
1

The Optimal Linear Secret Sharing Scheme for Any
Given Access Structure
Tang Chunming, Gao Shuhong, and Zhang Chengli

Abstract—Any linear code can be used to construct a linear
secret sharing scheme. In this paper, it is shown how to decide
optimal linear codes (i.e., with the biggest information rate)
realizing a given access structure over finite fields. It amounts
to solving a system of quadratic equations constructed from
the given access structure and the corresponding adversary
structure. The system becomes a linear system for binary codes.
An algorithm is also given for finding the adversary structure
for any given access structure.

Index Terms—Cryptography, secret sharing, linear code, access
structure, adversary structure.

I. INTRODUCTION

SECRET sharing schemes were first introduced by Blak-
ley [4] and Shamir [22] in 1979. Since then, many

constructions have been proposed. The relationship between
Shamir’s secret sharing scheme and Reed-Solomon codes was
pointed out by McEliece and Sarwate in 1981 [18]. Later
several authors have considered construction of secret sharing
schemes using linear error correcting codes. Massey utilized
linear codes for secret sharing schemes and pointed out the
relationship between the access structure and the minimal
codewords of the dual code of the underlying codes [15],
[16]. Several authors have investigated minimal codewords
for several classes of codes and characterized their access
structures [1], [2], [3], [10], [11], [21], [23]. Unfortunately,
determining minimal codewords is an NP-hard problem for
general linear codes.

As pointed out by Massey [17], the main problem is to
characterize which access structures can be realized by linear
codes. We call this the access structure problem.

In [14], Karchmer and Widgerson gave a significant result
that there exists a linear code for any access structure among n
participants, however, there still exist the following problems:

1) whether does there exist an ideal linear code realizing
given access structure? how to construct it if it exists?
A linear code is ideal if the length of code is equal to
n+ 1, where n is the number of participants.

2) how to gain the optimal linear code realizing given
access structure if there is not ideal linear code? A linear
code is optimal if the length of code is the shortest
among all linear codes which realize the given access
structure. Obviously, the length of optimal linear code
is bigger than n+ 1.
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1) An access structure uniquely determines an adversary
structure and vice versa. We first give an algorithm for
finding the adversary structure R corresponding to a
given access structure Γ.

2) We show that finding linear codes for an access structure
Γ is equivalent to solving a system of quadratic polyno-
mial equations which is constructed from Γ and R. The
given access structure Γ is realizable by a linear code
over Fq if and only if the system has a solution over Fq.
When the underlying field is F2, the system becomes a
linear system, so can be solved in polynomial time (in
terms of the sizes of Γ and R).

3) We show how to reduce the number variables that are
used in the polynomial equations, hence speeding up
any algorithm for solving the polynomial system. This
seems to be the first algorithmic approach for the access
structure problem.

4) We propose an algorithm to construct the optimal linear
code realizing a given access structure if the ideal linear
code does not exist.

Related Works. The secret sharing schemes we consider
in this paper are ideal and perfect. A secret sharing scheme
is called ideal if the size of each share is equal to the size
of the secret, and called perfect if every subset of shares can
either reconstruct the secret or get no partial information at
all on the secret, that is, if a subset of the participants can
deduce any partial information on the secret then they can
completely reconstruct the secret. The span program proposed
by Karchmer and Widgerson [14] is a secret sharing scheme
that can be perfect but not ideal. In their paper, an access
structure corresponds to a monotone Boolean function. They
show how to compute monotone functions via matrices over
finite fields (which correspond to generating matrices for linear
codes). They pointed out that it is easy to realize any access
structure via non ideal secret sharing schemes. Further results
in this direction can be found in [5], [8], [9], [12], [13], [24],
[25].

Outline of the Paper. The paper is organized as follows. In
Section II, we recall the relationships between secret sharing
schemes and linear codes. In Section III, we consider the
existence of linear codes over a finite field Fq for a given
access structure and present an efficient algorithm for finding
the adversary structure for any given access structure. In
Section IV, we give improvements on results in Section III,
especially on what reducing the number of constraints needed
from R. In Section V, an algorithm to find optimal linear code
is proposed.
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II. SECRET SHARING SCHEMES AND LINEAR CODES

A linear code C of length n+ 1 over Fq is simply a linear
subspace of Fn+1

q . If C has dimension k, then C is generated
by the rows of a k × (n + 1) matrix G = (g0,g1, · · · ,gn)
of rank k, which is called a generating matrix of C. There
are several ways to use linear codes to construct secret
sharing schemes [15], [21]. We focus mainly on secret sharing
schemes that are perfect and ideal.

Suppose a secret s is to be shared among n participants,
identified as 1, ..., n. We assume that the secret s can be
viewed as an element in a finite field Fq. Let C be a linear
code of length n+ 1 over Fq with dimension k. To compute
the shares of s, a dealer D chooses a random codeword
t = (t0, t1, ..., tn) ∈ C such that t0 = s. Then ti is the share
for the participant i, 1 ≤ i ≤ n. More concretely, this can done
as follows. Suppose G = (g0,g1, · · · ,gn) is a generating
matrix for C where each gi is a column vector of length k.
Choose a random vector u = (u0, ..., uk−1) ∈ Fk

q such that
s = ug0. There are altogether qk−1 such vectors u ∈ Fk

q . The
dealer D computes the corresponding codeword

t = (t0, t1, ..., tn) = uG,

then securely sends ti to participant i as a share for i =
1, 2, ..., n.

The dual code C⊥ of C is defined as

C⊥ = {c ∈ Fn+1
q |Gct = 0},

that is, a vector c ∈ Fn+1
q is in C⊥ iff c is orthogonal to all

codewords in C. If c = (c0, c1, ..., cn) ∈ C⊥ with c0 ̸= 0
then, for any codeword (s, t1, . . . , tn) ∈ C, we have

s =
n∑

i=1

− ci
c0

ti. (1)

Let
Sc = {i|1 ≤ i ≤ n, and ci ̸= 0}.

