accumulator [31] is an efficient way to provide short proofs of (non-)membership for elements that
(do not) belong to a set: It accumulates elements in Z∗p and the accumulated value is an element in G.
For a set of elements X in Z∗p the accumulation value acc(X ) is defined as acc(X ) = g

Q
x∈X (x+s), where

s ∈ Z∗p is a randomly chosen value that constitutes the trapdoor in the scheme. We note here that acc(X )
can be constructed by only using X and g, gs, gs

2
, . . . , gs

q
(polynomial interpolation). The proof for subset

containment of a set S ⊆ X—for |S| = 1, this is a proof of membership—is the witness (WS,X ,S) where

WS,X = g
Q
x∈X−S(x+s) . (1)

A verifier can test subset containment for S by checking the relation e(WS,X , g
Q
x∈S(x+s)) ?= e (acc(X ), g).

Proving the security of the accumulator properties that we are using here requires the bilinear q-strong
Diffie-Hellman assumption, a slightly stronger assumption than the q-strong Diffie-Hellman assumption [8].4

Assumption 1 (Bilinear q-strong Diffie-Hellman assumption) Let k be the security parameter and let
(p,G,G, e, g) be a uniformly randomly generated tuple of bilinear pairings parameters. Given the elements
g, gs, . . . , gs

q ∈ G for some s chosen at random from Z∗p, where q = poly(k), there is no polynomial-time
algorithm that can output the pair (a, e(g, g)1/(s+a)) ∈ Z∗p × G except with negligible probability neg(k).

3Function f : N→ R is neg(k) iff for any nonzero polynomial p(k) there exits N such that for all k > N it is f(k) < 1/p(k).
4However, proving just collision resistance of the accumulator requires the plain q-strong Diffie-Hellman assumption [31].

4



We continue with proving security of subset witnesses—the subset witnesses also appeared simulta-
neously (without a proof though) in [10]. We note that this proof is a generalization of the one in [31]:

Lemma 1 (Proving subsets) Let k be the security parameter and let (p,G,G, e, g) be a uniformly randomly
generated tuple of bilinear pairings parameters. Given the elements g, gs, . . . , gs

q ∈ G for some s chosen at
random from Z∗p and a set of elements X in Zp (q ≥ |X |), suppose there is a polynomial-time algorithm that
finds S and W such that S * X and e(W, g

Q
x∈S(x+s)) = e(acc(X ), g). Then there is a polynomial-time

algorithm for breaking the bilinear q-strong Diffie-Hellman assumption.
We now define an authenticated data structure scheme, by describing the following six algorithms:

Definition 1 (Authenticated data structure scheme) Let D be any data structure supporting queries and
updates. We denote with auth(D) the authenticated data structure and with d the digest of the authenti-
cated data structure, i.e., a constant-size description of D. An authenticated data structure scheme A is a
collection of the following six polynomial-time algorithms {genkey, setup, update, refresh, query, verify}:
(1) {sk, pk} ← genkey(1k): Outputs secret and public keys sk and pk, given the security parameter k;
(2) {auth(D0), d0} ← setup(D0, sk, pk): Computes the authenticated data structure auth(D0) and the
respective digest of it, d0, given a plain data structure D0, the secret key sk and the public key pk; (3)
{Dh+1, auth(Dh+1), dh+1, upd} ← update(u,Dh, auth(Dh), dh, sk, pk): On input an update u on data
structureDh, the authenticated data structure auth(Dh) and the digest dh, it outputs the updated data struc-
ture Dh+1 along with auth(Dh+1), the updated digest dh+1 and some relative information upd. It requires
the secret key for execution; (4) {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk):
On input an update u on data structure Dh, the authenticated data structure auth(Dh), the digest dh
and relative information upd output by update(), it outputs the updated data structure Dh+1 along with
auth(Dh+1) and the updated digest dh+1, without having the secret key as input; (5) {Π(q), α(q)} ←
query(q,Dh, auth(Dh), pk): On input a query q on data structure Dh and auth(Dh) this algorithm returns
the answer to the query α(q), along with a proof Π(q); (6) {accept, reject} ← verify(q, α(q),Π(q), dh, pk):
On input a query q, an answer α(q), a proof Π(q), a digest dh and pk, it outputs either “accept” or “reject”.

Let now {accept, reject} = check(q, α(q), Dh) be a method that decides whether α(q) is a correct
answer for query q on data structure Dh. There are two properties that an authenticated data structure
scheme should satisfy, i.e., correctness and security (intuition follows from signature schemes definitions):
Definition 2 (Correctness of authenticated data structure scheme) LetA be an authenticated data struc-
ture scheme {genkey, setup, update, refresh, query, verify}. We say that the authenticated data structure
schemeA is correct if, for all k ∈ N, for all {sk, pk} output by algorithm genkey(), for allDh, auth(Dh), dh
output by one invocation of setup() followed by polynomially-many invocations of refresh(), where h ≥ 0,
for all queries q and for all Π(q), α(q) output by query(q,Dh, auth(Dh), pk), with all but negligible prob-
ability, whenever check(q, α(q), Dh) accepts, so does verify(q,Π(q), α(q), dh, pk).

Definition 3 (Security of authenticated data structure scheme) LetA be an authenticated data structure
scheme {genkey, setup, update, refresh, query, verify}, k be the security parameter, ν(k) be a negligible
function and {sk, pk} ← genkey(1k). Let also Adv be a polynomially-bounded adversary that is only given
pk. The adversary has unlimited access to all algorithms of A, except for algorithms setup() and update()
to which he has only oracle access. The adversary picks an initial state of the data structure D0 and
computes D0, auth(D0), d0 through oracle access to algorithm setup(). Then, for i = 0, . . . , h = poly(k),
Adv issues an update ui in the data structure Di and outputs Di+1, auth(Di+1) and di+1 through oracle
access to algorithm update(). Finally the adversary picks an index 0 ≤ t ≤ h + 1, a query Q, an answer
α(Q) and a proof Π(Q). We say that the authenticated data structure scheme A is secure if for all k ∈ N,
for all {sk, pk} output by algorithm genkey(), and for all polynomially-bounded adversaries Adv it is

Pr
[
{Q,Π(Q), α(Q), t} ← Adv(1k, pk); accept← verify(Q,α(Q),Π(Q), dt, pk);

reject = check(Q,α(Q), Dt).

]
≤ ν(k) . (2)
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3 Construction and algorithms
The data structure for which we design an authenticated data structure scheme for is called sets collection
and is a generalization of the inverted index [5]. We describe it in detail in the following paragraph.
Sets collection. The sets collection data structure consists of m sets, denoted with S1, S2, . . . , Sm, each
containing elements from a universe U . Without loss of generality we assume that our universe U is the set
of nonnegative integers in the interval [m + 1, p − 1], where p is k-bit prime, m is the number of the sets
in our collection that has bit size O(log k) and k is the security parameter.5 Every set Si does not contain
duplicate elements, however an element x can appear in more than one set. Each set is sorted. The space
usage of the sets collection is O(m+M), where M is the sum of the sizes of the sets.

In order to get some intuition, we can view the sets collection as an inverted index. The elements are
pointers to documents and each set Si corresponds to a term wi in the dictionary, containing the pointers
to documents where term wi appears. In this example, m is the number of terms being indexed, which is
typically in the hundreds of thousands, while M is the number of documents being indexed, which is in the
billions. For the sake of generality, we refer to elements, instead of documents, and to sets, instead of terms.

The operations supported by the sets collection data structure consist of updates and queries. An update
is either an insertion of an element into a set or a deletion of an element from a set. An update on a set
of size n takes O(log n) time. For simplicity, we assume that the number m of sets does not change. A
query is one of the following standard set operations: (1) Intersection: Given indices i1, i2, . . . , it, return
set I = Si1 ∩Si2 ∩ . . .∩Sit ; (2) Union: Given indices i1, i2, . . . , it, return set U = Si1 ∪Si2 ∪ . . .∪Sit ; (3)
Subset query: Given indices i and j, return true if Si ⊆ Sj and false otherwise; (4) Set difference: Given
indices i and j, return the set D = Si−Sj . Finally, and for the remainder of the paper, we denote with δ the
size of the answer to a query operation, i.e., δ is equal to the size of I, U, or D. For a subset query, δ is O(1).

In order to verify the integrity of the answers to set operation (under set updates), we are going to
describe an authenticated data structure schemeASC (see Definition 1) for the sets collection data structure.
Our goal is to have no additional asymptotic overhead in the communication and verification complexity.
I.e., for a query with t parameters and answer size δ, we want the proof and its verification to have optimal
complexity O(t+ δ). Also, we want algorithms query(), update() and refresh() to have low complexity.
Algorithms of the scheme. We now describe the algorithms of an authenticated data structure scheme ASC
(Definition 1) for a sets collection data structure and prove they satisfy the complexities of Table 1.
Algorithm {sk, pk} ← genkey(1k): Pick bilinear pairings parameters (p,G,G, e, g) and an element s ∈ Z∗p
at random. Subsequently, an one-to-one function h(·) : G → Z∗p is used. This function just outputs the bit
description of the elements of G. Finally the algorithm outputs sk = s and pk = {h(·), (p,G,G, e, g), {gsi :
i = 1, . . . , q}}, where q ≥ max{m,maxi=1,...,m{|Si|}}. The algorithm has O(1) access complexity.
Algorithm {D0, auth(D0), d0} ← setup(D0, sk, pk): Let D0 be our initial data structure, i.e., the sets
S1, S2, . . . , Sm. The authenticated data structure auth(D0) is built as follows: First of all, for each set Si,
the accumulation value of Si, acc(Si) = g

Q
x∈Si

(s+x), is computed (see Section 2).6 Subsequently, the
algorithm picks a constant 0 < ε < 1. Let T be a tree structure that has l = d1/εe levels and m leaves,
numbered 1, 2, . . . ,m, where m is the number of the sets of our sets collection data structure. Since this is
a constant-height tree, the degree of any internal node of T is O(mε). We call such a tree an accumulation
tree, which was originally introduced (combined with different cryptography) in [35]. For each node of the
tree v, the algorithm recursively computes the digest d(v) of v as follows: If v is a leaf corresponding to set
Si, where 1 ≤ i ≤ m, the algorithm sets d(v) = acc(Si)(s+i) (accumulating s + i in the exponent, under
the constraint that i ≤ m, is used to prove that Si refers to acc(Si)). If node v is not a leaf, then

d(v) = g
Q
w∈N (v)(s+h(d(w))) , (3)

5We could easily set our universe to be Z∗p by using CRHFs, but we choose not to do so in sake of a cleaner presentation.
6The polynomial

Q
x∈Si(s+ x) is called characteristic polynomial of set Si in the literature (e.g., see [28]).
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whereN (v) denotes the set of children of node v. The algorithm outputs all the sets Si as the data structure
D0, all the accumulation values acc(Si) for 1 ≤ i ≤ m, the tree T and all the digests d(v) for all v ∈ T as
auth(D0). Finally, the algorithm sets d0 = d(r),7 where r is the root of T (i.e., the digest of the authenticated
data structure is defined as in a Merkle tree). The access complexity of the algorithm isO(m+M) (postorder
traversal of T and computation of acc(Si)), where M =

∑m
i=1 |Si| and the group complexity of auth(D0)

is also O(m+M) since the algorithm stores one digest per node of T , T has O(m) nodes and there are also
M elements contained in the stored sets, as part of auth(D0).
Algorithm {Dh+1, auth(Dh+1), dh+1, upd} ← update(u,Dh, auth(Dh), dh, sk, pk): Suppose the update
is “insert element x ∈ U into set Si”. Let v0 be the leaf node of T referring to set i. Let v0, v1, . . . , vl
be the path in T (ε) from node v0 to the root of the tree, where l = d1/εe. The algorithm initially sets
d′(v0) = acc(Si)x+s, i.e., it updates the accumulation value that corresponds to the updated set. Note that
in the case of deleting x from Si, the algorithm sets d′(v0) = acc(Si)(x+s)

