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Abstract

Consider two parties holding samples from correlated distributions W and W ′, respectively,
where these samples are within distance t of each other in some metric space. The parties wish
to agree on a close-to-uniformly distributed secret key R by sending a single message over an
insecure channel controlled by an all-powerful adversary who may read and modify anything
sent over the channel. We consider both the keyless case, where the parties share no additional
secret information, and the keyed case, where the parties share a long-term secret SKExt that
they can use to generate a sequence of session keys {Rj} using multiple pairs {(Wj ,W

′
j)}. The

former has applications to, e.g., biometric authentication, while the latter arises in, e.g., the
bounded-storage model with errors.

We show solutions that improve upon previous work in several respects:

• The best prior solution for the keyless case with no errors (i.e., t = 0) requires the min-
entropy ofW to exceed 2n/3, where n is the bit-length ofW . Our solution applies whenever
the min-entropy of W exceeds the minimal threshold n/2, and yields a longer key.

• Previous solutions for the keyless case in the presence of errors (i.e., t > 0) required random
oracles. We give the first constructions (for certain metrics) in the standard model.

• Previous solutions for the keyed case were stateful. We give the first stateless solution.

1 Introduction

A number of works have explored the problem of secret-key agreement based on correlated infor-
mation, by which two parties holding samples w,w′ of correlated random variables W,W ′ commu-
nicate in order to generate a shared, secret, close-to-uniform key R. The problem has variously
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been called “information reconciliation” (especially when the challenge is to handle differences
between the samples held by the parties), “privacy amplification” (especially in the case when
W = W ′ and the goal is to transform a nonuniform shared secret to a uniform one), or “fuzzy
extraction.” Early work [43, 5, 26, 3] assumed the parties could communicate over a public but au-
thenticated channel or, equivalently, assumed a passive adversary. This assumption was relaxed in
later work [29, 30, 42, 27, 33], which considered an active adversary who could modify all messages
sent between the two parties.

The goal of the above works was primarily to explore the possibility of information-theoretic se-
curity, especially in the context of quantum cryptography; however, this is not the only motivation.
The problem also arises in the context of using noisy data (such as biometric information, or obser-
vations of some physical phenomenon) for cryptographic purposes, even if computational security
suffices. The same problem also arises in the context of the bounded-storage model (BSM) [28] in
the presence of errors [14, 17]. We discuss each of these in turn.

1.1 Authentication Using Noisy Data

In the case of authentication/key agreement using noisy data, the random variables W,W ′ are close
(with respect to some metric) but not identical. For simplicity, we assume the noisy data represents
biometric information, though the same techniques apply to more general settings. In this context,
two different scenarios have been considered:

“Secure authentication”: Here, a trusted server stores some biometric data w of a user, obtained
during an initial enrollment. Later, when the user and the server want to establish a secure
communication session over an insecure channel, the user locally obtains a fresh biometric scan w′

which is close, but not identical, to w. The user and the server then use w and w′ to authenticate
each other and agree on a key R.

“Key recovery”: In this scenario, a user utilizes his biometric data w to generate a random key R
along with some public information P , and then stores P on a (possibly untrusted) server. The
key R is then used, for example, to encrypt some data for long-term storage. At a later point in
time, the user obtains a fresh biometric scan w′ along with the value P from the server; together,
these values enable the user to recover R (and hence decrypt the encrypted data).

In the second setting the user is, in effect, running a key agreement protocol with himself at
two points in time, with the (untrusted) server acting as the “communication channel” between
these two instances of the user. This second scenario inherently requires a noninteractive (i.e.,
one-message) solution since w is no longer available at the later point in time. Note also that any
solution for the second scenario also provides a solution for the first.

Several protocols for key agreement using noisy data over an authenticated channel are known [5,
3, 22, 20, 16]. Most of the existing work for an unauthenticated channel, however, solves the problem
only for two special cases [29, 30, 42, 27, 33]: (1) when W = W ′, or (2) when W and W ′ consist of
(arbitrarily many) independent realizations of the same random variable; i.e., W = (W (1),W (2), . . .)

and W ′ = (W ′(1),W ′(2), . . .). In the case of biometric data, however, W,W ′ are not likely to be
equal and we cannot in general obtain an unbounded number of samples.

Recently, there has been progress on the general case. Renner and Wolf [34] were the first
to demonstrate that an interactive solution is possible. Their protocol was not efficient, but an
efficient version was later given [24]. Boyen [8] showed (in the random oracle model) how to achieve
unidirectional authentication, as well as a weak form of security for the second scenario (roughly,
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R remains secret but the user can be fooled into using an incorrect key R′). Boyen et al. [9]
showed two solutions to the problem. Their first solution is noninteractive and thus applies to both
scenarios above, but relies on random oracles. Their second solution is interactive, and relies on
password-based key exchange as a primitive. This means that it provides computational rather than
information-theoretic security; furthermore, given the current state-of-the-art for password-based
key exchange, their solution is impractical without additional assumptions such as random oracles
or the existence of public parameters.

1.2 The Bounded-Storage Model and the Keyed Case

Key agreement using correlated information arises also in the context of the bounded-storage model
(BSM) [28] in the presence of errors [14, 17]. In the BSM, two parties share a long-term secret
key SKBSM. In each time period j, a long random string Zj is broadcast to the parties (and the
adversary); the assumption is that the length of Zj is more than what the adversary can store. The
parties use SKBSM and Zj to generate a secret session key Rj in each period. This process should
achieve “everlasting security” [1], meaning that even if SKBSM is revealed to the adversary in some
time period n, all session keys {Rj}j<n remain independently and uniformly distributed from the
perspective of the adversary.

A paradigm (formalized by [39]) for achieving the above is for SKBSM to contain a seed SKSam

for a sampler1 and another seed SKExt for a randomness extractor. The parties use SKSam to sample
some portion of Zj in each period; in the absence of errors, this results in each party holding the
same value wj . Since the adversary may have some partial information about wj , however, this
shared value is not uniformly distributed from the point of view of the adversary, and the parties
must therefore use a randomness extractor with the seed SKExt to generate a uniform key Rj for the
current period. In the presence of transmission errors in Zj the problem is even more difficult, as
the parties then hold correlated (but possibly unequal) strings wj , w

′
j after the initial sampling. The

parallels to biometric authentication should be clear. Nevertheless, the problems are incomparable:
in the case of the BSM with errors there is a stronger setup assumption (namely, that the parties
share a long-term key SKBSM) but the security requirements are more stringent since SKBSM needs
to be reusable and everlasting security is required.

1.3 Our Contributions

We focus on the abstract problem of secret-key agreement between two parties holding instances
w,w′ of correlated random variables W,W ′ that are guaranteed to be close but not necessarily
identical. Specifically, we assume that w and w′ are within distance t in some underlying metric
space. Our definitions as well as some of our results hold for arbitrary metric spaces, while other
results assume specific metrics.

We restrict our attention to noninteractive protocols defined by procedures (Gen,Rep) that
operate as follows. The first party, holding w, computes (R,P ) ← Gen(w) and sends P to the
second party; this second party computes R′ ← Rep(w′, P ). (If the parties share a long-term key
SKExt then Gen,Rep take this key as additional input.) The basic requirements, informally, are

Correctness: R = R′ whenever w′ is within distance t of w.

1A sampler [2] is a function that maps SKSam to a set of bit positions. In fact, SKSam may simply encode a set of
randomly chosen bit positions, but better samplers — using shorter seeds — are available.
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Security: If the min-entropy of W is high, then R is uniformly distributed even given P .

So far, this gives exactly a fuzzy extractor as defined by Dodis et al. [16] (although we additionally
allow the possibility of a long-term key). Since we are interested in the case when the parties
communicate over an unauthenticated channel, however, we actually want to construct robust fuzzy
extractors [9] that additionally protect against malicious modification of P . Robustness requires
that if the adversary sends any modified value P̃ 6= P , then with high probability the second player
will reject (i.e., Rep(w′, P̃ ) =⊥). We distinguish between the notion of pre-application robustness
and the stronger notion of post-application robustness, where in the latter case the adversary is
given R before it generates P̃ . Post-application robustness is needed in settings where the first
party may begin using R before the second party computes R′, and is also needed for the “key
recovery” scenario discussed earlier (since previous usage of R may leak information about it).

We now summarize our results:

The case of no errors. Although our focus is on the case when W,W ′ are unequal, we obtain
improvements also in the case when they are equal (i.e., t = 0) but nonuniform. Let m denote the
min-entropy of W and let n ≥ m denote its bit-length. The best previous noninteractive solution in
this setting is due to Maurer and Wolf [27] who show that when m > 2n/3 it is possible to achieve
pre-application robustness and generate a shared key R of length m − 2n/3. On the other hand,
results of [18, 19] imply that a non-interactive solution is impossible when m ≤ n/2. (As shown
in [27, Section III-C], interactive solutions can do better; in fact, it is possible for the length of R
to be nearly m [33, 19, 11].)

We bridge the gap between known upper- and lower-bounds and show that whenever m > n/2
it is possible to achieve pre-application robustness and generate a shared key R of length 2m− n.
This improves both the required min-entropy of W and the length of the resulting key. Moreover,
we give the first solution satisfying post-application robustness. That solution also works as long
as m > n/2, but extracts a key half as long (that is, of length m− n/2).

Handling errors. The only previously known construction of robust fuzzy extractors [9] relies
on the random oracle model. We (partially) resolve the main open question of [9] by showing a
construction of robust fuzzy extractors in the standard model for the specific cases of the Hamming
and set-difference metrics.2 (The solution in [9] is generic and applies to any metric admitting a
good error-correcting code.) Our construction achieves post-application robustness.

The techniques of this paper were subsequently generalized in [12].

Using a shared long-term key. There are scenarios in which the two parties trying to derive
R from w and w′ already share a long-term secret key. Motivated by such settings, we define and
construct a keyed robust fuzzy extractor for general metrics. In the process, we introduce a new
primitive called an extractor-MAC : a one-time information-theoretic message authentication code
whose output is independent of the key if the message has sufficient entropy.

Application to the BSM with errors. Prior work focusing on the BSM with errors [14, 17]
showed a noninteractive (i.e., single-message) solution to the problem discussed in Section 1.2 when
the samples wj , w

′
j of the parties have constant relative Hamming distance. The solution of [14]

is stateful: the long-term key SKBSM is updated by both parties after each time period using
information derived from Zj . If a party misses a time period and is no longer synchronized with

2A previous version of this work [15] contained an erroneous claim of a construction for edit distance, which
proceeded by embedding edit distance into set difference using shingling (see [16]). That construction does not work,
however, because the embedding fails to preserve the requirement that m > n/2.
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the other party, it is not clear how to recover. The solution of [17] is stateless; the parties keep the
same long-term key SKBSM and can communicate even if one of them misses some Zj . However, this
solution assumes the parties can communicate over an authenticated channel. Building on keyed
robust fuzzy extractors, we show a stateless solution for the BSM with errors (under the Hamming
metric) using an unauthenticated channel.

