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Abstract. While it is generally believed that due to their large public
key sizes code based public key schemes cannot be conveniently used
when memory-constrained devices are involved, we propose an approach
for Public Key Infrastructure (PKI) scenarios which totally eliminates
the need to store public keys of communication partners. Instead, all the
necessary computation steps are performed during the transmission of
the key. We show the feasibility of the approach through an example
implementation and give arguments that it will be possible for a smart
card controller to carry out the associated computations to sustain the
transmission rates of possible future high speed contactless interfaces.
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1 Introduction

Code-based cryptography, i.e. the class of cryptographic schemes build on error
correcting codes, encompasses public key encryption schemes [1, 2] as well as
signature schemes [3, 4] and an identification scheme [5]. The main advantage of
code-based cryptographic schemes over currently used schemes that are based
on factoring problem or elliptic curves is their security in the presence of quan-
tum computers [6], but at least the encryption schemes’ operations can also be
implemented comparatively fast [7]. However, the large public key size in these
schemes are considered a tremendous disadvantage. For this reason, a number
of attempts have been made to reduce the key size by using special codes [8, 9].
But some of these attempts have already been shown to result in insecure cryp-
tosystems [10]. All recent proposals that reduce the key size using other codes
than in the original McEliece scheme will have to prevail for some time until they
can be granted the same trust as the original scheme, employing classical binary
Goppa codes [11], the security of which is still unquestioned after 33 years.
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Accordingly, in this work, we address the problem of performing the public
operations, i.e. encryption or signature verification, of conventional code-based
public key cryptosystems with large public keys on devices with limited memory
resources, like for instance smart cards. Typically, smart cards have less than 20
KB of RAM, while the available amount of non-volatile memory (NVM), e.g.
flash-memory, can be as large as 512 KB [12, 13]. If a public key of a commu-
nication partner shall be temporarily stored on the device for the purpose of
performing e.g. an encryption, it would have to be stored in the NVM since it
exceeds the size of the RAM many times over. Specifically, the public keys will
be at least 100 KB large for reasonable security parameters, as we will see in
Section 2.3. For instance, the works [14–16] all describe implementations of code-
based encryption schemes on embedded devices, where the public key is stored
in the devices NVM. The drawbacks of storing such an amount of data in the
device’s NVM are first of all the cost of keeping such a large amount of memory
available for this purpose and also the much slower writing speed compared to
RAM access. In order to circumvent these problems, we show in this work that
the public operations can be executed by only storing very small parts of the
public keys at any given time during the operation. Our approach also considers
that these operations are always carried out in a PKI context, which implies the
verification of user public key certificates against issuer certificates.

The paper is organized as follows. In Section 2 we give the preliminaries
about PKI and code-based encryption schemes needed for the remainder of the
paper. The newly proposed approach is introduced in Section 3 and it’s concrete
computational complexity is analyzed. Subsequently, in Section 4, we show the
feasibility of the proposed approach on a concrete platform based on the analysis
of the preceding section. Two possible variants to the presented approach are
given in Section 6. Next, in Section 7 we show the possibility of treating code-
based signature schemes in the same way as the encryption schemes which we
focus on in this work.

2 Preliminaries

2.1 Public Key Cryptography

In a public key infrastructure, the trustworthiness of a public key is always veri-
fied against a trust anchor. From the trust anchor, which is usually a certification
authority (CA) certificate, to the user certificate, there is a certificate chain in-
volved. The trustworthiness of a certificate lower in the chain is guaranteed by
its authentic digital signature created by the respective issuer, verifiable via the
corresponding public key contained in the issuer certificate.

