
Identity Based Partial Aggregate Signature Scheme
Without Pairing

S. Sharmila Deva Selvi1, S. Sree Vivek1,!, J. Shriram2, C. Pandu Rangan1,!

1Department of Computer Science and Engineering,
Indian Institute of Technology Madras.

sharmila@cse.iitm.ac.in,svivek@cse.iitm.ac.in, prangan@iitm.ac.in.
2National Institute of Technology Trichy, India

Abstract. An identity based signature allows users to sign their documents using
their private keys and the signature can be verified by any one, using the identity of
the signer and public parameters of the system. An aggregate signature scheme is a
digital signature scheme which allows aggregation of different signatures by different
users on different messages. The primary objective of aggregate signature scheme is
to achieve both computational and communication efficiency. Here, we propose an
identity based aggregate signature scheme, which uses a variation of light weight
Schnorr type identity based signature scheme, where in the signers need not agree
upon a common randomness and the aggregation is done without having any kind of
interaction among the signers. The scheme does not involve any pairing operations
even for aggregate signature verification. It is computationally efficient since it avoids
the costlier operation in elliptic curve groups (Bilinear Pairings). It should be noted
that our signature achieves only partial aggregation because the private key of each
user is generated by a randomized extract algorithm and hence a random value is to
be propagated with each single signature generated.

Keywords: Identity Based Signature, Aggregate Signature, Partial Aggregation, Random
Oracle Model, Provable Security.

1 Introduction

Many real-life applications, handle a collection of signed documents together rather than
handling them individually. It is not hard to visualize such a scenario in Bank transactions,
legal document processing (archiving and communicating) in a legal firm, digital attesta-
tion related application and so on. In all the above applications, generating, storing and
transmitting a large number of signed documents arise naturally. An Aggregate Signature
Scheme combines several signed documents, say σ1, . . . ,σt on messages m1, . . . ,mt by users
U1, . . . , Ut and produces a single signed document σagg where size of σagg is substantially
smaller than sum of the sizes of σi’s. This leads to a significant reduction in the communica-
tion cost because, it is only required to transmit σagg instead of transmitting σ1, . . . ,σt in-
dividually. A similar remark holds good even for storage requirements when σagg is archived
instead of σ1, . . . ,σt.

Certificate chains in hierarchical PKI (Public Key Infrastructure) systems consists of
various signatures at different levels in the hierarchy. By using aggregate signature one can
combine all these signatures and thus reduce the certificate length. Ordered sequential ag-
gregation is used in communication between routers in a network where each router receives
! Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Commu-

nication and Computation sponsored by Department of Information Technology, Government of
India

the data and the signature of the previous router. The current router aggregates its own
signature to the previous aggregate signature and routes it to the next router. This aggre-
gated signature can be used to find the path travelled by the data from source to destination
by verifying a single aggregate signature. Aggregate signatures can also be used in wireless
network scenarios. Since the major constraint in wireless networks is communication com-
plexity, the use of efficient aggregate signature helps in reducing the amount of data to be
communicated.

Identity based aggregate signatures are considered to be more effective than PKI based
aggregation because in the formar, only identities (which are very short when compared
to group elements) of the signers have to be send along with the aggregate signatures, in
order to facilitate verification. In PKI based system, efficient aggregation can be done but
the identities, public keys and the certificates (issued by the Certifying Authority) of the
public keys of the signers has to be send along with the aggregate signature. The signatures
and certificates can be easily aggregated in PKI based system but then there is no known
technique to aggregate the public keys. Many well known PKI based aggregate signatures
are available in the literature [16, 2, 7, 15]. However, as the focus of this paper is on identity
based aggregate signature scheme, we will not compare the PKI based schemes with ours. To
the best of our knowledge, there are four provably secure identity based aggregate signature
schemes [11], [21], [12] and [8]. It should be noted that all of them use bilinear pairing during
the verification process. An identity based aggregate signature scheme is claimed to achieve
partial aggregation if a part of the signature is aggregated, namely the part with the secret
key component of signers is fully aggregated and the randomness part is propagated without
aggregation. If both the parts in the signature are fully aggregated then the scheme is said
to achieve full aggregation. We provide a brief survey about the efficiency and weakness of
various identity based aggregate signature schemes.
Survey of Existing Schemes: Currently, in literature we have number of identity based
aggregate signature schemes.

Xu et al. in [21] proposed an identity based aggregate signature scheme. This scheme
uses Sakai et al.’s signature construct as the base signature scheme. This achieves partial
aggregation but requires linear number of pairings during signature verification.

Xiangguo et al. gave a aggregate signature scheme [8] which uses the BLSR scheme
[6] as the base signature scheme. In this scheme all the signers have to broadcast their
own random values used for singing to all the cosigners so that everyone agrees upon a
common randomness before the generation of aggregate signature. This result in quadratic
communication complexity which is a big overhead. Mutual interaction between all the
signers is not always a desirable event in aggregate signatures.

Javier Herranz came up with an identity based signature scheme [12] with partial aggre-
gation. His scheme produces deterministic signature where the signature on a message will
always be the same. It also uses linear number of pairing operations leading to inefficient
verification.