2 Definitions and Preliminaries

For strings a and b, we use a‖b to denote their concatenation and let |a| denote the length of a.
If S is a set, x ← S means that x is chosen uniformly from S. If X is a probability distribution,
then x← X means that x is chosen according to X. The notation PrX [x] denotes the probability
assigned by X to the value x. (We often omit the subscript when the probability distribution
is clear from context.) If A is a probabilistic algorithm and x is an input, A(x;ω) denotes the
output of A running with random coins ω, and A(x) is the random variable A(x;ω) for uniformly
sampled ω. If X is a distribution, then A(X) is the random variable obtained by sampling x← X
and then running A(x). We let U` denote the uniform distribution over {0, 1}`. All logarithms are
base 2.

Let X1, X2 be two probability distributions over some set S. Their statistical distance is

SD (X1, X2)
def
= 1

2

∑
s∈S |PrX1 [s]−PrX2 [s]|. If two distributions have statistical distance at most ε,

we say they are ε-close and write X1 ≈ε X2. Note that ε-close distributions cannot be distinguished
with advantage better than ε by an adversary who gets a single sample, even if the adversary is
computationally unbounded.

The min-entropy of a random variable X is defined as H∞(X) = − log(maxx PrX [x]). Follow-
ing [16], we define the (average) conditional min-entropy of X given Y as

H̃∞(X | Y ) = − log
(
Ey←Y

(
2−H∞(X|Y=y)

))
(where the expectation is over y for which Pr[Y = y] is nonzero). This definition is suited for
cryptographic purposes because the probability that an adversary can predict X when given the

value of Y is 2−H̃∞(X|Y ).

Lemma 1 ([16, Lemma 2.2]) Let Y have at most 2λ elements in its support. Then H̃∞(X |
Y ) ≥ H∞(X,Y )− λ. (More generally, H̃∞(X | Y,Z) ≥ H̃∞(X,Y | Z)− λ.)

2.1 Hash Functions and Extractors

We recall the notion of almost-universal hashing [10, 36].

Definition 1 A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}`

}
i∈I is δ-almost universal

if for all x 6= x′ we have Pri←I [hi(x) = hi(x
′)] ≤ δ. Families with δ = 2−` are called universal. ♦

A simple universal family [36, Theorem 5.2] can be constructed by identifying I and {0, 1}n
with GF (2n) in the natural way, and defining hi(x) as the high-order ` bits of i · x.

Extractors [31] yield a (close to) uniform string from a random variable with high min-entropy,
using a uniform seed i. Strong extractors guarantee that the extracted string is uniform even
conditioned on the seed. We consider only strong extractors in this paper, and thus often omit the
qualifier “strong.”
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Definition 2 Let I be a set and the uniform distribution over that set. A function Ext : {0, 1}n ×
I → {0, 1}` is a strong (m, ε)-extractor if for all distributions X over {0, 1}n with H∞(X) ≥ m we
have SD ((Ext(X; I), I), (U` × I)) ≤ ε. ♦
We refer to the second argument to Ext as the seed.

We need to strengthen the above definition to account for external information E an adversary
knows that may be correlated with X. To do so, we generalize the min-entropy constraint on X
to average min-entropy, and require the extracted string to be uniform even given E. Namely, we
require that for any X,E such that H̃∞(X | E) ≥ m we have SD ((Ext(X; I), I, E), (U` × I × E)) ≤
ε. Such extractors are called average-case extractors. Note that any (m − log

(
1
ε

)
, ε′)-extractor is

an (m, ε + ε′)-average-case extractor, because Pre←E [H∞(X | e) ≤ m − log
(

1
ε

)
] ≤ ε by Markov’s

inequality; Vahdan [40] proves the stronger statement that any (m, ε)-extractor for m ≤ n−1 is also
an (m, 3ε)-average-case extractor. However, the additional loss is not always necessary. Indeed, the
Leftover Hash Lemma generalizes without any loss to the average-case setting. (Multiple versions
of this lemma have appeared; we use the formulation of [37, Theorem 8.1], augmented by [16,
Lemma 2.4] for the average case; see [21] and references therein for earlier formulations.)

Lemma 2 (Leftover Hash Lemma) Fix `,m, ε > 0. If H = {hi : {0, 1}n → {0, 1}`}i∈I is
a (2−`(1 + 4ε2) − 2−m)-almost universal family, then H is a strong (m, ε)-average-case extractor
(where the index of the hash function is the seed to the extractor). In particular, if H is universal
and ` ≤ m+ 2− 2 log

(
1
ε

)
, then H is a strong (m, ε)-average-case extractor.

The above holds even when H depends on E, i.e., when H̃ = {He}e∈E is a collection of almost-
universal families, one for each value of the external information E.

2.2 One-Time Message Authentication Codes

An (information-theoretic) one-time message authentication code (MAC) consists of polynomial-
time algorithms (Mac,Vrfy). The first algorithm takes a key SK and a message M ∈ {0, 1}n and
outputs a tag t; we write this as t = MacSK(M). The verification algorithm Vrfy takes as input
a key SK, a message M ∈ {0, 1}n, and a tag t, and outputs either 1 or 0, with the former being
interpreted as acceptance and the latter as rejection. Correctness requires that for all SK and
all M ∈ {0, 1}n, we have VrfySK(M,MacSK(M)) = 1. Security requires that when SK is chosen
uniformly, an unbounded adversary cannot output a valid tag on a new message even after being
given the tag on any message of its choice. Formally:

Definition 3 Message authentication code (Mac,Vrfy) is a δ-secure one-time MAC if for any ad-
versary A and any message M , the probability that the following experiment outputs “success” is
at most δ: Choose uniform key SK; let t = MacSK(M); let (M ′, t′) ← A(t); output “success” if
M ′ 6= M and VrfySK(M ′, t′) = 1. ♦

We next recall the notion of (almost) strongly universal hashing [41, 36].

Definition 4 A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}`

}
i∈I is δ-almost strongly

universal if for all x 6= x′, y, y′ it holds that: (a) Pri←I [hi(x) = y] = 2−` and (b) Pri←I [hi(x) =
y ∧ hi(x′) = y′] ≤ δ2−`. Families with δ = 2−` are called strongly universal or pairwise independent.

♦
A strongly universal family [36, Theorem 5.2] is obtained by identifying {0, 1}n with GF2n ,

letting I = GF (2n)× {0, 1}`, and defining ha,b(x) as the high-order ` bits of (a · x)⊕ b.
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An almost strongly universal hash family can be used for information-theoretic authentication
of a message M using a secret key i, by letting the tag be t = hi(M). The property of being
δ-almost strongly universal implies that this is a δ-secure one-time MAC.

2.3 Secure Sketches and Fuzzy Extractors

We review the definitions of secure sketches and fuzzy extractors from [16]. Let M be a metric
space with distance function dis. Informally, a secure sketch enables recovery of a string w ∈ M
from any “close” string w′ ∈M, without leaking too much information about w.

Definition 5 An (m, m̃, t)-secure sketch forM is a pair of efficient randomized algorithms (SS,SRec)
such that:

1. The sketching procedure SS takes an input w ∈ M and outputs a string s ∈ {0, 1}∗. The
recovery procedure SRec takes as inputs an element w′ ∈ M and a string s ∈ {0, 1}∗, and
returns an element of M.

2. Correctness: If dis(w,w′) ≤ t then

SRec(w′,SS(w)) = w.

3. Security: For any distribution W overM with H∞(W ) ≥ m, we have H̃∞(W | SS(W )) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦

For the case of the Hamming metric on M = {0, 1}n, we will make use of the syndrome
construction from [16] (this construction also appeared as a component of earlier work, e.g., [4]).
Here the sketch s = SS(w) consists of the k-bit syndrome3 of w with respect to some (efficiently
decodable) [n, n− k, 2t+ 1]-error-correcting code. We do not need any details of this construction
other than the facts that s is a (deterministic) linear function of w and that the entropy loss is at
most |s| = k. We also note that this construction can be extended to the set-difference metric [16].

As opposed to a secure sketch, whose goal is to recover the original input, a fuzzy extractor
enables generation of a close-to-uniform string R from w, and subsequent reproduction of R from
any w′ close to w.

Definition 6 An (m, `, t, ε)-fuzzy extractor for M is a pair of efficient randomized algorithms
(Gen,Rep) such that:

1. The generation procedure Gen takes input w ∈M and outputs an extracted string R ∈ {0, 1}`
and a helper string P ∈ {0, 1}∗. The reproduction procedure Rep takes as inputs an element
w′ ∈M and a string P ∈ {0, 1}∗, and returns a string in {0, 1}`.

2. Correctness: If dis(w,w′) ≤ t and (R,P ) is output by Gen(w), then Rep(w′, P ) = R.

3. Security: For any distribution W overM with min-entropy m, the string R is close to uniform
conditioned on P . I.e., if H∞(W ) ≥ m and (R,P )← Gen(W ), then SD ((R,P ), (U` × P )) ≤
ε. ♦

3If H is the parity matrix for a linear code C (i.e., c ∈ C iff cHT = 0), then the syndrome of a vector w is wHT .
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Composing an (m, m̃, t)-secure sketch with an average-case (m̃, ε)-extractor Ext : M× I → {0, 1}`
yields a (m, `, t, ε)-fuzzy extractor with P = (SS(w), i) and R = Ext(w; i) (see [16, Lemma 4.1]).

Just as with ordinary extractors, a more general definition of fuzzy extractors accounts for
external information E and requires that for any W,E with H̃∞(W | E) ≥ m it holds that
SD ((R,P,E), U` × (P,E)) ≤ ε. A fuzzy extractor satisfying this definition is called an average-
case fuzzy extractor, and all known constructions satisfy this more general definition.

In this work we will also use keyed fuzzy extractors where both Gen and Rep use the same
key SKExt, which is uniform and independent of the input distribution W . Here we require the
additional security property that SKExt, R are independently uniform conditioned on P . This
stronger requirement stems from the fact that SKExt needs to be reusable; thus, it should remain
uniform and independent of P,R in order to be useful next time. This requirement implies (by a
hybrid argument) that keyed fuzzy extractors can be used multiple times (with the same key SKExt)
to extract independent keys {Rj} from independent {Wj}. It also implies that any extracted key
Rj remains uniform even to an adversary who learns SKExt and Pj (but not wj).

