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Abstract. In this paper we find a lower bound of the second-order non-
linearities of Boolean bent functions of the form f(x) = Trn1 (α1x

d1 +
α2x

d2), where d1 and d2 are Niho exponents. A lower bound of the
second-order nonlinearities of these Boolean functions can also be ob-
tained by using a result proved by Li, Hu and Gao (eprint.iacr.org/2010
/009.pdf). It is demonstrated that for large values of n the lower bound
obtained in this paper are better than the lower bound obtained by Li,
Hu and Gao.
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1 Introduction

Let F2n be the extension field of degree n over F2, the prime field of characteristic
2, and let Fn2 be the n-dimensional vector space consisting of the n-tuples of
elements of F2. The finite field F2n is also an n-dimensional vector space over
F2. Let {b1, . . . , bn} be a basis of F2n over F2. Thus, for any x ∈ F2n there exists
a vector (x1, . . . , xn) ∈ Fn2 such that x = x1b1 + . . . + xnbn. This establishes a
natural F2-vector space isomorphism between F2n and Fn2 , both considered as
vector spaces over the prime field F2. We shall frequently identify x ∈ F2n with
the vector (x1, . . . , xn) ∈ Fn2 assuming a fixed basis {b1, . . . , bn}. Any function
from F2n to F2 (equivalently from Fn2 to F2) is said to be a Boolean function
on n variables. The set of all Boolean functions on n variables is denoted by
Bn. Let Z be the set of integers. The addition over Z and F2n is denoted by ‘+’
and the addition over Fn2 is denoted by ⊕. The Hamming weight (or, weight)
of x is defined as wt(x) =

∑n
i=1 xi. The Hamming distance of f, g ∈ Bn is

d(f, g) = |{x ∈ F2n : f(x) 6= g(x)}|, where the cardinality of a set S is denoted
by |S|. The algebraic normal form (ANF) of a Boolean function f ∈ Bn is

f(x1, x2, ..., xn) =
⊕

a=(a1,...,an)∈Fn
2

µa(

n∏
i=1

xaii ), (1)



where µa ∈ F2 for all a ∈ Fn2 . The maximum value of wt(a) such that µa 6= 0 is
said to be the algebraic degree of the Boolean function f and denoted by deg(f).

Boolean functions having algebraic degree at most 1 is said to be the affine
functions. The set of affine functions in Bn is same as the first-order Reed–Muller
code of length 2n, denoted by R(1, n). Similarly the set of all Boolean functions
in Bn having algebraic degree at most r is same as the rth-order Reed–Muller
code of length 2n, denoted by R(r, n).

Definition 1. The rth-order nonlinearity (r ≥ 1) of f ∈ Bn, denoted nlr(f), is
defined as

nlr(f) = min{d(f, g) : g ∈ R(r, n)}. (2)

The first-order nonlinearity is referred to as nonlinearity and usually denoted by
nl(f). When Boolean functions are used in stream or block ciphers their non-
linearities play an important role with respect to the security of the considered
ciphers. A natural generalization of nonlinearity is the rth-order nonlinearity for
r > 1. In fact for f ∈ Bn the sequence {nlr(f)}n−1r=1 , called the nonlinearity pro-
file of f , provides the complete information on the approximations of f by using
Boolean functions of lesser algebraic degrees. Unlike nonlinearity very little is
known about higher-order nonlinearity. It is also extremely difficult to compute
higher than the first-order nonlinearity of Boolean functions on large number
of variables. Therefore finding out lower and upper bounds of higher-order non-
linearities of Boolean functions is an important problem. Carlet [2] provides a
technique of computing lower bounds of higher-order nonlinearities recursively.
In the same paper Carlet provides general lower bounds on the nonlinearity
profiles of Boolean functions belonging to several important classes including
Welch, Kasami and multiplicative inverse functions. In this paper we use the
technique developed by Carlet to identify special classes of Boolean functions
for which the lower bounds of second-order nonlinearities are significantly larger
than the general bounds obtained in [2]. We believe that these investigations
will be useful in identifying cryptographically significant Boolean functions with
good nonlinearity profiles and also increase our understanding of the covering
radius problem of Reed–Muller codes.