Yiling et al. proposed an efficient aggregate signature scheme with full aggregation and
constant pairing operations in [20]. But the scheme in [20] is not secure since universal
forgery of the base signature scheme used in [20] is possible as shown in [18].

Wang et al. designed an identity based aggregate signature [19] and it is claimed to be
the most efficient scheme. It uses constant pairing operation for signature verification. But
the aggregate signature in this scheme [19] is not secure since universal forgery of signature
of any user is possible in this scheme. The attack in Wang et al. scheme [19] is shown in
[18].

Recently, Boldyreva et al. [4] proposed a sequential aggregate signature scheme, in-fact
the security of their original schemes [3] and [5] were flawed due to the assumption used to

prove them was actually not hard to solve in polynomial time, which was pointed out by
Hwang et al. [13]. Their new scheme [4] was based on the hardness of a CDH-type problem
that raised from their scheme and uses bilinear pairings. One more aggregate signature
scheme, which achieves full aggregation is by Gentry and Ramzan [11]. The drawback of
the scheme is, it requires interaction between all the signers whose signatures are to be
aggregated before the signature generation process. The weakness of the scheme in [11] is
briefly reported in the appendix of our paper. The first RSA based identity based aggregate
signature scheme was proposed by Bagherzandi et al. [1]. This scheme uses two rounds
of communication between the signers to generate a full aggregate signature, where the
first round is to commit the random value shares (again by broadcasting the individual
commitments as in [8]) and the second round is the aggregate signature generation round.
Their scheme uses equivocable commitments and hence looses its generality and becomes
less practical because of the overhead involved in broadcasting the commitments.

Our contribution: In this paper, we propose an identity based aggregate signature scheme
whose key generation is similar to Javier Herranz’s identity based partial aggregate signa-
ture scheme [12]. Our scheme does not require bilinear pairing operation during aggregate
signature verification. This is achievable because the individual signature is a Schnorr-like
signature. As in [12], our schemes do not have interaction among the signers before signa-
ture generation which reduces the communication complexity to a large extent. However,
in this scheme we are able to achieve only partial aggregation. We are able to achieve only
partial aggregation (as defined by Javier Herranz [12]) because the extract algorithm is a
randomized algorithm and the signature generation algorithm is also randomized. We for-
mally prove the security of our scheme in the random oracle model. We also point out certain
weaknesses in [11], which makes it unsuitable in real life. The weaknesses of the scheme are
briefly reported in the appendix.

2 Preliminary

2.1 Bilinear Pairing

Let G be an additive cyclic group generated by P , with prime order q, and GT be a multi-
plicative cyclic group of the same order q. Let ê be a pairing defined as ê : G×G → GT . It
satisfies the following properties. For any P, Q, R ε G and a, b ε Z∗

q

– Bilinearity: ê(aP, bQ) = ê(P, Q)ab.
– Non Degenerate: ê(P, P) #= 1.
– Easily Computable: ê(P,Q) must be easily and efficiently computable.

2.2 Computational Assumptions

In this section, we review the computational assumption that is relevant to the protocol we
discuss.

Discrete Logarithm Problem (DLP): Let (G, ∗) be a multiplicative group of order
p, g ∈ G be a generator of G and h = gx ∈ G, where x ∈ Zp be unknown. Given g and h,
the discrete logarithm problem is to find x.

An algorithm A has an advantage ε in solving DLPG1 if

Pr[A(g, h) = x] ≥ ε.

3 Generic Model

An identity based aggregate signature scheme (IBAS) consists of following six algorithms.

– Setup: The private key generator (PKG) provides the security parameter κ as the input
to this algorithm, generates the system parameters params and the master private key
Msk. PKG publishes params and keeps Msk secret.

– KeyGen: The user Ui provides his identity IDi to PKG. The PKG runs this algorithm
with identity IDi, params and Msk as the input and obtains the private key Di. The
private key Di is sent to user Ui through a secure channel.

– Sign: For generating a signature on a message mi, the user Ui provides his identity IDi,
his private key Di, params and message mi as input. This algorithm generates a valid
signature σi on message mi by user Ui.

– Verify: This algorithm on input of a signature σ on message m by user U with identity
ID checks whether σ is a valid signature on message m by ID. If true it outputs “V alid”,
else it outputs “Invalid”.

– Aggregate: On receiving the various signatures (σi)i=1 to n from different users (Ui)i=1 to n,
any third party or one of the signers can run this algorithm and generate the aggregate
signature σagg for the set of 〈message, identity〉 pairs (mi, IDi)i=1 to n.

– AggregateVerify: This algorithm on input of an aggregate signature σagg, the list for
(mi, IDi)i=1 to n and the params checks whether σagg is a valid aggregate signature on
mi by IDi for all i = 1 to n. If true, it outputs “V alid”, else outputs “Invalid”.

– Token Generation: In some models of identity based systems, the PKG may generate
a random value that corresponds to the registered user at the time of registration / key
generation. This value will be made public by the user. We refer this value as ’token’
and tokens are not used for any encryption schemes. These tokens will always be send
as a part of the signature. This extended version of identity based signatures is not
considered as violation because this token is used only for signing purpose. More on this
have been discussed in section 5.

