
Compact McEliece keys based on Quasi-Dyadic

Srivastava codes

Edoardo Persichetti

Department of Mathematics, University of Auckland, New Zealand.

e.persichetti@math.auckland.ac.nz

Abstract

The McEliece cryptosystem is one of the few systems to be considered secure against attacks
by Quantum computers. The original scheme is built upon Goppa codes and produces very
large keys, hence recent research has focused mainly on trying to reduce the public key size.
Previous proposals tried to replace the class of Goppa codes with other families of codes,
but this was revealed to be an insecure choice. In this paper we introduce a construction
based on Generalized Srivastava codes, a large class which includes Goppa codes as a special
case, that allows relatively short public keys without being vulnerable to known structural
attacks.

1 Introduction

Recent public-key cryptography is largely based on number theory problems, the most popular
being factoring and computing discrete logarithms. These systems constitute an excellent choice
in many applications, and their level of security is well defined and understood. One of the
major drawbacks, though, is that they will be very vulnerable once quantum computers of an
appropriate size are available. There is then a strong need for alternative systems that would
resist even attackers equipped with quantum technology.

One of the most well-known systems believed to be secure even against quantum attacks
is the McEliece cryptosystem. It is based on algebraic coding theory, and has a very fast and
efficient encryption procedure. The original McEliece [14], introduced in 1978, uses binary
Goppa codes as a basis for the construction. Though this proved to be very resistant against
all known attacks, it has one big flaw: the size of the public key. In fact, the public key size
for the original parameters ([1024,524]-code with error correction capacity of 50) proposed by
McEliece is 67,072 bytes, against the 256 bytes of a 1024-bit Modulus instance of RSA. Thus,
during the last years, research has focused mainly on finding a way to significantly reduce the
size of the public key. The alternative version provided by Niederreiter, for example, nearly
halves (to 32,750 bytes) the public key size, but this is still huge compared to a desirable key
size, and clearly impractical on constrained devices.

To have a more compact public key it has been proposed to use codes with particular
structures. Two examples are given by Misoczki and Barreto with dyadic matrices [15] and
Berger et al. with quasi-cyclic codes [3]. This approach does lead to very small public keys, e.g.
4,096 bits (512 bytes).
Unfortunately, modifying the structure of the codes exposes the cryptosystems to the so-called

1



structural attacks (algebraic attacks). These attacks aim to exploit the hidden structure, in
order to recover the private key. Almost all of the variants presented until now have been
broken or proven to be insecure mostly due to an attack presented by Faugère et al. in [9].

Our scheme is based on Generalized Srivastava codes and represents a generalization of [15],
with the advantage of a better flexibility. This comes mainly from the fact that Goppa codes are
a subclass of Generalized Srivastava codes, corresponding to a particular choice of parameters.
In our construction the parameters can instead be chosen in different ways, in order to maximize
the reduction in the key size, or to comply with higher levels of security.
In particular, we claim a greater resistance to the known structural attacks, while the keys have
similar size to the ones presented in [15].
The paper is organized as follows: in Section 2 we introduce definitions and concepts from coding
theory. In Section 3, we give a brief summary of the McEliece cryptosystem, and Goppa codes.
Section 4 is the central part of the paper and contains a precise description of the construction.
More details about security are given in Section 5, as well as some sample parameters. Finally,
we conclude in Section 6.

2 Preliminaries

We present here some definitions we will need to define our scheme.

Definition 1 Given a ring R (in our case the finite field Fqm) and a vector h̄ = (h0, . . . , hn−1) ∈
Rn, the dyadic matrix ∆(h̄) ∈ Rn×n is the symmetric matrix with components ∆ij = hi⊕j , where
⊕ stands for bitwise exclusive-or on the binary representations of the indices. The sequence h̄
is called its signature. Moreover, ∆(t, h̄) denotes the matrix ∆(h̄) truncated to its first t rows.
Finally, we call a matrix quasi-dyadic if it is a block matrix whose component blocks are t× t
dyadic submatrices.

If n is a power of 2, then every 2k × 2k dyadic matrix can be described recursively as

M =
(

A B
B A

)
.

where each block is a 2k−1 × 2k−1 dyadic matrix (and where any 1× 1 matrix is dyadic).

Definition 2 Given two disjoint sequences v̄ = (v1, . . . , v`) ∈ F`q and L̄ = (L1, . . . , Ln) ∈ Fnq ,

the Cauchy matrix C(v̄, L̄) is the matrix with components Cij =
1

vi − Lj
, i.e.