For the case of public key encryption, it means that a user A’s public key
intended for encryption is contained in the user certificate. A user B willing to
encrypt a message for A thus goes through the following steps:

1. retrieve A’s public encryption certificate Enc-Cert A (for example by access-
ing a database or asking A directly)



2. verify the authenticity of Enc-Cert A by checking the signature on the cer-
tificate against the trust anchor (CA certificate)

3. encrypt the secret message using Enc-Cert A and send it to A

Since in this work we will address problems and solutions for embedded
devices such as smart cards, we wish to point out why it is necessary to be able to
carry out not only the private operations of a public key scheme (i.e. decryption
or signature generation) but also the public operations on such devices. One
application are key exchange schemes. Key exchange schemes based on public
key cryptography are used for instance in the context of the German ePassport
[17]. There, an elliptic curve based key agreement scheme is realized [18]. In order
to replace this scheme with a quantum computer secure solution, one would have
to combine a public key encryption scheme with a public key signature scheme
that both have this property. Then, one party sends the signed and encrypted
symmetric key to the other party. In the mentioned context this means that
eventually the ePassport’s chip has to carry out the encryption operation.

2.2 Linear Error Correcting Codes

In this section we briefly explain the basics of linear error correcting codes as
needed for the understanding of the subsequent sections. A linear binary error
correcting code C is a set of code words {ci} and is characterized by

– the code size n, which defines the bit length a code word ci of the code C,
– the code dimension k with k < n, which defines the bit length of the message

words v that can be encoded,

– the error correcting capability t, which is the number of bit flips that may
be applied to a code word c and still allow recovering the corresponding
message v.

The encoding of a message v is performed by multiplying it by a generator matrix
G ∈ Fk×n

2 , which is specific for this code: c = vG.

The decoding is performed by first multiplying the eventually distorted code

word c′ by the so called parity check matrix H ∈ F(n−k)×n
2 , also being specific

for the respective code: s = Hc′T , where s ∈ Fn−k
2 is called the syndrome of

the distorted code word c′. Given that no more than t bit flip errors occurred,
i.e. the hamming distance between c and c′ is less or equal than t, a decoding
algorithm can be applied to recover the message v. The decoding algorithm is
based on the underlying code and receives s as input.

2.3 Code-based Encryption Schemes

In the following, we explain two code-based encryption schemes, where we fo-
cus on the encryption operation, since the details of decryption operation are
irrelevant to the subject of this work.



The first encryption scheme we present is the McEliece [1] scheme. The
McEliece public key consists of the so called public generator matrix Gp. Algo-
rithm 1 shows the McEliece encryption operation. The idea behind the McEliece
scheme is that the holder of the corresponding private key knows a secret error
correction code Cs that allows him to recover the error vector e and find the
message m. Specifically, the public key is given by Gp = TGsP , where T ∈ Fk×k

2

is a random invertible matrix, P is a random n× n permutation matrix and Gs

is the generator matrix of a secret code, all of which are parts of the private key.
The decoding works since we find that applying the inverse permutation to the
ciphertext gives

z′ = zP−1 = mTGs︸ ︷︷ ︸
∈Cs

+ eP−1︸ ︷︷ ︸
e′

.

Since the first term on the right hand side is a code word of Cs and the second
term is the permuted error vector having hamming weight t, the message m can
be recovered using the error correction algorithm. On the other hand, without
the knowledge of the secret key, recovering the message m is intractable for
secure parameters.

Algorithm 1 The McEliece encryption Operation

Require: the McEliece public key G ∈ Fk×n
2 and the message m ∈ Fk

2 ,
Ensure: the ciphertext z ∈ Fn

2

create a random binary vector e ∈ Fn
2 with Hamming weight wt (e) = t

z ← mGp ⊕ e

The McEliece parameters are given by the code parameters n, k and t. An
example parameter set giving about 100 bits of security with respect to the
attacks given in [19] would be be n = 2048, k = 1498 and t = 50.

In order for the scheme to be secure against chosen ciphertext attacks, a
so called CCA2-conversion has to be applied to the scheme [20]. Given such a
CCA2-conversion is used, it is also possible to choose the matrix T in such a
way that Gp is in systematic form, i.e. Gp = [Ik|R], where Ik is the k×k identity
matrix. Then, for the parameter set mentioned above, the public key can be

represented by R ∈ Fk×(n−k)
2 , which has a size of about 100 KB.