Then the equation (1) implies that the secret s can be recon-
structed from the shares ti, i ∈ Sc. Now suppose S is any
subset of [1, n] = {1, . . . , n}. The following lemma tells us
when the participants in S can reconstruct the secret.

Lemma 1. Let (s, t1, . . . , tn) ∈ C be a random codeword
where C is generated by a matrix G = (g0,g1, · · · ,gn). Then,
for any subset S of [1, n],

(a) if g0 is a linear combination of gi, i ∈ S, then the
participants in S can reconstruct the secret s by a linear
function as in (1) for some c ∈ C⊥ ; and

(b) if g0 is not a linear combination of gi, i ∈ S, then the
participants in S can not compute any information on
s.

Part (a) is straightforward. Part (b) needs some clarifications.
When (s, t1, . . . , tn) is a random codeword in C, the values
s, t1, . . . , tn can be viewed as random variables. Then it is
straightforward to show that the conditional Shannon entropy
H(s|ti, i ∈ S) = 0 in part (b). Hence the values ti, i ∈ S
do not contain any information on s. This means that there is
no function (linear or nonlinear) nor algorithm to compute s
from the shares ti, i ∈ S.

A subset S ⊆ [1, n] is called an access or accepted set of
C if there is c ∈ C⊥ such that c0 = 1 and

supp(c) ⊆ S ∪ {0},

where supp(c) = {i ∈ [0, n]|ci ̸= 0}, called the support of
c. If S is an accepted set then any set containing S is also
accepted. An access set S is called minimal if no proper subset
of it is an access set. Let Γ(C) denote the set of all minimal
access sets in C. Then a subset S is an access set of C iff S
contains one of the sets on Γ(C).

A subset S is called a rejected set of C if it is not an access
set. If S is a rejected set then its any subset is also rejected.
A rejected subset S is called maximal if every subset proper
containing S is an access set. Let R(C) denote the set of all
maximal rejected sets of C.

Note that, given a code C, we do not know any efficient
algorithm to find Γ(C), as the problem of finding vectors of
minimum Hamming weight in an arbitrary linear code is NP-
hard. In the next section, we shall show how to find R(C)
from Γ(C), and give necessary and sufficient conditions for
an access structure to be realizable by linear codes.

Before we proceeds to the next section, we briefly mention
more general secret sharing schemes constructed from linear
codes. Suppose the secret is a vector (s1, . . . , sℓ) of ℓ elements
from a finite field Fq, and it is to be shared by n participants
1, . . . , n. Let m ≥ n. We use a linear code C of length m+ ℓ
over Fq to get a secret sharing scheme as follows. Partition
the set [1,m] = {1, 2, . . . ,m} as

[1,m] = T1 ∪ T2 ∪ · · · ∪ Tn.

Suppose C has a generator matrix of the form

G = (u1, . . . ,uℓ,g1, . . . ,gm),

where the column vectors u1, . . . ,uℓ are linearly independent
over Fq. To share a secret (s1, . . . , sℓ), a dealer picks a random
codeword

c = (u1, . . . , uℓ, t1, . . . , tm) ∈ C

such that (u1, . . . , uℓ) = (s1, . . . , sℓ). The share for the
participant i (1 ≤ i ≤ n) is the sequence tj , j ∈ Ti.

When ℓ = 1, this secret sharing scheme is equivalent to
the span program of Karchmer and Widgerson [14], which
is perfect but not ideal. It is easy to show that an arbitrary
access structure can be realized by choosing a large m and a
proper partition of [1,m]. So the access structure problem for
this class of secret sharing schemes is trivial. However, finding
the smallest m to realize a given assess structure is still wide
open, which corresponds to the shortest program to compute
a monotone Boolean function.

When ℓ > 1, the above secret sharing scheme is not
perfect any more, that is, it is possible that a subset of
the participants can compute some partial information on
the secret (s1, . . . , sℓ), but can not completely determine the
secret. These schemes are studied by I Cascudo and H Chen
et al in [6], [7], and by W. Ogata and K Kurosawa in [19],
[20].
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III. LINEAR CODES FOR GIVEN ACCESS STRUCTURES

Let Γ = {S1, ..., Sm} be any collection of subsets of [1, n].
Without loss of generality, we assume that no subset in Γ con-
tains another subset in Γ. Then Γ defines an access structure
for which a subset S of [1, n] is accepted iff S contains a
subset in Γ. Our goal in this section is characterizing, for a
given access structure Γ, when there is a linear code C over
Fq such that Γ = Γ(C).

A subset T of [1, n] is called rejected if it does not contain
any subset in Γ. The collection of all rejected sets is called
the adversary structure of Γ. Let R denote the collection of
all maximal rejected sets of Γ.

Example 1. Assume an access structure

Γ = {(1, 2, 3), (3, 4, 5), (3, 5, 6)}

in a secret sharing scheme with participants {1, 2, 3, 4, 5, 6}.
Then its adversary structure is

R = {(1, 2, 4, 5, 6), (1, 3, 4, 6), (2, 3, 4, 6), (1, 3, 5), (2, 3, 5)}.

A. Finding Adversary Structures from Access Structures

Suppose we are given an access structure:

Γ = {S1, ..., Sm},

where Si ⊂ [1, n] for 1 ≤ i ≤ m. Γ can be denoted by a
matrix:

Γ =


h11 h12 . . . h1n

h21 h22 . . . h2n

. . .
hm1 hm2 . . . hmn


where hij ̸= 0 if j ∈ Si, else hij = 0 for 1 ≤ i ≤ m,
1 ≤ j ≤ n. Also, we define a m× (n+ 1) matrix H with the
following form:

H =
(
1 Γ

)
=


1 h11 h12 . . . h1n

1 h21 h22 . . . h2n

. . .
1 hm1 hm2 . . . hmn

 =


h1

h2

· · ·
hm

 ,

(2)
where 1 is an all-one column vector.