Important Remark: As encryption algorithms only use the publicly known identities of
the user alone as public key, tokens are never used in encryption schemes. Since ours is an
identity based signature scheme, introduction of token in our cryptosystem is not a violation
of the definition of identity based system.

4 Security Model

4.1 Unforgeability

Gentry et al. in [11] proposed a formal model for aggregate signature scheme. Their scheme
used a common randomness. We follow the security model proposed by Gentry et al. with
slight variations since we do not have a common random value. An IBAS scheme is secure
against existential forgery under adaptive-chosen-identity and adaptive-chosen-message at-
tack if no probabilistic polynomial time algorithm A has non-negligible advantage in the
following game.

– Setup phase: The challenger C runs the setup algorithm and generates the params
and Msk. Challenger C gives params to adversary A.

– Training phase: After the setup, A starts interacting with C by querying the various
oracles provided by C in the following way:
• KeyGen oracle: When A makes a query with IDi, C outputs Di, the private key of

IDi to A, provided C knows the private key for the queried identity. Else it aborts.

• Signing oracle: When A makes a signing query with IDi, message mi, C outputs
a valid signature σi on mi by IDi.

– Forgery phase: A outputs an aggregate signature σAgg for signatures (σ)i=1 to n from
the users (IDi)i=1 to n on messages (mi)i=1 to n where there exists at least one target
identity IDT ∈ {IDi}i=1 to n, for which private key has not been queried for. The ad-
versary A wins the game if σagg is a valid aggregate signature and A has not queried
for the signature from the signing oracle for (IDT ,mT) pair on which it has generated
the forgery.

AdvIBAS
A = {Pr[A(V erify(σagg) = valid)}

5 Identity Based Aggregate Signature scheme Without Pairings
(IBAS)

Normally, the public key of a user in identity based cryptography is obtained by hashing the
user’s identity, which uniquely identifies him. In the identity based signature by Galindo et
al. [10], we find an interesting and subtle difference between all existing schemes and [10].
In [10], Galindo et al. have used a Schnorr signature which in turn uses a purely random
value chosen by the PKG to generate the private key of the user. This random value can
be interpreted as a ’token’ which we discussed in section 3 on generic model of identity
based aggregate signature scheme. This token along with the identity of the user is hashed
together to obtain the public key corresponding the user. It should be noted that this is not
a violation of the property of identity based cryptosystem with respect to digital signature
schemes because, in a digital signature scheme all the components of a signature on an
arbitrary message are generated by the signer who is in possession of the private key. Hence,
the signer has to send the random value obtained with his private key from the PKG along
with each signature he generates. The interesting part is that, if the signer or any potential
forger tries to alter the random value obtained from the PKG for the signer, both will fail
miserably in generating a valid signature because neither signer nor the forger will be able to
generate a valid private key corresponding to the altered random value. We emphasize again
that tokens can never be used for encryption schemes and can always be used in signature
schemes. In Galindo et al.’s [10] paper, the component gr is send by the PKG to the user.
This component is called as ’token’ in our convention.
Important Remark: Similar kind of key constructs for identity based cryptosystem can
be seen in [9], [12] and [14]. In [9], an identity based key agreement protocol was proposed
by Dario et al., in [12] a deterministic aggregate signature scheme was proposed by Javier
Herranz and in [14] an identity based online/offline signature was proposed by Liu et al..
In this section, we describe a new identity based aggregate signature scheme based on the
identity based signature scheme by Galindo et al. [10]. This scheme consists of six algorithms
which are described below.

– IBAS.Setup: Let κ be the security parameter of the system. Let G be a multiplicative
group of order q. Choose a random generator g of G. Choose three cryptographic hash
functions which are defined as H1 : {0, 1}∗ × G −→ Z∗

q ,H2 : {0, 1}∗ × {0, 1}∗ × G ×
G −→ Z∗

q and H3 : {0, 1}∗ × {0, 1}∗ × Z∗
q × G × G −→ Z∗

q . Let s ∈R Z∗
q be the

master private key and the master public key is set to be gs. The public parameters are
params=〈g, gs, G,H1,H2,H3〉 and the master private key s is kept secret.

– IBAS.KeyGen: The user Ui provides his identity IDi to the Private Key Generator
(PKG). The PKG runs this algorithm with IDi, params and master private key s as
the input. The algorithm does the following:
• Choose a random xi ∈ Zq

• Computes Xi = gxi and qi = H1(IDi, Xi) mod q
• Computes di = (xi + sqi) mod q
• Outputs 〈qi, Xi, di〉

The PKG sends 〈qi, Xi, di〉 securely to the user Ui. The user Ui keeps the di as secret
and 〈qi, Xi〉 as public. Here Xi is called the token.
Remark: It is to be noted that the private key di is a Schnorr signature on the identity
IDi and thus a user who is capable of producing another private key d′i for the same
identity IDi or a private key d′′i for an arbitrary identity ID′′

i can effectively forge the
underlying Schnorr signature. As a consequence, the private key generated by the PKG
is secure and cannot be generated by any user by altering the token value, unless he
knows the master private key s. Therefore, we do not consider token as a separate entity
for the formal proof of unforgeability of our scheme.