The other encryption scheme is the Niederreiter [2] scheme. Here, the public
key consists of the public parity check matrix Hp = THsP , where Hs is the

parity check matrix of the private code and Hp ∈ F(n−k)×n
2 , and T and P are

chosen equivalently to their counterparts in the McEliece scheme. Furthermore,
as in the McEliece scheme, Hp can be put in systematic form. Then the public
key will be of the same size as for the McEliece cryptosystem. The Niederreiter
encryption is depicted in Algorithm 2. The message is encoded into an error
vector of weight t and the ciphertext is the corresponding syndrome, which can
only be decoded by the holder of the private key.



Algorithm 2 The Niederreiter encryption Operation

Require: the Niederreiter public key H ∈ F(n−k)×n
2 and the message m

Ensure: the ciphertext z ∈ Fn−k
2

encode the the message m into e ∈ Fn
2 , where wt (e) = t, using an appropriate

algorithm (“constant-weight-word encoding”)
z ← eH

3 Online Public Operation

In this section, we explain the main idea of the paper, namely how to implement
the public operations of code-based schemes without storing full public keys on
the device. In a straightforward approach, the public operation, which we here
assume to be an encryption operation, would be realized by first retrieving the
public key (embedded into a public key certificate containing also a signature) of
the communication partner, storing it on the device, computing the hash value
of the certificates to-be-signed (TBS) data (which includes the code-based public
key), verifying the signature, and finally encrypting the designated message using
the certificate’s public key. With the proposed approach however, no storage of
the whole public key is required. Instead, only a comparatively small amount
of RAM memory will be used. The basic idea is to use the computation time
that is available to the devices CPU in the time interval between the receival
of two bytes via the serial interface. During this interval both the encryption
algorithm and the hash algorithm are advanced by one small step. Hence we call
this approach “online public operation”.

This approach works because both the computation of the hash value of
the public key and the matrix-vector product only depend on a small part of
the whole public key at any given point in time: while the hash function acts
on blocks of multiple bytes (for instance 64 bytes for SHA-256), the matrix
multiplication could in principle be carried out bit-wise.

In Figure 1, the complete process of the online public operation approach
is depicted. On the left hand side, the processing of the certificate containing
the code-based public key to be used in the public operation is shown. Here,
we assume that the public key is contained in an X.509 public key certificate
[21]. Such a certificate is constituted by the sequence of the TBS data, followed
by a field containing information about the signature algorithm (not shown in
the figure) and finally the signature. The signature ensures the authenticity of
TBS data, and is calculated based on their hash value, using a hash algorithm
as specified in the preceding information field. Please note that the signature
algorithm used to sign the user certificate needs not to be code-based (in which
case the trust anchor certificate would contain a large code-based key itself).
Instead, a hash based signature scheme [22] could be used. These schemes are
also quantum computer resistant and feature extremely small public keys.

In Step 1a the part of the TBS data that precedes the public key is received by
the device and processed in the normal manner, which includes the computation
of the hash value of the received data. Once the transmission of the public key,



i.e. the public matrix M , begins (Step 2a), the computation of the product vM
begins, where v is a binary vector whose meaning depends on the type of the
code-based scheme. In an encryption scheme like McEliece or Niederreiter, v
represents a message. The hash computation is also continued. After the whole
public matrix has been received, the remaining TBS data is again processed in
the normal manner (Step 3a). Finally, when the TBS data have been completely
received the hash value of the TBS data is ready. It is then used to verify the
certificate’s signature with the help of the certificate of the issuer I which is
stored on the device as the trust anchor (Step 4).