We shall assume in the rest of the paper that each participant
i ∈ [1, n] is in some subset in Γ, so H has no all-zero column.
Compared with matrix Γ, the matrix H is only added a column
called the 0th column, and other columns of H are called
the 1st,... nth column. The i-th column of H corresponds to
participant i for i = 1, 2, ..., n.

Let zj denote the jth column of H, 1 ≤ j ≤ n. For each
1 ≤ i ≤ m, define

Ai = {1 ≤ j ≤ n| |supp(zj)| = i},

where|S| denotes the number elements in a set S. Each Ai

can be partitioned as

Ai = Ai1 ∪ · · · ∪Ais,

where k, l ∈ Ai are in one group iff the kth and lth column
of H have the same support. This implies that if k, l are in
different groups, there exist j1, j2 ∈ {1, 2, ...,m} such that

hj1k ̸= 0, hj1l = 0 and hj2k = 0, hj2l ̸= 0. Certainly, s ≤(
i
m

)
.

Also, for any subset B ⊆ [1,m], let HB denote the
submatrix H consisting of the rows indexed by elements in
B. We say a subset T ⊆ [1, n] overlays a subset B ⊆ [1,m]
if, for each i ∈ B, there exists j ∈ T such that hij ̸= 0.

Lemma 2. Let B ⊆ [1,m] with |B| = t. If T1 ⊆ Ai,
|T1| > Ci

t−1, and any two elements in T1 are in different
groups in Ai, then T1 must overlay B.
Proof: There exist at most

(
i

t−1

)
different groups in Ai in t−1

rows of HB , hence, T1 must overlay B. �
Note that if A ∪A′ = [1, n] and A ∩A′ = ∅, then A = A′.

We have the following simple lemma.
Lemma 3. Let B ⊆ [1,m]. Then T ⊆ [1, n] overlays B if

and only if T does not contain any Si ∈ Γ with i ∈ B.
Theorem 1. A subset T ⊆ [1, n] is a maximal rejected set

of Γ iff [1,m] is overlayed by T but not by any proper subset.
Proof: For any k ∈ T , T ∪ {k} contains at least a Si ∈ Γ.
That is, T is a rejected set, but T ∪ {k} is not a rejected set
for any k ∈ T , i.e., k /∈ T , hence T is a maximal rejected set
according to the definition of maximal rejected set.

On the other hand, if S ∈ R, then S must overlay [1,m]
from Lemma 3. Now, assume there exists a proper subset
S′ ⊂ S such that S′ overlaps [1,m], then S′ is a rejected
set. However, S ⊂ S′ is contrary to the assumption that S is
a maximal rejected set. That is, if S is a maximal rejected set,
then it must be generated by a set T which overlays [1,m],
however, [1,m] is not overlayed by any proper subset of T .�

According to this theorem, we provide an algorithm to
generate adversary structure R of Γ.

Algorithm: Finding R from Γ.
1) Initially R is empty. Define Ai’s from Γ as above.
2) If Am ̸= ∅, then add {i} to R for each i ∈ Am.
3) For i from m − 1 down to 1, if Am−i ̸= ∅, find all

subsets

T1 ⊆ Am−i, T2 ⊆ A1 ∪ · · · ∪Am−i−1,

such that [1,m] is overlayed by T1∪T2 not by any proper
subset of T1 ∪ T2, and |T1| ≥ 1. For each of them, add
T1 ∪ T2 to R.

4) Return R.
This algorithm may still have exponential running time

when n is large. We hope to improve it to polynomial time
in terms of the sizes of Γ and R. Note that it is possible that
the size of R itself may be exponentially larger than that of
Γ. So there is no algorithm that is polynomial in the size of
R alone.

B. Finding Linear Codes for Given Access Structures

In this section, we propose a method to decide when an
access structure Γ can be realized by linear codes, that is,
whether there is a linear code C over Fq such that Γ = Γ(C).
We need another characterization of rejected sets.

Lemma 4. Let C ⊆ Fn+1
q be any linear code. Then a subset

T ⊆ [1, n] is a rejected set of C iff there is a codeword
c = (c0, c1, . . . , cn) ∈ C such that c0 = 1 and ci = 0 for
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all i ∈ T .
Proof: Let G = (g0,g1, · · · ,gn) be any generator matrix
for C. Suppose G has k rows (which need not be linearly
independent). First assume that T is a rejected set of C. By
definition, this means that g0 is not a linear combination of
the vectors gi, i ∈ T . By linear algebra, there is a vector
v = (v1, . . . , vk) ∈ Fk

q such that

vg0 = 1, vgi = 0, for all i ∈ T.

Hence the codeword c = vG ∈ C has the required the
property.

Conversely, suppose C contains such a codeword c ∈ C.
Then c = vG for some vector v = (v1, . . . , vk) ∈ Fk

q . T
must be a rejected set, since if T were an accepted set then g0

would be a linear combination of the vectors gi, i ∈ T . Since
ci = vgi = 0 for all i ∈ T , we would have c0 = vg0 = 0, a
contradiction. �

This lemma immediately gives us a method for find-
ing linear codes to realize a given access structure Γ =
{S1, S2, . . . , Sm}. Let H be defined as above where hij ̸= 0
were treated as unknowns for all j ∈ Si. Suppose we have
found the corresponding adversary structure of Γ:

R = {R1, R2, . . . , Rℓ}.

