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Abstract: Key agreement (KA) allows two or more users to negotiate a secret 

session key among them over an open network. Authenticated key agreement 

(AKA) is a KA protocol enhanced to prevent active attacks. AKA can be achieved 

using a public-key infrastructure (PKI) or identity-based cryptography. However, 

the former suffers from a heavy certificate management burden while the latter is 

subject to the so-called key escrow problem. Recently, certificateless 

cryptography was introduced to mitigate these limitations. We propose an 

efficient certificateless two-party AKA protocol. Security is proven under the 

standard computational Diffie-Hellman (CDH) and bilinear Diffie-Hellman 

(BDH) assumptions. Our protocol is efficient and practical, because it requires 

only one pairing operation and three scale multiplications by each party. 

Moreover, the pairing operation and one scale multiplication scale can be pre-

computed, then only two scale multiplications are needed to finished the key 

agreement. 

Key words: Certificateless cryptography; Authenticated key agreement; Provable 

security; Bilinear pairings; Elliptic curve 

1. Introduction 

Public key cryptography is an important technique to realize network and 

information security. Traditional public key infrastructure requires a trusted 

certification authority to issue a certificate binding the identity and the public key 

of an entity. Hence, the problem of certificate management arises. To solve the 

problem, Shamir defined a new public key paradigm called identity-based public 

key cryptography [1]. However, identity-based public key cryptography needs a 
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trusted Private Key Generator(PKG) to generate a private key for an entity 

according to his identity. So we are confronted with the key escrow problem. 

Fortunately, the two problems in traditional public key infrastructure and identity-

based public key cryptography can be prohibited by introducing certificateless 

public key cryptography (CLPKC) [2], which can be conceived as an intermediate 

between traditional public key infrastructure and identity-based cryptography. 

Key agreement(KA) schemes are designed to provide secure communications 

between two or more parties in a hostile environment. A two-party key agreement 

scheme, for example, allows two communicating parties to establish a common 

session key via a public communication channel. The session key can 

subsequently be used to establish a secure communication channel between both 

parties. 

KA schemes can also be implemented in the certificateless cryptographic 

setting. Following the pioneering work due to Al-Riyami and Paterson , several 

certificateless two-party authenticated key agreement(CTAKA) schemes [3-8] 

have been proposed. However, these schemes need to compute at least one pairing 

on-line. In order to improve the performance, we present an efficient CTAKA 

scheme from pairings. In our scheme the pairing operation and one scale 

multiplication scale can be pre-computed, then only two scale multiplications are 

needed to finished the key agreement. Our scheme’s overhead is lower than that 

of previous schemes [3-8] in computation and more suitable for the practical 

applications. 

2. Preliminaries 

2.1.Mathematical background 

Let 1G  be a cyclic additive group of prime order q , and 2G  be a cyclic 

multiplicative group of the same order q . We let P  denote the generator of 1G . 

A bilinear pairing is a map 1 1 2:e G G G× →  which satisfies the following 

properties: 

(1) Bilinearity 

( , ) ( , )abe aQ bR e Q R= , where 1,Q R G∈ , *, qa b Z∈ . 
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(2) Non-degeneracy 

2
( , ) 1Ge P P ≠ . 

(3) Computability 

There is an efficient algorithm to compute ( , )e Q R  for all 1,Q R G∈ . 

The Weil and Tate pairings associated with supersingular elliptic curves or 

abelian varieties can be modified to create such admissible pairings, as in [9]. The 

following problems are assumed to be intractable within polynomial time. 

Definition 1 (Bilinear Diffie-Hellman (BDH) problem). Let 1G , 2G , P  

and e  be as above. The BDH problem in < 1G , 2G , e > is as follows: Given 

< P , aP , bP , cP > with uniformly random choices of *, , qa b c Z∈ , compute 

2( , )abce P P G∈ . 

Definition 2 (Computational Diffie-Hellman (CDH) problem). Let 1G  

and P  be as above. The CDH problem in 1G  is as follows: Given < P , aP , 

bP > with uniformly random choices of *, qa b Z∈ , compute 1abP G∈ . 

2.2. CTAKA scheme 

A CTAKA scheme consists of six polynomial-time algorithms[8]: Setup, 

Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key 

and Key-Agreement. These algorithms are defined as follows. 

Setup: Taking security parameter k  as input and returns the system 

parameters params and master key. 

Partial-Private-Key-Extract: It takes params , master key and a user's 

identity iID  as inputs. It returns a partial private key iD . 

Set-Secret-Value: Taking as inputs params and a user's identity iID , this 

algorithm generates a secret value ix . 