C(v̄, L̄) =



1
v1 − L1

. . .
1

v1 − Ln
...

...
...

1
v` − L1

. . .
1

v` − Ln

.

Cauchy matrices have the property that all of their submatrices are invertible [20].

2



Definition 3 Given a sequence x̄ = (x1, . . . , xn) ∈ Fnq , the Vandermonde matrix of order `,
V (`, x̄), is the matrix with components Vij = xi−1

j , i.e.

V (`, x̄) =


1 . . . 1
x1 . . . xn
...

...
...

x`−1
1 . . . x`−1

n

.

Definition 4 Given two sequences x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn) ∈ Fnqm , a Generalized
Reed-Solomon (GRS) code of order ` is defined by a parity-check matrix related to the Vander-
monde form, more precisely V (`, x̄) · Diag(ȳ), i.e. the matrix with components Aij = yjx

i−1
j :

H =


y1 . . . yn
y1x1 . . . ynxn

...
...

...
y1x

`−1
1 . . . ynx

`−1
n

.

If the resulting code is then restricted to Fq it is called an Alternant code.

Definition 5 For m,n, s, t ∈ N and a prime power q, let ᾱ = (α1, . . . , αn), w̄ = (w1, . . . , ws) be
n + s distinct elements of Fqm , and (z1, . . . , zn) be nonzero elements of Fqm . The Generalized
Srivastava (GS) code of order st and length n is defined by a parity-check matrix of the form:

H =


H1

H2
...
Hs


where each block is

Hi =



z1
α1 − wi

. . .
zn

αn − wi
z1

(α1 − wi)2
. . .

zn
(αn − wi)2

...
...

...

z1
(α1 − wi)t

. . .
zn

(αn − wi)t


.

The parameters for such a code are the length n ≤ qm−s, dimension k ≥ n−mst and minimum
distance d ≥ st+ 1.
GS codes are also part of the Alternant family, as will be shown further in the paper. More
information about this class of codes can be found in [13, Ch. 12, §6].

3



3 The McEliece Cryptosystem

In this section we give the basic notions about the McEliece Cryptosystem, as well as Goppa
codes, on which the whole cryptosystem relies.
The general framework proceeds as follows:

Key Generation: Pick a k × n generator matrix G for a w-error correcting linear code over
the finite field Fq, an n× n permutation matrix P and a k × k invertible matrix S at random,
then compute G′ = SGP , which is another valid generator matrix. This is the public key. The
private key consists of G,S, P , and the parameters n, k, w are public.

Encryption: To encrypt a plaintext x ∈ Fkq , compute the corresponding codeword xG′ and add
some errors at random by using an error vector e of weight at most w, obtaining the ciphertext
y = xG′ + e.

Decryption: Given a ciphertext y, calculate yP−1 = xG′P−1 + eP−1 = xSGPP−1 + eP−1 =
xSG+ eP−1, and since the weight of eP−1 is still less or equal to w, it is enough to apply the
decoding algorithm for the code to retrieve xS and consequently x.

Since the published code does not come with any recognizable structure, an attacker that
does not know the secret key is faced with the General Decoding Problem (GDP), that is, to
find the closest codeword in a linear code C to a given vector, assuming that there is a unique
closest codeword. This problem is well known and was proved to be NP-complete. Moreover,
GDP is believed to be hard on average, and not just on the worst-case instances.

A version of the McEliece cryptosystem that uses the parity-check matrix instead of the
generator matrix has been proposed by Niederreiter [17], and has been proved to be completely
equivalent in terms of security.

The original McEliece scheme makes use of binary Goppa codes.

Definition 6 Fix a finite field Fq and an integer m > 1. Choose a polynomial g(z) in Fqm [z] of
degree t < n/m and a sequence of distinct elements α1, . . . , αn ∈ Fqm such that g(αi) 6= 0 for all
i. The polynomial g(z) is called the Goppa polynomial. The set of words c̄ = (c1, . . . , cn) ∈ Fnqm

with
∑n

i=1
ci

z−αi
≡ 0 (mod g(z)) defines an [n, n − t] linear code over Fqm . The corresponding

Goppa code is the restriction of this code to Fq, i.e. the set of elements c̄ = (c1, . . . , cn) ∈ Fnq
which satisfy the above condition.