In 1976, Rothaus [17] introduced the idea of nonlinearity. For (r ≥ 1) very
little is known on nlr(f). The best known upper bound [4] on nlr(f) has the
following asymptotic version

nlr(f) = 2n−1 −
√

15

2
· (1 +

√
2)r−2.2

n
2 +O(nr−2).

In [6, 7, 12] the list decoding algorithms for higher order Reed-Muller codes are
used to compute second-order nonlinearities. These algorithms are efficient for
n ≤ 11 and for n ≤ 13 for some particular functions. Thus there is a need to
obtain bounds of rth-order nonlinearities of different classes of Boolean functions.
Carlet [2] introduced a recursive technique to obtain a lower-bound rth-order
nonlinearity of a given Boolean function f from the lower bounds on the (r−1)th-
order nonlinearity of the derivatives of f . Since the results obtained by Carlet



are very general in nature, identifying special classes of Boolean functions which
have high lower bounds of rth-order nonlinearities for some values of r remains
an open problem. In this direction, Gode and Gangopadhyay [9] have obtained
the lower bounds of the second order nonlinearities for the Boolean functions of
the form fµ(x) = Trn1 (µx2

i+2j+1) for n > 2i. Li, Hu and Gao [14] have obtained
the lower bounds of the second order nonlinearity for the Boolean functions of
the form Fµ(x) = Trn1 (

∑m
l=1 µlx

dl), where µl ∈ F∗2n , dl = 2il + 2jl + 1, il and
jl are positive integers with n > il > jl. For more results in this direction we
refer to [8, 10, 11, 18, 19]. In this paper, we find the lower bound of second-order
nonlinearity of particular type of Boolean function f(x) = Trn1 (α1x

d1 + α2x
d2).

It is demonstrated that the lower bound of f(x) obtained in this paper is better
than the lower bound obtained by Li, Hu and Gao [14] for large values of n.

2 Preliminaries

Throughout this paper we take n = 2e. The derivative of Boolean function f ∈
Bn with respect to a ∈ F2n is defined as a function Daf(x) = f(x

⊕
a)
⊕
f(x)

for all x ∈ Fn2 . The trace function from G = F2n into E = F2c (where c|n) is
defined as

Trnc (x) =

n
c−1∑
i=0

x2
ci

, for all x ∈ F2n .

T rn1 (or simply Tr) is said to be the absolute trace function. For any x, y ∈ F2n ,
Trn1 (xy) is an inner product of x and y . The Walsh transform of f ∈ Bn at
λ ∈ Fn2 is defined as

Wf (λ) =
∑
x∈Fn

2

(−1)f(x)+λ·x.

The multiset [Wf (λ) : λ ∈ Fn2 ] is said to be the Walsh spectrum of the Boolean
function f . The relation between nonlinearity and Walsh spectrum is given as
follows:

nl(f) = 2n−1 − 1

2
max
λ∈Fn

2

|Wf (λ)|.

Using Parseval’s equality it can be proved that for any positive integer n, their
exists a λ ∈ Fn2 , such that |Wf (λ)| ≥ 2

n
2 , which implies nl(f) ≤ 2n−1 − 2

n
2−1.

For even integer n, a Boolean function which attains maximum nonlinearity
i.e. 2n−1 − 2

n
2−1, is said to be a bent function. Next we define the Niho power

functions.

Definition 2. An integer d ∈ {1, . . . , 2n − 2} is said to be a Niho exponent and
xd is said to be a Niho power function if the restrictionv of xd to F2e is linear.
In other words

d ≡ 2i (mod 2e − 1)



for some i < n. If i = 0, then d is said to be in the normalized form and has the
following unique representation

d = (2e − 1)s+ 1.

The bilinear form associated with a quadratic Boolean function f ∈ Bn is defined
by B(x, y) = f(0) + f(x) + f(y) + f(x + y). The kernel [1, 16] of B(x, y) is the
subspace of F2n defined by

Ef = {x ∈ F2n : B(x, y) = 0 for all y ∈ F2n}.

The Walsh spectrum of a quadratic Boolean function (algebraic degree at most
2) is completely characterized by the dimension of the kernel of the bilinear form
associated to it. For more details we refer to [1, 16].