Definition 7 An (m, `, t, ε)-keyed fuzzy extractor forM is a pair of efficient randomized algorithms
(Gen, Rep) such that:

1. Algorithm Gen, on input a key SKExt and w ∈ M, outputs R ∈ {0, 1}` and P ∈ {0, 1}∗;
we denote this by (R,P ) ← GenSKExt

(w). Algorithm Rep takes as input a key SKExt, an
element w′ ∈ M, and a string P ∈ {0, 1}∗, and returns a string in {0, 1}`; we denote this by
R′ ← RepSKExt

(w′, P ).

2. Correctness: For any key SKExt, if dis(w,w′) ≤ t and (R,P ) is output by GenSKExt
(w), then it

holds that RepSKExt
(w′, P ) = R.

3. Security: If SKExt is uniform, the distribution W over M is such that H∞(W ) ≥ m, and
(R,P )← GenSKExt

(W ), then SD
(
SKExt × (R,P ), U|SKExt| × U` × P

)
≤ ε. ♦

For some applications we need to impose the additional condition that, informally, P not reveal
any information about the distribution W . Formally, the distribution P should be the same regard-
less of the distribution W , as long as W has sufficient min-entropy. It is easiest, though slightly
more restrictive than necessary, to simply require P to be uniform (for any W with sufficient
min-entropy). That is, we say that (Gen,Rep) has uniform helper strings if the security condition
is strengthened to require SD

(
SKExt × (R,P ), U|SKExt| × U` × U|P |

)
≤ ε. This additional security

condition was subsequently explored in the setting of interactive key agreement [7].
This additional requirement may seem strange: after all, security of a fuzzy extractor depends

not on secrecy of the distribution W , but only on the fact that W has high min-entropy, which en-
sures that the specific sample w is secret. However, there are applications that need the distribution
W to be kept secret, and the public output of the fuzzy extractor can harm them if this requirement
is not satisfied. The specific application considered in this paper is to the bounded-storage model
(introduced in Section 1.2 and addressed in detail in Section 4.3). In this application, the input
distribution to the fuzzy extractor depends on the sampling seed SKSam, which needs to remain
secret so that it can be reused.
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2.4 Robust Fuzzy Extractors

Fuzzy extractors protect against a passive attack in which an adversary observes P and tries to
learn something about the extracted key R. However, the definition says nothing about what
happens if an adversary can modify P as it is sent to the user holding w′. That is, there are no
guarantees about the output of Rep(w′, P̃ ) for P̃ 6= P .

Boyen et al. [9] propose the notion of robust fuzzy extractors, which provide strong guarantees
against such an attack. Specifically, Rep can now output either a key or a special value ⊥ (denoting
“fail”). The definition requires that with high probability any value P̃ 6= P produced by the
adversary (after being given P ) causes Rep(w′, P̃ ) to output ⊥. Modified versions of the public
information P will therefore be detected.

We consider two variants of this idea, depending on whether Gen and Rep additionally share a
long-term key SKExt. (Boyen et al. considered only the keyless version.) Furthermore, we distinguish
between two adversarial attacks, and thus two notions of robustness, depending on whether the
adversary has access to R when modifying P . Indeed, if R is used (e.g., for encryption) and the
adversary can observe some effect of this use (e.g., the ciphertext) before modifying P , then the
notion of robustness from Boyen et al. (in which the adversary is given no information about R) is
insufficient. Our stronger notion accounts for this by giving the adversary access to R in addition
to P . This is a conservative choice that results in a broadly applicable definition: security holds
regardless of how R is used and whether it remains hidden partially, computationally, or not at all.
We call this stronger notion post-application robustness, and refer to the original notion (where R
is not given to the adversary) as pre-application robustness. Pre-application robustness suffices if
the adversary’s ability to modify P ends prior to any observable use of R.

If W,W ′ are two (correlated) random variables over a metric space M, we say dis(W,W ′) ≤ t
if the distance between W and W ′ is at most t with probability one. We call (W,W ′) a (t,m)-pair
if dis(W,W ′) ≤ t and H∞(W ) ≥ m.

Definition 8 An (m, `, t, ε)-fuzzy extractor has post-application (resp., pre-application) robustness δ
if for all (t,m)-pairs (W,W ′) and all adversaries A, the probability that the following experiment
outputs “success” is at most δ: Sample (w,w′) from (W,W ′); let (R,P )← Gen(w); let P̃ ← A(R,P )
(resp., P̃ ← A(P )); output “success” if P̃ 6= P and Rep(w′, P̃ ) 6=⊥. ♦

The definition is illustrated in Figure 1. Note that the definition is interesting even when w = w′

(i.e., when t = 0), because ordinary extractors are not usually robust. We construct (keyless) robust
fuzzy extractors in Section 3, and keyed robust fuzzy extractors in Section 4.

The definition of robust extractors composes with itself in some situations. For example, a
generalization of the above (used in [9]) allows the adversary to output (P̃1, . . . , P̃j); the adversary
succeeds if there exists an i with Rep(w′, P̃i) 6=⊥. A simple union bound shows that the success
probability of an adversary in this case increases at most linearly in j.

Similarly, suppose two players (Alice and Bob) receive a sequence of pairs of random variables
(W1,W

′
1), (W2,W

′
2), . . . , (Wj ,W

′
j) (with Alice receiving the {Wi} and Bob receiving the {W ′i}), such

that dis(Wi,W
′
i ) ≤ t for all i, and the entropy of Wi conditioned on the information {(Wk,W

′
k)}k<i

from prior time periods is at least m. Alice and Bob can agree on random and independent keys
R1, . . . , Rj by having Alice apply Gen from a robust average-case fuzzy extractor to each Wi and
then send Pi to Bob. The attacker’s advantage in distinguishing the vector of unknown keys from
random is at most jε (this follows by a hybrid argument that replaces extracted keys by random
strings one a time, starting with the most recent one). The attacker’s probability of forging a

9



w! 

Gen A Rep 

w SKExt 

R R or ! 

(a) 

(b) 

P P~ 

Figure 1: Robust extractors (cf. Definition 8). Dashed lines indicate variations in the definition:
(a) Keyed extractors take an additional input SKExt shared by Gen and Rep. (b) For pre-application
robustness, the adversary does not have access to the extracted key R.

valid P̃i is at most δ in any given period i (this can be shown by simply giving the attacker
(W1,W

′
1), . . . , (Wi−1,W

′
i−1)); thus, the overall probability of forgery over all time periods is at

most jδ.
For keyed fuzzy extractors, robustness is defined exactly as in Definition 8 with the only dif-

ference being that Gen and Rep both use the same (uniform) key SKExt (which is not given to the
adversary); see Figure 1. At first glance, the addition of a long-term key may seem to trivialize the
problem of constructing robust fuzzy extractors. For example, one might attempt to use SKExt as
a key for a message authentication code and, given output (R,P ) from a fuzzy extractor, simply
append to P the tag MacSKExt

(P ). While this may work in the computational setting, it will not
suffice in the information-theoretic setting if we want to support an unbounded number of time
periods (or if we want to use a key SKExt whose length does not grow linearly in the number of
time periods supported). Furthermore, such a construction will not satisfy the security property of
Definition 7 because SKExt will not be uniform conditioned on P and MacSKExt

(P ).

3 Constructing (Keyless) Robust Fuzzy Extractors

We begin by analyzing the case of no errors (i.e., t = 0), and then consider the more general case.

3.1 The Errorless Case (w = w′)

Consider the case where M = {0, 1}n and Alice and Bob hold the same sample w ∈ {0, 1}n of a
random variable W . In the presence of a passive adversary, Alice and Bob can agree on a uniform
key using a strong extractor Ext. Phrased using the terminology of fuzzy extractors (with t = 0
here), Alice runs Gen(w) which simply samples a seed P for Ext, and sends P to Bob; both Alice
and Bob then output the key R = Rep(w,P ) = Ext(w,P ). This solution does not work if the
adversary is active, which is why robust fuzzy extractors are interesting even in the errorless case.
In particular, if an adversary forwards P̃ 6= P to Bob then there is no longer any guarantee on
Bob’s output Ext(w; P̃ ); in fact, it is easy to show a construction of a strong extractor Ext with
the property that a maliciously generated P̃ completely determines Bob’s key R̃ = Ext(w; P̃ ). One
idea to address this is for Alice to authenticate P using the key R she extracts, and then send the
authentication tag along with P to Bob. In general this does not work either: if the adversary
forwards P̃ 6= P to Bob, then it may be easy for the adversary to generate a forged tag with respect
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Figure 2: Construction for the errorless case.

to the key R̃ that Bob derives. Instead, we use w itself to authenticate P and show that this
approach works for a particular choice of strong extractor and message authentication code.

We define algorithms Gen,Rep as follows. To compute Gen(w), parse w as two strings a and b
of lengths n− v and v, respectively, where v < n/2 is a parameter of the construction. View a as
an element of GF2n−v and b as an element of GF2v (the representation of field elements does not
matter, as long as addition in the field corresponds to exclusive-or of bit strings). Choose random
i ∈ GF2n−v , let [ia]n−vv+1 denote the most significant n− 2v bits of ia ∈ GF2n−v , and let [ia]v1 denote
the remaining v bits of ia. View [ia]v1 as an element of GF2v . Then compute σ = [ia]v1 + b, set
P = (i, σ), and let the extracted key be R = [ia]n−vv+1 . See Figure 2.

Rep(w, P̃ ), where P̃ = (i′, σ′), proceeds as follows. Parse w as two strings a and b as above.
Then verify that σ′ = [i′a]v1 + b and output ⊥ if this is not the case. Otherwise, compute the
extracted key R′ = [i′a]n−vv+1 .

The following theorem states the parameters for which (Gen,Rep) is a robust fuzzy extractor.
(Since t = 0 here, the metric over {0, 1}n is irrelevant.) Observe that extraction is possible as

long as H∞(W )
def
= m > n/2, and in the case of pre-application robustness (which is the notion

considered in [27]) we extract a key of length roughly 2m−n. This improves on the result of Maurer
and Wolf [27] who require m > 2n/3 and extract a key of length roughly m− 2n/3.

Theorem 3 Fix v, and let ` = n− 2v be the length of the extracted key. Then:

• For any ε, δ satisfying

` ≤ 2m− n−max
{

2 log
(

1
δ

)
, 4 log

(
1
ε

)}
,

(Gen,Rep) is an (m, `, 0, ε)-fuzzy extractor with pre-application robustness δ.

• For any ε, δ satisfying

` ≤ min

{
2m− n− 2 log

(
1
δ

)
3

, 2m− n− 4 log
(

1
ε

)}
,

(Gen,Rep) is an (m, `, 0, ε)-fuzzy extractor with post-application robustness δ.