The public operation of the code-based scheme is potentially composed of
computations before the matrix-vector product is needed (Step 1b). These com-
putations can be done before the public matrix transmission begins, e.g. they
could be carried out before and/or during the receival of the TBS data preceding
the public key. Once the public key matrix has been fully received and processed
(i.e. after Step 2a), the remaining computations of the public operation are car-
ried out (Step 3b), e.g. the addition of the error vector e in the McEliece scheme.
The result is either a ciphertext (in case of an encryption scheme) or a Boolean
value (in case of a signature verification). But whether this result is output re-
spectively further processed by the device (Step 5a) depends on the result of the
signature verification (Step 4). If the verification fails, the device will output an
error answer (Step 5b).

4 Transmission Rates

In this section, we give an overview of transmission rates available for embedded
systems, espacially smart card microcontrollers.

For instance a SLE66CLX360PE [13] smart card platform from Infineon
Technologies AG features an ISO/IEC 14443 compliant contactless interface
which can transmit up to 106 KB/s. This allows the transmission of a McEliece
public key of size 100 KB for the parameters given in Section 2.3 in about 1s,
which can be considered at least acceptable for certain applications.

In the future, contactless transmission rates may be about 837.500 bytes/s
[23], i.e. about 8 times higher than the rate considered above3. In the following
section, we will show that it is still feasible to support such a high transmission
rate at a CPU speed of 30 MHz if adequate hardware support is available on
the device. Note that in this case there are still about 35 cpu cycles available
between the receival of two bytes.

5 Example Implementation

We implemented the proposed approach on an ATUC3A1512 32-bit microcon-
troller from Atmel’s AVR32 family. We chose an embedded 32-bit platform ba-

3 In the referenced work, this transmission rate is actually only achieved in the direc-
tion from the card to the reader. However, we want to use it merely as an orientation
for the transmission rates achievable in the near future.



Fig. 1. Overview of the complete process of the online public operation.



sically because SHA256 is designed for 32-bit platforms. There also exist 32-bit
smart card controllers [24], thus our evaluations are significant for this type of
platform.

The personal computer (PC) communicates with the AVR32 over a serial
line. For the implementation of the serial communication, on the AVR32, we used
the API for the device’s Universal Asynchronous Receiver Transmitter (UART)
provided by Atmel. On the side of the personal computer, we used the API to
the serial port of the Linux operating system. The PC can send commands to
the AVR32, which are formed by a six byte header and optional payload data,
the length of which is encoded the last four header bytes. The first header byte
is zero for all commands, and the second byte determines one of the following
commands:

– set the vector to multiply
– carry out the online multiplication (starts an interactive protocol for the

matrix transmission described below)
– get the multiplication result from the AVR32
– get the hash result from the AVR32

The AVR32 responds to these commands by sending a two byte status code and
optional data payload preceding the status code, or in the case of the online
multiplication command, by starting an interactive protocol.

This protocol is depicted in Figure 2. As a precondition, the vector to mul-
tiply has to be set in the device through the corresponding command. After the
receival of the online multiplication command (which does not carry payload
data), the AVR32 sets up two buffers B1 and B2 which are of an equal prede-
fined size. It sends a two byte acknowledgement (ACK) code to the PC as the
answer to the command. Then the PC sends the first matrix part which is of
equal size as the buffers B1 and B2. The receival of a single byte over the UART
interface of the AVR32 triggers an interrupt which is serviced by an Interrupt
Service Routine (ISR) which writes the byte to the next free position in B1. Af-
ter the first block has been received completely, the AVR32 sends another ACK
code to the PC, who in turn reacts by sending the next part. At this point the
AVR32 exchanges the role of the buffers B1 and B2: the data is now received to
B2 (which did not play any role while receiving the first part), and B1, contain-
ing the first matrix part, is fed into the SHA256 computation and the matrix
multiplication. Both, the hashing and matrix multiplication are implemented as
objects which can be updated by calling routines that take arbitrary amounts
of data as an argument.