Set-Private-Key: This algorithm mtakes params , a user's partial private key 

iD  and his secret value ix  as inputs, and outputs the full private key iS . 

Set-Public-Key: Taking as inputs params and a user's secret value ix , and 

generates a public key iP  for the user. 
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Key-Agreement: This is a probabilistic polynomial-time interactive algorithm 

which involves two entities A  and B . The inputs are the system parameters 

params for both A  and B , plus ( , ,A A AS ID P ) for A , and ( , ,B B BS ID P ) for B . 

Here, AS , BS  are the respective private keys of A  and B ; AID  is the identity 

of A  and BID  is the identity of B ; AP , BP  are the public keys of A  and 

B , respectively. Eventually, if the scheme does not fail, A  and B  obtain a 

secret session key AB BAK K K= = . 

2.3.Security model for CTAKA schemes 

In CTAKA, as defined in [2], there are two types of adversaries with different 

capabilities, we assume Type 1 Adversary,  A 1 acts as a dishonest user while 

Type 2 Adversary, A 2 acts as a malicious KGC: 

Type 1 Adversary: Adversary A 1 does not have access to the master key, but 

A 1 can replace the public keys of any entity with a value of his choice, since 

there is no certificate involved in CLPKC. 

Type 2 Adversary: Adversary A 2 has access to the master key, but cannot 

replace any user's public key. 

Very recently, Zhang et al.’s [8] present a security model for AKA schemes 

in the setting of CLPKC. The model is defined by the following game between a 

challenger C and an adversary  A ∈{ A 1, A 2}.  In their et al.’s model, A is 

modeled by a probabilistic polynomial-time turing machine. All communications 

go through the adversary A. Participants only respond to the queries by A and do 

not communicate directly among themselves. A can relay, modify, delay, 

interleave or delete all the message flows in the system. Note that A can act as a 

benign adversary, which means that A is deterministic and restricts her action to 

choosing a pair of oracles ,
n
i j∏  and ,

t
j i∏  and then faithfully conveying each 

message flow from one oracle to the other. Furthermore, A may ask a 

polynomially bounded number of the following queries as follows. 

( )iCreate ID : This allows A to ask C to set up a new participant i with 

identity iID . On receiving such a query, C generates the public/private key pair 

for i . 
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( )iPublic Key ID− : A can request the public key of a participant i  whose 

identity is iID . To respond, C outputs the public key iP  of participant i . 

iPartial - Private - Key(ID ) : A can request the partial private key of a 

participant i  whose identity is iID . To respond, C outputs the partial private 

key iD  of participant i . 

( )iCorrupt ID : A can request the private key of a participant i  whose 

identity is iID . To respond, C  outputs the private key iS  of participant i . 

( , )i iPublic Key Replacement ID P′− − : For a participant i  whose identity is 

iID ; A can choose a new public key P′  and then set P′  as the new public key 

of this participant. C will record these replacements which will be used later. 

,( , )n
i jSend M∏ : A can send a message M  of her choice to an oracle, say 

,
n
i j∏ , in which case participant i  assumes that the message has been sent by 

participant j . A may also make a special Send query with M λ≠  to an oracle 

,
n
i j∏ , which instructs i  to initiate a scheme run with j . An oracle is an initiator 

oracle if the first message it has received is λ . If an oracle does not receive a 

message λ  as its first message, then it is a responder oracle. 

,( )n
i jReveal ∏ : A can ask a particular oracle to reveal the session key (if any) 

it currently holds to A. 

,( )n
i jTest ∏ : At some point, A may choose one of the oracles, say ,

T
I J∏ , to 

ask a single Test query. This oracle must be fresh. To answer the query, the oracle 

flips a fair coin {0,1}b∈ , and returns the session key held by ,
T
I J∏  if 0b = , or a 

random sample from the distribution of the session key if 1b = . 

After a Test query, the adversary can continue to query the oracles except that 

it cannot make a Reveal query to the test oracle ,
T
I J∏  or to ,

t
J I∏  who has a 

matching conversation with ,
T
I J∏  (if it exists), and it cannot corrupt participant 

J . In addition, if A is a Type 1 adversary, A cannot request the partial private 

key of the participant J ; and if A is a Type 2 adversary, J  cannot replace the 

public key of the participant J . At the end of the game, A must output a guess 
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bit b′ . A wins if and only if b b′ = . A’s advantage to win the above game, 

denoted by ( )AAdvantage k , is defined as: 1( ) Pr[ ]
2

AAdvantage k b b′= − − . 