– IBAS.Sign: The user Ui who wishes to sign a message mi gives his IDi, private key
di and params as input to this algorithm. The algorithm does the following to generate
the signature:
• Chooses a random ri ∈ Zq.
• Computes Wi = gri

• Generates h1i = H2(mi, IDi,Wi, Xi)
• Generates h2i = H3(mi, IDi, h1i,Wi, Xi)
• Computes vi = (rih1i + h2idi) mod q
• Outputs 〈Xi, vi, h1i, h2i〉 as the signature of IDi on message mi.

Remark: Note that the token value Xi is also a component of the signature. Thus, the
verifier need to know only the identity of the signer to perform verification.

– IBAS.Verify: Any user can run this verification algorithm. The user provides 〈Xi, vi, h1i, h2i〉,
IDi, mi and params as input to this algorithm. The verification is done as follows:
• Compute qi = H1(IDi, Xi)

• Compute Wi =
(

gvi

(Xi(gs)qi)h2i

)h−1
1i

• Check whether:
h1i

?= H2(mi, IDi,W i, Xi) and
h2i

?= H3(mi, IDi, h1i,W i, Xi)
• Output “V alid” if both the verifications pass, else output “Invalid”.

Correctness of the computation of W i:

RHS =
(

gvi

(Xi(gs)qi)h2i

)h−1
1i

=
(

g(rih1i+h2idi)

(Xi(gs)qi)h2i

)h−1
1i

=
(

g(rih1i+h2i(xi+sqi))

(Xi(gs)qi)h2i

)h−1
1i

=
(

grih1ig(xi+sqi)h2i

(Xi(gs)qi)h2i

)h−1
1i

=
(

grih1i(Xi(gs)qi)h2i

(Xi(gs)qi)h2i

)h−1
1i

=
(
grih1i

)h−1
1i = gri = W i = LHS = Wi (as required)

This shows that the above verification check is valid and consistent. Note that the
verification can be done by anyone as it involves only publicly known parameters such
as vi,Wi, h1i, h2i, gs, Xi, qi

– IBAS.Aggregate: This algorithm takes as input a set of n signatures {Xi, vi, h1i, h2i}i=1 to n

and the corresponding identity, message pairs 〈IDi,mi〉, such that ∀i = 1 to n 〈Xi, vi, h1i, h2i〉
is the signature on message mi by IDi. The aggregation is done as follows:

vagg =
n∑

i=1

vi.

The algorithm outputs the final aggregate signature 〈Xi, vagg, h1i, h2i〉i=1 to n and the
corresponding message identity pair {mi, IDi}i=1 to n.

– IBAS.AggregateVerify: This algorithm takes the aggregate signature 〈Xi, vagg, h1i, h2i〉i=1 to n

and the corresponding message identity pair {mi, IDi}i=1 to n and performs the following
to verify the aggregate signature:
• For i = 1 to n, compute qi = H1(IDi, Xi)

• For i = 1 to n, compute Wi =
(

gvi

(Xi(gs)qi)h2i

)h−1
1i

• For i = 1 to n, check whether:
Compute h1i

?= H2(mi, IDi,Wi, Xi) and
Compute h2i

?= H3(mi, IDi, h1i,Wi, Xi)

• Check whether gvagg
?=

n∏
i=1

(W i)h1i .
n∏

i=1
(Xi)h2i .(gs)

Pn
i=1 qih2i . If all the above checks

hold good, output “V alid” else output “Invalid”.

Correctness of the IBAS.AggregateVerify algorithm:

LHS = gvagg= g
Pn

i=1 rih1i+
Pn

i=1 h2idi = g
Pn

i=1 rih1i .g
Pn

i=1 h2idi

=
n∏

i=1
(gri)h1i .g

Pn
i=1 h2i(xi+sqi) =

n∏
i=1

(W i)h1i .
n∏

i=1
(Xi)h2i .(gs)

Pn
i=1 qih2i = RHS

This shows that the aggregate verification test is correct and consistent.

6 Security Proof for IBAS

In this section, we prove the security of our identity based aggregate signature scheme
(IBAS). We show that if a polynomial time bounded adversary exists who can break our
scheme with non-negligible probability ε

′
then we will be able to solve the discrete logarithm

problem with non-negligible probability ε0. We prove that our scheme is secure against
existential forgery under adaptive chosen message and adaptive chosen identity attack. We
also use the oracle replay attack technique and forking lemma [17] to prove the security of
our scheme.

Theorem 1. Our aggregate signature scheme IBAS is secure against existential forgery
under adaptively chosen identity and adaptively chosen message attack, if there exists a
polynomially bounded (t, ε

′
) adversary A making qH1 , qH2 , qH3 hash queries, qS signcryption

queries and qE extraction queries, who can break our scheme with a non-negligible advantage
ε
′
, then there exists a DL solver C with a non-negligible advantage,

ε0 =
1
9
.
10(qS + 1)(qS + qH3 + qH2).(1−

qE

qH1
).n

2k+1
.