−1
. Then the algorithm sets

d′(vj) = d(vj)(h(d
′(vj−1))+s)(h(d(vj−1))+s)−1

for j = 1, . . . , l , (4)

where d(vj−1) is the previous digest of vj and d′(vj−1) is the updated digest of vj−1.8 All these values
are stored by the algorithm after they have been computed. The algorithm also outputs the new digests
d′(vj−1) (i = 1, . . . , l) as the information upd along the path from the updated set to the root of the tree.
Information upd also includes x and d′(vl). Also it sets dh+1 = d′(vl), i.e., the updated digest is the updated
digest of the root of T . Finally the new authenticated data structure auth(Dh+1) is computed as follows.
Let auth(Dh) be the previous authenticated data structure that is input the algorithm. Overwrite the values
d(vj−1) (j = 1, . . . , l) with the new values d′(vj−1) (j = 1, . . . , l) and output the updated structure. All
the operations performed are proportional to 1/ε, therefore the access complexity of the algorithm is O(1).
Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): Suppose the update is
“insert element x ∈ U into set Si”. Let v0 be the node of T (ε) referring to set Si. Let v0, v1, . . . , vl be the
path in T from node v0 to the root of the tree. The algorithm, for j = 0, . . . , l, sets d(vj) = d′(vj), i.e.,
it updates the digests that correspond to the updated path by using the information upd. Finally it outputs
the updated sets collection as Dh+1, the updated digests d(vj) (along with the ones that belong to the nodes
that are not updated) as auth(Dh+1) and d′(vl) (contained in upd) as dh+1.9 The algorithm has O(1) access
complexity since it performs a number of operations proportional to 1/ε.

3.1 Queries and verification
In this section, we show how compact proofs for the answers to set queries (e.g., intersection, union) can be
constructed using the authenticated sets collection data structure presented earlier. The proofs have optimal
size O(t + δ), where t is the size of the query parameters (e.g., t = 2 for an intersection of two sets) and
δ is the answer size (e.g., δ = 1 if the intersection consists of one element). Our solutions use polynomial
arithmetic. The following result is derived by using an FFT algorithm (e.g., see Preparata and Sarwate [37]—
note that there is no requirement for existence of an n-th root of unity in Zp for the algorithm to work) that
computes the DFT in a finite field (e.g., Zp) for arbitrary n and with O(n log n) field operations.
Lemma 2 (Polynomial interpolation with FFT [37]) Let

∏n
i=1(s+ xi) =

∑n
i=0 ais

i be a degree-n poly-
nomial. The coefficients an, an−1, . . . , a0 can be computed withO(n log n) complexity, given x1, x2, . . . , xn.

Lemma 2 describes how we can compute the coefficients an, an−1, . . . , a0 of a polynomial, given its
roots. In the following, we give a result, related to certifying algorithms [22], stating that if the vector
coefficients a = [an, an−1, . . . , a0] is claimed to be correct, it can be certified, with high probability, with

7Digest d(r) is a “secure” succinct description of the set collection data structure. Namely, the accumulation tree protects the
integrity of acc(Si) and the accumulation value acc(Si) protects the integrity of the elements contained in set Si.

8Note that this algorithm is efficient because it has access to the secret key s.
9Note that information upd is not required for refresh() to execute but is used for efficiency. Namely, algorithm refresh() could

compute the updated values d(vj) by doing polynomial interpolation, which would have O(mε logm) complexity (see Lemma 2).
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complexity less thanO(n log n), i.e., without an FFT computation from scratch and given the vector of roots
x = [x1, x2, . . . , xn]. This can be achieved with the following algorithm (not part of the ASC scheme):
Algorithm {accept, reject} ← certify(a, x, pk): Pick a random κ ∈ Z∗p. If

∑n
i=0 aiκ

i =
∏m
i=1(κ + xi),

then the algorithm outputs accept, else it outputs reject.
Lemma 3 (Verification of polynomial coefficients) Let a = [an, an−1, . . . , a0] and x = [x1, x2, . . . , xn].
Algorithm certify(a, x, pk) has O(n) complexity. Also, if accept ← certify(a, x, pk), then an, an−1, . . . , a0

are the coefficients of the polynomial
∏n
i=1(s+ xi) with probability Ω(1− neg(k)).

Proof of accumulation values. Essential for our methods to work is the construction and the verification of
proofs for the accumulation values acc(Si), stored at leaf i of the tree T , for i = 1, . . . ,m. Such proofs are
a collection of O(1) accumulator witnesses: For accumulation value acc(Si), the proof Πi is the ordered
sequence π1, π2, . . . , πl, where πj is a tuple of a digest d(.) and a witness that authenticates every node of
the path v0, v1, . . . , vl from the accumulation value acc(Si) (we recall that v0 stores the accumulation value
acc(Si)) in question to the root vl of T . Thus, item πj is defined as πj = (d(vj−1),Wvj−1(vj)), where

Wvj−1(vj) = g
Q
w∈N (vj)−{vj−1}

(s+h(d(w)))
, (5)

is the witness for a subset of one element (i.e., the element h(d(vj−1))), as defined in Section 2. For
simplicity, we set βj = d(vj−1) (note that d(v0) = acc(Si)s+i) and γj = Wvj−1(vj). Note that each
πj has group complexity O(1) and can be constructed with O(mε logm) complexity, using polynomial
interpolation (due to the degree bound of an internal node of T and Lemma 2). Also, since proof Πi

consists of O(1) such πj tuples, we conclude that the proof Πi for an accumulation value acc(Si) can be
constructed with O(mε logm) complexity and has O(1) group complexity. In the following we formally
give the algorithms queryTree() and verifyTree() for the construction and the verification of such proofs
respectively. Similar methods have been described in [35].
Algorithm {Πi, αi} ← queryTree(i,Dh, auth(Dh), pk): Let v0, v1, . . . , vl be the path of T from the node
storing acc(Si) to the root of T . The algorithm sets Πi = (π1, π2, . . . , πl), where πj = (d(vj−1),Wvj−1(vj))
and Wvj−1(vj) is given in Relation 5, computed by Lemma 2. The algorithm sets αi = acc(Si) as an answer.
Algorithm {accept, reject} ← verifyTree(i, αi,Πi, dh, pk): Let Πi = (π1, π2, . . . , πl) be the proof, where
πj = (βj , γj). The algorithm outputs “reject” if one of the following is true (note that the verifica-
tion algorithm is using the bilinear map function e(., .)): (a) e(β1, g) 6= e(αi, gsgi); (b) e (βj , g) 6=
e
(
γj−1, g

sgh(βj−1)
)

for some 2 ≤ j ≤ l; (c) e(dh, g) 6= e
(
γl, g

sgh(βl)
)
.

Lemma 4 Algorithm queryTree() has O(mε logm) access complexity, outputting a proof of O(1) group
complexity. Moreover algorithm verifyTree() has O(1) access complexity.
We now give the security property that holds for this construction. Lemma 5 is going to be used as a building
block of the proof of security (Theorem 1) of the whole scheme (see proof in the Appendix):
Lemma 5 For any adversarially chosen proof Πi (1 ≤ i ≤ m), if algorithm verifyTree(i, αi,Πi, dh, pk)
accepts, then αi = acc(Si) with probability Ω(1− neg(k)).

In the following we describe the algorithms for an intersection and a union query in detail. The details of
the the subset and the set difference query are in the Appendix (Section 9). The parameters of an intersection
or a union query are t indices, namely the indices i1, i2, . . . , it, with 1 ≤ t ≤ m. To simplify the notation,
we assume without loss of generality that these indices are 1, 2, . . . , t. We denote with ni the size of set Si
(i = 1, 2, . . . , t) and we define N =

∑t
i=1 ni. I.e., N is the total size of the sets involved in the intersection

or the union and δ is the size of the intersection or union. Note, that in all cases δ = O(N) and that
performing the actual operations has O(N) complexity, by using a generalized merge.
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Intersection query. Let I = S1∩S2∩ . . .∩St = {y1, y2, . . . , yδ}. We express the correctness of the answer
I to the intersection query by means of the following two conditions:

Subset condition: I ⊆ S1 ∧ I ⊆ S2 ∧ . . . ∧ I ⊆ St ; (6)

Completeness condition: (S1 − I) ∩ (S2 − I) ∩ . . . ∩ (St − I) = Ø . (7)

Note the completeness condition in Equation 7 is necessary since I should contain all the common
elements. Given an intersection I, and for every set Sj , we define polynomial Pj(s) =

∏
x∈Sj−I(x + s), of

degree nj . We can now state the following lemma: (see proof in the Appendix):
Lemma 6 Set I is the intersection of sets S1, S2, . . . , St if and only if there exist polynomials q1(s), q2(s),
. . . , qt(s) such that q1(s)P1(s) + q2(s)P2(s) + . . . + qt(s)Pt(s) = 1. Moreover, computing polynomials
q1(s), q2(s), . . . , qt(s) has O(N log2N log logN) complexity.

We can now use Lemmata 2 and 6 to construct efficient proofs for both conditions in Equations 6 and 7:
Proof of subset condition. For each set Sj , 1 ≤ j ≤ t, the subset witnesses WI,j = gPj(s) = g

Q
x∈Sj−I(x+s)

are computed, as defined in Section 2: Witness WI,j will serve as a proof that I is a subset of set Sj . By
using Lemma 2, computing each such witness has complexity O(nj log nj). Thus, the total complexity for
computing all the t subset witnesses is O(N logN), where N =

∑t
i=1 ni.

10

Proof of completeness condition. Suppose q1(s), q2(s), . . . , qt(s) are polynomials computed in Lemma 6
that satisfy q1(s)P1(s) + q2(s)P2(s) + . . .+ qt(s)Pt(s) = 1. For j = 1, . . . , t, the completeness witnesses
FI,j = gqj(s) are computed. By Lemma 6, computing the completeness witnesses hasO(N log2N log logN)
complexity. We can now formally define algorithms query() and verify() of the authenticated data structure
scheme ASC and for the intersection query:
Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): (intersection)
The query q is the set of indices {1, 2, . . . , t}, requiring the intersection of S1, S2, . . . , St. Let α(q) =
{y1, y2, . . . , yδ} be the intersection I. The proof Π(q) consists of the following parts: (1) Coefficients
bδ, bδ−1, . . . , b0 of polynomial (s+y1)(s+y2) . . . (s+yδ) associated with the intersection I = {y1, y2, . . . , yδ},
computed with O(δ log δ) complexity (Lemma 2), and of total group complexity O(δ); (2) Accumulation
values acc(Sj) associated with the sets Sj , along with their respective proofs Πj , output by calling algorithm
queryTree(j,Dh, auth(Dh), pk), for j = 1, . . . , t, the computation of which has O(tmε logm) complexity
(Lemma 4). Moreover the group complexity of all Πj is O(t) (Lemma 4); (3) Subset witnesses WI,j (see
above) for j = 1, . . . , t, the computation of which has O(N logN) complexity (Lemma 2). Also the sub-
set witnesses have total group complexity O(t); (4) Completeness witnesses FI,j = gqj(s) (see above) for
j = 1, . . . , t, the computation of which has O(N log2N log logN) complexity (Lemma 6). The complete-
ness witnesses have group complexity O(t).
Algorithm {accept, reject} ← verify(q, α(q),Π(q), dh, pk): (intersection)
The verification algorithm performs the following steps: (1) First it uses b = [bδ, bδ−1, . . . , b0] and the an-
swerα(q) = {y1, y2, . . . , yδ}, and calls certify(b, α(q), pk) in order to certify the validity of bδ, bδ−1, . . . , b0.
This step, by Lemma 3, has O(δ) complexity. If certify() rejects, the algorithm outputs reject;11 (2) Sub-
sequently, the algorithm uses the proofs Πj to verify the integrity of acc(Sj), for j = 1, . . . , t, by using
algorithm verifyTree(j, acc(Sj),Πj , dh, pk). This step has O(t) complexity (Lemma 4). If the verification
fails for at least one of acc(Sj), it outputs reject; (3) Next, the subset condition is checked:12

e

(
δ∏
i=0

(
gs
i
)bi

,WI,j

)
?= e (acc(Sj), g) for j = 1, . . . , t . (8)

10This is because
P
nj lognj ≤ logN

P
nj = N logN .