Definition 1. A CTAKA scheme is said to be secure if: 

(1) In the presence of a benign adversary on ,
n
i j∏  and ,

t
j i∏ , both oracles 

always agree on the same session key, and this key is distributed uniformly at 

random. 

(2) For any adversary, ( )AAdvantage k  is negligible. 

3. Our scheme 

3.1.Scheme Description 

In this section, we present a CTAKA scheme without pairing. Our scheme 

consists of six algorithms: Setup, Partial-Private-Key-Extract, Set-Secret-Value, 

Set-Private-Key, Set-Public-Key and Key-Agreement. 

Setup: On input a security parameter l , this algorithm runs as follows. 

(1) Select a cyclic additive group 1G  of prime order q , a cyclic 

multiplicative group 2G  of the same order, a generator P  of 1G , and a bilinear 

map 1 1 2:e G G G× → . 

(2) Choose a random master-key *
qs Z∈  and set the master public key 

pubP sP= . 

(3) Choose cryptographic hash functions *
1 1:{0,1}H G→ , 

* *
2 1 1 1 2 1:{0,1} {0,1} {0,1}lH G G G G G× × × × × × → . 

The system parameters are 1 2 1 2{ , , , , , , , }pubparams G G e P P H H l= . The 

master-key is *
qs Z∈ . 

Partial-Private-Key-Extract: This algorithm takes system parameters, master key 

and a user’s identifier iID  as inputs, generates the partial private key as follows. 

1) Choose 1( )i iQ H ID= . 
2) Output the partial private key i iD sQ= . 



7 

Set-Secret-Value: The user with identity iID  picks randomly *
i nx Z∈  sets 

ix  as his secret value. 

Set-Private-Key: Given params , the user's partial private key iD  and his 

secret value  ix , and output a pair ( , )i i iS x D=  as the user's private key. 

Set-Public-Key: Taking as inputs params , the user's secret value ix , and 

generates the user's public key as i iP x P= ⋅ . 

Key-Agreement: Assume that an entity A  with identity AID  has private 

key ( , )A A AS x D=  and public key A AP x P= ⋅  and an entity B  with identity 

BID  has private key ( , )B B BS x D=  and public key B BP x P= ⋅  want to establish 

a session key, then they can do, as shown in Fig.1, as follows. 

1) A  chooses at random the ephemeral key *
na Z∈  and computes 

AT a P= ⋅ , then A  send 1 { , }A AM ID T=  to B . 

2) After receiving 1M , B  chooses at random the ephemeral key *
nb Z∈  

and computes BT b P= ⋅ , then B  send 2 { , }B BM ID T=  to A . 

Then both A  and B  can compute the shared secrets as follows. 

A  computes  
1
AB A BK x P= ⋅ , 2 ( , )AB A BK e D Q=  and 3

AB AK a T= ⋅                    (1) 

B  computes 
1
BA B AK x P= ⋅ , 2 ( , )BA B AK e D Q=  and 3

BA BK b T= ⋅                      (2) 

 

Fig. 1. Key agreement of our scheme 

The shared secrets agree because: 
1 1
AB A B A B B A B A BAK x P x x P x x P x P K= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ =                  (3) 
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2

2

( , ) ( , ) ( , )

( , ) ( , )

s
AB A B A B A B

A B B A BA

K e D Q e sQ Q e Q Q

e Q sQ e D Q K

= = =

= = =
                      (4) 

and 
3 3
AB BAK abP baP K= = =                                       (5) 

Thus the agreed session key for A  and B  can be computed as: 
1 2 3

2
1 2 3

2

( || || || || || || )

( || || || || || || )
A B A B AB AB AB

A B A B BA BA BA

sk H ID ID T T K K K

H ID ID T T K K K

=

=
                     (6) 

3.2.Security Analysis 

We prove the security of our scheme in the random oracle model which treats 

1H  and 2H  as two random oracles [10] using the model defined in [8]. As for the 

security of , the following lemmas and theorems are provided. 

Lemma 1. If two oracles are matching, then both of them are accepted and 

have the same session key which is distributed uniformly at random in the session 

key sample space. 

Proof. From the correction analysis of our scheme in section 3.1, we know if 

two oracles are matching, then both of them are accepted and have the same 

session key. The session key is distributed uniformly since the exponent a  and 

b  are selected uniformly during the scheme execution. 

Lemma 2. Under the assumption that the BDH problem is intractable, the 

advantage of a Type 1 adversary against our scheme is negligible in the random 

oracle model.  