Alternatively (and usually) a Goppa code is defined by means of its parity-check matrix, which
is of the form:

H =


1

g(α1)
. . .

1
g(αn)

...
...

...
αt−1

1

g(α1)
. . .

αt−1
n

g(αn)


It is clear then that a Goppa code has dimension k ≥ n −mt. The minimum distance is

t+ 1, or 2t+ 1 in the special binary case (q = 2).

4



More generally, a Goppa code is a particular case of the class of alternant codes, with xi = αi,
yi = 1/g(αi). They form a very large family to choose from, and possess an efficient decoding
algorithm, which makes them a natural candidate for encryption purposes.

4 Construction

Our proposal is to use GS codes instead of Goppa codes. Note that GS codes are also alternant
codes, hence an efficient decoding algorithm exists. According to Sarwate [19, Cor. 2] the
complexity of decoding is O(n log2 n), which is the same as for Goppa codes; thus GS codes are
another suitable choice for a McEliece-type cryptosystem.
Now, it is evident that an equivalent parity-check matrix (by a row permutation) for a GS code
is given by

Ĥ =


Ĥ1

Ĥ2
...
Ĥt


where each block is

Ĥi =



z1
(α1 − w1)i

. . .
zn

(αn − w1)i

z1
(α1 − w2)i

. . .
zn

(αn − w2)i
...

...
...

z1
(α1 − ws)i

. . .
zn

(αn − ws)i


.

On the other hand, it can be easily proved that every GS code with t = 1 is a Goppa code.
We know [13, Ch. 12, Pr. 5] that Goppa codes admit a parity-check matrix in Cauchy form
under certain conditions (the generator polynomial has to be monic and without multiple zeros).
Misoczki and Barreto [15, Th. 2] showed that the intersection of the set of matrices in Cauchy
form with the set of dyadic matrices is not empty if the code is defined over a field of charac-
teristic 2, and the dyadic signature satisfies

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0
. (1)

In this case the parameters for the Cauchy matrix form are determined as vi+1 = 1/hi + ω and
Lj+1 = 1/hj + 1/h0 + ω for a certain offset ω ∈ Fqm .

We use these facts, and the algorithm given by Barreto et al. in [2, Algorithm 2], which is an
improvement to the one presented in [15], to build a GS code in quasi-dyadic form.

1. Fix a finite field Fqm = F2u where q = 2λ, u = mλ. Choose a code length n < qm, n = n0s,
and s being a power of 2. The parameters s, t are chosen such that mst < n. More details
about the choice of s and t will be given later.

5



2. Produce a valid dyadic signature h̄ over Fqm using the algorithm of [2]. This consists
essentially of two steps:

• Assign nonzero distinct values at random to h0 and to every hj for j a power of 2.
The remaining elements are formed using (1) for the appropriate choices of i and j.
The resulting signature will have length qm.

• Return a selection of blocks of dimension s up to length n, making sure to exclude
any block containing an undefined entry.

3. Starting from the signature h̄, build the Cauchy support as shown above by choosing at
random the offset ω (refer to appendix C about the choice of the offset), then form the
first s × n block in Cauchy fashion. This corresponds to Ĥ1 by setting wi = vi, αj = Lj
and remembering that we are in characteristic 2, so that

vi − Lj = vi + Lj = wi + αj = αj + wi = αj − wi.

Note that this block is dyadic (of order s) as it defines a GS code with t = 1, equivalently
a Goppa code.

4. Build the remaining blocks by consecutive powers, up to the power of t. This means Ĥ2

is obtained by squaring each element of Ĥ1, Ĥ3 is obtained by cubing, and so on.

5. Pick the zi uniformly at random with the following restriction:

zis+j = zis for i = 0, . . . , n0 − 1, j = 1, . . . , s.

6. The final matrix will be H = Ĥ · Diag(zi). Project H over the base field to ob-
tain an mst × n parity-check matrix, which can be row-reduced to the systematic form
H∗ = (M |In−k), having k = n−mst with high probability (see appendix A).
Note that all of these operations preserve the dyadic structure, since the powering process
acts on every single element, the zi are chosen to be equal s-wise and all the operations
occurring during the row reducing are performed block by block in the ring of dyadic
matrices over Fq. Hence H∗ and in particular M will be still formed by dyadic blocks.

7. The public key is the generator matrix G = (Ik|MT ). Since MT is k×(n−k) = k×mst and
is s× s block dyadic, it requires only kmst/s = kmt field elements for storage, equivalent
to kmtλ bits.