Proof We show that R ∈ {0, 1}` is close to uniform conditioned on P , and then argue robustness.
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Extraction. We begin by showing that H = {hi : hi(a, b)
def
= (σ,R)} is a universal hash family.

Indeed, for (a, b) 6= (a′, b′) we have

Pri [hi(a, b) = hi(a
′, b′)] = Pri

[
[ia]v1 − [ia′]v1 = b′ − b

∧
[ia]n−vv+1 = [ia′]n−vv+1

]
.

This is equivalent to Pri
[
i(a− a′) = 0n−2v‖(b′ − b)

]
, where “‖” denotes concatenation (this is be-

cause we insisted that addition/subtraction in the finite fields corresponds to bitwise exclusive-or).
If a = a′ then we must have b 6= b′ and so the probability is 0. If a 6= a′, then there is a unique i
that satisfies the equality. Thus, the probability is at most 1/|GF2n−v | = 2v−n.

Using the above and the leftover hash lemma (Lemma 2) we see that (R,P ) = (R, (i, σ)) is
2((`+v)−m−2)/2 ≤ ε/2-close to (U`×Un−v×Uv) or, put differently, that SD ((R,P ), U` × Un) ≤ ε/2.
This implies SD ((R,P ), U` × P ) ≤ ε using the triangle inequality.

Pre-application robustness. We prove the stronger result that robustness holds for worst-case
choice of i. Fix i and A, and let Succ be the event that A succeeds. Since A is unbounded, we
may assume it is deterministic. Upon observing σ, the adversary outputs A(σ) = (i′, σ′) 6= (i, σ).
If i′ = i, then Rep will reject unless σ′ = σ; therefore, we need only consider the case i′ 6= i. By
definition, A succeeds only if σ′ = [i′a]v1 + b.

Call a triple (σ, i′, σ′) a transcript, and say it is possible if A(σ) = (i′, σ′). For any possible
transcript tr = (σ, i′, σ′) the following holds (in the probability expressions below, a‖b are chosen
according to the distribution W conditioned on tr or, equivalently, conditioned on σ):

Pr[Succ | tr] = Pra‖b [ [ia]v1 + b = σ
∧

[i′a]v1 + b = σ′]

= Pra‖b
[

[ia]v1 − [i′a]v1 = σ − σ′
∧
b = σ − [ia]v1

]
= Pra‖b

[
[(i− i′)a]v1 = σ − σ′

∧
b = σ − [ia]v1

]
,

where the final equality holds because we insisted that addition/subtraction in our fields corresponds
to bitwise exclusive-or. The term (i− i′) · a takes on each possible value in GF2n−v exactly once as
a varies; therefore, there are 2n−v/2|σ| = 2n−2v values of a for which [a(i− i′)]v1 = σ − σ′. For each
such value of a, there is a unique value of b that satisfies b = σ− [ia]v1. Each (a, b) pair occurs with
probability at most 2−H∞(W |σ). Thus,

Pr[Succ | tr] ≤ 2n−2v · 2−H∞(W |σ).

The overall success probability of A is given by

Etr [Pr[Succ | tr]] ≤ 2n−2v ·Etr

[
2−H∞(W |σ)

]
= 2n−2v · 2−H̃∞(W |σ).

Since |σ| = v, we have H̃∞(W | σ) ≥ m− v and we conclude that Pr[Succ] ≤ 2n−v−m ≤ δ.

Post-application robustness. Because |R| = `, providing R to the adversary can increase
its success probability by a multiplicative factor of at most 2` as compared to pre-application
robustness.4 Thus, if 3` ≤ 2m− n − 2 log

(
1
δ

)
the adversary’s success probability (in the post-

application robustness game) is at most 2` · 2n−v−m = 2` · 2(n+`−2m)/2 ≤ δ.

4One might hope to improve this analysis, but we show in Appendix A that the analysis here is essentially tight.
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3.1.1 Improved Post-Application Robustness

In this section, we present a construction of an extractor with post-application robustness that
extracts a key of length m− n/2− log

(
1
δ

)
, an improvement by a factor of 3/2 as compared to the

construction given above.
Assume n is even for simplicity. To compute Gen(w), let a and b denote the first and last halves

of w, respectively, and view a and b as elements of GF2n/2 . Choose a random i ∈ GF2n/2 and
compute y = ia+ b. Let σ be the first v bits of y, where v < n/2 is a parameter of the scheme, and

let R be the remainder of y; i.e., σ = [y]v1 and R = [y]
n/2
v+1. Output P = (i, σ).

Rep(w, P̃ ), where P̃ = (i′, σ′), proceeds in the obvious way: Parse w as two strings a, b as
above. Then verify that σ′ = [i′a + b]v1 and output ⊥ if this is not the case. Otherwise, compute

the extracted key R′ = [i′a+ b]
n/2
v+1.

Before giving the formal proof, we provide some intuition as to why this construction has better
post-application robustness. Recall that in the previous construction w is parsed as two strings
a and b of lengths n − v and v, respectively, and the values σ,R are computed as σ = [ia]v1 + b
and R = [ia]n−vv+1 . Increasing v improves robustness but decreases the number of extracted bits.
For pre-application robustness, setting v = n − m + log

(
1
δ

)
suffices, and thus the construction

extracts nearly (2m − n) bits. For post-application robustness, however, a larger v must be used
and consequently the number of extracted bits is decreased.

The post-application robustness game reveals more information to the adversary A about w
than the pre-application robustness game. This additional information—namely, R itself—may
make it easier for A to guess σ′. The key to our improvement is to use the pairwise-independent
function hi(a, b) = ia + b to compute both σ and R. Because of pairwise independence, the value
(σ,R) of hi(a, b) leaks nothing about the value (σ′, R′) = hi′(a, b) for any i′ 6= i. (This holds
when (a, b) is uniform; when (a, b) has min-entropy m, then A may have up to n − m bits of
information about σ′.) In contrast, in the previous construction only σ was computed using a
pairwise-independent hash function. This works better for pre-application robustness (because b
can be taken shorter), but worse for post-application robustness.

Theorem 4 Fix v, and let ` = n/2 − v be the length of the extracted key. Then for any ε, δ
satisfying

` ≤ m− n/2− log
1

δ

m ≥ n/2 + 2 log
1

ε
,

(Gen,Rep) is an (m, `, 0, ε)-fuzzy extractor with post-application robustness δ.

Proof We first show that R ∈ {0, 1}` is nearly uniform given P . The proof proceeds along
the lines of the analogous proof for Theorem 3. As before, we begin by showing that H = {hi :
hi(a, b) = (σ,R)} is universal. Indeed, for (a, b) 6= (a′, b′) we have

Pri[hi(a, b) = hi(a
′, b′)] = Pri[ia+ b = ia′ + b′]

= Pri[i(a− a′) = (b− b′)], .

If a = a′ then b 6= b′ and so Pri[i(a−a′) = (b− b′)] = 0. If a 6= a′, then there is a unique i for which
i(a− a′) = (b− b′), and so Pri[i(a− a′) = (b− b′)] = 2−n/2.
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The above and Lemma 2 imply that (i, R, σ) is 2(n/2−m)/2−1-close to Un/2 ×U` ×Uv. As in the

previous proof, and recalling that P = (i, σ), this means that SD ((R,P ), U` × P ) ≤ 2(n/2−m)/2 ≤ ε.

Post-application robustness. As in the previous proof, we prove that robustness holds for worst-
case choice of i. Fix i and A, and let Succ be the event that A succeeds. Since A is unbounded, we
may assume it is deterministic. Thus, upon observing σ,R the adversary outputs (i′, σ′) 6= (i, σ);
the adversary succeeds if [i′a + b]v1 = σ′. Note that if i′ = i then Rep will reject unless σ′ = σ;
therefore, we need only consider the case i′ 6= i.

We now let a transcript be a tuple tr = (σ,R, i′, σ′), and say it is possible if A(σ,R) = (i′, σ′).
For any possible transcript tr = (σ,R, i′, σ′) we have the following (in the probability expressions
below, a‖b are chosen according to the distribution W conditioned on tr or, equivalently, conditioned
on σ):

Pr[Succ | tr] = Pra‖b
[(
ia+ b = σ‖R

)∧ (
[i′a+ b]v1 = σ′

)]
=

∑
R′∈{0,1}`

Pra‖b
[(
ia+ b = σ‖R

)∧ (
i′a+ b = σ′‖R′

)]
.

For any fixed R′, there is a unique value (a, b) for which ia+ b = σ‖R and i′a+ b = σ′‖R′. Each
(a, b) pair occurs with probability at most 2−H∞(W |σ,R). We thus see that

Pr[Succ | tr] ≤ 2` · 2−H∞(W |σ,R).

The overall success probability of A is given by

Etr [Pr[Succ | tr]] ≤ 2` · 2−H̃∞(W |σ,R).

Since |σ|+ |R| = n/2, we have H̃∞(W | σ,R) ≥ m− n/2 and so Pr[Succ] ≤ 2`−m+n/2 ≤ δ.

3.1.2 Authenticating a Message While Extracting

Each of the constructions given previously uses the parties’ input w to authenticate the extractor
seed i. Each construction can be extended to additionally authenticate a message M , i.e., to be
simultaneously a robust fuzzy extractor and an information-theoretic one-time MAC. In this setting,
both Gen and Rep will take an additional input M , and it should be difficult for an adversary to
cause Rep to accept a different M . (We are being informal here since this is merely a stepping
stone to the results of the following section.) This could be done naively by using (a part of) R
as a key for a MAC, but this would correspondingly reduce the final number of extracted bits. In
contrast, the approach presented here (almost) does not reduce the length of R at all.

We show how to extend the original construction given at the beginning of Section 3.1; the
construction of Section 3.1.1 can be extended similarly. We adapt a standard technique [6, 13, 38]
for authenticating messages using polynomial-based almost-universal hash functions. Let |M | =
L ·(n−v), where L is known to both parties in advance. Split M into L chunks M0, . . . ,ML−1, each
n−v bits long, and view these as coefficients of a polynomial M(x) ∈ GF2n−v [x] of degree L−1. To
compute Gen(w,M), parse w as a‖b, choose random i ∈ GF2n−v , compute σ = [a2M(a) + ia]v1 + b,
and set P = (i, σ). As before, the extracted key is R = [ia]n−vv+1 .

The procedure Rep, given w, M ′, and P̃ = (i′, σ′), verifies that |M ′| = L · (n − v) and that
σ′ = [a2 ·M ′(a) + i′a]v1 + b. If so, it accepts M ′ as valid and additionally outputs R = [i′a]n−vv+1 .