Proof. For a contradiction, assume that the Type 1 adversary A 1 has non-

negligible advantage ε , and makes at most iq  queries to iH , where 1,2i = . 

Let sq  be the total number of the oracles that A 1 creates, i.e., for any oracle 

,
n
A B∏ , {1, , }sn q∈ … . We shall slightly abuse the notation ,

n
A B∏  to refer to the 

n th one among all the sq  participant instances, instead of the n -th instance of 

participant A . As n  is only used to help identify oracles, this notation change 

will not affect the soundness of the model. 

We show how to construct a simulator S  that uses A 1 as a sub-routine to 

solves the BDH problem with non-negligible probability. Given input of the two 
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groups 1G , 2G , the bilinear map e , a generator P  of 1G , and a triple of 

elements 1, ,aP bP cP G∈  with *, , qa b c Z∈  where q  is the prime order of 1G  

and 2G , S ’s task is to compute and output the value  2( , )abce P P G∈ . 

The algorithm S  selects two random integers ,I J from 1{1, , }q…  and a 

random integer m  from {1, , }sq… . S guesses that the m th oracle (i.e. ,
m
I J∏ ) 

will be asked the Test  query and works by interacting with A 1 as follows: 

Setup : S  treats the unknown value a  as the PKG’s master key. S  starts 

A 1, and answers all A 1’s queries as follows. 

1( )iH ID : S  simulates the random oracle 1H  by keeping a list of tuples 

( , ,i i ir ID Q ) which is called the 
1HL . When the 1H  oracle is queried with an input 

iID , S  responds as follows. 

 If iID  is already on 
1HL  in the tuple ( , ,i i ir ID Q ), then S  outputs iQ . 

 Otherwise, if iID  is the I -th distinct 1H  query, then the oracle 
outputs iQ bP= ; If iID  is the J -th distinct 1H  query, then the oracle 
outputs iQ cP= . S  adds the tuple ( , ,i iID Q⊥ ) to 

1HL . 

 Otherwise S  selects a random *
i qr Z∈  and outputs i iQ r P= , and then 

adds the tuple  ( , ,i i ir ID Q )  to 
1HL . 

( )iCreate ID : S  maintains an initially empty list CL  consisting of tuples of 

the form ( , , ,i i i iID D x P ). When queried with an input iID , S  query the random 

oracle 1H  with iID , gets a tuple ( , ,i i ir ID Q ) and responds as follows. 

 If iID  is already on CL  in the tuple ( , , ,i i i iID D x P ), then S  outputs 

iP . 
 Otherwise, if ir =⊥ , S  generates a random number *

i qx Z∈  as the 
secret key, computes the public key i iP x P= , set the partial secret key 

iD ←⊥ . S  adds the tuple ( , , ,i i iID x P⊥ ) to CL  and outputs iP . 
 Otherwise S  S  generates a random number *

i qx Z∈  as the secret key, 
computes the public key i iP x P= , set the partial secret key i i pubD r P← . 
S  adds the tuple ( , , ,i i i iID D x P ) to CL  and outputs iP . 

( )iPublic Key ID− : On receiving this query, S  first searches for a tuple 

( , , ,i i i iID D x P ) in CL  which is indexed by iID , then returns iP  as the answer. 



10 

( )iPartial Private Key ID− − : Whenever S  receives this query, if iID I=  

or J , S   aborts (Event 1); else, S  searches for a tuple ( , , ,i i i iID D x P ) in CL  

which is indexed by iID  and returns iD  as the answer. 

( )iCorrupt ID : Whenever S  receives this query, if iID I=  or J , S  

aborts (Event 2); else, S  searches for a tuple ( , , ,i i i iID D x P ) in CL  which is 

indexed by iID  and if ix =⊥ , S  returns null; otherwise, S  returns ( ,i iD x ) as 

the answer. 

( , )i iPublic Key Replacement ID P′− − : On receiving this query, S  searches 

for a tuple ( , , ,i i i iID D x P ) in CL  which is indexed by iID , then updates iP  to 

iP′  and sets ix =⊥ . 

,( , )n
i jSend M∏ : S  maintains an initially empty list SL  consisting of tuples 

of the form ( , , ,, ,n n n
i j i j i jtrans r∏ ), where ,

n
i jtrans  is the transcript of ,

n
i j∏  so far and 

,
n

i jr  will be described later. S  chooses at random *
,
n

i j nr Z∈  and computes the 

reply as ,
n

i jr P . Then S  updates the tuple indexed by ,
n
i j∏  in SL . 