1
qH1

ε

and in polynomial time t0.

Proof. The adversary A in adaptive chosen message and adaptive chosen identity attack has
access to all the hash oracles, the signing oracle and the key extract oracle. The Challenger
C uses the forgery by A to solve the computational hard problem (DLP) with the help of
oracle replay technique. C is given an instance of the DL problem i.e given g,h = gx ∈ G for
some unknown x, the discrete logarithm problem is to find x. The game between C and A
is as follows:

– Setup Phase: C chooses a group G and a generator g for the group G. Then, C chooses
a random s ∈ Z∗

q and calculates gs. C has all the three hash oracles H1,H2,H3 under his
control. So he gives the public parameters params = 〈g, gs,H1,H2,H3〉 to the adversary
and keeps the master secret s to himself.

– Training Phase: A can ask for different queries to C. C responds correspondingly to
the various queries by A. Let qE , qH1 , qH2 , qH3 , qS be the maximum number of queries
the adversary A can query to key extract oracle, three hash oracles and the signing
oracle respectively. The various queries are as follows:

• OH1 : There are two cases in this query.
∗ A queries the H1 oracle with IDi, Xi as input, C chooses a random qi and returns

it to A.
∗ Sometimes A can query for the public key component corresponding to an iden-

tity IDi since A might want to know the actual Xi corresponding to IDi. When
A queries IDi as the ith query, C does the following:
· If i=1, C sets IDT = IDi and Xi = h, where h = gx, x is unknown and h

is the part of the Discrete logarithm problem that C wants to solve. Then C
stores 〈⊥, qi, IDi〉 in LH1 list.

· If i #= 1, choose a random xi, qi ∈ Z∗
q , set Xi = gxi , returns 〈qi, Xi〉 to the

user such that qi = H1(IDi, Xi) and store 〈xi, qi, IDi〉 in LH1 list.
C sets the first identity queried by A for the public key component, as the target
identity IDT and it responds accordingly to A. A will not know which identity is
set as the target identity because A does not know the strategy for selecting the
target identity. A should have asked for at least one query of this kind since A
has to to know the public parameter Xi of a particular IDi. The only other way
for A to know the Xi corresponding to IDi is through the private key extract
queries. Let the maximum number of queries of this kind to H1 oracle be q∗H1

.

• OExtract: When A queries for private key of IDi, C does the following:
∗ C checks the LH1 list.
∗ If the entry corresponding to IDi in LH1 is of the form 〈xi, qi, IDi〉, then C sets

di = xi + sqi and returns di to A.
∗ If the tuple corresponding to IDi in LH1 is of the form 〈⊥, qi, IDi〉, then C

knows that IDi is the target identity and then C aborts.

• OH2 : When A queries for the hash of 〈IDi,mi,Wi〉, C checks the LH2 list. If the
tuple is already present it returns h1i to A else C chooses a random h1i and returns
h1i to A and stores 〈h1i,Wi, IDi,mi〉 in the LH2 list.

• OH3 : When A queries for the hash of 〈IDi,mi,Wi, h1i〉, C checks the LH3 list. If
the tuple is already present then it returns h2i to A else C chooses a random h2i and
returns h2i to A and stores 〈h2i,Wi, IDi,mi, h1i〉 in the LH3 list.

• OSign: When A requests for the signature on mi by IDi, C does the following:
∗ If IDi #= IDT then C knows the private key of IDi and can generate the signa-

ture as per the sign algorithm in the scheme and return 〈Xi, vi, h1i, h2i〉 as the
signature of IDi on mi. It also updates all the hashing lists correspondingly.

∗ If IDi = IDT then C does the following:
· Chooses a random h1i, h2i, vi ∈ Z∗

q .
· Sets vi = vi.
· Sets Wi = (X−h2i

T .g−s.qT h2i.gvi)
1

h1i .
· Updates the lists LH2 and LH3 with the corresponding tuples 〈h1i,Wi, IDi,mi〉

and 〈h2i,Wi, IDi, mi, h1i〉 respectively. If any entry in the list LH2 or LH3

is identical to the tuples generated (i.e. 〈h1i,Wi, IDi,mi〉 and 〈h2i,Wi, IDi,
mi, h1i〉 respectively), chooses a different vi, h1i, h2i and repeat the above
process.

· Return 〈Xi, vi, h1i, h2i〉 to A as signature on mi by IDi

Although the signature 〈Xi, vi, h1i, h2i〉 was not generated using the actual signing
algorithm. The signature generated is valid due to the following fact:
(XT)h2i .(Wi)h1i .(gs)qT .h1i= (XT)h2i .((X−h2i

T .g−s.qT h2i.gvi)
1

h1i)h1i .(gs)qT .h1i

= (XT)h2i .(X−h2i
T).g−s.qT h2i.(gs)qT .h1i .gvi

= gvi

This shows that 〈Xi, vi, h1i, h2i〉 will convince A as a valid signature. There is no
need to provide an aggregate oracle since the user can query the signing oracle
repeatedly and do the aggregation himself.