For hash functions, this is the standard implementation technique. Because
demanded by our approach, we adopted this technique for the matrix multipli-
cation. In our implementation, the matrix-vector multiplication is carried out
column-wise. The advantages and disadvantages of this approach in contrast to
row-wise multiplication is discussed in Section 6.1. The multiplication object
knows the number of rows and columns of the matrix and has the source vector
set. As the matrix data is fed column-wise it keeps track of the current row
and column position. It processes the current column by carrying out the logical



AND (multiplication in F2) between the matrix column and the vector 32-bit
word-wise, and computes the XOR (addition in F2) with a 32-bit accumulator.
When a column is finished, the parity (i.e. sum of all the word’s bits in F2) of
the accumulator is written to the corresponding result bit.

5.1 Non-interactive Version of the Protocol

However, it turned out that the interactive protocol incurs significant delay in the
communication which results from the fact that our PC program is running in
userspace and thus sending and receiving data via the serial interface is delayed.
If the protocol were implemented in a card terminal, which could be the case
in a real world implementation of the online multiplication, or at the PC side
in a kernel mode driver, such issues would not arise. To show the efficiency of
the approach, we modified the protocol depicted in Figure 2: the AVR32 does
not send any ACK answers beyond the very first one. Consequently, the matrix
data is sent as a continuous stream after the AVR32 has sent the initial ACK. In
this way, the protocol looses the feature that it works independently of the ratio
of transmission speed and computation speed: in this non-interactive setting,
it must be guaranteed that the hash and multiplication computation of the
processed buffer has finished before the receive buffer has been completely filled.
With this approach, the performance, could be improved by a factor of roughly
1.3. The concrete results are discussed shortly.

5.2 Simulation of higher Transmission Rates

On the chosen AVR32 platform, the maximal transmission speed is given by a
baudrate of 460,800. In the RS232 transmission format each data byte is encoded
in 10 bits, yielding a net transmission rate of 46,080 byte/s. In order to demon-
strate the computation speed that would be possible beyond this limitation, we
implemented a means of simulating higher transmission speeds. This is achieved
by creating a matrix whose rows have repetitive entries, i.e. the values of 8-bit
chunks repeats r times. An example of the beginning of a row for r = 4 would
be

0x1D, 0x1D, 0x1D, 0x1D, 0xA3, 0xA3, 0xA3, 0xA3, 0x22, ...

In this setting, on the PC side such a repetitive matrix is generated. When the
matrix is transmitted, however, each repeated element is sent only once. On the
receiving side, the repetition value r is also known and each received byte is
appended to the buffer r times. In this way, we simulate a transmission rate
Bsim = rBreal, where Breal is the actual UART transmission rate.

Table 5.2 shows the measurement results for interactive version of the pro-
tocol as depicted in Figure 2, and the non-interactive version described in the
previous paragraph in the two left columns. Here, we used a matrix with 1000
rows and 800 columns, i.e. yielding a size of 100,000 bytes. This size in the domain
of McEliece public keys with 100 bit security [15]. The reason for this specific



choice in contrast to using the exact parameters resulting from a real code is to
simplify the implementation, for instance choosing the using a row length divisi-
ble by 8 avoids the necessity to implement the special treatment of only partially
used final bytes. In all our measurements the CPU speed of the AVR32 was set to
33MHz, since also todays contactless smart card platforms run at approximately
this speed [12]. The referenced platform only runs at 30MHz, using this in our
implementation showed that at this CPU speed the (simulated) transmission
rate given in the rightmost column could not be supported in the experiment.
The transmission speed of 386,640 bytes/s is only approximately half of that of
the research implementation presented in [23] already mentioned in Section 4.
Thus our results show that even without dedicated hardware, todays embedded
platforms already enable computation speeds for the hash computation and ma-
trix multiplication in the domain of the associated transmission rates that can be
exptected to be supported by contactless devices in the near future. This makes
it feasible that with adequate hardware support the full 837.500 Byte/s rate
given in [23] can be supported by the throughput of the computational tasks.

Fig. 2. Schematic overview of the interrupt based implementation of the online multi-
plication.