The public key G just generated can be used, for instance, as a trapdoor for a McEliece
scheme, or equivalently H∗ can serve as trapdoor for a Niederreiter scheme. In the following
section we analyze the security of a scheme based on quasi-dyadic trapdoors.

Some remarks about the construction: the algorithm presented by Barreto et al. runs in poly-
nomial time. Since every element of the signature is assigned a value exactly once, the running
time is O(qm) O(n) steps. The authors in [15] did not give a lower bound for the number of
possible distinct codes, but only the upper bound

(N/t
`

)
· `! · t` ·

∏dlogNe
i=0 (q − 2i) (due to, respec-

tively, selection, rearrangement, permutations of the blocks and number of signatures generated
by the algorithm). It is believed that the algorithm does produce close to this number of codes,
but it is too hard to actually state the exact number of distinct codes constructible.

6



5 Security

Misoczki and Barreto in [15] give an assessment of the hardness of decoding quasi-dyadic codes,
providing a reduction to the Syndrome Decoding problem.
As with the original McEliece cryptosystem, the quasi-dyadic variant is susceptible to general
decoding attacks. The best attack known at the moment is considered to be Information Set
Decoding, which was recently generalized to codes over Fq [18]; a new version of the attack
is presented in [7] under the name of Ball-Collision Decoding, but the improvement in the
decoding time seems to be relevant only asymptotically and a generalization of ball-collision
decoding to the nonbinary case has not yet been presented. Since decoding attacks don’t take
into account the special properties of the code but just the length, dimension, and number of
errors introduced, these parameters (which are all related) need to be carefully chosen.

Recently, a very effective structural attack has been presented by Faugère, Otmani, Perret
and Tillich [9]. It relies on the fundamental property H ·GT = 0 to build an algebraic system,
using then Gröbner bases techniques to solve it. The special properties of Goppa codes in dyadic
form are of key importance, as they contribute to considerably reduce the number of unknowns
of the system. Also, the extension degree m comes into account as it defines the dimension of
the solution space.

Idea of the attack : a k×n generator matrix G = {gi,j} is given as public key, G being a matrix
formed of ` × ` blocks, with k = k0`, n = n0`. Since every Goppa code is an alternant code, a
parity-check matrix will exist in the form H ′ = {yjxij}; these elements are represented by two
sets of unknowns {Xi} and {Yi}. We then obtain the following system of equations:{

gi,0Y0X
j
0 + · · ·+ gi,n−1Yn−1X

j
n−1 = 0 | i = 0, . . . , k − 1, j = 0, . . . , `− 1

}
. (2)

Some relations are derived [9, Pr. 5] from the dyadicity and from the algorithm used to build
the signature, namely: 

Yj`+i = Yj`
Xj`+i +Xj` = Xi +X0

Xj`+(i⊕i′) = Xj`+i +Xj`+i′ +Xj`

(3)

for any 0 ≤ j ≤ n0 − 1 and 0 ≤ i, i′ ≤ `− 1.

Lemma 1 ([9]) The system has (after applying the relations):

• n0 − 1 unknowns Yi

• n0 −m linear equations involving only the Yi (the case j = 0 in equation (2))

• n0 − 2 + log2 ` unknowns Xi

• `(`− 1)(n0 −m) nonlinear equations containing monomials of the form YiX
η
i for η > 0.

Proof The first property states that the Yi of each block are all equal, thus there are n/` = n0

distinct variables, and we can arbitrarily choose one of them, which explains n0 − 1. Moreover,
because of the dyadicity of G, the linear equations in the Yi are identical, hence redundant, for
all the rows of each dyadic block. So we have k/` = (n−m`)/` = (n0`−m`)/` = `(n0−m)/` =
n0 −m linear equations as claimed.
The other two are a direct consequence of the second and third properties: in fact, we can fix
arbitrarily two variables, say X0 and X` and express every other in terms of those two for each
block, which means n0 + log2 `− 2. 4

7



The attacker first tries to deduce a simpler system involving only the Xi: fix the free Yi
variables and rewrite the remaining as a function of those, then substitute into the equations.
If it is possible to find the free variables (if the number of those is very small, even just by
guessing) the computation of the desired simplified system follows immediately. Since there
are n0 − 1 variables and n0 −m equations, we have exactly n0 − 1 − (n0 −m) = m − 1 free
variables; thus it is important for security to keep the extension degree m high (the authors in
[10] indicate that this number should be not smaller than 20). Once the Yi are removed, the
second step is to linearize the system by using the following trick: observe that each block of
equations is now homogeneous, then consider only those whose degree corresponds to a power
of 2, and discard the rest. There are exactly blog2 (`− 1)c = log2 (`− 1) such equations, which
usually allows to recover the Xi. A more detailed description can be found in [9].