11Algorithm certify() is used to achieve optimal verification and avoid an O(δ log δ) FFT computation from scratch.
12Computing the quantity

Qδ
i=0 g

bis
i

= g(s+y1)(s+y2)...(s+yδ) has O(δ) complexity, and is done once.
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This step has O(t+ δ) complexity. If any of the above checks fails, the algorithm outputs reject; (4) Finally,
the completeness condition is checked:

t∏
j=1

e (WI,j ,FI,j)
?= e(g, g) . (9)

If this relation holds, the algorithm accepts α(q) as the correct intersection. This step has O(t) complexity.
We note that for Relation 9, it indeed holds

∏t
j=1 e (WI,j ,FI,j) = e(g, g)

Pt
j=1 qj(s)Pj(s) = e(g, g) when

all the subset witnesses WI,j , all the completeness witnesses FI,j and all the sets accumulation values acc(Sj)
have been computed honestly, since q1(s)P1(s)+q2(s)P2(s)+ . . .+qt(s)Pt(s) = 1. This is a required step
for proving that the authenticated data structure is correct, as defined in Definition 2 (proof in the Appendix).
We continue with describing the remaining queries such as union, subset and set difference.
Union query. The answer to a union query is the set U = S1∪S2∪ . . .∪St = {y1, y2, . . . , yδ}. We express
the correctness of the answer U to the union query by means of the following two conditions:

Membership condition: ∀yi ∈ U ∃j ∈ {1, 2, . . . , t} : yi ∈ Sj ; (10)

Superset condition: (U ⊇ S1) ∧ (U ⊇ S2) ∧ . . . ∧ (U ⊇ St) . (11)

Note that the superset condition is needed to make sure that no element has been excluded from the returned
answer U. We now formally describe algorithms query() and verify() for the union query.
Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): (union)
The query q is the union of the sets S1, S2, . . . , St. Let α(q) = {y1, y2, . . . , yδ} be the union U. The proof
Π(q) consists of the following parts: (1) Coefficients bδ, bδ−1, . . . , b0 of polynomial (s+y1)(s+y2) . . . (s+
yδ) associated with the union I = {y1, y2, . . . , yδ}; (2) Accumulation values acc(Sj) associated with the sets
Sj , along with their respective proofs Πj , output by calling algorithm queryTree(j,Dh, auth(Dh), pk), for
j = 1, . . . , t; (3) For each yi, i = 1, . . . , δ, a membership witness Wyi,Sk is provided (see Relation 1). This
proves that yi belongs to some set Sk for some k = 1, . . . , t. These δ witnesses have O(δ) group complexity
and constructing them has O(N logN) complexity (Lemma 2); (4) Finally, for each j = 1, . . . , t a subset
witness WSj ,U is provided—as defined in Relation 1. This proves that U is a superset of Sj . These witnesses
have group complexity O(t). Constructing them has O(N logN) complexity (Lemma 2).
Algorithm {accept, reject} ← verify(q, α(q),Π(q), dh, pk): (union)
The verification algorithm performs the following steps: (1) First it uses b = [bδ, bδ−1, . . . , b0] and the an-
swerα(q) = {y1, y2, . . . , yδ}, and calls certify(b, α(q), pk) in order to certify the validity of bδ, bδ−1, . . . , b0;
(2) Subsequently, the algorithm uses the proofs Πj to verify the integrity of acc(Sj), for j = 1, . . . , t, by us-
ing algorithm verifyTree(j, acc(Sj),Πj , dh, pk). If the verification fails for at least one of acc(Sj), it outputs
reject; (3) Then the algorithm verifies that each element yi (i = 1, . . . , δ) of the reported union belongs to
some set Sk, for some k = 1, . . . , t (O(δ) complexity). This is done by checking that the following relation
holds e(Wyi,Sk , g

yigs) = e(acc(Sk), g) for all i = 1, . . . , δ (else output reject); (4) Finally, the algorithm
verifies that all sets of the query are subsets of the union, by checking the following conditions:

e
(
WSj ,U, acc(Sj)

) ?= e

(
δ∏
i=0

(
gs
i
)bi

, g

)
for j = 1, . . . , t .

If any of the above checks fails, reject is output. Else {y1, y2, . . . , yδ} is accepted as the correct union.
Subset and set difference query. For a subset query (positive or negative), we use the property Si ⊆ Sj ⇔
∀y ∈ Si : y ∈ Sj . For a set difference query we use the property D = Si−Sj ⇔ D ⊆ Si∧Si−D = Si∩Sj .
The details of the algorithms concerning these queries can be found in Section 9 in the Appendix. We now
give the final theorem of our work. Its proof is in the Appendix, including detailed proof of security.
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Theorem 1 Consider a collection of m sets S1, . . . , Sm and let M =
∑m

i=1 |Si| and 0 < ε < 1. For a
query operation involving t sets, let N be the sum of the sizes of the involved sets, and δ be the answer size.
There exists an authenticated data structure scheme ASC = {genkey, setup, update, refresh, query, verify}
for a sets collection data structure D with the following properties: (1) it is correct and secure accord-
ing to Definitions 2 and 3 and based on the bilinear q-strong Diffie-Hellman assumption; (2) The access
complexity of algorithm (i) genkey() is O(1); (ii) setup() is O(m + M); (iii) update() is O(1) out-
putting information upd of O(1) group complexity; (iv) refresh() is O(1); (3) For all queries q (intersec-
tion/union/subset/difference), algorithm query() hasO(N log2N log logN+tmε logm) access complexity,
algorithm verify() has O(t + δ) access complexity and the proof Π(q) has O(t + δ) group complexity; (4)
The group complexity of the authenticated data structure auth(D) is O(m+M).

4 Security, protocols and applications
In this section we give a proof sketch for the security (based on Definition 3) of one query, i.e., that of
the intersection and comment on how our authenticated data structure scheme can be used by a three-party
protocol [39] and a two-party protocol [33]. We also talk about some applications.
Security proof sketch. Let D0 be a sets collection data structure consisting of m sets S1, S2, . . . , Sm
and let ASC = {genkey, setup, update, refresh, query, verify} be our authenticated data structure scheme.
Let k be the security parameter and let {sk, pk} ← genkey(1k). The adversary is given the public key
pk, namely the values {h(.), (p,G,G, e, g), gs, gs

2
, . . . , gs

q} and unlimited access to all the algorithms of
ASC, except for setup() and update() to which he only has oracle access. The adversary initially outputs
the authenticated data structure auth(D0) and the digest d0, through an oracle call to algorithm setup().
Then the adversary picks a polynomial number of updates ui (e.g., insert an element x into a set Sr) and
outputs the data structure Di, the authenticated data structure auth(Di) and the digest di through oracle
access to update(). Then he picks a set of indices q = {1, 2, . . . , t} (wlog), all between 1 and m and
outputs a proof Π(q) and an answer I 6= I = S1 ∩ S2 ∩ . . . ∩ St which is rejected by check() (incorrect).
Suppose the answer α(q) contains d elements. The proof Π(q) contains (i) Some coefficients β0, β1, . . . , βd;
(ii) Some accumulation values accj with some respective proofs Πj , for j = 1, . . . , t; (iii) Some subset
witnesses Wj with some body witnesses Fj , for j = 1, . . . , t (this is what algorithm verify() expects for
input). Suppose verify() accepts. Then: (a) By Lemma 3, β0, β1, . . . , βd are indeed the coefficients of the
polynomial

∏
x∈I(x + s), except with negligible probability; (b) By Lemma 5, values accj are indeed the

accumulation values of sets Sj , except with negligible probability; (c) By Lemma 1, values Wj are indeed
the subset witnesses for set I (with reference to Sj), i.e., Wj = gPj(s), except with negligible probability;
(d) However, P1(s), P2(s), . . . , Pt(s) are not coprime since I is incorrect and therefore I cannot contain all
the elements. By the verification of Relation 9 (completeness condition), we can derive a polynomial-time
algorithm that outputs a bilinear q-strong Diffie-Hellman challenge (a, e(g, g)1/(s+a)) for an element a that
is a common factor of the polynomials P1(s), P2(s), . . . , Pt(s). The full proof is in the Appendix.
Protocols. As we mentioned in the introduction, an authenticated data structure schemeAmay be used by a
three-party protocol [39]: A trusted entity, called source, owns a data structure Dh, but desires to outsource
query answering, in a trustworthy (verifiable) way. The source runs genkey() and setup(), outputs the
authenticated data structure auth(Dh) along with the digest dh. The source subsequently signs the digest
dh, and it outsources auth(Dh), Dh, the digest dh and its signature (which is forwarded to the clients during
verification) to some untrusted entities, called servers. On input a data structure query q sent by the clients,
the servers use auth(Dh) and Dh to compute proofs Π(q), by running algorithm query(). Clients can verify
these proofs Π(q) by running algorithm verify(), and since they have access to the signature of dh. When
there is an update in the data structure—issued by the source—, the source uses algorithm update() to
produce the new digest d′h to be used for the next verification, while the servers update the authenticated
data structure through refresh(). The corollary below summarizes the three-party protocol:
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Corollary 1 (Three-party protocol) Let k be the security parameter, S1, . . . , Sm be a sets collection data
structure D, M =

∑m
i=1 |Si|, 0 < ε < 1 and ASC be a correct and secure authenticated data structure

scheme for D. For a query operation involving t sets, let N be the sum of the sizes of the involved sets
and δ be the answer size. There exists a three-party authenticated data structures protocol involving a
trusted source, an untrusted server and a client for verifying queries on D such that: (a) The setup at the
source has O(m + M) access complexity; (b) The update at the source has O(1) access complexity; (c)
The space needed at the source and the server has O(m + M) group complexity; (d) The communication
between the source and the server has O(1) group complexity; (e) The update at the server has O(1)
access complexity; (f) For all queries q (intersection/union/subset/set difference), the query at the server has
O(N log2N log logN + tmε logm) access complexity, the verification at the client has O(t + δ) access
complexity and the proof Π(q) has O(t + δ) group complexity; (g) For a query q sent by the client to the
server at any time (even after updates), let α be an answer and let π be a proof returned by the server. With
probability Ω(1− neg(k)), the client accepts the answer α if and only if α is correct.