Lemma 1 ([1], Proposition 1). Let V be a vector space over a field Fq of
characteristic 2 and S : V → Fq be a quadratic form. Then the dimension of V
and the dimension of the kernel of S have the same parity.

Lemma 2 ([1, 16]). If f : F2n → F2 is a quadratic Boolean function and
B(x, y) is the quadratic form associated to it, then the Walsh Spectrum of f
depends only on the dimension k, of the kernel, Ef , of B(x, y). The weight dis-
tribution of the Walsh spectrum of f is:

Wf (α) Number of α
0 2n − 2n−k

2
n+k

2 2
n−k−1

2 + (−1)f(0)2
n−k−2

2

−2
n+k

2 2
n−k−1

2 − (−1)f(0)2
n−k−2

2

Definition 3. Let Fqn be the finite extension of Fq and α ∈ Fqn . Then the set

of elements α, αq, αq
2

, ..., αq
n−1

are called the conjugates of α with respect to Fq.

The conjugate of x ∈ F2n over F2e is denoted by x and defined as x = x2
e

.
‖x‖ is defined as ‖x‖ =

√
xx, where

√
x stands for the inverse of the Frobenius

mapping ϕ(x) = x2.

Definition 4. The set of conjugates of α with respect to Fq is called the conju-
gacy class of α with respect to Fq.

Definition 5. The cyclotomic coset of z mod (2n − 1) is denoted by C(z) and
defined as

C(z) = {z′ : z′ = [2iz], 0 ≤ i ≤ n− 1}.
where [y]M ∈ {0, 1, 2, ....m− 1} such as [y]M = x mod M .

Definition 6 ([15], Page 99). A polynomial of the form

L(x) =

n∑
i=0

βix
qi

with the coefficients βi in an extension field Fqm of Fq is called a linearized
polynomial over Fqm .



The following result is proved by Carlet [2].

Proposition 1 ([2], Corollary 2) Let f be an n-variable Boolean function
and r be a positive integer smaller then n. Assume that, for some non-negative
integers M and m, we have

nlr−1(Daf) ≥ 2n−1 −M2m (3)

for every nonzero a ∈ F2n . Then we have

nlr(f) ≥ 2n−1 − 1

2

√
(2n − 1)M2m+1 + 2n

≈ 2n−1 −
√
M2

n+m−1
2 . (4)

Gode and Gangopadhyay [9] proved the following result.

Proposition 2 The lower bound of the second-order nonlinearity for the Boolean
function fµ(x) = Trn1 (µx2

i+2j+1), i > j, for n > 2i (n 6= i + j and n 6= 2i − j)
is given as

If n is an odd, then

nl2fµ(x) ≥ 2n−1 − 2
3n+2i−5

4 ;

If n is an even, then

nl2fµ(x) ≥ 2n−1 − 2
3n+2i−4

4 .

Li, Hu and Gao [14] proved the following result.

Proposition 3 The lower bound of the second-order nonlinearity for the Boolean
function Fµ(x) = Trn1 (

∑m
l=1 µlx

dl), where µl ∈ F∗2n , dl = 2il + 2jl + 1, il and jl
are positive integers with n > il > jl, are given as

1. if n < s+ t,

nl2(Fµ(x)) ≥ 2n−1 − 2
n+t−2

2 ,

2. if s+ t ≤ n < 2t,

nl2(Fµ(x)) ≥ 2n−1 − 2
2n−s−2

2 ,

3. if n = 2t and s 6= t, let p = min{n− 2s, 2t1},

nl2(Fµ(x)) ≥ 2n−1 − 2
3n+p−4

4 ,

4. if n > 2t, is an even, let p = min{n− 2s, 2t},

nl2(Fµ(x)) ≥ 2n−1 − 2
3n+p−4

4 ,

5. if n > 2t, is an odd, let q = min{n− 2s, 2t− 1},

nl2(Fµ(x)) ≥ 2n−1 − 2
3n+q−4

4 .

For descriptions of s, t, t1 we refer to [14].

For the case n = 2t, we find a Boolean function whose lower bound of second
order nonlinearity is better than the lower bound obtained by Li, Hu and Gao
[14]



3 Main Result

The following theorem is proved by Dobbertin et al.