,( )n
i jReveal ∏ : S  maintains a list RL  of the form 

( , ,, , , , ,n n n n n n
i j ini resp ini resp i jID ID T T SK∏ ) where n

iniID  is the identification of the initiator 

in the session which ,
n
i j∏  engages in and n

respID  is the identification of the 

responder. The description of the other items will be given later. S  answers the 

query as follows: 

 If n m= , iID I=  and jID J=  or ,
n
i j∏  is the oracle who has a 

matching conversion with ,
m
I J∏ , S  aborts((Event 3)). 

 Else if iID I≠  and iID J≠   
 S  looks up the list SL   and CL for corresponding tuple 

, , , ,( , , , , , )n n n n n n
i j i j i j j i i jr T T P P∏  and ( , , ,i i i iID D x P ) separately. Then S  

computes 1
, ,

n
i j i j iK x P= ⋅ , 2

, ( , )i j i jK e D Q= , 3
, , ,

n n
i j j i j iK r T= . 

 S  makes a 2H  query. If ,
n
i j∏  is the initiator oracle then the query 

is of the form ( 1 2 3
, , ,|| || || || || ||i j i j i j i j i jID ID T T K K K ) or else of the form 

( 1 2 3
, , ,|| || || || || ||j i j i i j i j i jID ID T T K K K ). 

 Else if iID I=  or iID J=  
 S  looks up the list SL   for corresponding tuple 

, , , ,( , , , , , , , )n n n n n n n n
i j i j i j j i i j i jr T T R R P P∏ . 



11 

 S  looks up the list 
2HL  to see if there exists a tuple index by 

( , , ,i j i jID ID T T ) if ,
n
i j∏  is an initiator, otherwise index by 

( , , ,j i j iID ID T T ). 

 If there exists such tuple and the corresponding 1
,i jK , 2

,i jK  and 3
,i jK  

satisfies the equation 1
,( , ) ( , )n n

i j i je K P e P P= , 2
,( , )n

i j i je Q P K=  and 
3
,( , ) ( , )n n

i j i je K P e T T=  , then S  obtains the corresponding ih  and 

sets ,
n
i jSK = ih . Otherwise S  chooses at random , {0,1}n k

i jSK ∈ . 
 Else  

 S  looks up the list SL   for corresponding tuple 

, , , ,( , , , , , , , )n n n n n n n n
i j i j i j j i i j i jr T T R R P P∏ . 

 S  looks up the list 
2HL  to see if there exists a tuple index by 

( , , ,i j i jID ID T T ) if ,
n
i j∏  is an initiator, otherwise index by 

( , , ,j i j iID ID T T ). 

 If there exists such tuple and the corresponding 1
,i jK , 2

,i jK  and 3
,i jK  

satisfies the equation 1
,( , ) ( , )n n

i j i je K P e P P= , 2
,( , )n

i j i je Q P K=  and 
3
,( , ) ( , )n n

i j i je K P e T T=  , then S  obtains the corresponding ih  and 

sets ,
n
i jSK = ih . Otherwise S  chooses at random , {0,1}n k

i jSK ∈ . 

2H  query: S  maintains a list 
2HL  of the form 

( 1 2 3, , , , , , ,i j i j
u u u u u u u uID ID T T K K K h ) and responds with 2H  queries 

( 1 2 3, , , , , ,i j i j
u u u u u u uID ID T T K K K ) as follows: 

 If a tuple indexed by ( 1 2 3, , , , , ,i j i j
u u u u u u uID ID T T K K K ) is already in 

2HL , 
reply with the corresponding uh . 

 Else, if there is not such a tuple, 
 If there is a tuple indexed by ( , , ,i j i j

u u u uID ID T T ) in the list RL  such 
that the equation 1( , ) ( , )n n

u i je K P e P P= , 2
,( , )n

i j i je Q P K=  and 
3( , ) ( , )i j
u u ue K P e T T=  hold, then S  obtain the corresponding ,

n
i jSK  

and sets ,
n
i j uSK h= .Otherwise choose at random {0,1}k

uh ∈ . 

 Else if the equations do not hold for ( 1 2 3, , , , , ,i j i j
u u u u u u uID ID T T K K K ), S  

chooses at random {0,1}k
uh ∈ . 

 S  inserts the tuple ( 1 2 3, , , , , , ,i j i j
u u u u u u u uID ID T T K K K h ) into the list 

2HL . 

,( )m
I JTest ∏ : At some point, S  will ask a Test query on some oracle. If S  

does not choose one of the oracles ,
m
I J∏  to ask the Test query, then S  aborts 

(Event 4). Otherwise, S  simply outputs a random value {0,1}kx∈ . 