We note here that an authenticated data structure scheme A can also be used by a non-interactive two-
party authenticated data structures protocol [33]: In this case, the source and the client coincide (i.e., the
source issues both the updates and the queries) and the source is required to keep only constant state, i.e.,
the digest. A non-interactive two-party protocol that uses an authenticated data structure scheme for a data
structureD is directly comparable with the recently appeared model of outsourced verifiable computation [2,
11, 17] for the functionalities offered by the data structure D, e.g., computation of intersection, union, etc.:
Corollary 2 (Two-party protocol) Let k be the security parameter, S1, . . . , Sm be a sets collection data
structure D, M =

∑m
i=1 |Si|, 0 < ε < 1 and ASC be a correct and secure authenticated data structure

scheme for D. For a query operation involving t sets, let N be the sum of the sizes of the involved sets
and δ be the answer size. There exists a non-interactive two-party authenticated data structures protocol
involving a trusted source and an untrusted server for verifying queries on D such that: (a) The setup at the
source has O(m+M) access complexity; (b) The update at the source has O(1) access complexity; (c) The
space needed at the source has O(1) group complexity while the space needed at the server has O(m+M)
group complexity; (d) The update at the server has O(mε logm) access complexity; (e) For all queries q
(intersection/union/subset/set difference), the query at the server has O(N log2N log logN + tmε logm)
access complexity, the verification at the client has O(t + δ) access complexity and the proof Π(q) has
O(t + δ) group complexity; (f) For a query q sent by the source to the server at any time (even after
updates), let α be an answer and let π be a proof returned by the server. With probability Ω(1 − neg(k)),
the source accepts the answer α if and only if α is correct.
Applications. First of all, our scheme can be used to verify keyword-search queries implemented by the
inverted index data structure [5]: Each term in the dictionary corresponds to a set in our sets collection data
structure which contains all the documents that include this term. A usual text query for terms m1 and
m2 returns those documents that are included in both the sets that are represented by m1 and m2, i.e.,
their intersection. Moreover, the derived authenticated inverted index can be efficiently updated as well.
However, sometimes in keyword searches (e.g., keyword searches in the email inbox) it is desirable to
introduce a “second” dimension: For example, a query could be “give me the emails that contain terms
m1 and m2 and which were received between time t1 and t2”, where t1 < t2. We call this procedure
timestamped keyword-search. One solution for that could be to embed a timestamp in the documents (e.g.,
each email message) and have the client do the filtering locally, after he has verified—using our scheme—
the intersection of the sets that correspond to terms m1 and m2. However, this is not operation-sensitive
at all: The intersection can be a lot bigger than the set resulted after the application of the local filtering,
making this straightforward solution inefficient. By using a segment-tree data structure [38], we show in the
Appendix how this problem is solved efficiently (see Theorem 2). Finally, in Theorem 3 in the Appendix
we show how to use our method for the verification of equi-join queries over relational tables. Experimental
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results in the Appendix (Section 12) indicate that our schemes compare favorably with existing work.
Conclusions and open problems. In this paper, we presented an authenticated data structure for the optimal
verification of set operations. The achieved efficiency is mainly due to new, extended security properties of
accumulators based on pairing-based cryptography. Our solution provides two important properties, namely
public verifiability and efficiency, as opposed to the outsourced verifiable computation model. A natural
question to ask is whether outsourced verifiable computation with secrecy, public verifiability and efficiency
exists. Analogously, which other specific functionalities can be optimally and publicly verified? Finally,
according to a recently proposed definition of optimality [36], our construction is nearly optimal—only
verification costs (hence the title) and updates are optimal. It is interesting to explore whether an optimal
authenticated sets collection data structure is possible, i.e., one that asymptotically matches the bounds of
the plain sets collection data structure, reducing the query time from O(N log2N) to O(N).
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Appendix
5 Proof of Lemma 1
Suppose there is a polynomial-time algorithm that computes such a set S = {y1, y2, . . . , y`}. Let X =
{x1, x2, . . . , xn} and yj /∈ X for some 1 ≤ j ≤ `. That means that

e(W, g)
Q
y∈S(y+s) = e(g, g)(x1+s)(x2+s)...(xn+s) .

Note that (yj + s) does not divide (x1 + s)(x2 + s) . . . (xn + s). Therefore there exist polynomial Q(s) of
degree n− 1 and constant λ, such that (x1 + s)(x2 + s) . . . (xn + s) = Q(s)(yj + s) + λ. Thus we have

e(W, g)(yj+s)
Q

1≤i6=j≤`(yi+s) = e(g, g)Q(s)(yj+s)+λ ⇒

e(g, g)
1

yj+s =
[
e(W, g)

Q
1≤i6=j≤`(yi+s)e(g, g)−Q(s)

]λ−1

.

This means that the algorithm can be used to break the bilinear q-strong Diffie-Hellmann assumption.

6 Proof of Lemma 3
The complexity of algorithm certify() has access complexity O(n) since it involves O(n) multiplications,
additions and exponentiations. The probability that certify() accepts while a0, a1, . . . , an are not the coeffi-
cients of the polynomial that has roots −x1,−x2, . . . ,−xn is equal to the probability of κ being the root of
the polynomialR(κ) =

∑n
i=0 aiκ

i−
∏m
i=1(κ+xi). This follows from polynomial equality that should hold

for all κ. Now, polynomial R(κ) has degree n = poly(k) and has O(n) roots. Since κ is picked at random
from Z∗p, it follows that this probability is bounded by O(poly(k)/2k), which is neg(k), and therefore the
validity of the coefficients can be verified with probability Ω(1− neg(k)) with Θ(n) complexity.

7 Proof of Lemma 5
Let 1 ≤ i ≤ m and let v0, v1, . . . , vl be a path in the tree. The adversary Adv outputs an incorrect answer
αi 6= g

Q
x∈Si

(x+s) = acc(Si) and also a proof Πi = (π1, π2, . . . , πl) (l = d1ε e) where πj = (βj , γj) (see
algorithm queryTree()). We define now the following events, related to the choice of the proof above made
by the adversary. Our goal will be to the express the probability that verifyTree(i, αi,Πi, dh, pk) accepts and
αi 6= acc(Si) as a function of the following events. Note that dh is the correct digest of the authenticated
data structure:

1. E0,0: The value αi picked by Adv is such that αi 6= acc(Si).
2. E1: The value β1 picked by Adv is such that e(β1, g) = e(αi, gsgi). This event can be partitioned

into two mutually exclusive events, i.e., E1 = E1,0 ∪ E1,1 such that
• E1,0: Value β1 is not a correctly formed digest of node v0, as defined in Relation 3;
• E1,1: Value β1 is a correctly formed digest of node v0, as defined in Relation 3, i.e., it is

β1 = g
(s+`)

Q
x∈S`

(s+x)
,

for some set S` and where 1 ≤ ` ≤ m.
3. Ej : For j = 2, . . . , `, the values βj , βj−1 and γj−1 picked by Adv are such that

e (βj , g) = e
(
γj−1, g

sgh(βj−1)
)

for all 2 ≤ j ≤ l .

This event can be partitioned into two mutually exclusive events, i.e., Ej = Ej,0 ∪ Ej,1 such that
• Ej,0: Value βj is not a correctly formed digest of node vj−1, as defined in Relation 3;
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• Ej,1: Value βj is the is a correctly formed digest of node vj−1, as defined in Relation 3.
4. E`,1: The values βl and γl picked by Adv are such that

e (dh, g) = e
(
γl, g

sgh(βl)
)
.

The probability that verifyTree() accepts, while αi 6= acc(Si) is the probability

Pr[E0,0 ∩ E1 ∩ E2 ∩ . . . ∩ El,1] = Pr[E0,0 ∩ (E1,0 ∪ E1,1) ∩ (E2,0 ∪ E2,1) ∩ . . . ∩ El,1]
≤ Pr[E0,0|E1,1] + Pr[E1,0|E2,1] + Pr[E2,0|E3,1] + . . .+ Pr[El−1,0|El,1]

= Pr[E0,0|E1,1] +
l∑

j=2

Pr[Ej−1,0|Ej,1] .

First we examine the event E0,0|E1,1. The event E1,1 implies that the adversary has found a value αi such
that

e
(
g
(s+`)

Q
x∈S`

(s+x)
, g
)

= e(αi, gsgi) .

By Lemma 1, with probability Ω(1 − neg(k)), it has to be i ∈ {`} ∪ Sj . However, since 1 ≤ ` ≤ m and
1 ≤ i ≤ m and for all x ∈ S` it is x > m, we conclude that that i = `. Therefore αi = acc(Si), with
probability Ω(1− neg(k)). As such Pr[E0,0|E1,1] ≤ neg(k).

For the remaining events Ej−1,0|Ej,1 (j ≥ 2), note that by the one-to-one property of the function
h(.), Ej−1,0 is equivalent with the event “value h(βj−1) is not the h(.) value of the digest of node vj−2, as
defined in Relation 3”. However, by the definition of the digest βj (the digest of the father of vj−2 is the
accumulation value of the h(.) values of the digests of all of it children, see Relation 3), the eventEj−1,0|Ej,1
implies breaking the bilinear q-strong Diffie-Hellman assumption (Assumption 1), by Lemma 1. Therefore
for all j = 1, . . . , l, Pr[Ej−1,0|Ej,1] is neg(k). Since l = O(1), the total probability is also neg(k). This
concludes the proof.

8 Proof of Lemma 6
(⇒) This direction follows by the fact that we can use the extended Euclidean algorithm and find polynomi-
als q1(s), . . . , qt(s) such that

q1(s)P1(s) + . . .+ qt(s)Pt(s) = GCD(P1(s), P2(s), . . . , Pt(s)).

Since P1(s), P2(s), . . . , Pt(s) share no common factors , it follows that GCD(P1(s), P2(s), . . . , Pt(s)) = 1.

(⇐) Suppose there exist polynomials q1(s), q2(s), . . . , qt(s) that satisfy relation q1(s)P1(s) + q2(s)P2(s) +
. . . + qt(s)Pt(s) = 1 but I is not the intersection. This means that polynomials P1(s), P2(s), . . . , Pt(s)
share at least one common factor, e.g., (s + r). Therefore there exists some polynomial A(s) such that
(s + r)A(s) = 1, i.e., the polynomials (s + r)A(s) and 1 are equal, which is a contradiction (note that we
want the polynomials to be equal for every s ∈ Zp).

In order to compute these coefficients, we use the extended Euclidean algorithm recursively, based on the
fact that the greatest common divisor GCD(P1(s), . . . , Pt(s)) equals GCD(P1(s),GCD(P2(s), . . . , Pt(s))).
To compute the greatest common divisor of two O(n)-degree polynomials, we can use the algorithm de-
scribed in [16] that hasO(n log2 n log logn) complexity. Since we are using this algorithm t times, the time
complexity is O(tn log2 n log log n). Moreover, by the property that x log x+ y log y ≤ (x+ y) log(x+ y)
and since the size of the sets participating in the intersection is N this equals O(N log2N log logN). This
algorithm also outputs the required coefficients. If we arrange our data (i.e., t polynomials) on a binary tree,
after all the coefficients of the internal nodes have been computed, the final coefficients for all elements
at the leaves can be computed in O(t) multiplications (we can avoid the O(t log t) cost) of O(ni) degree
polynomials, where ni are the degrees of the polynomials of the leaves. Therefore the result holds.
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9 Subset and set difference query
Subset. Here we use the property Si ⊆ Sj ⇔ ∀y ∈ Si : y ∈ Sj .
Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): (subset)
The proof contains the following elements: (1) Accumulation values acc(Si) and acc(Sj) associated with the
sets Si and Sj , along with their respective proofs Πi and Πj , output by queryTree(i,Dh, auth(Dh), pk) and
queryTree(j,Dh, auth(Dh), pk) (O(mεm) complexity by Lemma 4); (2) For a positive answer (i.e., Si ⊆
Sj), the proof contains a subset witness of Si with respect to Sj , i.e., the value WSi,Sj as defined in Relation 1
(O(N logN) complexity by Lemma 2). For a negative answer (Si * Sj), the algorithm picks a y ∈ Si such
that y /∈ Sj , returns a membership proof of y in Si, i.e., the witness Wy,Si as defined in Relation 1. Also it
returns a proof for an empty intersection of the sets {y} and Sj , i.e., the completeness witnesses Fy = gqy(s)

and Fj = gqj(s) such that (y + s)qy(s) + Pj(s)qj(s) = 113 (only the proof for the completeness condition
is needed, i.e., Relation 9). The total complexity is O(N log2N log logN +mε logm) (Lemmata 4 and 6)
and the group complexity of the proof is O(1).