Define

G =


1 g11 g12 · · · g1n
1 g21 g22 · · · g2n
· · · · · · · · · · · · · · ·
1 gℓ1 gℓ2 · · · gℓn

 , (3)

where gij = 0 if j ∈ Ri and gij is an unknown for all j ̸∈ Ri.
Theorem 2 There is a linear code for a given access structure
Γ = {S1, ..., Sm} if and only if the following system of
quadratic equations

GH⊤ = 0, (4)

has a solution for hij , j ∈ Si, and gij , j ̸∈ Ri, over Fq with
hij ̸= 0 for j ∈ Si.
Proof: Assume there exists a linear code C so that Γ(C) = Γ.
Then all the minimal codewords with the first component 1
in C⊥ are just h1, ...,hm, and for each Ri ∈ R, there is no
codeword h ∈ C⊥ such that h0 = 1 and supp(h) \ {0} ⊆ Ri.
According to Lemma 4, Ri ∈ R if and only if if there exists
a codeword gi ∈ C such that gi0 = 1 and gij = 0 if j ∈ Ri.
Obviously, ⟨gi,hj⟩ = 0 for 1 ≤ i ≤ ℓ and 1 ≤ j ≤ m. Hence
the system (4) has a required solution over Fq.

Now, assume G and H is a solution to (4). Let C be the row
span of G. Obviously, h1, ...,hm ∈ C⊥, hence S1, ..., Sm ∈
Γ(C). Also, the ith row of G implies that Ri ∈ R(C) for
1 ≤ i ≤ ℓ. Therefore, C has no other minimal accepted sets,
so is a linear code so that Γ(C) = Γ. �

C. Some Examples

Example 2. Find a linear code over F7
q for Γ =

{(1, 2, 3), (3, 4, 5), (3, 5, 6)}.

According to Theorem 1,
R = {(1, 2, 4, 5, 6), (1, 3, 4, 6), (2, 3, 4, 6), (1, 3, 5), (2, 3, 5)}.
Let

H =

 1 h11 h12 h13 0 0 0
1 0 0 h23 h24 h25 0
1 0 0 h33 0 h35 h36

 ,

G =


1 0 0 g13 0 0 0
1 0 g22 0 0 g25 0
1 g31 0 0 0 g35 0
1 0 g42 0 g44 0 g46
1 g51 0 0 g54 0 g56

 ,

where hij ∈ F∗
q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6, and gij ∈ Fq for

1 ≤ i ≤ 5, 1 ≤ j ≤ 6.
According to Theorem 2, we need to solve the following

system of equations:

1 + h13g13 = 0
1 + h12g22 = 0
1 + h11g31 = 0
1 + h12g42 = 0
1 + h11g51 = 0
1 + h23g13 = 0
1 + h25g25 = 0
1 + h25g35 = 0
1 + h24g44 = 0
1 + h24g54 = 0
1 + h33g13 = 0
1 + h35g25 = 0
1 + h35g35 = 0
1 + h36g46 = 0
1 + h36g56 = 0

(5)

It is straightforward to find a general solution: h13 = h23 =
h33, h25 = h35, g31 = g51 = −h−1

11 , g22 = g42 = −h−1
12 ,

g44 = g54 = −h−1
24 , g25 = g35 = −h−1

25 , g46 = g56 = −h−1
36 ,

g13 = −h−1
13 . Hence there is a linear code C in F7

q for the
access structure Γ. �

Example 3. Find a linear code C in F5
q for Γ =

{(1, 2), (2, 3), (3, 4)}.
According to Theorem 1, R = {(1, 3), (1, 4), (2, 4)}. Let

H =

 1 h11 h12 0 0
1 0 h22 h23 0
1 0 0 h33 h34

 ,

G =

 1 0 g12 0 g14
1 0 g22 g23 0
1 g31 0 g33 0

 ,

where hij ∈ F ∗
q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, and gij ∈ Fq for

1 ≤ i ≤ 3, 1 ≤ j ≤ 4.
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According to Theorem 2, we obtain the following equations:

1 + h12g12 = 0
1 + h12g22 = 0
1 + h11g31 = 0
1 + h22g12 = 0
1 + h22g22 + h23g23 = 0
1 + h23g33 = 0
1 + h34g14 = 0
1 + h33g23 = 0
1 + h33g33 = 0

(6)

It is again straightforward to check that this system has no
solution over Fq for all q. Hence there is no a linear code C
in F5

q for the access structure Γ. �
For the next example, one can imagine that there are two

companies A and B. The administrators of company A are
players 1, 2, 3 and administrators of company B are players
4, 5, 6. They plan to start a joint venture project. The project
can be executed only if majority of the administrators of each
company agree. Hence the following model could be useful
for this situation. Generally, sets A and B may have more
elements.
Example 4. Let

Γ = {(1, 2, 4, 5), (1, 2, 4, 6), (1, 2, 5, 6), (1, 3, 4, 5), (1, 3, 4, 6),
(1, 3, 5, 6), (2, 3, 4, 5), (2, 3, 4, 6), (2, 3, 5, 6)}.

Then

R = {(1, 2, 3, 4), (1, 2, 3, 5), (1, 2, 3, 6), (1, 4, 5, 6), (2, 4, 5, 6),
(3, 4, 5, 6)}.