The hash implementation is based on the open source implementation [25].
The C source code allows for complete unrolling of the SHA256 compression



based on computation throughput experimental
result - w/o ACK

cycles/byte measured: 55.6 for SHA256, 4.2 for mult.
yields: 59.8

92

time at 33MHz
CPU for 100,000
Bytes

181ms 279ms

transmission rate
in bytes/s

551.839 Bsim = 368, 640 (r =
8)

Table 1. Performance of the SHA256 and binary matrix multiplication on the
AT32UC3A1 platform. The results on the first column are based on the throughput
benchmarking results for the two computational tasks when processing of buffers of
8192 bytes. Both the time for the online multiplication and the transmission rate nec-
essary to support the throughput of both computational tasks are theoretically derived
from the former. In the second column, the time of the whole online matrix multipli-
cation with the given transmission rate Bsim = 8 · 46, 080 byte/s was measured on the
ATUC3A1512 platform. Here the a receive buffer size of of 1536 bytes was used.

function through a macro definition. Activating loop unrolling resulted in a per-
formance gain of 1.6 for the hash function computation. All further performance
data is based on this implementation choice.

6 Variants of the proposed Approach

6.1 Column-wise vs. Row-wise Matrix-Vector Multiplication

The row-wise computation of the matrix-vector multiplication is an alternative to
the column-wise approach. In this case the computation of the result is according
to b =

∑
j Miai, where Mi is the vector represented by the i-th row of M .

This means that a row Mi is added to the result if the corresponding bit ai
is one, otherwise nothing has to be done. In the normal case, where the whole
matrix is available instantly, this approach has a significant advantage over the
column-wise approach since about half of vector a’s bits will have value zero. But
in the case of the online public operation, this advantage disappears since the
matrix-vector multiplication’s running time is determined by the transmission
time alone (under the assumption of sufficient computational power of the device
as analyzed in Section 4). The row-wise approach would only have an advantage
if the saved computational effort could be used to perform other tasks, which
can be assumed to be rather unlikely or at least of minor relevance in the context
of embedded devices such as smart cards.

On the other hand, the disadvantage of the row-wise multiplication lies in
its potential side-channel vulnerability. Specifically, if an attacker is able to find
out whether the currently transmitted row is added or ignored, for instance by
analyzing the power trace [26], he can deduce the value of the secret bit ai.
Of course, countermeasures can be implemented. A certain randomization could



for instance be introduced by keeping a number of received rows in a buffer
and processing them in a randomized order. However, whether the questionable
computational advantage of this method is worth such efforts must be decided
in a concrete implementation scenario.

In any case, once the X.509 key format for a code-based scheme is defined,
the choice for one of the two methods is taken. While it then would still be
possible to transmit the matrix in the other orientation in order to carry out the
multiplication, the online hash computation only works if the correct orientation
is used.

7 Code-based signature Schemes

A number of code-based signature schemes have been proposed. In the following,
we will address two of these schemes very briefly with the goal of showing that
the proposed approach for the online public operation is applicable to both of
them.

In [3], the McEliece scheme is inverted in the sense that the signer proves his
ability to decode a binary vector related to the message using a certain code.
Thus, the signature verification basically consists of a matrix-vector multiplica-
tion just like for the encryption schemes described in Section 2.3.

A signature scheme involving two binary matrices as the public key is pre-
sented in [4]. In the verification operation, both matrices have to be multiplied
by a vector. Thus the online public operation can be carried out by transmitting
them one after another.

8 Conclusion

In this work we have shown an approach for implementing the operations in-
volving code-based public keys on memory-constrained devices like smart cards,
that covers the matrix-vector multiplication as well as the hash computation for
the verification of the user certificate. The solution is applicable to basically all
code-based encryption and signature schemes that have been proposed so far.
Thus we are confident that this work improves on the applicability of this class
of cryptographic schemes by reducing the impact of the large public key sizes
for memory-constrained devices.

Especially the Niederreiter encryption scheme becomes attractive when used
with the proposed online public operation. This is because as demonstrated in
[16], for this scheme also the private key can kept well below 10 KB for reasonable
parameters, enabling both encryption and decryption on devices with small RAM
and NVM.
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