Algorithm {accept, reject} ← verify(q, α(q),Π(q), dh, pk): (subset)
The verification for query “is Si ⊆ Sj?” is as follows: (1) Verify the integrity of acc(Si) and acc(Sj)
by using verifyTree(i, acc(Si),Πi, dh, pk) and verifyTree(j, acc(Sj),Πj , dh, pk) with O(1) complexity, by
Lemma 4 (else output reject); (2) For a positive answer, output reject if e(WSi,Sj , acc(Si)) 6= e(acc(Sj), g).
Otherwise output reject if either (a) e(Wy,Si , g

ygs) 6= e(acc(Si), g) or (b) e(gygs,Fy)e(acc(Sj),Fj) 6=
e(g, g). Else output accept. The whole test has O(1) complexity.

Set difference query. Let D = Si − Sj . It is D = Si − Sj ⇔ D ⊆ Si ∧ Si − D = Si ∩ Sj .
Algorithm {Π(q), α(q)} ← query(q,Dh, auth(Dh), pk): (set difference)
The proof contains the following pieces: The query q is the set of indices {i, j}, requiring the differ-
ence D = Si − Sj . Let α(q) = {y1, y2, . . . , yδ} be the difference D. The proof Π(q) consists of the
following parts: (1) Coefficients bδ, bδ−1, . . . , b0 of polynomial (s + y1)(s + y2) . . . (s + yδ) associated
with the difference D = {y1, y2, . . . , yδ}, computed with O(δ log δ) complexity (Lemma 2), and of total
group complexity O(δ); (2) Accumulation values acc(Si) and acc(Sj) associated with the sets Si and Sj ,
along with their respective proofs Πi and Πj , output by calling algorithm queryTree(i,Dh, auth(Dh), pk)
and queryTree(j,Dh, auth(Dh), pk), the computation of which has O(mε logm) complexity (Lemma 4).
Moreover the group complexity of both Πi and Πj is O(1) (Lemma 4); (3) A subset witness WD,Si ; (4) A
proof that Si − D is the intersection of Si and Sj , i.e., the values (WI,i,WI,j ,FI,i,FI,j) for the intersection
I = Si ∩ Sj , as computed before. Note that the intersection itself is not returned. Summing up, contructing
the proof has O(N log2N log logN + mε log2m) complexity (Lemmata 4 and 6) and the proof has O(δ)
group complexity.

Algorithm {accept, reject} ← verify(q, α(q),Π(q), dh, pk): (set difference)
The verification algorithm performs the following steps: (1) First it uses b = [bδ, bδ−1, . . . , b0] and the an-
swerα(q) = {y1, y2, . . . , yδ}, and calls certify(b, α(q), pk) in order to certify the validity of bδ, bδ−1, . . . , b0.
This step, by Lemma 3, has O(δ) complexity. If certify() rejects, the algorithm outputs reject; (2) The algo-
rithm verifies the integrity of acc(Si) and acc(Sj) by using the algorithm verifyTree(i, acc(Si),Πi, dh, pk)
and the algorithm verifyTree(j, acc(Sj),Πj , dh, pk) withO(1) complexity, by Lemma 4 (else output reject);
(3) The algorithm outputs reject if either (a) e(WD,Si , acc(D)) 6= e(acc(Si), g); or (b) The completeness
proof (WI,i,WI,j ,FI,i,FI,j) for the intersection I = Si∩Sj does not verify (note we are not using the explicit
intersection elements in this verification, but WD,Si . Summing up, the algorithm has O(δ) complexity.

13We recall Pj(s) =
Q
x∈Sj (x+ s).

19



10 Proof of Theorem 1
10.1 Correctness
Let D0 be any sets collection data structure containing m sets. Fix the security parameter k and output
pk = {h(.), (p,G,G, e, g), gs, gs

2
, . . . , gs

q} and sk = s by calling algorithm genkey(). Then output an
authenticated data structure auth(D0) and the respective digest d0, by calling algorithm setup(). Pick a
polynomial number of updates—namely, pick a polynomial number of elements for insertion (or deletion)
into (or from) a set Sr—and update auth(D0) and d0 by calling algorithm refresh(). Let Dh be the final sets
collection data structure, auth(Dh) be the produced authenticated data structure and dh be the final digest.
By the way refresh() works (see Relation 4), at every time, the digest d(v) of a node v of the tree T is
maintaining the following property: If vi is a leaf corresponding to number 1 ≤ i ≤ m (i.e., to set Si), it
always is d(vi) = acc(Si)(s+i). Otherwise, for every other node v of T , it always is

d(v) = g
Q
w∈N (v)(s+h(d(w))) ,

where N (v) denotes the set of children of node v. We prove correctness for all four query operations, i.e.,
for intersection, union, subset and difference.

Intersection. Let our query q be {1, 2, . . . , t} (wlog), i.e., a set of indices that refer to the intersection of
sets S1, S2, . . . , St. Algorithm query() outputs the proof Π(q) and the correct answer I = {y1, y2, . . . , yδ} =
S1 ∩ S2 ∩ . . . ∩ St. The proof Π(q) for the intersection contains the following parts:

1. The coefficients bδ, bδ−1, . . . , b0 of polynomial (s + y1)(s + y2) . . . (s + yδ) associated with the in-
tersection I = {y1, y2, . . . , yδ}. Since for every κ ∈ Zp it is

∑δ
i=0 biκ

i =
∏m
i=1(κ + yi), Algorithm

certify() accepts;

2. The accumulation values acc(Sj) = g
Q
x∈Sj

(x+s)
associated with the sets Sj , using their respective

proofs Πj , output by queryTree(j,Dh, auth(Dh), pk), for j = 1, . . . , t. We recall that each Πj is the
ordered sequence π1, π2, . . . , πl (l = d1/εe), where πi is the tuple (d(vi−1),Wvi−1(vi)), where

Wvi−1(vi) = g
Q
w∈N (vi)−{vi−1}

(s+h(d(w)))
,

is the witness for a subset of one element (i.e., the element h(d(vi−1))), as defined in Section 2. By
Relation 3, verifyTree(j, acc(Sj),Πj , dh, pk), on such inputs, always accepts;

3. The subset witnesses WI,j = gPj(s) = g
Q
x∈Sj−I(x+s) for j = 1, . . . , t. It is e(WI,j , acc(I)) =

e(acc(Sj), g), by the properties of the bilinear map, therefore Algorithm verify() does not reject in
this item either;

4. The completeness witnesses FI,j = gqj(s) for j = 1, . . . , t. It is

t∏
j=1

e (WI,j ,FI,j) = e(g, g)
Pt
j=1 qj(s)Pj(s) = e(g, g) ,

since by the construction of the completeness witnesses it should be
∑t

j=1 qj(s)Pj(s) = 1.
This completes the proof of correctness for the case of intersection, since we proved that for every intersec-
tion query q and for every correct answer and proof output by query(), verify() always accepts.

Union. Let our query q be {1, 2, . . . , t} (wlog), i.e., a set of indices that refer to the union of sets S1, S2, . . . , St.
Algorithm query() outputs the proof Π(q) and the correct answer U = {y1, y2, . . . , yδ} = S1∪S2∪ . . .∪St.
The proof Π(q) for a union contains the following parts:

1. The coefficients bδ, bδ−1, . . . , b0 and the accumulation values acc(Sj) = g
Q
x∈Sj

(x+s)
. These are

always verified as in the case of intersection. See Items 1 and 2 above;
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2. The membership witnesses Wyi,Sk for some k = 1, . . . , t, for each element yi (i = 1, . . . , δ). For
i = 1, . . . , δ, it is e(Wyi,Sk , g

yigs) = e(acc(Sk), g), since Wyi,Sk is the subset witness as defined in
Relation 1;

3. The subset witnesses WSj ,U, for all j = 1, . . . , t. For all j = 1, . . . , t it is

e(WSj ,U, acc(Sj)) = e(acc(U), g) ,

where WSj ,U is the subset witness of Sj with respect to U, as defined in Relation 1 and U ⊇ Sj for all
j = 1, . . . , t;

This completes the proof of correctness for the case of union, since we proved that for every union query q
and for every correct answer and proof output by query(), verify() always accepts.

Subset. Let our query be “is Si ⊆ Sj?. Algorithm query() outputs the proof Π(q) and the correct answer,
i.e., either true or false. The proof Π(q) for a subset query contains the following parts:

1. The accumulation values acc(Si) and acc(Sj). These are always verified as in the case of intersection.
See Item 2 above;

2. Depending on whether we have a positive or a negative answer, we distinguish the following cases:
• Positive answer, i.e., Si is a subset of Sj . The proof contains the subset witness WSi,Sj . Then

it is e(WSi,Sj , acc(Si)) = e(acc(Sj), g), by the definition of WSi,Sj (see Relation 1) and since
Si ⊆ Sj ;
• Negative answer, i.e., Si is not a subset of Sj . The proof contains an element y such that y ∈ Si

but y /∈ Sj , the respective membership witness Wy,Si and two completeness witnesses Fy and
Fj . It is e(Wy,Si , g

ygs) = e(acc(Si), g), by definition of Wy,Si in Relation 1 and since y ∈ Si.
Also it holds e(gygs,Fy)e(acc(Sj),Fj) = e(g, g), since Fy = gqy(s) and Fj = gqj(s) are such
that (y + s)qy(s) + qj(s)

∏
x∈Sj (x+ s) = 1 and y /∈ Sj .

This completes the proof of correctness for the case of the subset query, since we proved that for every
subset query q and for every correct answer and proof output by query(), verify() always accepts.

Set difference. Let our query q be the indices i and j that refer to the difference of sets Si and Sj .
Algorithm query() outputs the proof Π(q) and the correct answer D = Si − Sj = {y1, y2, . . . , yδ}. The
proof Π(q) for a difference query contains the following parts:

1. The coefficients bδ, bδ−1, . . . , b0 (that relate to the difference {y1, y2, . . . , yδ}) and the accumulation
values acc(Si) and acc(Sj). These are always verified as in the case of intersection. See Items 1 and 2
above;

2. The completeness witnesses FD and Fj), for proving an empty intersection of D and Sj . It is
e(acc(D),FD)e(acc(Sj),Fj) = e(g, g), by the same argument as in Item 2 in the subset query;

3. The proof for the intersection I = Si ∩ Sj . We are using the proof as in the intersection case;
4. The value L = g

Q
x∈I(x+s) = acc(I). Since (Si ∩Sj)∪ (Si−Sj) = Si, it follows that e(L, acc(D)) =

e(acc(Si), g).
This completes the proof of correctness for all the queries supported by sets collection, since we proved that
for every query q (intersection/union/subset/difference) and for every correct answer and proof output by
query(), verify() always accepts.