Let

H =



1 h11 h12 0 h14 h15 0
1 h21 h22 0 h24 0 h26

1 h31 h32 0 0 h35 h36

1 h41 0 h43 h44 h45 0
1 h51 0 h53 h54 0 h56

1 h61 0 h63 0 h65 h66

1 0 h72 h73 h74 h75 0
1 0 h82 h83 h84 0 h86

1 0 h92 h93 0 h95 h96


,

G =


1 0 0 0 0 g15 g16
1 0 0 0 g24 0 g26
1 0 0 0 g34 g35 0
1 0 g42 g43 0 0 0
1 g51 0 g53 0 0 0
1 g61 g62 0 0 0 0

 ,

where hij ∈ F∗
q for 1 ≤ i ≤ 9, 1 ≤ j ≤ 6, and gij ∈ Fq for

1 ≤ i ≤ 6, 1 ≤ j ≤ 6.
The general solution is of the form in Fq: h11 = h21 =

h31 = g−1
51 , h12 = h22 = h32 = g−1

42 , h41 = h51 = h61 =
g−1
61 , h43 = h53 = h63 = g−1

43 , h72 = h82 = h92 = g−1
62 ,

h73 = h83 = h93 = g−1
53 , h14 = h44 = h74 = g−1

24 , h15 =
h45 = h75 = g−1

15 , h24 = h54 = h84 = g−1
34 , h26 = h56 =

h86 = g−1
16 , h35 = h65 = h95 = g−1

35 , h36 = h66 = h96 = g−1
26

where 1 + h11g61 + h12g62 = 0, 1 + h21g61 + h22g62 = 0,
1+h31g61+h32g62 = 0, 1+h41g51+h43g53 = 0, 1+h51g51+

h53g53 = 0, 1+h61g51+h63g53 = 0, 1+h72g42+h73g43 = 0,
1+h82g42+h83g43 = 0, 1+h92g42+h93g43 = 0, 1+h14g34+
h15g35 = 0, 1+h44g34+h45g35 = 0, 1+h74g34+h75g35 = 0,
1+h24g24+h26g26 = 0, 1+h54g24+h56g26 = 0, 1+h84g24+
h86g26 = 0, 1+h35g15+h36g16 = 0, 1+h65g15+h66g16 = 0,
1 + h95g15 + h96g16 = 0.

When q = 2, the polynomial system (4) becomes a linear
system for G, as the nonzero entries of H must all be 1. Hence
the system can be solved by Gauss elimination. Therefore,
given an access structure Γ, if the adversary structure R is
found, then one decide in polynomial time (in terms of the
sizes of Γ and R) where there is a linear code over F2 to
realize Γ.

IV. IMPROVEMENT ON ADVERSARY STRUCTURE

Since C⊥ is the row span space of H. We consider the
following definition.

Definition 1[7] A subset R ⊆ [1, n] is called a real rejected
set of C if there is no y ∈ C⊥ such that y0 = 1 and supp(y)\
{0} ⊆ R. A real rejected set R is called a maximal real
rejected set if any set R′ with R ⊂ R′ can recover the secret.

According to this above definition, it is obvious that some
subsets Ri1 , ..., Rit in R are rejected sets because it is
impossible for each Rij (j = 1, 2, ..., t) that there is a
codeword c ∈ C⊥ such that supp(c) \ {0} ⊆ Rij . Hence,
we only consider a smaller adversary structure called as real
adversary structure R(C) in which each element R maybe
satisfy that there is a codeword c ∈ C⊥ such that c0 = 1 and
supp(c) \ {0} ⊆ R.

In this section, we will proposed an algorithm to find R(C).

A. Definition of Real Adversary Structure

Since C⊥ is the row span space of H, any vector y ∈ C⊥

is of the form:

y = (y0, y1, ..., yn) = (
m∑
i=1

ki,
m∑
i=1

kihi1, ...,
m∑
i=1

kihin) (7)

Let B = {i1, i2, ..., it} ⊆ [1,m] and 2 ≤ t ≤ m. We use
HB denotes a sub-matrix of H which is composed of all rows
of H indexed by B, that is,

HB =


1 hi11 hi12 . . . hi1n

1 hi21 hi22 . . . hi2n

. . .
1 hit1 hit2 . . . hitn

 =


hi1

hi2

. . .
hit

 . (8)

Definition 2. (Possible Vector of HB). We call a row vector

y = (y0, y1, ..., yn) = (
∑
i∈B

ki,
∑
i∈B

kihi1, ...,
∑
i∈B

kihin)

as a possible vector of HB where ki ∈ F ∗
q for i ∈ B.

Definition 3. (Candidate Accepted Vector of HB). We call
a possible vector y = (1, y1, ..., yn) of HB as candidate
accepted vector of HB if y does not cover any one of vectors
hi1 , ...,hit .

Definition 4. (Maximal Candidate Accepted Vector of HB).
A candidate accepted vector y = (1, y1, ..., yn) of HB is called
maximal candidate accepted vector of HB if for each i with
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yi = 0, and there are at least two non-zero entries in the ith
column of HB , then there is j ∈ B such that supp(hj) ⊆
supp(y)

∪
{i}.

Let VMB be the set of all maximal candidate accepted
vectors of HB .

Definition 5. ((Maximal) Candidate Accepted Set). A set
Sy is called as candidate accepted set if y is a candidate
accepted vector. A candidate accepted set Sy is called as
maximal candidate accepted set if y is a maximal candidate
accepted vector.

Let RMB = {Sc|c ∈ VMB}.
Definition 6. For any B ⊆ [1,m] with |B| ≥ 2, let R′

MB

consist of elements in RMB that do not contain any one of
S1, ..., Sm. Let

R(C) = ∪B⊆[1,m],|B|≥2R
′
MB .

R(C) is called as real adversary structure of Γ from C⊥.
Example 5. Assume access structure Γ =

{(1, 2, 3), (3, 4, 5), (3, 5, 6)} in a secret sharing scheme
with participants {1, 2, 3, 4, 5, 6}. Hence H is of the form

H =

 1 a1 a2 a3 0 0 0
1 0 0 b1 b2 b3 0
1 0 0 c1 0 c2 c3

 . (9)

According to Definition 6, R(C) = {(1, 2, 4, 5, 6), (3, 4, 6)}.
Comparing with Example 1, |R(C)| ≤ |R|.