14



Extraction and robustness (which here means that neither i nor M can be modified without
detection) are proved in a manner very similar to the proof of Theorem 3. Fix arbitrary M ,
known to the adversary. To argue that R is nearly uniform given P = (i, σ), we will show that

H = {hi : hi(a, b)
def
= (σ,R)} is universal. Indeed, for (a, b) 6= (a′, b′), we have

Pri [hi(a, b) = hi(a
′, b′)] = Pri

[
i · (a− a′) =

(
0n−2v ‖

([
(a′)2 ·M(a′)− a2 ·M(a)

]v
1

+ b′ − b
))]

,

If a = a′ then b 6= b′ and the above equality cannot be satisfied; if a 6= a′, there is a unique i
satisfying the equality. This proves universality. The rest of the proof proceeds as before.

For (pre-application) robustness, fix arbitrary M and i (known to A) and proceed as before.
The only difference is that we now need to compute the number of values of a for which

[a2M(a) + ia− a2M ′(a)− i′a]v1 = σ − σ′. (1)

The crucial property is that the polynomial x2M(x) + ix−x2M ′(x)− i′x is nonconstant if (M, i) 6=
(M ′, i′). A nonconstant polynomial of degree at most L + 1 can take on a given value at most
L+ 1 times; hence, there are at most (L+ 1)2n−2v values of a satisfying Eq. (1). The probability
that the adversary succeeds (in changing either i or M without being detected) is thus at most
(L + 1) · 2n−v−m. Note that the resulting forgery probability is affected only by a multiplicative
factor of (L+ 1); since we expect (L+ 1)� 1/δ in practice, the impact is small.

3.2 Adding Error-Tolerance (w 6= w′)

We now consider settings when the input w′ held by the second party is close, but not identical to,
the input w used by the first party. An obvious first attempt is to include a secure sketch s = SS(w)
along with (i, σ), and to authenticate s using the message-authentication technique discussed in
the previous section; s would allow recovery of w from w′, and then verification could proceed as
before. Unfortunately, this does not quite work: if the adversary modifies the sketch s, then a
different value w∗ 6= w may be recovered; however, the results of the previous section apply only
when the receiver uses the same w as the sender. In effect, we have a circularity: the receiver
uses w to verify that s was not modified, but the receiver computes w (from w′) using a possibly
modified s.

We show how to break this circularity using a modification of the message-authentication tech-
nique from earlier. The key idea is to exploit algebraic structure in the metric space, and to change
the message authentication code so that it remains secure even when the adversary can influence
the key (this is sometimes referred to as “security against related-key attacks”; our approach was
generalized in [12]). Specifically, we first treat the case where the distance between w and w′ is
small in the Hamming metric; in Section 3.2.3 we extend the approach to the set-difference metric.

Another problem arises from the fact that the performance of our previous constructions de-
grades not only when the min-entropy m of the input decreases, but also when the entropy gap
g = n−m increases (for example, Theorem 3 can extract roughly m− g bits with pre-application
robustness). Because s reveals information about w, the entropy of w from the adversary’s point of
view decreases, and the entropy gap increases. An important idea is to limit this increase by using
the (shorter) part of w that is independent of s.
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3.2.1 Tolerating Binary Hamming Errors

We begin by extending the construction presented at the beginning of Section 3.1 to tolerate binary
hamming errors; we then extend the construction from Section 3.1.1.

Our metric space is M = {0, 1}n and the distance between two strings is Hamming distance—
i.e., the number of bit positions in which they differ. Suppose the input W is a distribution of
min-entropy m overM, and that w′ is guaranteed to be within distance t of w. Our starting point
is to use a deterministic, linear, secure sketch s = SS(w) that is k bits long; let n′ = n − k and
note that H̃∞(W | SS(W )) ≥ m − k. We assume that SS is a surjective, linear function (this is
the case for the syndrome sketch for the Hamming metric), and so there exists a k×n matrix S of
rank k such that SS(w) = S ·w. Let S⊥ be an n′ × n matrix such that the n× n matrix

(
S
S⊥

)
has

full rank. We let SS⊥(w)
def
= S⊥w. One can view SS⊥(w) as the information remaining in w once

SS(w) has been learned by the adversary.
We define Gen,Rep as follows. Gen, on input w, begins by computing s = SS(w) and c = SS⊥(w).

It then parses c ∈ {0, 1}n′ as two strings a, b with |a| = n′ − v and |b| = v, where v ≤ n′/2 (so
|a| ≥ |b|) is a parameter of the construction. Letting L = 2d k

2(n′−v)e, it pads s with 0s to length

L(n′−v) and parses the resulting string as sL−1‖sL−2‖ · · · ‖s0 with si ∈ GF2n′−v . It chooses random
i ← GF2n′−v , and defines fs,i(x) = xL+3 + x2 · (sL−1x

L−1 + sL−2x
L−2 + · · · + s0) + ix. Finally, it

sets σ = [fs,i(a)]v1 + b, and outputs R = [ia]n
′−v
v+1 and P = (s, i, σ).

Rep, on inputs w′ and P̃ = (s′, i′, σ′), first computes w∗ = SRec(w′, s′) ∈ {0, 1}n. It checks that
dis(w∗, w′) ≤ t and SS(w∗) = s′; if not, then it outputs ⊥. Otherwise, let c′ = SS⊥(w∗) and parse c′

as a′‖b′ with |a′| = n′− v and |b′| = v. Check that σ′ = [fs′,i′(a
′)]v1 + b′: if not, output ⊥; otherwise

output R′ = [i′a′]n
′−v
v+1 .

Before turning to the detailed analysis, we note that the polynomial fs,i defined above differs
from the message-authentication technique in the previous section only in the leading term xL+3

(and the forcing of L to be even). It has the property that for any pair (s′, i′) 6= (s, i), and for any
fixed offset ∆a, the polynomial fs,i(x) − fs′,i′(x + ∆a) is a non-constant polynomial of degree at
most L + 2: this is easy to see for ∆a = 0; if ∆a 6= 0, then the leading term is ∆a · xL+2 (recall
we are working in a field of characteristic 2 and L is even). Our analysis will show that fs,i(a)
amounts to a message authentication code (where the shared key a is used to authenticate s, i) that
is provably secure against a class of related-key attacks where the adversary can force the receiver
to use a key shifted by an offset known to the adversary.

Theorem 5 Let M denote {0, 1}n under the Hamming metric, let SS be the (m,m − k, t)-secure
syndrome sketch for M, and let B denote the volume of the ball of radius t in M. Fix v, and let
` = n− k − 2v be the length of the extracted key. Then:

• For any ε, δ satisfying

` ≤ 2m− n− k − 2 max

{
logB + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)
, 2 log

(
1
ε

)}
≤ 2m− n− k − 2 max

{
logB + log

2n

δ
, 2 log

(
1
ε

)}
,

(Gen,Rep) is an (m, `, t, ε)-fuzzy extractor for M with pre-application robustness δ.
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• For any ε, δ satisfying

` ≤ min

{
1

3

(
2m− n− k − 2

(
logB + log

(
2

⌈
k

n− k

⌉
+ 2

)
+ log

(
1
δ

)))
,

2m− n− k − 4 log
(

1
ε

) }
≤ min

{
1

3

(
2m− n− k − 2 logB − 2 log

2n

δ

)
, 2m− n− k − 4 log

(
1
ε

) }
,

(Gen,Rep) is an (m, `, t, ε)-fuzzy extractor for M with post-application robustness δ.

Note that logB ≤ nH2(t/n) if t ≤ n/2, where H2(x) is the binary entropy function [25, Chapter
10, §11, Lemma 8], and logB ≤ t log(n+ 1) + 1 always.5

Before giving the proof, we briefly discuss the parameters obtained. The bound on ` differs in
two main terms from the bound in the errorless case of Theorem 3. First, we lose the length k
of the sketch. This is not surprising, since the sketch may reduce the min-entropy of W by up
to k bits. Second, we lose another additive factor of 2 logB. In general this is (to some extent)
inherent, since the min-entropy of W ′ may be as low as H∞(W ) − logB. Looking at it slightly
differently, in our analysis we start by giving the attacker ∆ = w′ −w “for free”, which can reduce
the min-entropy of W by logB. We can prove a generalization of the above result where the term
2m − 2 logB is replaced by 2H̃∞(W | ∆). Thus, for example, if errors are independent of w then
the term logB is no longer present.

Proof That the construction satisfies the functionality of a robust fuzzy extractor is clear, and
we thus turn to proving security. The argument that R is nearly uniform given P is similar to the
errorless case, except that the entropy loss due to the sketch s has to be taken into account. For every

s, the family H = {hi : hi(c)
def
= (σ,R)} is universal because for every c 6= c′, there is at most one

i such that hi(c) = hi(c
′). Since H̃∞(c | SS(W )) = H̃∞(W | SS(W )) ≥ m − k, applying Lemma 2

and proceeding as in the proof of Theorem 3 gives SD ((R,P ), U` × P ) ≤ 2(v+`−(m−k))/2 ≤ ε.

Pre-application robustness. We prove the stronger result that robustness holds for worst-case
choice of i, and even if the adversary is given ∆ = w′ − w. Fix i and A, and let Succ be the event
that A succeeds. Since A is unbounded, we may assume it is deterministic. Upon observing s, σ,∆,
the adversary outputs A(s, σ,∆) = (s′, i′, σ′) 6= (s, i, σ). If (s′, i′) = (s, i) then Rep will reject unless
σ′ = σ; thus, we need only consider the case (s′, i′) 6= (s, i).

Call a tuple (s, σ,∆, s′, i′, σ′) a transcript and denote it by tr. Call a transcript feasible if
A(s, σ,∆) = (s′, i′, σ′). For some fixed feasible transcript, the adversary’s success depends only on
the choice of w conditioned on the given values of s, σ,∆, R. (Note w′ is determined by w and ∆.)

Recall that w∗, a′, b′ denote the values reconstructed during the course of applying Rep to w′

and s′, i′, σ′. We claim that for any feasible transcript there is at most one value w∗ for which Rep
will not reject. Indeed, say there are two distinct values w∗1, w

∗
2 for which Rep does not reject; this

means dis(w′, w∗1), dis(w′, w∗2) ≤ t and SS(w∗1) = SS(w∗2) = s′. But then

w∗1 = SRec(w′,SS(w∗1)) = SRec(w′, s′) = SRec(w′, SS(w∗2)) 6= w∗2,

5Note B = 1+
∑t
i=1

(
n
i

)
. The second bound is achieved by noting that every point in the ball centered at 0 can be

represented by up to t strings of length log(n + 1) each, where each string represents the position of a 1 or indicates
“the end” in case the weight of a point is less than t.