10.2 Security
Let Adv be a computationally-bounded adversary, D0 be a sets collection data structure consisting of m sets
S1, S2, . . . , Sm, ASC = {genkey, setup, update, refresh, query, verify} be our authenticated data structure
scheme, k be the security parameter and {sk, pk} ← genkey(1k). The adversary Adv is given the public key
pk, nameley the values {h(.), (p,G,G, e, g), gs, gs

2
, . . . , gs

q} and unlimited access to all the algorithms of
ASC, except for setup() and update() to which he only has oracle access. The adversary initially outputs the
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authenticated data structure auth(D0) and the digest d0, through an oracle call to algorithm setup(). Then
the adversary picks a polynomial number of updates (e.g., insert an element x into a set Sr) and eventually
outputs the data structure Dh, the authenticated data structure auth(Dh) and the digest dh through oracle
access to update(). Note that since dh, the digest of the authenticated data structure, is produced through
oracle access to setup() and update(), it follows that it is the correct one. We now prove the security of each
operation separately.

Intersection. Let the intersection query be a set of indices {1, 2, . . . , t} (wlog). The adversary Adv outputs
an incorrect answer I = {e1, e2, . . . , eδ} 6= S1 ∩S2 ∩ . . .∩St and also a proof that consists of the following
elements:

1. Coefficients γδ, γδ−1, . . . , γ0;
2. Accumulation values acc1, acc2, . . . , acct, along with proofs π1, π2, . . . , πt;
3. Subset witnesses W1,W2, . . . ,Wt;
4. Completeness witnesses F1,F2, . . . ,Ft.

We define now the following events, related to the choice of the proof above made by the adversary. Our
goal will be to the express the probability of the security definition (Definition 3) in Relation 2 as a function
of the following events.
• E1: The values γ = [γδ, γδ−1, . . . , γ0] and the answer e = {e1, e2, . . . , eδ} picked by Adv are such

that accept ← certify(γ, e, pk). Event E1 can be partitioned into two mutually exclusive events E1,0
and E1,1, i.e, E1 = E1,0 ∪ E1,1:

– E1,0: The coefficients γδ, γδ−1, . . . , γ0 are not the coefficients of the polynomial (s + e1)(s +
e2) . . . (s+ eδ);

– E1,1: The coefficients γδ, γδ−1, . . . , γ0 are the coefficients of the polynomial (s + e1)(s +
e2) . . . (s+ eδ).

• E2: The values acc1, acc2, . . . , acct and π1, π2, . . . , πt picked by Adv are such that they are accepted
by algorithm verifyTree(), i.e., it is accept ← verifyTree(j, accj , πj , dh, pk), for all j = 1, . . . , t.
Event E2 can be partitioned into two mutually exclusive events E2,0 and E2,1, i.e, E2 = E2,0 ∪ E2,1:

– E2,0: There exists j ∈ {1, 2, . . . , t} such that accj 6= acc(Sj);
– E2,1: For all j = 1, . . . , t it is accj = acc(Sj).

• E3: The values γδ, γδ−1, . . . , γ0, W1,W2, . . . ,Wt and acc1, acc2, . . . , acct picked by Adv satisfy

e

(
δ∏
i=0

(
gs
i
)γi

,Wj

)
= e (accj , g) for j = 1, . . . , t .

Event E3 can be partitioned into two mutually exclusive events E3,0 and E3,1, i.e, E3 = E3,0 ∪ E3,1:
– E3,0: There exists j ∈ {1, 2, . . . , t} such that the opposites of the roots of the polynomial∑δ

i=0 γis
i are not a subset of Sj ;

– E3,1: The opposites of the roots of the polynomial
∑δ

i=0 γis
i are a subset of Sj for all j =

1, . . . , t.
• E4: The values W1,W2, . . . ,Wt and F1,F2, . . . ,Ft picked by Adv satisfy

∏t
j=1 e (Wj ,Fj) = e(g, g);

• F : The answer (intersection) I picked by Adv is not correct, i.e., I = {e1, e2, . . . , eδ} 6= S1 ∩ S2 ∩
. . . ∩ St.

Let now P be the probability of Definition 3 (Relation 2), i.e., it is

P = Pr
[
{Q,Π(Q), α(Q), i} ← Adv(1k, pk); accept← verify(Q,α(Q),Π(Q), dh, pk);

reject = check(Q,α(Q), Di).

]
.

We recall that the authenticated data structure schemeASC is secure if P ≤ ν(k), where ν(k) is neg(k). We
observe that for the case of the intersection query, P can be expressed as the probability of the intersection

22



of the events E1, E2, E3, E4,F . By using simple probability calculus, this can be written as

P = Pr [E1 ∩ E2 ∩ E3 ∩ E4 ∩ F ] = Pr [(E1,0 ∪ E1,1) ∩ (E2,0 ∪ E2,1) ∩ (E3,0 ∪ E3,1) ∩ E4 ∩ F ]
≤ Pr[E1,0] + Pr [E1,1 ∩ (E2,0 ∪ E2,1) ∩ (E3,0 ∪ E3,1) ∩ E4 ∩ F ]
≤ Pr[E1,0] + Pr[E2,0] + Pr [E1,1 ∩ E2,1 ∩ (E3,0 ∪ E3,1) ∩ E4 ∩ F ]
≤ Pr[E1,0] + Pr[E2,0] + Pr[E3,0 ∩ E2,1 ∩ E1,1] + Pr [E1,1 ∩ E2,1 ∩ E3,1 ∩ E4 ∩ F ]
≤ Pr[E1,0] + Pr[E2,0] + Pr[E3,0|E2,1 ∩ E1,1] + Pr [E4|E3,1 ∩ E2,1 ∩ E1,1 ∩ F ] .

We compute each such probability separately:
1. Pr[E1,0] is neg(k) by Lemma 3;
2. Pr[E2,0] is neg(k) by Lemma 5;
3. Pr[E3,0|E2,1 ∩ E1,1]: For this event we note that the event E3,0 is conditioned on the event E2,1 ∩ E1,1.

This condition allows us to replace accj with acc(Sj) (due to E2,1) and
∑δ

i=0 γis
i with

∏
x∈I(x + s)

(due to E1,1) in the event E3,0. Therefore the event E3,0|E2,1 ∩ E1,1 is the event

e
(
g

Q
x∈I(x+s),Wj

)
= e (acc(Sj), g) ∧ I * Sj for some j ∈ {1, 2, . . . , t} .

This event implies breaking the bilinear q-strong Diffie-Hellman assumption (Assumption 1), by
Lemma 1. Therefore the probability Pr[E3,0|E2,1 ∩ E1,1] is neg(k);

4. Pr[E4|E3,1 ∩ E2,1 ∩ E1,1 ∩ F ]: For this event we note that the event E4 is conditioned on the event
E3,1 ∩ E2,1 ∩ E1,1 ∩ F . This condition allows us to replace accj with acc(Sj) (due to E2,1) and∑δ

i=0 γis
i with

∏
x∈I(x+ s) (due to E1,1) in the event E3,1. Therefore, the event E3,1 ∩ E2,1 ∩ E1,1 is

the event
e
(
g

Q
x∈I(x+s),Wj

)
= e (acc(Sj), g) ∧ I ⊆ Sj for all j = 1, 2, . . . , t .

This is equivalent to writing Wj as the subset witness WI,Sj , i.e.,

Wj = g
Q
x∈Sj−I(x+s) = gPj(s) . (12)

Note now that E4 is also conditioned on F . Therefore I is has to be incorrect. Specifically, since I ⊆ Sj for
all j = 1, . . . , t, it follows that I does not contain all the elements of the intersection, i.e., it is incomplete.
Thus the polynomials P1(s), P2(s), . . . , Pt(s) (Relation 12) have at least one common factor, say (s + r)
and it holds Pj(s) = (s+ r)Qj(s) for some polynomials Qj(s)—computable in polynomial time—, for all
j = 1, . . . , t. Therefore the event E4|E3,1 ∩ E2,1 ∩ E1,1 ∩ F implies that

e(g, g) =
t∏

j=1

e (Wj ,Fj) =
t∏

j=1

e
(
gPj(s),Fj

)
=

t∏
j=1

e
(
g(s+r)Qj(s),Fj

)

=
t∏

j=1

e
(
gQj(s),Fj

)(s+r)
=

 t∏
j=1

e
(
gQj(s),Fj

)(s+r)

.

Therefore we can derive an 1/(s+ r)-th of e(g, g) as

e(g, g)
1
s+r =

t∏
j=1

e
(
gQj(s),Fj

)
.

This implies breaking the bilinear q-strong Diffie-Hellman assumption for the setting (p,G,G, e, g) (As-
sumption 1). By Assumption 1, this probability is neg(k), and therefore Pr[E4|E3,1 ∩ E2,1 ∩ E1,1 ∩ F ] is
neg(k). Thus the total probability P is neg(k). This concludes the proof for the security of an intersection
query.
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Union. Let the union query be a set of indices {1, 2, . . . , t} (wlog). The adversary Adv outputs an incorrect
answer U = {e1, e2, . . . , eδ} 6= S1 ∪ S2 ∪ . . . ∪ St and also a proof that consists of the following elements:

1. Coefficients γδ, γδ−1, . . . , γ0;
2. Accumulation values acc1, acc2, . . . , acct, along with proofs π1, π2, . . . , πt;
3. For each element ei ∈ U, membership witnesses Wi,j with reference to some set Sj , where 1 ≤ j ≤ t;
4. Subset witnesses W1,W2, . . . ,Wt that prove that U is a subset of Sj , for all j = 1, 2 . . . , t.

We define now the following events, related to the choice of the proof above made by the adversary. Our
goal will be to the express the probability of the security definition (Definition 3) in Relation 2 as a function
of the following events.
• E1, E1,0, E1,0: Same as in intersection;
• E2, E2,0, E2,0: Same as in intersection;
• E3: The values {e1, e2, . . . , eδ}, W1,j1 ,W1,j2 , . . . ,W1,jδ picked by Adv satisfy

e (Wi,ji , g
sgei) = e(accji , g) for all i = 1, . . . , δ and ji ∈ {1, 2, . . . , t} .

Event E3 can be partitioned into two mutually exclusive events E3,0 and E3,1, i.e, E3 = E3,0 ∪ E3,1:
– E3,0: There exists i ∈ {1, 2, . . . , δ} such that ei /∈ Sji ;
– E3,1: For all i = 1, 2, . . . , δ it is ei ∈ Sji .

• E4: The values W1,W2, . . . ,Wt, acc1, acc2, . . . , acct and γδ, γδ−1, . . . , γ0 picked by Adv satisfy

e (Wj , accj) = e

(
δ∏
i=0

(
gs
i
)γi

, g

)
.

• F : The answer (union) U picked by Adv is not correct, i.e., U = {e1, e2, . . . , eδ} 6= S1∪S2∪ . . .∪St.
Similarly with the intersection security proof, let P be the probability of Definition 3 (Relation 2). We
observe that for the case of the union query, P can be expressed as the probability of the intersection of the
events E1, E2, E3, E4,F . By using simple probability calculus (and similarly with the intersection security
proof), this can be written as

P = Pr [E1 ∩ E2 ∩ E3 ∩ E4 ∩ F ] = Pr [(E1,0 ∪ E1,1) ∩ (E2,0 ∪ E2,1) ∩ (E3,0 ∪ E3,1) ∩ E4 ∩ F ]
≤ Pr[E1,0] + Pr[E2,0] + Pr[E3,0|E2,1] + Pr [E4|E3,1 ∩ E2,1 ∩ E1,1 ∩ F ] .

We compute each such probability separately:
1. Pr[E1,0] is neg(k) by Lemma 3;
2. Pr[E2,0] is neg(k) by Lemma 5;
3. Pr[E3,0|E2,1]: For this event we note that the event E3,0 is conditioned on the event E2,1. This condition

allows us to replace accj with acc(Sj) in the event E3,0. Therefore the event E3,0|E2,1 is the event

e (Wi,ji , g
sgei) = e(acc(Sji), g) ∧ ∃i ∈ {1, 2, . . . , δ} ∧ ji ∈ {1, 2, . . . , t} : ei /∈ Sji .