12 

The probability that S  chooses ,
m
I J∏  as the Test oracle and that 2

1

1

sq q
. In 

this case, S  would not have made ,( )m
I JCorrupt ∏  or ,( )m

I JReveal ∏ queries, and 

so S  would not have aborted. If S  can win in such a game, then S  must have 

made the corresponding 2H  query of the form ( 1 2 3, , , , , ,i j i j
m m m m m m mID ID T T K K K ) if 

,
m
I J∏  is the initiator oracle or else ( 1 2 3, , , , , ,j i j i

m m m m m m mID ID T T K K K ) with 

overwhelming probability because 2H  is a random oracle. Thus S  can find the 

corresponding item in the 2H -list with the probability 
2

1
q

 and output 2
mK  as a 

solution to the BDH problem. So if the adversary computes the correct session 

key with non-negligible probability ε , then the probability that S  solves the 

BDH problem is 2
1 2 sq q q
ε (which is non-negligible in the security parameter l ), 

contradicting to the hardness of the BDH problem. 

Lemma 3. Under the assumption that the CDH problem is intractable, the 

advantage of a Type 1 adversary against our scheme is negligible in the random 

oracle model.  

Proof. For a contradiction, assume that the Type 2 adversary A 2 has non-

negligible advantage ε , and makes at most iq  queries to iH , where 1,2i = . 

Let sq  be the total number of the oracles that A 1 creates, i.e., for any oracle 

,
n
A B∏ , {1, , }sn q∈ … .  

We show how to construct a simulator S  that uses A 2 as a sub-routine to 

solves the CDH problem with non-negligible probability. Given input of the group 

1G , a generator P  of 1G , and a triple of elements 1,aP bP G∈  with *, qa b Z∈  

where q  is the prime order of 1G , S ’s task is to compute and output the value 

1abP G∈ . 

The algorithm S  selects two random integers ,I J from 1{1, , }q…  and a 

random integer m  from {1, , }sq… . S guesses that the m th oracle (i.e. ,
m
I J∏ ) 

will be asked the Test  query and works by interacting with A 2 as follows: 



13 

Setup : S  selects a random number *
qs Z∈  as the PKG’s master key and 

computes pubP sP=  as the PKG’s public key. S  starts A 2, gives the master 

key s  to A 2, and answers all A 2’s queries as follows. 

1( )iH ID : S  simulates the random oracle 1H  by keeping a list of tuples 

( , ,i i ir ID Q ) which is called the 
1HL . When the 1H  oracle is queried with an input 

iID , S responds as follows. 

 If iID  is already on 
1HL  in the tuple ( , ,i i ir ID Q ), then S  outputs iQ . 

 Otherwise S  selects a random *
i qr Z∈  and outputs i iQ r P= , and then 

adds the tuple  ( , ,i i ir ID Q )  to 
1HL . 

( )iCreate ID : C maintains an initially empty list CL  consisting of tuples of 

the form ( , , ,i i i iID D x P ). When queried with an input iID , S  query the random 

oracle 1H  with iID , gets a tuple ( , ,i i ir ID Q ) and responds as follows. 

 If iID  is already on CL  in the tuple ( , , ,i i i iID D x P ), then S  outputs 

iP . 
 Otherwise, if iID I= , S  computes the partial secret key i iD sQ=  and 

sets the secret key ix ←⊥ , the public key iP aP← . S  adds the tuple 
( , , ,i i i iID D x P ) to CL  and outputs iP . 

 Otherwise, if iID J= , S  computes the partial secret key i iD sQ=  and 
sets the secret key ix ←⊥ , the public key iP bP← . S  adds the tuple 
( , , ,i i i iID D x P ) to CL  and outputs iP . 

 Otherwise S  generates a random number *
i qx Z∈  as the secret key, 

computes the public key i iP x P= , computes the partial secret key 

i iD sQ= . S  adds the tuple ( , , ,i i i iID D x P ) to CL  and outputs iP . 
( )iPublic Key ID− : On receiving this query, S  first searches for a tuple 

( , , ,i i i iID D x P ) in CL  which is indexed by iID , then returns iP  as the answer. 

( )iPartial Private Key ID− − : Whenever S  receives this query, S  searches 

for a tuple ( , , ,i i i iID D x P ) in CL  which is indexed by iID  and returns iD  as 

the answer. 