– Forgery Phase: The adversary A after issuing all the queries finally generates an ag-
gregate signature 〈X1, . . . , Xn, vagg,W1, . . . ,Wn〉 on messages {mi}i=1 to n by users with
identities {IDi}i=1 to n such that IDi has signed message mi. A wins the game if it is a
valid aggregate signature and there is at least one signer IDk where kε{1 . . . n} where
IDk = IDT and A has not asked for a signature query on the corresponding 〈IDk,mk〉
pair to the OSign oracle (i.e it is not a trivial forgery). The adversary A will be able to
do this forgery with a probability of ε

′
which is expressed as follows:

Let ε the advantage of the adversary breaking the scheme in existential forgery under
chosen target identity and adaptive chosen message. The places where the algorithm
can abort are
• In extract case if the adversary asks for the extract query for the IDT then the

algorithm aborts. qE is the maximum number of extract queries which the adversary
can ask. Then the probability that he has not asked for any extract query for IDT

is
Pr[qE(IDi) #= IDT] = 1− qE

q∗H1

(1)

where q∗H1
is the maximum number of H1 of type 2 allowed for the adversary.

• After the forgery the algorithm may abort if the adversary has not used IDT as
one of the identities of the signers or if A has used a mi for the signature of IDT

for which it has already asked the signing query. The probability that A produces a
valid forgery is
Pr[IDi = IDT for some i = 1, . . . , n and IDi #= IDT∀j = 1 to n j #= i] = n

2.q∗H1

Combining the two probabilities we get the advantage of the adversary breaking our
scheme in adaptive chosen message and adaptive chosen identity attack is given by

ε
′
= ε.(1− qE

q∗H1

)
n

2.q∗H1

(2)

A will be able to produce a valid signature without knowing the secret key of the signer
with probability

ε = 10(qS+1)(qS+qH3+qH2)
2κ .

as shown in [17]. Our signature scheme has parameters similar to those used in [17]. The
Wi component in our signature is a randomness component corresponding to σ1 in [17].
We use the randomness in our hash H2 and H3. The signature component vi is analogous

to σ2 in [17] which uses both the hash values and randomness. Since the construct has
similar components as pointed out by Pointcheval we can use forking lemma in our
proof. By using forking lemma C plays again with A with same random tape and H2

oracle but different H3 oracle. Then with a probability ε
′′ ≥ 1

9 , the adversary will be
able to produce another valid aggregate signature for the set of users. That aggregate
signature will be of the form 〈X1, . . . , Xn, v

′

agg,W1, . . . ,Wn〉 where all Wi’s are same as
previous signature. C using the two valid aggregate signatures does the following:

vagg =
∑n

i=1 rih1i +
∑n

i=1 dih2i

v
′

agg =
∑n

i=1 rih1i +
∑n

i=1 dih
′

2i

vagg − v
′

agg =
∑n

i=1 di(h2i − h
′

2i)
vagg − v

′

agg −
∑n

i=1i$=T
di(h2i − h

′

21) = dT (h2T − h
′

2T)

C knows all the private keys other than the target identity’s private key. C also know
all the hash values. Thus by dividing the final equation by (h2r − h

′

2i) C get dT . But C
knows that dT = xT + sqT . Thus the value of xT + sqT is determined above. C know
s and qT . Thus from the computed value of xT + sqT , if C subtracts sqT , C can find
the value of xT which is the solution for the given instance of the discrete logarithm
problem, since xT = x as per definition.
The total probability by which the challenger will be able to solve the Discrete logarithm
problem is given by

ε0 =
10(qS + 1)(qS + qH3 + qH2)

2κ
.(1− qE

q∗H1

)
n

2.q∗H1

1
9

(3)

=
10(qS + 1)(qS + qH3 + qH2).(1−

qE

q∗H1
).n

2.q∗H1
.9.2κ

(4)

=
1
9
.
10(qS + 1)(qS + qH3 + qH2).(1−

qE

q∗H1
).n

2κ+1
.

1
q∗H1

(5)

Hence we have proved that if a polynomial time bounded adversary exists who can break
our scheme with a non-negligible probability ε0 then C can solve the discrete logarithm
problem with non-negligible probability as shown. Thus our scheme is secure against
existential forgery under adaptive chosen message and adaptive chosen identity attack.
!

7 Efficiency Comparison:

In this section we compare the efficiency of our schemes with few existing schemes. We also
give some remarks on the efficiency and merits of our schemes over others.
Few Remarks:

– In [11] all the signers have to agree upon a common value ω in order to produce a valid
aggregate signature. That will increase the communication complexity. Further weakness
of [11] are explained in the appendix.

– Jing Xu et al. [21] achieve partial aggregation and also requires linear number of pairings.
– Javier Herranz [12] also achieves partial aggregation and more over the scheme uses

linear number of pairing computations during verification.

Table 1. Comparing various aggregate signature schemes

Scheme Per Signature Agg Verification Agg Signature Size for Remark

Exp Pt.Mul Exp Pt.Mul Pairing t users & n Signatures
Gentry et al. [11] - 3 - n 3 2||G|| Appendix-A
Jing Xu et al. [21] - 2 - - n+2 (n + 1)||G|| n BP + Long

Signatures
Javier Herranz [12] 1 - n - n t||G|| + 1||G|| n BP

Cheng et al. [8] - 3 - n 2 2||G|| 2 Rounds
Our scheme IBAS 1 - 6n+2 - - (t)||G||+ No BP + Relatively

(2n + 1)||Z∗
q || Short Signatures +

1 Round

LEGEND: ||G|| - Size of one group element, ||Z∗
q || - Size of one Z∗

q element.