This event implies breaking the bilinear q-strong Diffie-Hellman assumption (Assumption 1), by
Lemma 1. Therefore the probability Pr[E3,0|E2,1] is neg(k);

4. Pr[E4|E3,1 ∩ E2,1 ∩ E1,1 ∩ F ]: For this event we note that the event E4 is conditioned on the event
E3,1 ∩ E2,1 ∩ E1,1 ∩ F . This condition allows us to replace accj with acc(Sj) (due to E2,1) and∑δ

i=0 γis
i with

∏
x∈U(x+ s) (due to E1,1) in the event E4. Therefore, the event E4|E3,1 ∩ E2,1 ∩ E1,1

is the event
e (Wj , acc(Sj)) = e

(
g

Q
x∈U(x+s), g

)
. (13)
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Note now that E4 is also conditioned on E3,1. Thus it holds that all elements ei ∈ U belong to some Sji .
Therefore the reported union cannot contain extra elements. Also, E4 is conditioned on F (incorrect
union). Therefore the reported union must contain less elements and there should be an Sj (1 ≤ j ≤ t)
that contains an r such that r /∈ U. Therefore since Relation 13 holds, we can find P (s), Q(s) and α
such that

e (Wj , acc(Sj)) = e(Wj , g)(s+r)P (s) = e
(
g

Q
x∈U(x+s), g

)
= e(g, g)(s+r)Q(s)+α .

Therefore we can derive an 1/(s+ r)-th of e(g, g) as

e(g, g)
1
s+r = e(g,WSj )

P (s)/αe(g, g)−Q(s)/α .

This implies breaking the bilinear q-strong Diffie-Hellman assumption for the setting (p,G,G, e, g)
(Assumption 1). By Assumption 1, this probability is neg(k), and therefore Pr[E4|E3,1∩E2,1∩E1,1∩F ]
is neg(k). Thus the total probability P is neg(k). This concludes the proof for the security of a union
query.

Subset. Let the subset query be “is Si ⊆ Sj?”. For a positive answer, the adversary Adv outputs an
incorrect answer “false” and also a proof that consists of the following elements:

1. Accumulation values acci and accj along with proofs πi and πj ;
2. A membership witness Wi,j with reference to set Sj .

We define now the following events, related to the choice of the proof above made by the adversary. Our
goal will be to the express the probability of the security definition (Definition 3) in Relation 2 as a function
of the following events.
• E2: The values acci, accj , πi and πj picked by Adv are such that they are accepted by algorithm

verifyTree(), i.e., accept← verifyTree(i, acci, πi, dh, pk) and accept← verifyTree(j, accj , πj , dh, pk).
Event E2 can be partitioned into two mutually exclusive events E2,0 and E2,1, i.e, E2 = E2,0 ∪ E2,1:

– E2,0: acci 6= acc(Sj) or accj 6= acc(Si);
– E2,1: acci = acc(Si) and accj = acc(Sj).

• E3: The values acci, accj and Wi,j picked by Adv satisfy e (Wi,j , acci) = e (accj , g).
• F : Si * Sj .
Similarly with the intersection security proof, let P be the probability of Definition 3 (Relation 2). We

observe that for the case of the positive subset query, P can be expressed as the probability of the intersection
of the events E2, E3,F . By using simple probability calculus (and similarly with the intersection security
proof), this can be written as

P = Pr [E2 ∩ E3 ∩ F ] = Pr [(E2,0 ∪ E2,1) ∩ E3 ∩ F ] ≤ Pr[E2,0] + Pr [E3|E2,1 ∩ F ] .

We compute each such probability separately:
1. Pr[E2,0] is neg(k) by Lemma 5;
2. Pr[E3|E2,1 ∩ F ]: For this event we note that the event E3 is conditioned on the event E2,1 ∩ F . This

condition allows us to replace acci with acc(Si) and accj with acc(Sj) in the event E3. Therefore the
event E3|E2,1 ∩ F is the event

e (Wi,j , acc(Si)) = e (acc(Sj), g) ∧ Si * Sj .

This event implies breaking the bilinear q-strong Diffie-Hellman assumption (Assumption 1), by
Lemma 1. Therefore the probability Pr[E3|E2,1 ∩ F ] is neg(k);

This concludes the security proof for the case of the positive subset query. For a negative answer, the
adversary Adv outputs an incorrect answer “true” and also a proof that consists of the following elements:
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1. Accumulation values acci and accj along with proofs πi and πj ;
2. An element y;
3. A membership witness Wy for element y;
4. Completeness witnesses Fy and Fj for element y.

We define now the following events, related to the choice of the proof above made by the adversary. Our
goal will be to the express the probability of the security definition (Definition 3) in Relation 2 as a function
of the following events.
• E2: Same as in the positive answer;
• E3: The values acci, Wy and y picked by Adv are such that e(Wy, g

sgy) = e(acci, g). Event E3 can
be partitioned into two mutually exclusive events E3,0 and E3,1, i.e, E3 = E3,0 ∪ E3,1:

– y ∈ Si;
– y /∈ Si.

• E4: The values y, Fy, accj and Fj picked by Adv are such that e(gygs,Fy)e(accj ,Fj) = e(g, g);
• F : Si ⊆ Sj .

Similarly with the intersection security proof, let P be the probability of Definition 3 (Relation 2). We
observe that for the case of the negative subset query,P can be expressed as the probability of the intersection
of the events E2, E3, E4,F . By using simple probability calculus (and similarly with the intersection security
proof), this can be written as

P = Pr [E4 ∩ E3 ∩ E2 ∩ F ] = Pr [E4 ∩ (E3,0 ∪ E3,1) ∩ (E2,0 ∪ E2,1) ∩ F ]
≤ Pr[E2,0] + Pr[E3,0|E2,1] + Pr [E4|E3,1 ∩ E2,1 ∩ F ] .

We compute each such probability separately:
1. Pr[E2,0] is neg(k) by Lemma 5;
2. Pr[E3,0|E2,1]: For this event we note that the event E3,0 is conditioned on the event E2,1. This condition

allows us to replace acci with acc(Si) in the event E3,0. Therefore the event E3,0|E2,1 is the event

e (Wy, g
sgy) = e (acc(Si), g) ∧ y /∈ Si .

This event implies breaking the bilinear q-strong Diffie-Hellman assumption (Assumption 1), by
Lemma 1. Therefore the probability Pr[E3,0|E2,1] is neg(k);

3. Pr [E4|E3,1 ∩ E2,1 ∩ F ]. Due to the condition on E3,1 ∩ E2,1 ∩ F this is the event

e (gygs,Fy) e (acc(Sj),Fj) = e(g, g) ∧ Si ⊆ Sj .

Since we have the condition on E3,1 ∩ F (y ∈ Si and Si ⊆ Sj), it must be that y ∈ Sj . Therefore
there exists a polynomial Q(s) such that

e (gygs,Fy) e
(
gQ(s)(y+s),Fj

)
= e(g, g) .

Therefore we can derive an 1/(s+ r)-th of e(g, g) as

e(g, g)
1
s+r = e (g,Fy) e

(
gQ(s),Fj

)
.

This implies breaking the bilinear q-strong Diffie-Hellman assumption for the setting (p,G,G, e, g)
(Assumption 1). By Assumption 1, this probability is neg(k), and therefore Pr [E4|E3,1 ∩ E2,1 ∩ F ] is
neg(k). Thus the total probability P is neg(k). This concludes the proof for the security of a negative
subset query.
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Set difference. Let the difference query be D = Si − Sj . The adversary Adv outputs an incorrect answer
D = {e1, e2, . . . , eδ} 6= Si − Sj and also a proof that consists of the following elements:

1. Coefficients γδ, γδ−1, . . . , γ0;
2. Accumulation values acci and accj along with proofs πi and πj ;
3. A subset witness WD,Si ;
4. A proof (Wi,Wj ,Fi,Fj) for the intersection Si ∩ Sj .

We define now the following events, related to the choice of the proof above made by the adversary. Our
goal will be to the express the probability of the security definition (Definition 3) in Relation 2 as a function
of the following events.
• E1: Same as in intersection;
• E2: Same as in subset;
• E3: The values γδ, γδ−1, . . . , γ0, WD,Si and acci picked by Adv satisfy

e

(
WD,Si ,

δ∏
i=0

(
gs
i
)γi)

= e(acci, g) .

Event E3 can be partitioned into two mutually exclusive events E4,0 and E4,1, i.e, E4 = E4,0 ∪ E4,1:
– E3,0: D * Si;
– E3,1: D ⊆ Si;

• E4: The values WD,Si , acci, accj ,Wi,Wj ,Fi and Fj picked by Adv are such that the respective tests
for the intersection of Si and Sj are satisfied, i.e.,

e(Wi,WD,Si) = e(acci, g) ∧ e(Wj ,WD,Si) = e(accj , g) ∧ e(Wi,Fi)e(Wj ,Fj) = e(g, g) .

• F : The difference D is incorrect, i.e., D 6= Si − Sj .
Similarly with the intersection security proof, let P be the probability of Definition 3 (Relation 2). We
observe that for the case of the difference query, P can be expressed as the probability of the intersection
of the events E1, E2, E3, E4,F . By using simple probability calculus (and similarly with the intersection
security proof), this can be written as

P = Pr [E4 ∩ E3 ∩ E2 ∩ E1 ∩ F ]
= Pr [E4 ∩ (E3,0 ∪ E3,1) ∩ (E2,0 ∪ E2,1) ∩ (E1,0 ∪ E1,1) ∩ F ]
≤ Pr[E1,0] + Pr[E2,0] + Pr[E3,0|E2,1 ∩ E1,1] + Pr[E4|E3,1 ∩ E2,1 ∩ F ] .

We compute each such probability separately:
1. Pr[E1,0] is neg(k) by Lemma 3;
2. Pr[E2,0] is neg(k) by Lemma 5;
3. Pr[E3,0|E2,1 ∩ E1,1]. For the event E3,0|E2,1 ∩ E1,1, by replacing the values of the conditions, we get

e
(
WD,Si , g

Q
x∈D(x+s)

)
= e(acc(Si), g) ∧ D * Si .

This event implies breaking the bilinear q-strong Diffie-Hellman assumption (Assumption 1), by
Lemma 1. Therefore the probability Pr[E3,0|E2,1 ∩ E1,1] is neg(k);

4. Pr[E4|E3,1 ∩ E2,1 ∩ F ]. By the conditions, since D ⊆ Si we can write WD,Si = g
Q
x∈Si−D(x+s).

Therefore the event is equivalent to

e
(
Wi, g

Q
x∈Si−D(x+s)

)
= e (acc(Si), g) ∧ e

(
Wj , g

Q
x∈Si−D(x+s)

)
= e (acc(Sj), g)

∧ e (Wi,Fi) e (Wj ,Fj) = e(g, g) .
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We have already proved (intersection proof) that the probability that the above event holds and Si −
D 6= Si∩Sj is neg(k). However, the event Si−D 6= Si∩Sj is equivalent with the event D 6= Si−Sj ,
which is our event F . Therefore the probability Pr[E4|E3,1 ∩ E2,1 ∩ F ] is neg(k).

This completes the proof of security for all the queries of the sets collection data structure.

Complexity. The complexity proofs are given in the description of the algorithms.