17



violating correctness of the secure sketch. This implies there is also at most one value for each of
a′, b′ for which Rep will not reject. A may be unable to compute w∗, a′, b′ (since it does not know
w′); however, we claim that A can compute the differences ∆a = a′ − a and ∆b = b′ − b. Let

Γ
def
= w∗ − w′ = w∗ − w −∆, and recall the weight of Γ is at most t. By linearity of SS, we have

SS(Γ) = SS(w∗)− SS(w)− SS(∆) = s′ − s− SS(∆).

The right-hand side of the above equation is known to A, and an argument as above shows that
there is at most one Γ with weight at most t that satisfies the above equation. Thus, Γ can be
computed by A. Linearity of SS⊥ means that A can also compute

∆a‖∆b = SS⊥(w∗)− SS⊥(w) = SS⊥(Γ) + SS⊥(∆).

Next, we prove that for any feasible transcript tr = (s, σ,∆, s′, i′, σ′), we have

Prw←W [Succ | tr] ≤ (L+ 2) · 2n′−2v · 2−H∞(W |s,σ,∆). (2)

To see this, note that A succeeds only if σ′ = [fs′,i′(a
′)]v1 + b′, which is the same as requiring that a

be a solution to the equation [fs,i(a)− fs′,i′(a+ ∆a)]
v
1 = σ − σ′ + ∆b. (Recall from above that we

may assume ∆a,∆b are known to A.) But for any distinct pairs (s, i) 6= (s′, i′) and for any ∆a, the
polynomial fs,i(x)− fs′,i′(x+ ∆a) is non-constant and has degree at most L+ 2. (If ∆a = 0 this is
immediate; if ∆a 6= 0, then the leading term is (L+ 3) ·∆a ·xL+2, which is non-zero since L is even
and we are working in a field of characteristic 2.) Thus, for any X ∈ {0, 1}n′−2v the number of values
of a for which fs,i(a)−fs′,i′(a+ ∆a) = X‖∆b+σ−σ′ is at most L+ 2, and so the number of values
of a that satisfy [fs,i(a)− fs′,i′(a+ ∆a)]

v
1 = ∆b + σ− σ′ is at most (L+ 2) · 2n′−2v. Each such value

occurs with probability at most 2−H∞(a|s,σ,∆) (where we let a also stand for the random variable
describing the distribution of a), giving the bound Prw←W [Succ | tr] ≤ (L+2)·2n′−2v ·2−H∞(a|s,σ,∆).
Note that

H∞(a | s, σ,∆) = H∞(a, s, σ | s, σ,∆) = H∞(a, s, b | s, σ,∆),

because b = σ − [fs,i(a)]v1; finally,

H∞(a, s, b | s, σ,∆) = H∞(W | s, σ,∆)

since w =
(
S
S⊥

)−1 · (s‖a‖b). This completes the proof of Eq. (2).
We may now easily prove the theorem. We have

Prw,∆[Succ] = Etr

[
Prw[Succ | tr]

]
≤ Etr

[
(L+ 2) · 2n′−2v · 2−H∞(W |s,σ,∆)

]
= (L+ 2) · 2n′−2v · 2−H̃∞(W |s,σ,∆) ,

using Eq. (2). Since |s|+ |σ|+ |∆| ≤ k + v + logB, Lemma 1 gives

H̃∞(W | SS(W ), σ,∆) ≥ m− k − v − logB .

Observe that L = 2dk/2(n − k − v)e ≤ 2dk/(n − k)e (because v ≤ (n − k)/2). We conclude that
the success probability of A is at most
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B · (L+ 2) · 2n′−2v−m+k+v = B · (L+ 2) · 2n−m−v ≤ B · 2dk/(n− k)e · 2n−m−v ≤ δ.

Post-application robustness. Because the extracted key R is of length n− k − 2v, providing it
to the adversary can increase its success probability by at most a factor of 2n−k−2v. The rest of
the analysis remains the same.

3.2.2 Improved Post-Application Robustness for the Hamming Metric

In this section we extend the construction from Section 3.1.1 to tolerate binary Hamming errors.
The space M is still {0, 1}n with Hamming distance. Gen(w) is similar to the one in the previous
construction except that now a and b are obtained by splitting c into two equal parts (we assume

for simplicity that n′ is even) and computing σ = [fs,i(a) + b]v1 and R = [fs,i(a) + b]
n′/2
v+1 .

Theorem 6 Let M denote {0, 1}n under the Hamming metric, let SS be the (m,m − k, t)-secure
syndrome sketch for M, and let B denote the volume of the ball of radius t in M. Fix v, and let
` = (n− k)/2− v be the length of the extracted key. Then for any ε, δ satisfying

` ≤ m− 1

2
(n+ k)− logB − log

(
2

⌈
k

n− k

⌉
+ 2

)
− log

(
1
δ

)
m ≥ 1

2
(n+ k) + 2 log

(
1
ε

)
,

(Gen,Rep) is a (m, `, t, ε)-fuzzy extractor for M with post-application robustness δ.

Proof We first show that R is nearly uniform given P = (s, i, σ). For every s the family
H = {hi : hi(c) = (σ,R)} is universal. Since H̃∞(c | SS(W )) = H̃∞(W | SS(W )) ≥ m−k, applying
the Leftover Hash Lemma (Lemma 2) and proceeding as in the proof of Theorem 3 shows that
SD ((R,P ), U` × P ) ≤ 2(n′/2−m+k)/2 = 2(n/2+k/2−m)/2 ≤ ε.
Post-application robustness. We prove the stronger result that robustness holds for worst-case
choice of i, and even if the adversary is given ∆ = w′ − w. Fix i and A, and let Succ be the
event that A succeeds. Since A is unbounded, we may assume it is deterministic. Upon observing
s, σ,∆, R, the adversary outputs A(s, σ,∆, R) = (s′, i′, σ′) 6= (s, i, σ). If (s′, i′) = (s, i) then Rep
will reject unless σ′ = σ; thus, we need only consider the case (s′, i′) 6= (s, i).

Call a tuple (s, σ,∆, R, s′, i′, σ′) a transcript and denote it by tr. Call a transcript feasible if
A(s, σ,∆, R) = (s′, i′, σ′). For some fixed feasible transcript, the adversary’s success depends only
on choice of w (conditioned on the given values of s, σ,∆, R).

As in the proof of Theorem 5, for any feasible transcript there is at most one value for each of
a′, b′ for which Rep will not reject, and moreover the values ∆a = a′ − a and ∆b = b′ − b can be
computed by A. Following an argument exactly as in the proof of that theorem, for any feasible
transcript tr = (s, σ,∆, R, s′, i′, σ′) we have

Prw←W [Succ | tr] ≤ (L+ 2) · 2n′/2−v · 2−H∞(W |s,σ,∆,R),

and so
Pr[Succ] = Etr [Prw←W [Succ | tr]] ≤ (L+ 2) · 2n′/2−v · 2−H̃∞(W |s,σ,∆,R).

Since H̃∞(W | s, σ,∆, R) ≥ m − (|s| + |σ| + |R| + |∆|) = m − (k + n′/2 + logB), we obtain
Prw←W [Succ | tr] ≤ B · (L+ 2) · 2n−v · 2−m ≤ δ.
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3.2.3 Construction for the Set-Difference Metric

The constructions from the previous two sections rely heavily on the linearity of the secure sketch
used in the protocol and on the structure of the Hamming space. Using the techniques from [16],
however, they can be extended to handle errors under the set-difference metric.

In the set-difference metric, elements ofM are sets of at most r elements chosen from some fixed
universe of size N ; the distance between two sets a, b ∈M is the size of their symmetric difference:
dis(a, b) = |{x : x ∈ a ∪ b and x /∈ a ∩ b}|. Noting that elements of M can be represented
by characteristic vectors of length N , we see that the set-difference metric is equivalent to the
Hamming metric; this is inefficient, however, since elements ofM can be represented using at most
r logN bits. Algorithms here should, ideally, run in time poly(r logN) rather than time poly(N).

In order to extend the analysis of the previous sections to handle this different representation
of the input, we need a pair of functions SS,SS⊥ that take sets and output strings of length k and
r log(N + 1)− k, respectively. A set w of size at most r should be uniquely determined by the pair
(SS(w), SS⊥(w)), and the functions should be linear in the following sense: the addition/removal
of a particular element should correspond to adding/subtracting a particular bit vector. In other
words, SS() and SS⊥() should be linear in the characteristic vector of their input set. The SS()
function of the BCH secure sketch of Dodis et al. [16, Section 6.3] (called “PinSketch”) is, in fact,
linear: it outputs t values of log(N + 1) bits each in order to correct up to t errors, thus producing
sketches of length k = t log(N + 1). We will see in a moment how to construct SS⊥ corresponding
to this SS. For the PinSketch construction the universe must be viewed as nonzero elements of a
binary field GF2α for some α and thus N = 2α − 1.

The constructions of Gen and Rep are the same as in the previous sections, but using different
SS, SRec, and SS⊥ functions. In addition, Rep should check that the recovered value w∗ is a set
with elements in GF ∗2α . (Note, however, that it is not necessary to check that w∗ has size at most r;
the constructions work correctly even if w′ has more than r elements, so long as dis(w,w′) ≤ t.)

The analysis is the same as in the previous sections. The volume B of the ball of radius t
remains the same as in the binary Hamming case; here, N is very large compared to t and so
we use logB ≤ t log(N + 1) = tα in our formulas since this is now a close approximation. Using
k = t log(N + 1) = tα and n = r log(N + 1) = rα, we obtain the following as corollaries of
Theorems 5 and 6, respectively.

Corollary 7 Let M be the set-difference metric on sets of size at most r over the universe GF ∗2α.
Using (Gen,Rep) from Section 3.2.1 with SS,SS⊥,SRec as described above, fix v and then let ` =
(r − t)α− 2v be the length of the extracted key. Then:

• For any ε, δ satisfying

` ≤ 2m− rα− tα− 2 max

{
tα+ log

2rα

δ
, 2 log

(
1
ε

)}
,

(Gen,Rep) is an (m, `, t, ε)-fuzzy extractor for M with pre-application robustness δ.

• For any ε, δ satisfying

` ≤ min

{
1

3

(
2m− rα− 3tα− 2 log

2rα

δ

)
, 2m− (r + t)α− 4 log

(
1
ε

)}
,

(Gen,Rep) is an (m, `, t, ε)-fuzzy extractor for M with post-application robustness δ.
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Corollary 8 Let M be the set-difference metric on sets of size at most r over the universe GF ∗2α.
Using (Gen,Rep) from Section 3.2.2 with SS,SS⊥,SRec as described above, fix v and then let ` =
(r − t)α/2− v be the length of the extracted key. Then for any ε, δ satisfying

` ≤ m− 1

2
rα− 3

2
tα− log

(
2n

δ

)
m ≥ 1

2
(t+ r)α+ 2 log

(
1
ε

)
,

(Gen,Rep) is a (m, `, t, ε)-fuzzy extractor for M with post-application robustness δ.