– In Cheng et al. [8] scheme achieves full aggregation and also seems efficient. But in this
scheme all the signers have to broadcast their respective randomness to other signers so
that all agree upon a common randomness finally. This broadcast technique increases
the communication complexity enormously and also it is rather like threshold signature
and not like a pure aggregate signature.

– It has to be taken into account that the signing part is for each signer. So if n signers
are signing the complexity in signing part will be multiplied by n.

– Our scheme IBAS achieves only partial aggregation but does verification without any
pairing operation making it the most efficient scheme of all the above. We used a light
weight schnorr based signature as proposed by Galindo et al. [10] which is highly efficient
and practically implementable.

8 Conclusion

In this paper, we have considered an identity based signature in which the private key for
a user is a Schnorr signature on his identity. This private key is generated by the PKG.
Besides, the PKG sends a random ’token’ to every user along with his private key. This
token cannot be altered by the user and the token can never be used in any identity based
encryption scheme. Since, for encryption schemes, only identities are used as public keys.
The presence of tokens in the scheme is not a violation to the definition of identity based
scheme. However, the concept of ’token’ can be cleverly deployed to avoid all pairing based
computations in aggregate signature schemes. We have demonstrated that Galindo et al’s
[10] signature scheme which uses the concept of ’tokens’ can be used to design an aggregate
signature scheme without pairing.

We have addressed the open problem posed by Hwang et al. in [13], which is to design
an identity based aggregate signature scheme where the signers need not have to agree
on a fresh nonce in advance and do not require a common nonce. Thus an identity based
aggregate signature scheme in a non-interactive environment. We have proposed an identity
based aggregate signature schemes which uses a variant of schnorr signature, with no pairing
operation, which is the first aggregate scheme without pairing, achieves partial aggregation
and satisfies the afore mentioned property. We have formally proved the security of the
scheme in the random oracle model.

References

1. Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes
based on rsa. In Public Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in
Computer Science, pages 480–498. Springer, 2010.

2. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In Automata, Languages and Programming, 34th International Colloquium, ICALP 2007, vol-
ume 4596 of Lecture Notes in Computer Science, pages 411–422. Springer, 2007.

3. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications to secure routing.
In ACM Conference on Computer and Communications Security, CCS 2007, pages 276–285.
ACM, 2007.

4. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered mul-
tisignatures and identity-based sequential aggregate signatures, with applications to se-
cure routing. Cryptology ePrint Archive, Report 2007/438, 2007, Revised on 21-Feb-2010.
http://eprint.iacr.org/.

5. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. New multiparty
signature schemes for network routing applications. ACM Transactions on Information and
System Security (TISSEC), vol.12(no.1):1–39, 2008.

6. Dan Boneh. Bls short digital signatures. In Encyclopedia of Cryptography and Security.
Springer, 2005.

7. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Advances in Cryptology - EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 416–432. Springer, 2003.

8. Xiangguo Cheng, Jingmei Liu, and Xinmei Wang. Identity-based aggregate and verifiably
encrypted signatures from bilinear pairing. In Computational Science and Its Applications -
ICCSA 2005,, volume 3483 of Lecture Notes in Computer Science, pages 1046–1054. Springer,
2005.

9. Dario Fiore and Rosario Gennaro. Making the diffie-hellman protocol identity-based. Cryptol-
ogy ePrint Archive, Report 2009/174, 2009. http://eprint.iacr.org/ (An extended abstract of
this paper appears in the proceedings of CT-RSA 2010).

10. David Galindo and F. D. Garcia. A schnorr-like lightweight identity-based signature scheme.
In In Proceedings of 2nd African International Conference on Cryptology, AfricaCrypt 2009,
Lecture Notes in Computer Science 5580, pages 135–148, 2009.

11. Craig Gentry and Zulfikar Ramzan. Identity-based aggregate signatures. In Public Key Cryp-
tography - PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages 257–273.
Springer, 2006.

12. Javier Herranz. Deterministic identity-based signatures for partial aggregation. The Computer
Journal, vol-49(no-3):322–330, 2006.

13. Jung Yeon Hwang, Dong Hoon Lee, and Moti Yung. Universal forgery of the identity-based
sequential aggregate signature scheme. In Computer and Communications Security, ASIACCS
2009, pages 157–160. ACM, 2009.

14. Joseph K. Liu, Joonsang Baek, Jianying Zhou, Yanjiang Yang, and Jun Wen Wong. Efficient
online/offline identity-based signature for wireless sensor network. Cryptology ePrint Archive,
Report 2010/003, 2010. http://eprint.iacr.org/.

15. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential ag-
gregate signatures and multisignatures without random oracles. In Advances in Cryptology
- EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 465–485.
Springer, 2006.