Theorem 1 ([5], Theorem 2). Consider the Boolean function

f(x) = Trn1 (α1x
d1 + α2x

d2)

on G = F2n , where n = 2e, α1, α2 ∈ G and di = (2e − 1)si + 1, i = 1, 2, are
Niho exponents. If d1 = (2e − 1) 1

2 + 1, d2 = (2e − 1) 1
4 + 1, α1 +α1 =‖ α2 ‖, and

e is odd then f is a bent function of degree 3.

We observe the following:

Theorem 2. Let f(x) = Trn1 (α1x
d1 + α2x

d2), and g(x) = Trn1 (α2
1x

2e+1 +
α4
2x

2e+2+1), where α1, α2 ∈ F2n , n = 2e, and d1 = (2e−1) 1
2+1, d2 = (2e−1) 1

4+1
are Niho exponents. Then the second-order nonlinearities of Boolean functions
f(x) and g(x) are the same.

Proof. The function

f(x) = Trn1 (α1x
d1 + α2x

d2)

= Trn1 (α1x
d1) + Trn1 (α2x

d2).

We know that Trn1 (x)2
i

= Trn1 (x). We have

f(x) = Trn1 (α1x
d1)2 + Trn1 (α2x

d2)2
2

= Trn1 (α2
1x

2d1) + Trn1 (α4
2x

4d2)

= Trn1 (α2
1x

2e+1) + Trn1 (α4
2x

2e+3)

= Trn1 (α2
1x

2e+1 + α4
2x

2e+2+1)

= g(x),

since 2d1 = (2e + 1) and 4d1 = (2e + 3). Hence, the second-order nonlinearity of
f(x) and g(x) are the same. ut

Finally we prove the main result concerning the lower bound of second-order
nonlinearities of the functions under consideration.

Theorem 3. Let f(x) = Trn1 (α1x
d1 + α2x

d2), where α1, α2 ∈ F2n , n = 2e,
α1 +α1 =‖ α2 ‖ and d1 = (2e− 1) 1

2 + 1, d2 = (2e− 1) 1
4 + 1 are Niho exponents.

then
nl2(f(x)) ≥ 2n−1 − 2

3n+e−3
4 .

Proof. Consider the Boolean function

g(x) = Trn1 (α2
1x

2e+1 + α4
2x

2e+2+1)

= Trn1 (α2
1x

2e+1) + Trn1 (α4
2x

2e+2+1).



It is clear that the algebraic degree of Boolean function g(x) is 3. We know
that the rth-order nonlinearity of a Boolean function f(x) dose not alter if we
add a Boolean function of degree at most r to f(x). Therefore, the second-
order nonlinearity of g(x) is equal to the second-order nonlinearity of g1(x) =
Trn1 (α4

2x
2e+2+1). The derivative Da(g1(x)) with respect to a ∈ F∗2n is

Da(g1(x)) = g1(x+ a) + g1(x)

= Trn1 (α2
2(x+ a)2

e+2+1) + Trn1 (α4
2x

2e+2+1)

= Trn1 (α4
2a

2x2
e+1 + α4

2a
2ex3 + α4

2ax
2e+2 + α4

2a
2e+2x+ α4

2a
3x2

e

+α4
2a

2e+1x2 + α4
2a

2e+3),

which is a quadratic Boolean function. Therefore, the Walsh spectrum of the
Boolean functionDa(g1(x)) is equal to the Walsh spectrum of the function hλ(x),
where hλ(x) contains only quadratic terms of Da(g1(x)). We have

hλ(x) = Trn1 (α4
2a

2x2
e+1 + α4

2a
2ex3 + α4

2ax
2e+2).

Let B(x, y) be the bilinear form associated with hλ(x) and let k be the dimension
of Ef . The kernel of B(x, y) is given as

Ef = {x ∈ F2n : B(x, y) = 0 for all y ∈ F2n},

where

B(x, y) = hλ(0) + hλ(x) + hλ(y) + hλ(x+ y)

= Trn1 (α4
2(a2yx2

e

+ a2y2
e

x+ a2
e

yx2 + a2
e

y2x+ ay2x2
e

+ ay2
e

x2))

= Trn1 (α4
2(a2x2

e

+ a2
e

x2)y) + Trn1 (α4
2(ax2

e

+ a2
e

x)y2)

+Trn1 (α4
2(a2x+ ax2)y2

e

).