B. Construction of Real Adversary Structure

Definition 7.A matrix M is called decomposable if there
is a row and column permutation transforming M into the
following form:

M =

(
M1 0
0 M2

)
where each Mi(i = 1, 2) has at least one non-zero row and 0
denotes a all-0 matrix. Otherwise M is called indecomposable.

By permuting rows and columns, H can be transformed into
the following form:

H =


1 Γ1 0 . . . 0
1 0 Γ2 . . . 0

. . .
1 0 0 . . . Γt

 , (10)

where each Γi are indecomposable sub-matrixes for 1 ≤ i ≤
t.
Definition 8.Define E⊕F = {Z|Z = X∪Y,X ∈ E, Y ∈ F},
where E and F are any two collects of sets.
Theorem 3. Suppose

Γ =


Γ1 0 . . . 0
0 Γ2 . . . 0

. . .
0 0 . . . Γt

 , (11)

and every Γi(1 ≤ i ≤ t) is indecomposable. If T , T1, ..., Tt
are real adversary structure of access structure Γ,Γ1, ...,Γt

respectively, then T = T1 ⊕ T2 ⊕ · · · ⊕ Tt.

Proof: Let Γi be only related with the i1-th, ..., isi-th
columns of Γ for 1 ≤ i ≤ t, where s1 + s2 + ...+ st = n.

Assume any S ∈ T1⊕T2⊕· · ·⊕Tt, that is, S = S1∪S2∪· · ·∪
St and each Si ∈ Ti for i = 1, 2, ..., t. Obviously, S ⊂ [1, n] is
a candidate accepted set because it is independent between any
Si and Sj . At the same time, S must be a maximal candidate
accepted set, otherwise, then there exists at least a j ∈ S such
that S ∪ {j} is a candidate accepted set, hence j is related
with some Γi, that is, there exists some Si such that Si ∪ {j}
is a candidate accepted set which is contrary to this case that
Si is a maximal candidate accepted set. So S ∈ T .

Assume any S ∈ T , then S can be divided into S = S1 ∪
S2∪· · ·∪St, where Si ⊆ {i1, ..., isi}. Because all participants
in S cannot reconstruct the secret, hence all participants in
each Si can not also do it.

If some Si is only a candidate accepted set, but not in Ti,
i.e., it is not a maximal candidate accepted set, however, other
Sj ∈ Tj , j ̸= i. For set {i1, ..., isi}, there must exist a subset
S′ ⊂ {i1, ..., isi} such that S′∪Si ∈ Ti, hence S1∪ · · ·∪S′∪
Si ∪ · · · ∪ St also is a maximal candidate accepted sets, it is
contrary to S = S1 ∪S2 ∪ · · · ∪St ∈ T . So, each Si ∈ Ti, for
i = 1, 2, ..., t.

That is, if any S ∈ T , then S ∈ T1 ⊕ T2 ⊕ · · · ⊕ Tt. �
Hence, it is reduced to construct real adversary structure of

indecomposable matrix Γi when we try to find real adversary
structure of Γ.

Let Ai = {j|1 ≤ j ≤ n, |supp(zj)| = i}, where zj is the
jth column of HB . Obviously,

∑m
i=0 |Ai| = n.

Lemma 5. For any HB , if l ∈ A1, the participant Pl must
belong to every element in generating adversary structure of
HB .
Proof: Assume y = (1, y1, ..., yn) is a possible vector of
HB , then the lth component of y can be computed from
yl =

∑t
j=1 kjhij l. Because k1, ..., kt ∈ F ∗

q , and only one
of hi1l, ..., hitl does not equal 0, hence yl ̸= 0. �
Theorem 4. If B is overlayed by T1∪T2, but not by any proper
subset of T1∪T2, then T1 ∪ T2 ∈ TB , where T1∩A1 = ∅ and
T2 ∩ A1 = ∅. Every element in TB can be obtained by this
way.
Proof: For any k ∈ T1 ∪ T2 and k /∈ A0, T1 ∪ T2 \ {k} does
not overlay B, T1 ∪ T2 ∪ {k} contains at least one Sj ∈ Γ
where j ∈ B. That is, T1 ∪ T2 is a candidate accepted set,
but T1 ∪ T2 ∪ {k} is not a candidate accepted set for any
k ∈ T1 ∪ T2, i.e., k /∈ T1 ∪ T2, hence T1 ∪ T2 is in TB
according to the definition of maximal candidate accepted set.

T1 ∩A1 = ∅ and T2 ∩A1 = ∅ hold from Lemma 5.
On the other hand, if S ∈ TB , then S must overlay B from

Lemma 3. Now, assume there exists a proper subset S′ ⊂ S
such that S′ overlays B, then S′ is a generating candidate
set of HB . However, S ⊂ S′ is contrary to this case S is
a maximal candidate accepted set. That is, if S is a maximal
rejected set of HB , then it must be generated by a set T which
overlays B, however, B is not overlayed by any proper subset
of T . �

Now, we will provide an algorithm to generate R(C) for
any access structure Γ.

Assume access structure Γ is decomposable and is com-
posed of Γ1, ...,Γt, where each Γi is indecomposable for
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i = 1, ..., t.
Algorithm: Finding R(C) from Γ.
1) Construct real adversary structure Ti for Γi.

a) Assume that Hi = (1 Γi) is an mi×(ni+1) matrix,
for simplicity we denote its rows and columns by
using symbols {r1, r2, ..., rmi} and {0, l1, ..., lni}
respectively, where column 0 denotes the first
column of Hi,

∑t
i=1 mi = m and

∑t
i=1 ni = n.