11 Applications
Timestamped keyword-search. As we saw, in timestamped keyword-search, the embedded timestamp
technique cannot work since the intersection can be a lot bigger than the set resulted after the application
of the local filtering, making this straightforward solution inefficient. We now describe an algorithmic
construction to solve this problem. Let t1, t2, . . . , tr be the discrete timestamps that we are interested in
(ti can be viewed as a certain day of the month). We define a new sets collection data structure as follows:
Imagine t1, t2, . . . , tr are the leaves of a binary tree. We build a segment tree [38] on top of these timestamps
as follows: Each leaf storing timestamp ti contains the documents (e.g., email messages) that were received
at time ti. Moreover, the internal nodes of the binary tree contain the documents that correspond to the union
(note that this union does not have any common elements) of the documents contained in the children’s
nodes, recursively defining in this way sets of documents for all the nodes of the tree. Therefore we end up
with a new sets collection data structure that is built on top of these 2r − 1 sets (one set per internal tree
node of the tree), namely the sets T1, T2, . . . , T2r−1. The timestamped keyword-search is therefore verified
by two sets collection data structures, one built on the text terms, namely the sets S1, S2, . . . , Sm, and one
built on top of the sets of the timestamps, namely the sets T1, T2, . . . , T2r−1. Define now the extension of
two timestamps ext(t1, t2) to be the set of sets Ti that “cover” the interval [t1, t2], i.e., namely the set that
contains sets the union of which equals the set of all timestamps in [t1, t2]. One can easily see that for every
1 ≤ t1 ≤ t2 ≤ r, it is |ext(t1, t2)| = O(log r).

Suppose now we want to verify the documents that contain terms m1 and m2 and which were received
between t1 and t2. All we have to do is to verify the intersection of the following sets: (a) the union of sets
in ext(t1, t2), (b) S1 (set that refers to term m1) and, (c) S2 (set that refers to term m2). Let T1, T2, . . . , T`
be the disjoint sets that are contained in ext(t1, t2), where ` = O(log r). The answer to the query is the set
(S1∩S2)∩(T1∪T2∪ . . .∪T`) which can be written as (S1∩S2∩T1)∪(S1∩S2∩T2)∪ . . .∪(S1∩S2∩T`).
Since Ti are disjoint, each term of the union contributes at least one new term to the answer, and therefore
we can verify this query in a nearly operation-sensitive way by authenticating log r intersections separately
(note there is an extra O(log r) multiplicative factor in the complexities of Theorem 2). Therefore:
Theorem 2 Consider a collection of m sets S1, . . . , Sm and let M =

∑m
i=1 |Si| and 0 < ε < 1. For a

query operation involving in a time interval [t1, t2], let t be the number of involved sets, N be the sum of
the sizes of the involved sets, and δ be the answer size. There exists an authenticated data structure scheme
T KS = {genkey, setup, update, refresh, query, verify} for a timestamped keyword-search data structure
D with the following properties: (1) it is correct and secure according to Definitions 2 and 3 and based
on the bilinear q-strong Diffie-Hellman assumption; (2) The access complexity of algorithm (i) genkey()
is O(1); (ii) setup() is O(m + r + M); (iii) update() is O(1) outputting information upd of O(1) group
complexity; (iv) refresh() is O(1); (3) For a time-stamped keyword-search query, algorithm query() has
O(N log r log2N log logN+t(m+r)ε log(m+r)) access complexity, algorithm verify() hasO(t log r+δ)
access complexity and the proof Π(q) has O(t log r + δ) group complexity; (4) The group complexity of the
authenticated data structure auth(D) is O(m+ r +M).

Note that in the above theorem we do not have a result concerning the verification of union with times-
tamps. This is due to the following: Using the same notation as we did for the intersection, the answer to
the union query, would be the set (S1 ∪ S2) ∩ (T1 ∪ T2 ∪ . . . ∪ T`). The nature of the answer does not
allow for any further algebraic processing and therefore in order to authenticate the whole expression, one
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needs to verify the two unions separately. This leads to a solution that is not operation-sensitive, therefore
the operation-sensitive verification of this type of queries cannot be achieved with our method—at least in a
way similar to the techniques we have used so far. The same applies for the difference queries.
Equi-join queries. Finally, we show how our technique can be used in efficient verification of database
queries, such as equi-join. Let R1(α, r11, . . . , r1w), . . . , Rm(α, rm1, . . . , rmw) be m relational tables, that
have up to n tuples each, and which share a common attribute α. We now want to compute the equi-join
query on the common attribute α on any subset of t of them. This is basically an intersection that can be
authenticated by building our scheme on top of the attributes α, for all relations R1, R2, . . . , Rm.

To handle duplicate values for the attribute α, we build our authentication scheme on top of distinct α
values for all the relations Ri, i = 1, . . . ,m and we keep a separate structure that maps α to all the related
records, for all relations Ri, i = 1, . . . ,m. This authenticated structure can be a bilinear-map accumulated
value that adds (i.e., the respective witness) only constant overhead per relation (1024 bits in practice) to the
proof size, for each element that appears in the equi-join answer. We note that the verification of these type
of queries have also been studied in [41]. Therefore we have the following theorem:
Theorem 3 Consider a collection of m relational tables Ri for i = 1, . . . ,m and let M =

∑m
i=1 |Ri|.

For an equi-join query, let t be the number of involved relational tables, N be the sum of the sizes of the
involved relational tables, and δ be the answer size. There exists an authenticated data structure scheme
EQJ = {genkey, setup, update, refresh, query, verify} for a data structure answering equi-join queries D
with the following properties: (1) it is correct and secure according to Definitions 2 and 3 and based on the
bilinear q-strong Diffie-Hellman assumption; (2) The access complexity of algorithm (i) genkey() is O(1);
(ii) setup() is O(m+M); (iii) update() is O(1) outputting information upd of O(1) group complexity; (iv)
refresh() is O(1); (3) For an equi-join query, algorithm query() has O(N log2N log logN + tmε logm)
access complexity, algorithm verify() hasO(t+δ) access complexity and the proof Π(q) hasO(t+δ) group
complexity; (4) The group complexity of the authenticated data structure auth(D) is O(m+M).

12 Analysis
In this section we analyze the costs needed by our solution and compare with experimental results from
other works. For bilinear maps and generic-group operations in the bilinear-map accumulator, we used the
PBC library [1], a library for pairing-based cryptography, interfaced with C.

12.1 System setup
We choose our system parameters as follows. First of all, type A pairings are used, as described in [24].
These pairings are constructed on the curve y2 = x3 + x over the base field Fq, where q is a prime number.
The multiplicative cyclic group G we are using is a subgroup of points in E(Fq), namely a subset of those
points of Fq that belong to the elliptic curve E. Therefore this pairing is symmetric. The order of E(Fq) is
q + 1 and the order of the group G is some prime factor p of q + 1. The group of the output of the bilinear
map G is a subgroup of Fq2 .

In order to instantiate type A pairings in the PBC library, we have to choose the size of the primes q
and p. The main constraint in choosing the bit-sizes of q and p is that we want to make sure that discrete
logarithm is difficult in G (that has order p) and in Fq2 . Typical values are 160 bits for p and 512 bits for q.
We use the typical value for the size of q, i.e., 512 bits. Note that with this choice of parameters the size of
the elements in G (which have the form (x, y), i.e., points on the elliptic curve) is 1024 bits. Finally, let’s
assume that the accumulation tree that is built on top of the set digests, has two levels, i.e., ε = 0.5.

12.2 Communication cost
Here we analyze the communication cost that our scheme has for an intersection of two sets. Let’s assume
that the size of the reported intersection is δ. Then as we saw in Section 3, the proof (apart from the
answer itself), consists of the following values: (a) Two subset witnesses, two completeness witnesses, two
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accumulation values (each one of the accumulation values comes with two proof elements of two group
elements each that serve as a proof for it). Therefore the size of all these elements, which are all elements
of group G, is not dependent on the size of the intersection and is equal to 2 × (1024 + 1024 + 1024 +
4 × 1024)/8 = 1792 bytes; (b) The coefficients bi ∈ Zp (we recall p is 160 bits long) of the intersection,
for i = 1, . . . , δ. These have size 160δ/8 = 20δ bytes. Therefore the total communication cost is a linear
function of δ, i.e., the function 1792 + 20δ (in bytes).

We now compare the communication cost of our scheme with the analysis made in [29]. In Table 2 we
compare with the results presented in Table IV of [29] where various set sizes n1 and n2 are used and the
size of the intersection δ is always 0.01n2. Note that in most cases, our communication cost is a lot less
than the one reported in [29]. More importantly, it is not dependent on the size of the sets participating in
the intersection. In cases that our cost is worse, it is due to the big constants enforced by the use of bilinear
pairings and accumulators.

Table 2: Comparison of a 2-intersection communication overhead (proof size) of the scheme presented
in [29] with our scheme. Here n1 and n2 are the sets sizes that are intersected and δ is the size of the
intersection.

n1 n2 δ KB [29] KB (this work)
1000 1000 10 3.34 1.94
1000 100 1 1.68 1.76
1000 10 0 1.01 1.75
1000 1 0 0.46 1.75

10000 10000 100 26.88 3.70
10000 1000 10 12.15 1.94
10000 100 1 6.86 1.76
10000 10 0 3.08 1.75

100000 100000 1000 263.25 21.28
100000 10000 100 116.13 3.70
100000 1000 10 63.18 1.94
100000 100 1 26.69 1.76

Table 3: Comparison of an equi-join communication overhead (proof size) of the scheme presented in [29]
with our scheme. Tuple size is in bytes.

tuple size 32 64 128 256 512
MB [41] 15 18.33 30 43.33 66.66

MB (this work) 9.1 10.05 11.94 19.51 34.65

Finally, we compare our solution, in terms of communication cost, with the cost required for authen-
ticating equi-joins with the most efficient algorithm presented in [41], i.e., algorithm AIM (see Table 3).
In Figure 17 of [41] two relations R and S are equi-joined and the size of the verification object (VO) is
displayed, for multiple tuple sizes (a tuple is a row in the relations) tup = 32, 64, 128, 256, 512 bytes. For
this experiment, the size of the answer is 31 × 103 tuples and therefore if we use our scheme the cost is
1792 + 20δ + δtup + 2δ × 128 bytes, for δ = 31× 103 (the cost 2δ × 128 is due to dealing with duplicate
values—see description of equi-join verification before Theorem 3). Note that, especially for large tuple
sizes, there are considerable savings with our scheme.
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12.3 Verification cost
Let exp, mult, add be the times needed to perform an exponentiation, a multiplication and an addition re-
spectively, all modulo p. Let also EXP, MULT be times required for exponentiation and mulatiplication in
group G and let EXP , MULT be the respective times in the target group of the bilinear map G. Finally
let MAP be the time needed to perform the operation e(., .). We benchmarked all these operations using
the PBC library [1] (version pbc− 0.5.7), on a 64-bit, 2.8GHz Intel based, dual-core, dual-processor ma-
chine with 4GB main memory, running Debian Linux, and derived the following times, i.e., MAP = 5ms,
MULT = 0.005ms, exp = 0.02ms, add = 0.002ms and mult = 0.002ms.

We analyze now the verification cost of a 2-intersection, required by our scheme. Let Si and Sj be the
sets of the intersection. The verification algorithm, on input the proof has to perform the following tasks:
(a) First it verifies acc(Si) and acc(Sj), which requires two bilinear-map computations for each value,
therefore taking time 4MAP. (b) Then the experiment of Lemma 3 is executed. The time needed for this
part is δ(2mult + 2add + exp); (c) Then the algorithm checks the subset condition which takes time 4MAP;
(d) Finally it checks the completeness condition that takes times 2MAP +MULT . Therefore we see that
the total cost for verification of a 2-intersection of size δ is

10MAP + δ(2mult + 2add + exp) +MULT ,

which is a linear function in δ, namely the function 50 + 0.028δ (in ms).
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