It remains to describe SS⊥. For self-containment, we include a description of SS as well. To com-

pute SS(w) and SS⊥(w) on input w ⊆ GF ∗2α , let si
def
=
∑

x∈w x
i (computations in GF2α) and, view-

ing si values as bit strings, output SS(w) = s1‖s3‖s5‖...‖s2t−1 and SS⊥(w) = s2t+1‖s2t+3‖...‖s2r−1.
Given any set of r points, these two vectors are easy to compute in O(r2) operations in GF2α .
Moreover, given s1, ..., s2r−1 one can recover w. (Simply observe that (SS(w), SS⊥(w)) is the syn-
drome of the characteristic vector of w with respect to the binary BCH code of distance 2r + 1,
and that the weight of this vector is at most r. See [16, Lemma 6.2], setting n = 2α− 1, k = n− rα
and δ = 2r + 1.) Algorithms SS, SS⊥ have the desired linearity property since adding or removing
an element y from w corresponds to adding yi to each component si (and we require addition in
binary fields to correspond to bitwise exclusive-or).

4 Keyed Robust Fuzzy Extractors and Their Applications

In this section we show that the addition of a very short, long-term, shared secret key SKExt allows
us to achieve considerably better parameters when constructing keyed robust fuzzy extractors. The
parameters we obtain are optimal up to constant factors.

To motivate our construction, recall the naive transformation from fuzzy extractors to keyed
robust fuzzy extractors discussed in Section 2.4. Suppose we start from the generic construction of
a fuzzy extractor from [16, Lemma 4.1]: here P = (s, i), where s ← SS(w) for a secure sketch SS,
and the extracted key is R = Ext(w; i). In an attempt to make this construction robust, we may set
σ = MacSKExt

(s, i) and include σ as part of P . This is fine for one-time use, but leaks information
about SKExt so cannot be used an unbounded number of times. Formally, this construction does
not satisfy Definition 7 since SKExt is not uniform given P .

We can change the scheme to avoid this. Note that Rep must recover w = Rec(w′, s) before
computing R. Thus, we can add w to the authenticated message: that is, set σ = MacSKExt

(w, s, i).
The tag can be verified by Rep after recovering w. This does not strengthen the robustness prop-
erty, which was already satisfied by the original scheme. However, it does help with the problem of
revealing SKExt, since now the attacker A does not know the entire message being authenticated, so
the entropy of the message can be used to hide SKExt. Thus, we see that we need to construct an
information-theoretic MAC whose secret key is independent of the tag as long as the authenticated
message has high min-entropy. Observe that in strong randomness extractors, the output is inde-
pendent of the seed. Thus, it suffices to ensure that Mac is simultaneously a message authentication
code and a strong randomness extractor when the key is viewed as the seed. (Note that we do
not need the guarantee, provided by the extractor property, that the tag output by Mac is itself
uniform; nevertheless, uniform tags are easy enough to achieve.) This is the problem we turn to in
the next section.
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4.1 Extractor-MACs

Definition 9 A family {MacSK : {0, 1}n → {0, 1}v} of functions is a strong (m, ε, δ) (average-case)
extractor-MAC if it is δ-almost strongly universal and an (m, ε) (average-case) strong extractor. ♦

When constructing MACs, one typically tries to minimize the tag length v (to approach the
bound log

(
1
δ

)
), while for extractors one tries to maximize the output length v (to approach the

bound m̃− 2 log
(

1
ε

)
). In our setting, the extractor constraint is merely a convenient way to argue

key reuse, so we will in fact try to minimize v. Naturally, we also want to minimize the min-entropy
threshold m.

Our construction of extractor-MACs follows from the observation that almost strongly-universal
hash functions are MACs and, as universal hash functions, also extractors. (In fact, this observation
was used to get extractors with short seeds in [35, Section 3].) We exemplify our construction with
the family constructed in [6, Section 4]. Specifically, we compose two hash families as follows. Let
{pβ} be a (δε2/2)-almost universal hash family mapping ñ-bit inputs to u-bit outputs (for some
u to be determined later), and let {fα} be a strongly universal hash family mapping u-bit inputs
to v-bit outputs, where v = log

(
1
δ

)
+ 1 (i.e., 2−v = δ

2). Set Macα,β(w) = fα(pβ(w)). By [36,
Theorem 5.5], {MACα,β} is a δ-almost strongly universal hash family, since δε2/2 + 2−v ≤ δ.
This means it can be used for message authentication. Furthermore, by [36, Theorem 5.4] it is
(δε2/2 + 2−v) = (1 + ε2)2−v-almost universal, since {fα} is 2−v-almost universal. By the Leftover
Hash Lemma (Lemma 2), this means it is an (m, ε)-extractor with m = log

(
1
δ

)
+ 2 log

(
1
ε

)
.

We will set {fα} to be the family from [36, Theorem 5.2] (described following Definition 4) with
keys of length u + v. It remains to set u so that we can construct a convenient almost-universal
hash family {pβ}. We use the polynomial-based construction from [6, 13, 38]. The key β is a
point in GF2u , and the message x is split into c = ñ/u pieces (x0, . . . , xc−1), each of which is
viewed as an element of GF2u . Then pβ(x0 . . . xc) = xc−1β

c−1 + . . . + x1β + x0. This family is
(c − 1)/2u-almost universal with key length u (because two distinct degree-(c − 1) polynomials
agree on at most c− 1 points). We can set u = v+ log( ñ

ε2
) = 1 + log

(
1
δ

)
+ 2 log

(
1
ε

)
+ log ñ to make

(c− 1)/2u < ñ/2u = δε2/2. This gives key length 2u+ v, and we obtain:

Theorem 9 For any δ, ε, and m ≥ log
(

1
δ

)
+ 2 log

(
1
ε

)
, there exists a (m, ε, δ)-extractor-MAC

for messages of length n, with key length κ = 3 + 2 log n + 3 log
(

1
δ

)
+ 4 log

(
1
ε

)
and tag length

v = log
(

1
δ

)
+ 1.

This construction has both short keys and short tags. One can reuse the key SK as long as
the min-entropy of the authenticated message is above the threshold log

(
1
δ

)
+ 2 log

(
1
ε

)
. The tag

length is within one bit of optimal, since it is impossible to obtain δ-almost strong universality
with tags shorter than log

(
1
δ

)
. Known bounds on extractors [32, Theorem 1.9] (reinterpreted for

strong extractors by viewing the seed as part of the extractor output), imply that the key length
is optimal up to a constant factor and the entropy threshold is optimal up to an additive constant.

4.2 Constructing Keyed Robust Fuzzy Extractors

We now apply extractor-MACs to build keyed robust fuzzy extractors. We start with a generic
construction and set the parameters below.

Assume (SS,SRec) is an (m, m̃, t)-secure sketch with sketch length k; Ext is an average-case
(m̃, ε)-extractor with n-bit inputs, `-bit outputs, and d-bit seeds; and Mac is an average-case
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(m̃− `, ε, δ)-extractor-MAC from ñ = n+ k+ d bits to v bits having a key SK of length κ. We now
define a keyed robust fuzzy extractor with secret key SKExt, which is simply the extractor-MAC
secret key SK:

• GenSK(w): compute sketch s ← SS(w), sample i at random, set key R = Ext(w; i), tag
σ = MacSK(w, s, i), P = (s, i, σ) and output (R,P ).

• RepSK(w′, (s′, i′, σ′)): Let w̄ = SRec(w′, s′). If MacSK(w̄, s′, i′) = σ′, then R = Ext(w̄; i); else
R = ⊥.

Theorem 10 The above construction is a (m, `, t, 4ε)-keyed fuzzy extractor with post-application
robustness δ, which uses a secret key SKExt of length κ and outputs public information P of length
k + d+ v.

Proof We need to show correctness, security, and unforgeability. Correctness follows immediately
from the correctness of the secure sketch. To show security (that is, extraction), we need to argue
that for any W of min-entropy m, we have

(SK, R, P ) ≈4ε U|SK| × U` × P ,

or, equivalently,
(SK, R, s, i, σ) ≈4ε U|SK| × U` × (s, i, σ) .

Indeed,
(R, s, i) ≈ε U` × SS(W )× Ud

because H̃∞(W | SS(W )) ≥ m̃ and Ext is an average-case (m̃, ε)-extractor. This trivially implies
that

U|SK| × (R, s, i)× Uv ≈ε U|SK| × U` × SS(W )× Ud × Uv .

On the other hand,
(SK, R, s, i, σ) ≈ε U|SK| × (R, s, i)× Uv

because H̃∞(W | R, s, i) ≥ H̃∞(W,R, i | s) − ` − d ≥ H̃∞(W, i | SS(W )) − ` − d ≥ H̃∞(W |
SS(W )) + d − ` − d = m̃ − ` (the first inequality follows from Lemma 1 and the last inequality
follows by independence of i), and Mac is a (m̃− `, ε) average-case extractor.

By the triangle inequality, therefore, we obtain

(SK, R, s, i, σ) ≈2ε U|SK| × U` × SS(W )× Ud × Uv .

Using the triangle inequality again we obtain the desired result.
To show robustness, suppose A outputs P̃ = (s′, i′, σ′) 6= (s, i, σ). First consider the case when

(s, i) = (s′, i′). In this case, dis(w,w′) ≤ t implies SRec(w′, s′) = w, and thus MacSK(w∗, s, i) = σ.
Therefore, unless σ′ = σ and P̃ = P , Rep will output ⊥. Now consider the case when (s, i) 6= (s′, i′).
Then, in order for Rep not to reject, A must correctly guess the tag of a new message with a
uniformly chosen key SK, which cannot be done with probability higher than δ by the δ-almost
strong universality of Mac. Note that this implies post-application robustness: it does not hurt to
reveal R (or even w itself) to A, because the security of Mac relies on the secrecy of SK only.

The price of authentication. We compare the parameters of Theorem 10 to the original (non-
robust, non-keyed) constructions of [16]. First, note that the choice of a sketch and strong extractor
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can be done in the same manner as for non-robust fuzzy extractors. Assume we use the construction
of Theorem 9 for Mac. Then the secret key SKExt is just the MAC key, whose length is 2 log n +
3 log

(
1
δ

)
+4 log

(
1
ε

)
+O(1) as long as d = O(n) and k = O(n) (which is the case with typical extractor

and secure sketch constructions), so that ñ = O(n). For the extractor-MAC of Theorem 9 to work,
we need m̃ − ` ≥ log

(
1
δ

)
+ 2 log

(
1
ε

)
or ` ≤ m̃ − 2 log

(
1
ε

)
− log

(
1
δ

)
. This means that the key R is

only log
(

1
δ

)
+ 2 bits shorter than for non-robust extractors, which can extract ` = m̃−2 log

(
1
ε

)
+ 2

bits [16, Lemma 4.3]. Finally, the length of P increases only by the tag length v = log
(

1
δ

)
+ 1.