HiB is a sub-matrix of Hi which is composed of
all rows of Hi indexed by B which is a subset of
{r1, r2, ..., rmi} and 2 ≤ t(= |B|) ≤ mi.

b) The following algorithm will generate TiB of HiB

(initially TiB is empty. Assume

Aj = {lk|k ∈ {1, ..., ni}, |supp(sk)| = j}

where column vector sk is the kth column of HiB .
i) If At ̸= ∅, then add {l1, ..., lni} \ {j} to TiB

for each j ∈ At.
ii) Assume At−j ̸= ∅. If j = 1, ..., t− 3 and T1 ⊆

At−j , T2 ⊆ A2∪...∪At−j−1, add {l1, ..., lni}\
T1 ∪ T2 to TiB , or if j = t − 2 and T1 ⊆
A2, T2 ⊆ A2, then add {l1, ..., lni} \T1 ∪T2 to
TiB , where B is overlayed by T1 ∪ T2 but not
by any proper subset of T1 ∪ T2, and |T1| ≥ 1.

c) Construct Ti. Assume TiB = T ′
iB

∪D, where any
b ∈ T ′

iB
must not include any set Sy where y is

any one row vector of Hi, then

Ti = ∪B⊆[1,mi]
|B|≥2

T ′
iB .

2) Construct R(C) for Γ. According to Theorem 3,
R(C) = T1 ⊕ ...⊕ Tt.

This algorithm may still have exponential running time when n
is large. However, we will find adversary structure R(C) with
smaller size if there exist only one non-zero element in some
columns of H. Especially, the size of R(C) will be smaller
if these columns with only one non-zero elements of H are
more.

Let

G1 =


1 g11 g12 · · · g1n
1 g21 g22 · · · g2n
· · · · · · · · · · · · · · ·
1 gl1 gl2 · · · gln

 =


g1

g2

· · ·
gl

 , (12)

where gij = 0 if j ∈ Ri and R(C) = {R1, R2, ..., Rl}.
Corollary 1. There is a linear code for a given access structure
Γ = {S1, ..., Sm} if and only if the following system of
quadratic equations

G1H⊤ = 0, (13)

has a solution for hij , j ∈ Si, and gij , j ̸∈ Ri, over Fq with
hij ̸= 0 for j ∈ Si.

Example 6. (Continued Example 2)
Answer: According to Theorem 4, R(C) =
{(1, 2, 4, 5, 6), (3, 4, 6)}.

Let

H =

 1 h11 h12 h13 0 0 0
1 0 0 h23 h24 h25 0
1 0 0 h33 0 h35 h36

 ,

G1 =

(
1 0 0 g13 0 0 0
1 g21 g22 0 0 g25 0

)
,

where hij ∈ F ∗
q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6, and gij ∈ Fq for

1 ≤ i ≤ 2, 1 ≤ j ≤ 6.
According to Corollary 1, we obtain the following equa-

tions. 

1 + h13g13 = 0
1 + h11g21 + h12g22 = 0
1 + h23g13 = 0
1 + h25g25 = 0
1 + h33g13 = 0
1 + h35g25 = 0

(14)

Obviously, Equations 14 has solutions in any finite field Fq.�
Since |R(C)| ≤ |R|, the matrix G1 determined by R(C)

is much less than the matrix G determined by R. Hence, it is
easier to resolve equation 12 than to resolve equation 4.

V. THE OPTIMAL LINEAR CODE

In Section III, we solve this problem that how to construct
an ideal linear code realizing given access structure Γ if it
exists, however, how can we gain the optimal linear code
realizing given access structure if there does not exist an ideal
linear code? In this section, we will propose an algorithm to
find the optimal linear code realizing given access structure.

A. An Algorithm to Find the Optimal Linear Code

For given access structure Γ, how can we obtain the optimal
linear code if there does not exist an ideal linear code realizing
it? that is, how can we obtain the optimal linear code realizing
Γ if there is no solution for quadratic equations (4)?

In an ideal linear code, each participant in Γ ”owns”
an only component of a code, hence he ”owns” an only
corresponding column of generator matrix G and check matrix
H. In the optimal linear code, each participant in Γ ”owns”
some components of a code, as a result, he ”owns” some
corresponding columns of G and H. However, the generator
matrix G and check matrix H of the optimal linear code
realizing Γ still satisfies quadratic equations (4), hence,we
can obtain the following algorithm which can find the optimal
linear code realizing Γ.

Algorithm: The optimal linear code realizing Γ.
1) Adding to a column in matrixes G and H respectively,

we obtain two matrixes G1 and H1 with n+2 columns.
We emphasis that the new column is the ith column
of G1 and H1 respectively, furthermore, the ith column
has same forms with the (i + 1)th column in G1 and
H1 respectively for every i = 2, 3, ..., n. Two columns
have same forms if their elements satisfies restrictions
in Theorem 2.
There exists a linear code with length n + 2 realizing
Γ if the system of quadratic equations G1HT

1 = 0 has
a solution. There is an output which is a linear code
realizing Γ.

2) If there does not exist solution of G1HT
1 = 0, two

columns are added up in matrixes G and H which are
changed into two matrixes G2 and H2 with length n+3
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respectively. New two columns have same forms with
two columns or one column of G and H respectively.
There exists a linear code with length n + 3 realizing
Γ if the system of quadratic equations G2HT

2 = 0 has
a solution. There is an output which is a linear code
realizing Γ.

3) Suppose there does not exist solution of GiHT
i = 0,

where matrixes Gi and Hi are obtained by being added
up i columns from matrixes G and H respectively. i+1
columns are added up in matrixes G and H which are
changed into two matrixes Gi+1 and Hi+1 with n+i+2
columns respectively. New i + 1 columns have same
forms with i+1 columns, or i columns, ..., or one column
of G and H respectively.
There exists a linear code with length n+ i+2 realizing
Γ if the system of quadratic equations Gi+1HT

i+1 = 0
has a solution. There is an output which is a linear code
realizing Γ.