We know that, Trn1 (x2
i

) = Trn1 (x). Thus,

B(x, y) = Trn1 (α4
2(a2x2

e

+ a2
e

x2)y) + Trn1 (α4
2(ax2

e

+ a2
e

x)y2)2
n−1

+Trn1 (α4
2(a2x+ ax2)y2

e

)2
e

.

Since x, y, a, α2 ∈ F2n and n = 2e, we have x2
n

= x, y2
n

= y, a2
n

= a, α2n

2 = α2,
and

B(x, y) = Trn1 (yP (x)),

where P (x) is given as

P (x) = α22

2 a
2x2

e

+ α22

2 a
2ex2 + α2

2a
2−1

x2
e−1

+ α2
2a

2e−1

x2
−1

+α2e+2

2 a2
e+1

x2
e

+ α2e+2

2 a2
e

x2
e+1

.

It is to be noted that the number of elements in Ef is equal to the number of
zeros of P (x) or equivalently the number of zeros of P (x)2. Let it be denoted by
L(α2,a)(x).

L(α2,a)(x) = α2e+3

2 a2
e+1

x2
e+2

+ (α23

2 a
22 + α2e+3

2 a2
e+2

)x2
e+1

+α22

2 ax
2e + α23

2 a
2e+1

x2
2

+ α22

2 a
2ex,



which is a linearized polynomial in x. The degree of L(α2,a)(x) is at most 2e+2.
Therefore, by Lemma 1, k ≤ e+ 1. From this we obtain

WDag1(x) = 2
n+k

2 ≤ 2
n+e+1

2 .

Substituting the above value in

nl(Da(g1(x))) = 2n−1 − 1

2
max
x∈Fn

2

|WDag1(x)|,

we have

nl(Da(g1(x))) ≥ 2n−1 − 2
n+e−1

2 ,

and finally

nl(Da(g(x))) ≥ 2n−1 − 2
n+e−1

2 . (5)

From equation (3) and (5), we get M = 1 and m = n+e−1
2 . Substituting the

values of M and m in equation (4)

nl2(g(x)) ≥ 2n−1 − 2
3n+e−3

4 .

Using Theorem 2 we obtain

nl2(f(x)) ≥ 2n−1 − 2
3n+e−3

4 .

ut

4 Comparison

The lower bound of second-order nonlinearities of f(x) = Trn1 (α1x
d1 + α2x

d2)
was not obtained by Gode and Gangopadhyay [9] (since in this case n = 2i).
The lower bound of second-order nonlinearities of a Boolean function f(x) can
be obtained from Li, Hu and Gao [14, Theorem 4, Case 3] (i.e., n = 2t and
s 6= t). Let p = min{n− 2s, 2t1}). Then

nl2(f(x)) ≥ 2n−1 − 2
3n+p−4

4 ,

which implies

nl2(f(x)) ≥
{

2n−1 − 2
2n−3

2 , for e ≥ 3
0, for e = 1.

(6)

It can be checked that

(2n−1 − 2
3n+e−3

4 )− (2n−1 − 2
2n−3

2 ) > 0, for all n ≥ 10,



which implies that the bound obtained by Theorem 3 is strictly greater than
that obtained by Li, Hu and Gao whenever n ≥ 10. We compare the values of
lower bound obtained in Theorem 3 and the values of lower bound obtained by
the Li, Hu and Gao [14, Theorem 4, Case 3] in Table 1. We demonstrate that
the lower bound obtained in Theorem 3 is better than that obtained by Li, Hu
and Gao. Thus we identify a subclass of Boolean functions considered by Li, Hu
and Gao which has potential of having higher second-order nonlinearities than
the functions belonging to the wider class.

n 10 14 18 22 26 30

Lower bound obtained in Theorem 3 256 5296 98304 1726425 29360128 489417780

Lower bound obtained in [14, Theorem 4] 150 2400 38390 614242 9827866 157245850
Table 1. Comparison of the lower bounds of the second-order nonlinearities.
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