4.3 Uniform Helper Strings and Application to the Bounded-Storage Model
with Errors

Keyed robust fuzzy extractors allow us to remove the need for an authenticated channel between the
honest parties in the bounded-storage model (BSM) with errors. As explained following Definition 7,
the first step is to construct such extractors with uniform helper strings. We then show in more
detail how they apply to the BSM.

Keyed robust extractors with uniform helper strings. Examining the keyed construction in
Theorem 10, we see that the only place where the value P = (s, i, σ) depends on (the distribution
of) w is in the sketch s← SS(w). Indeed, the seed i is chosen uniformly at random, and the value σ
is close to uniform (even conditioned on i, s, w, and SKExt) by the properties of the extractor-MAC.
Thus, to solve our problem we only need to build an (m, m̃, t)-secure sketch SS such that SS(W )
is statistically close to uniform whenever W has sufficient min-entropy. (Note that such sketches
cannot be deterministic.) Such sketches were studied by Dodis and Smith [17], where they were
used to solve the noisy-BSM problem even in the authenticated-channel case. In particular, Dodis
and Smith show such sketches for the binary Hamming metric with parameters that are only a
constant factor worse than those of regular sketches.

Theorem 11 ([17, Theorem 1]) For any min-entropy m = Ω(n), there exists an efficient (m, m̃,
t)-secure sketch for the Hamming metric over {0, 1}n that is also an (m, ε)-extractor, where m̃, t,
and log

(
1
ε

)
are all Ω(n), and the length of the sketch is k = O(n).

Using such sketches in the construction of Section 4.2 gives us the following theorem.

Theorem 12 Using the sketch of Theorem 11 in the construction of Section 4.2 gives an (m, `, t, 3ε)-
keyed fuzzy extractor with uniform helper strings and post-application robustness δ.

Proof Correctness and unforgeability are shown the same way as in Theorem 10. To show
security (that is, extraction) with uniform helper strings, we need to argue that for any W with
min-entropy m we have

(SK, R, P ) ≈3ε U|SK| × U` × U|P |
or, equivalently,

(SK, R, s, i, σ) ≈3ε U|SK| × U` × Uk × Ud × Uv .

Indeed,
(R, s, i) ≈ε U` × SS(W )× Ud

for the same reason as in Theorem 10. On the other hand, SS(W ) ≈ε Uk by Theorem 11 and
therefore

U` × SS(W )× Ud ≈ε U` × Uk × Ud
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which, by the triangle inequality, implies

(R, s, i) ≈2ε U` × Uk × Ud .

The rest of the proof proceeds as in Theorem 10.

Application to the bounded-storage model To explain the application, we first briefly recall
the key elements of the bounded-storage model [28] with errors [14, 17], concentrating only on the
stateless variant of [17]. Our discussion will be specific to Hamming distance.

In the bounded-storage model with errors, two parties (say, Alice and Bob) start by sharing a
long-term secret key SKBSM. At each time period j, Alice (resp., Bob) has access to a noisy version
Xj (resp., X ′j) of a random string Zj (of length N). We assume a bound on the Hamming distance
of Xj and X ′j . Both the honest parties and the attacker A are limited in storage to considerably
fewer than N bits. More specifically, we assume that A can look at the entire Zj but store only γN
bits of (arbitrary) information about Zj , for γ < 1. After A has stored its information about Zj ,
it cannot see Zj again; this means that Zj has average min-entropy (1− γ)N from the adversary’s
point of view by Lemma 1. The honest parties are even more limited in their storage, but they
can use their shared secret key to gain an advantage over the adversary and communicate securely
without the need for computational assumptions (they can even achieve everlasting security [1]).

Prior work [14, 17] assumed that the communication channel between Alice and Bob was authen-
ticated or, equivalently, that the adversary does not modify the messages between Alice and Bob.
This authenticated channel was used to reconcile the differences between (the relevant portions of)
Xj and X ′j received by the two parties. In this work, we remove the need for the authenticated
channel.

The basic idea underlying prior work is to use fuzzy extractors to derive a key Rj from Xj and
X ′j that is unknown to A. For example, in “sample-and-extract” protocols [39] one part of SKBSM

consists of a key SKSam for an oblivious sampler [2, 39]. This key specifies n locations in the N -bit
string Xj (resp., X ′j) which Alice (resp., Bob) will read to obtain an n-bit substring wj (resp.,
w′j). The properties of the sampler ensure that (a) with high probability wj and w′j are still close
(say, within Hamming distance t from each other); and (b) with high probability, A still has some
uncertainty (min-entropy m ≈ (1− γ)n) about wj and w′j . (Note that it is crucial that A does not
know SKSam at the time Zj is broadcast, so A is unable to store information that is specifically
correlated to wj , w

′
j .) Fuzzy extractors can then be used to derive Rj from wj and w′j , with Alice

running Gen(wj) to obtain (Pj , Rj) and sending the helper string Pj to Bob over the authenticated
channel, and then Bob running Rep(w′j , P ) to get Rj [14, 17].

To remove the need for an authenticated channel, Alice and Bob can use a robust fuzzy extractor
instead. Because they are already in the shared-key setting, they can use a keyed robust fuzzy
extractor, storing its secret key SKExt as part of their long-term secret key SKBSM (in addition
to SKSam). There is, however, a subtle problem which already caused difficulties even in the case
of authenticated channels and nonrobust extractors [14, 17].

The problem arises due to the reuse of SKBSM. As discussed in Sections 2.3 and 2.4, SKExt can
be reused safely, but only if the input to the fuzzy extractor has sufficient min-entropy (from the
adversary’s point of view). In the current setting, however, a potential problem is that A may use
information gleaned from Pj in order to reduce the entropy of wj+1. Specifically, if Pj is correlated
with wj , then Pj may reveal information about the sampler key SKSam that was used to sample wj .
In other words, by observing Pj , A may learn something about the locations in the large random
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string Zj that were used to obtain wj . While it is too late for A to observe those locations in
Zj (because of the bounded-storage assumption), A may be able to observe the same locations in
the next string Zj+1, thus reducing the min-entropy of wj+1, which will be obtained from those
locations.

We can solve this problem by making sure that Pj reveals nothing about SKSam. This is precisely
what is guaranteed by keyed robust fuzzy extractors with uniform helper strings, as constructed
in Theorem 12, since Pj is distributed the same way (up to a small statistical distance) regardless
of what SKSam is. (To use Theorem 12, we need to ensure that the input to the extractor has
sufficient min-entropy. This holds with overwhelming probability, even conditioned on SKSam and
the knowledge of A, because A is unlikely to have stored much useful information about the
locations sampled by SKSam.) Thus, using extractors with uniform helper strings ensures that the
public value P hides the entire SKBSM = (SKSam,SKExt), and not just SKExt, and therefore allows
for the reuse of SKBSM.

Using such robust fuzzy extractors in place of nonrobust fuzzy extractors allows us to remove
the need for authenticated channels in [17]; the security argument (omitted here) is similar to the
one there. Now Alice and Bob no longer need to trust that their message goes unmodified: they will
(with probability 1−δ) detect any modification to the helper string. The price is that Alice and Bob
have to additionally share a (short) extractor-MAC key SK, compute the tag σ = MacSK(w, s, i),
and send this (short) tag together with the rest of the information. Thus, we obtain a stateless
protocol in the BSM without assuming authenticated channels, which tolerates a linear fraction of
Hamming errors, requires a long-term shared secret key of size O(logN + log

(
1
ε

)
+ log

(
1
δ

)
), and

requires Alice and Bob to read O(`) bits of the source, and to send a single message of size O(`)
per time period in order to extract ` bits that are ε-close to uniform. These parameters are optimal
up to constant factors.

Acknowledgments

We thank Hoeteck Wee for his collaboration during the early stages of this work, and Raef Bassily
and anonymous referees for comments on the manuscript.

References

[1] Y. Aumann, Y. Ding, and M. Rabin. Everlasting security in the bounded storage model. IEEE
Trans. Information Theory, 48(6):1668–1680, 2002.

[2] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In 35th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 276–287. IEEE, 1994.
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A Post-Application Robustness of the Basic Construction

We argue that the construction from Section 3.1 cannot extract more than the stated number of
bits if post-application robustness is desired.

For post-application robustness, the concern is that R can reveal information to the adversary
about σ′ for a cleverly chosen i′. Here we show an adversarial strategy that does exactly this
and succeeds in the post-application robustness game with probability δ/2. In our attack we fix
a particular (and somewhat unusual) representation of field elements. (Recall that the theorem
was claimed to work for any representation of field elements, so long as addition of field elements
corresponds to the exclusive-or of bit strings.) Typically, one views GF2n−v as GF2[x]/(p(x)) for
some irreducible polynomial p of degree n − v, and represents elements as GF2-valued vectors in
the basis (xn−v−1, xn−v−2, ..., x2, x, 1). We will do the same, but reorder the basis elements so as
to separate the even and odd powers: (xn−v−1, xn−v−3, . . . , x, xn−v−2, xn−v−4, . . . , 1) (assuming,
for concreteness, that n − v is even). Letting x denote the field element corresponding to the
polynomial x, the property of this representation we use is that the bits of the left half of any value
z ∈ F2n−v with last bit 0 are equal to the right half of the bits of z/x.

Recall w = a‖b. Suppose the distribution W on w is such that the top n−m bits of b are 0 (the
rest of the bits of w are uniform). Given σ and R, the adversary gets to see the top ` + (n −m)
bits of ia. Therefore, the adversary knows `+ (n−m) bits from the bottom half of ia/x as long as
the last bit of ia is 0, which happens with probability 1/2. To use this knowledge, the adversary
will simply ensure that the difference between σ′ and σ is [ia/x]v1, by letting i′ = i+ i/x.

In detail, the adversarial strategy is as follows: let i′ = i+ i/x; let τ consist of R concatenated
with the top n−m bits of σ and log

(
1
δ

)
= v − `− (n−m) random bits, and let σ′ = σ + τ . The

adversary wins whenever τ = [ia/x]v1, which happens with probability 2v−`−(n−m)/2 = δ/2, because
all but log

(
1
δ

)
bits of τ are correct as long as the last bit of ia is 0.
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