4) repeating the step 3, and obtaining a linear code realizing
Γ until the system of quadratic equations Gi+1HT

i+1 = 0
has a solution for some i.

Remarks: in order to obtain the optimal linear code, 1) in step
2, let new two columns have same forms with two columns
of G and H respectively, then new two columns have same
forms with one column of G and H respectively if there is not
a linear code when two columns have forms of two columns.

2) In step 3, let new i+1 columns first have forms of i+1
columns, then forms of i columns if there is not a linear code
for forms of i + 1 columns, then forms of i − 1 columns if
there is not a linear code for forms of i columns ,..., then same
forms if there is not a linear code for forms of 2 columns.

3) In step 3, if new i+1 columns have forms of j columns
in G (or H), its information rate is belongs to {1

2 ,
1
3 , · · · ,

1
i+2},

where 1 ≤ j ≤ i + 1. So, we first consider the linear code
with information rate 1

2 , then 1
3 , · · · , finally 1

i+2 .
Theorem 5. Given access structure Γ, the optimal linear

code realizing it must can be found from the above algorithm.
Proof: According to [14], the above algorithm must have
outputs which is a linear code realizing Γ. Next, we will prove
this linear code is the optimal linear code realizing Γ.

Case 1: If there is an output in step 1, then this output
must be the optimal linear code realizing Γ because there is
not ideal linear code realizing Γ and our linear code has the
shortest length n+2. The information rate of the optimal linear
code is 1

2 .
Case 2: The linear code with length n+ 3 in step 2 is the

shortest among all linear codes realizing Γ because there is
not linear code with length n+1 and n+2 which can realize
Γ. We can obtain the optimal linear code according to remark
1, and its information rate is 1

2 or 1
3 ,

Case 3: The linear code with length n+ i+ 2 in step 3 is
the shortest among all linear codes realizing Γ because there is
not linear code with length j = n+1, n+2, ..., n+i+1 which
can realize Γ. We can obtain the optimal linear code realizing
Γ according to remark 2 and remark 3, and its information
rate is belongs to { 1

2 ,
1
3 , · · · ,

1
i+2} �

B. An Example

In this section, we show an example to explain our algo-
rithms. According to Example 3, there is not an ideal linear
code realizing Γ = {(1, 2), (2, 3), (3, 4)} in F5

q . Now, we will
find its optimal linear code according to our algorithm in
section 5.1.

According to step 1 of our algorithms in section 5.1, we
can obtain (H1,G1) with the following forms:

(a) H1 =

 1 h′
11 h11 h12 0 0

1 0 0 h22 h23 0
1 0 0 0 h33 h34

 ,

G1 =

 1 0 0 g12 0 g14
1 0 0 g22 g23 0
1 g′31 g31 0 g33 0

 ;

(b) H1 =

 1 h11 h′
12 h12 0 0

1 0 h′
22 h22 h23 0

1 0 0 0 h33 h34

 ,

G1 =

 1 0 g′12 g12 0 g14
1 0 g′22 g22 g23 0
1 g31 0 0 g33 0

 ;

(c) H1 =

 1 h11 h12 0 0 0
1 0 h22 h′

23 h23 0
1 0 0 h′

33 h33 h34

 ,

G1 =

 1 0 g12 0 0 g14
1 0 g22 g′23 g23 0
1 g31 0 g′33 g33 0

 ;

(d) H1 =

 1 h11 h12 0 0 0
1 0 h22 h23 0 0
1 0 0 h33 h′

34 h34

 ,

G1 =

 1 0 g12 0 g′14 g14
1 0 g22 g23 0 0
1 g31 0 g33 0 0

 .

where hij , h
′
ij ∈ F ∗

q for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, and
gij , g

′
ij ∈ Fq for 1 ≤ i ≤ 3, 1 ≤ j ≤ 4.

According to Theorem 2, we obtain the following equation
systems (a’), (b’), (c’) and (d’) for (a), (b), (c) and (d)
respectively:

(a′)



1 + g12h12 = 0
1 + g12h22 = 0
1 + g14h34 = 0
1 + g22h12 = 0
1 + g22h22 + g23h23 = 0
1 + g23h33 = 0
1 + g31h11 + g′31h

′
11 = 0

1 + g33h23 = 0
1 + g33h33 = 0
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(b′)



1 + g12h12 + g′12h
′
12 = 0

1 + g12h22 + g′12h
′
22 = 0

1 + g14h34 = 0
1 + g22h12 + g′22h

′
12 = 0

1 + g22h22 + g′22h
′
22 + g23h23 = 0

1 + g23h33 = 0
1 + g31h11 = 0
1 + g33h23 = 0
1 + g33h33 = 0

(c′)



1 + g12h12 = 0
1 + g12h22 = 0
1 + g14h34 = 0
1 + g22h12 = 0
1 + g22h22 + g23h23 + g′23h

′
23 = 0

1 + g23h33 + g′23h
′
33 = 0

1 + g31h11 = 0
1 + g33h23 + g′33h

′
23 = 0

1 + g33h33 + g′33h
′
33 = 0

(d′)



1 + g12h12 = 0
1 + g12h22 = 0
1 + g14h34 + g′14h

′
34 = 0

1 + g22h12 = 0
1 + g22h22 + g23h23 = 0
1 + g23h33 = 0
1 + g31h11 = 0
1 + g33h23 = 0
1 + g33h33 = 0

There exist solution for systems (b’),(c’)over Fq, and no
solution for systems (a’),(d’) over Fq, hence there is the
optimal linear code with length 6 in F6

q for the access structure
Γ.

VI. CONCLUSION

In this paper, we consider existence of ideal linear code for
given access structure Γ, and give a method to construct the
optimal linear code realizing Γ if there is not an ideal linear
code realizing Γ. This is the best work so far in this field.
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