( )iCorrupt ID : Whenever S  receives this query, if iID I=  or J , S  

aborts (Event 2); else, S  searches for a tuple ( , , ,i i i iID D x P ) in CL  which is 

indexed by iID  and returns ( ,i iD x ) as the answer. 
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,( , )n
i jSend M∏ : S  maintains an initially empty list SL  consisting of tuples 

of the form ( , , ,, ,n n n
i j i j i jtrans r∏ ), where ,

n
i jtrans  is the transcript of ,

n
i j∏  so far and 

,
n

i jr  will be described later. S  chooses at random *
,
n

i j nr Z∈  and computes the 

reply as ,
n

i jr P . Then S  updates the tuple indexed by ,
n
i j∏  in SL . 

,( )n
i jReveal ∏ : S  maintains a list RL  of the form 

( , ,, , , , ,n n n n n n
i j ini resp ini resp i jID ID T T SK∏ ) where n

iniID  is the identification of the initiator 

in the session which ,
n
i j∏  engages in and n

respID  is the identification of the 

responder. The description of the other items will be given later. S  answers the 

query as follows: 

 If n m= , iID I=  and jID J=  or ,
n
i j∏  is the oracle who has a 

matching conversion with ,
m
I J∏ , S  aborts((Event 3)). 

 Else if iID I≠  and iID J≠   
 S  looks up the list SL   and CL for corresponding tuple 

, , , ,( , , , , , )n n n n n n
i j i j i j j i i jr T T P P∏  and ( , , ,i i i iID D x P ) separately. Then S  

computes 1
, ,

n
i j i j iK x P= ⋅ , 2

, ( , )i j i jK e D Q= , 3
, , ,

n n
i j j i j iK r T= . 

 S  makes a 2H  query. If ,
n
i j∏  is the initiator oracle then the query 

is of the form ( 1 2 3
, , ,|| || || || || ||i j i j i j i j i jID ID T T K K K ) or else of the form 

( 1 2 3
, , ,|| || || || || ||j i j i i j i j i jID ID T T K K K ). 

 Else if iID I=  or iID J=  
 S  looks up the list SL   for corresponding tuple 

, , , ,( , , , , , , , )n n n n n n n n
i j i j i j j i i j i jr T T R R P P∏ . 

 S  looks up the list 
2HL  to see if there exists a tuple index by 

( , , ,i j i jID ID T T ) if ,
n
i j∏  is an initiator, otherwise index by 

( , , ,j i j iID ID T T ). 

 If there exists such tuple and the corresponding 1
,i jK , 2

,i jK  and 3
,i jK  

satisfies the equation 1
,( , ) ( , )n n

i j i je K P e P P= , 2
,( , )n

i j i je Q P K=  and 
3
,( , ) ( , )n n

i j i je K P e T T=  , then S  obtains the corresponding ih  and 

sets ,
n
i jSK = ih . Otherwise S  chooses at random , {0,1}n k

i jSK ∈ . 
 Else  

 S  looks up the list SL   for corresponding tuple 

, , , ,( , , , , , , , )n n n n n n n n
i j i j i j j i i j i jr T T R R P P∏ . 

 S  looks up the list 
2HL  to see if there exists a tuple index by 

( , , ,i j i jID ID T T ) if ,
n
i j∏  is an initiator, otherwise index by 

( , , ,j i j iID ID T T ). 
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 If there exists such tuple and the corresponding 1
,i jK , 2

,i jK  and 3
,i jK  

satisfies the equation 1
,( , ) ( , )n n

i j i je K P e P P= , 2
,( , )n

i j i je Q P K=  and 
3
,( , ) ( , )n n

i j i je K P e T T=  , then S  obtains the corresponding ih  and 

sets ,
n
i jSK = ih . Otherwise S  chooses at random , {0,1}n k

i jSK ∈ . 

2H  query: S  maintains a list 
2HL  of the form 

( 1 2 3, , , , , , ,i j i j
u u u u u u u uID ID T T K K K h ) and responds with 2H  queries 

( 1 2 3, , , , , ,i j i j
u u u u u u uID ID T T K K K ) as follows: 

 If a tuple indexed by ( 1 2 3, , , , , ,i j i j
u u u u u u uID ID T T K K K ) is already in 

2HL , 
reply with the corresponding uh . 

 Else, if there is not such a tuple, 
 If there is a tuple indexed by ( , , ,i j i j

u u u uID ID T T ) in the list RL  such 
that the equation 1( , ) ( , )n n

u i je K P e P P= , 2
,( , )n

i j i je Q P K=  and 
3( , ) ( , )i j
u u ue K P e T T=  hold, then S  obtain the corresponding ,

n
i jSK  

and sets ,
n
i j uSK h= .Otherwise choose at random {0,1}k

uh ∈ . 