16. Gregory Neven. Efficient sequential aggregate signed data. In Advances in Cryptology - EU-
ROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 52–69. Springer,
2008.

17. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, vol-13(no-3):361–396, 2000.

18. S.Sharmila Deva Selvi, S.Sree Vivek, J.Shriram, S.Kalaivani, and C.Pandu Rangan. Security
analysis of aggregate signature and batch verification signature schemes. Cryptology ePrint
Archive, Report 2009/290, 2009. http://eprint.iacr.org/.

19. Zhu Wang, Huiyan Chen, Ding feng Ye, and Qian Wu. Practical identity-based aggregate
signature scheme from bilinear maps. Journal of Shangai Jiatong University, vol-13(no-6):684–
687, 2008.

20. Yiling Wen and Jianfeng Ma. An aggregate signature scheme with constant pairing operations.
In International Conference on Computer Science and Software Engineering, CSSE 2008, pages
830–833. IEEE Computer Society, 2008.

21. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. Id-based aggregate signatures from bilinear
pairings. In Cryptology and Network Security, CANS-2005, volume 3810 of Lecture Notes in
Computer Science, pages 110–119. Springer, 2005.

APPENDIX-A:

In this section, we show the various weaknesses of [11]. Though it is claimed to be currently
the most efficient scheme it has the following weakness.

1. According to the scheme in [11], the signers have to store all the ω they have used
previously in a database in order to avoid the re-use of randomness. Every time the
signer before signing needs to check whether the current ω was not previously used for
any signature generation on any message. This leads to increase in storage cost and
checking cost, becoming a huge overhead.

2. Not only this, the common randomness ω chosen by the first signer should satisfy the
constraint that it was not used previously for signing any message by any o the other
signers participating in the aggregation process. Even if n − 1 signers agree and nth

signer disagrees then they have to run the protocol again by picking up a new ω value.
This accounts to a lot of wastage of time and network bandwidth.

3. Any signer, if he/she reuse a ω value even once with or without his/her knowledge then
universal forgery of their signature is possible. The universal forgery of signature is as
follows:
– Let 〈S1, T1〉 be a signature on m1 by ID using the value ω.
– Let 〈S2, T2〉 be a signature on m2 by ID using the same ω
– The signature components is of the form

S1 = r1Pω + D1 + c1D2 (6)
T1 = r1P (7)

S2 = r2Pω + D1 + c2D2 (8)
T2 = r2P (9)

where r1, r2 is unknown random numbers, Pω = H2(ω), c1 = H3(m1, ID, ω), c2 =
H3(m2, ID, ω).

– Subtracting 6 from 8 we get

S∗ = (r2 − r1)Pω + (c2 − c1)D2 (10)

Dividing by (c2 − c1) we get, S∗∗ = r2−r1
c2−c1

Pω + D2

– Compute a new hash value c3 = H3(m3, ID, ω) where m3 is some random message.

– Multiply S∗∗ by c3 and we get S
′
= r2−r1

c2−c1
c3Pω + c3D2

– Dividing 6 by c1 and dividing 8 by c2 we get the two equations

S
′

1 =
r1

c1
Pω +

1
c1

D1 + D2 (11)

S
′

2 =
r2

c2
Pω +

1
c2

D1 + D2 (12)

– Subtracting 12 from 11 we get
S
′

3 = (r1
c1
− r2

c2
)Pω + (1

c1
− 1

c2
)D1

– Dividing S3
′ by (1

c1
− 1

c2
) we get

S
′′

3 =
(

r1
c1
− r2

c2
)

(1
c1
− 1

c2
)
Pω + D1

S
′′

3 = r1c2−r2c1
c2−c1

Pω + D1

– Adding S
′′

to S
′
we get S3 = (r2−r1

c2−c1
c3 + r1c2−r2c1

c2−c1
)Pω + D1 + c3D2

– S3 = r∗Pω + D1 + c3D2 where r∗ = (r2−r1
c2−c1

c3 + r1c2−r2c1
c2−c1

)

– We can derive T3 = r∗P also knowing the T1 and T2 values as follows:

Multiplying T1 by (c2−c3
c2−c1

) and multiplying T2 by (c3−c1
c2−c1

) and adding the two we
get
T3 = (c2−c3

c2−c1
r1 + c3−c1

c2−c1
r2)P

= (r2−r1
c2−c1

c3 + r1c2−r2c1
c2−c1

)P

T3 = r∗P

– Thus S3 and T3 is a valid signature on message m3 since its of the standard signature
format of Gentry et al.’s scheme where c3 = H3(m3, ID, ω).

Thus universal forgery of signature is possible in case of Gentry et al.’s scheme. The
signer has to be very careful that he/she does not reuse the ω value. So the storage and
checking of all used ω values becomes essential in their scheme. The extension which
the authors have stated for using ω repeatedly is to get different private keys equal to
number of times ω is reused. That again is not a viable solution since the user will have
no idea as to how many times he will reuse ω if he does.

4. Using a single signature on a message one can generate a different signature which is
valid on the same message by the same user. Though this is not a flaw in the scheme it
is considered as a weakness in certain scenarios (strong unforgeability is not satisfied).