 Else if the equations do not hold for ( 1 2 3, , , , , ,i j i j
u u u u u u uID ID T T K K K ), S  

chooses at random {0,1}k
uh ∈ . 

 S  inserts the tuple ( 1 2 3, , , , , , ,i j i j
u u u u u u u uID ID T T K K K h ) into the list 

2HL . 

,( )m
I JTest ∏ : At some point, S  will ask a Test query on some oracle. If S  

does not choose one of the oracles ,
m
I J∏  to ask the Test query, then S  aborts 

(Event 4). Otherwise, S  simply outputs a random value {0,1}kx∈ . 

The probability that S  chooses ,
m
I J∏  as the Test oracle and that 2

1

1

sq q
. In 

this case, S  would not have made ,( )m
I JCorrupt ∏  or ,( )m

I JReveal ∏ queries, and 

so S  would not have aborted. If S  can win in such a game, then S  must have 

made the corresponding 2H  query of the form ( 1 2 3, , , , , ,i j i j
m m m m m m mID ID T T K K K ) if 

,
m
I J∏  is the initiator oracle or else ( 1 2 3, , , , , ,j i j i

m m m m m m mID ID T T K K K ) with 

overwhelming probability because 2H  is a random oracle. Thus S  can find the 

corresponding item in the 2H -list with the probability 
2

1
q

 and output 1
mK  as a 

solution to the CDH problem. So if the adversary computes the correct session 

key with non-negligible probability ε , then the probability that S  solves the 
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CDH problem is 2
1 2 sq q q
ε (which is non-negligible in the security parameter l ), 

contradicting to the hardness of the CDH problem. 

From the above three lemmas, we can get the following theorem. 

Theorem 1. Our scheme is a secure CTAKA scheme. 

Through the similar method, we can prove our scheme could provide forward 

secrecy property. We describe it as the following theorem. 

4. Comparison with previous scheme 

We summaries the security properties and performances of the proposed 

scheme and several related schemes from pairings. Table 1 compares the total 

time complexity of those schemes while Table 2 compares the reduced time 

complexity with pre-computation. 

For simplicity, we only consider the following computationally expensive 

operations. 

 P : pairing. 
 M : scalar point multiplication in 1G . 
 E : exponentiation in 2G . 
 A : point addition in 1G . 

Table 1. Comparisons of other CTAKA schemes from pairings(without pre-computation). 

Items Schemes 

P  M  E  A  Bandwidth Formal proof 

Wang et al.[3] 2 3 1 0 1 point No 

Shi et al.[4] 1 2 1 0 1 point No 

Luo et al.[5] 2 4 0 0 1 point No 

Mandt et al.[6] 2 3 1 2 1 point No 

Wang et al.[7] 2 2 1 0 1 point No 

Zhang et al.[8] 1 5 0 2 1 point Yes 

This paper 1 3 0 0 1 point Yes 

 

 

 

 

Table 2. Comparisons of other CTAKA schemes from pairings(with pre-computation). 
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Items Schemes 

P  M  E  A  Bandwidth Formal proof 

Wang et al.[3] 2 3 1 0 1 point No 

Shi et al.[4] 1 2 1 0 1 point No 

Luo et al.[5] 2 3 0 0 1 point No 

Mandt et al.[6] 2 2 0 2 1 point No 

Wang et al.[7] 2 2 1 0 1 point No 

Zhang et al.[8] 1 4 0 2 1 point Yes 

This paper 0 2 0 0 1 point Yes 

From Table 1, we know each party in our scheme just needs one pairing 

operation and three scale multiplications. Considering pairing evaluation is far 

more computationally expensive that other operations, our scheme has the better 

performance than other schemes[3-8]. Moreover, the party A  in our scheme can 

pre-compute 1
ABK , 2

ABK  since Ax , BP , AD  and BQ   are constant. At the 

same time, the party B  can pre-compute 1
BAK , 2

BAK . Then each party just needs 

to compute two scale multiplications on-line in order to finish the key agreement. 

From Table 2, we observe that only our scheme eliminates on-line pairing 

evaluation. Then our scheme appears to be the most efficient scheme, especially 

when we consider that certain computations can be performed off-line. 

5. Conclusion 

In this paper, we have proposed an efficient CTAKA scheme from pairings. 

We also prove the security of the scheme under random oracle. Compared with 

previous scheme, the new scheme reduces the running time. Therefore, our 

scheme is more practical than the previous related schemes for practical 

application. 
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