It is clear that, since GS codes also belong to the class of alternant codes, this framework
can be applied to our proposal; as we will see, all the properties hold in a similar way.
While a detailed complexity analysis has not yet been given, it makes sense to compare the two
security levels. In fact, we can think of a Goppa code or a GS code with the same parameters
[n, k, d] having, respectively, k = n−m` = n−mst =⇒ ` = st.
If t = 1 then our scheme is exactly the same as [15]. For t > 1, however, the system parameters
change, as n = n0` = n′0s having n′0 > n0. We now focus our attention on the linear part: just
like before, it is possible to prove that all the Yi in a block are equal.

Proposition 1 Let Yi be the set of unknowns defined in (2). Then:

Yis+j = Yis for i = 0, . . . , n0 − 1, j = 1, . . . , s.

Proof Recall from Definition 4 the generic form for a parity-check matrix in alternant form:

H =


y1 . . . yn
y1x1 . . . ynxn

...
...

...
y1x

`−1
1 . . . ynx

`−1
n

.

However, the general alternant form for Srivastava codes is given in a slightly different way. In
fact, if we consider an invertible `× ` matrix C, then H ′ = CH is also a parity-check matrix:

H =


c1,1 . . . c1,`
c2,1 . . . c2,`

...
...

...
c`,1 . . . c`,`




y1 . . . yn
y1x1 . . . ynxn

...
...

...
y1x

`−1
1 . . . ynx

`−1
n

 =


y1g1(x1) . . . yng1(xn)
y1g2(x1) . . . yng2(xn)

...
...

...
y1g`(x1) . . . yng`(xn)


where gi(x) = ci,1 + ci,2x+ ci,3x

2 + · · ·+ ci,`x
`−1 for each i = 1, . . . , `.

In the case of Srivastava codes we have ` = st, and we set

• g(i−1)t+k(x) =

s∏
j=1

(x− wj)t

(x− wi)k
for i = 1, . . . , s and k = 1, . . . , t.

• yi =
zi

s∏
j=1

(αi − wj)t
.

8



It is easy to see that with these settings, we get the parity-check matrix given in Definition 5.
Now, we want to prove that yis+j = yis for i = 0, . . . , n0 − 1, j = 1, . . . , s.
Let’s then fix a specific i (i.e. choose a block) and consider in particular yis+j∗ = yis, for any
j∗ ∈ {1, . . . , s}.

If we can prove that
s∏
j=1

(αis+j∗ − wj) =
s∏
j=1

(αis − wj), then obviously

s∏
j=1

(αis+j∗ − wj)t =
s∏
j=1

(αis − wj)t =⇒ 1
s∏
j=1

(αis+j∗ − wj)t
=

1
s∏
j=1

(αis − wj)t
.

We know that zis+j = zis for i = 0, . . . , n0 − 1, j = 1, . . . , s by construction.

Hence
zis+j

s∏
j=1

(αis+j∗ − wj)t
=

zis
s∏
j=1

(αis − wj)t
, and this means yis+j = yis.

Since this does not depend on the choice of i, it is then true for all i, and we obtain our result.

It remains to prove
s∏
j=1

(αis+j∗ − wj) =
s∏
j=1

(αis − wj).

Now, remember that, by means of the algorithm, the support was built as wi+1 = vi+1 = 1/hi+ω
and αj+1 = Lj+1 = 1/hj + 1/h0 + ω, so our expression becomes

s∏
j=1

(1/his+j∗−1 + 1/h0 − 1/hj−1) =
s∏
j=1

(1/his−1 + 1/h0 − 1/hj−1)

or, without loss of generality, rearranging and noting that we are in characteristic 2,

s∏
j=1

(1/h0 + 1/his+j∗ + 1/hj) =
s∏
j=1

(1/h0 + 1/his + 1/hj).

Let k1 = is+ j∗ and k2 = is; then, remembering equation (1), we can rewrite:

s∏
j=1

(1/h0 + 1/hk1 + 1/hj) =
s∏
j=1

(1/h0 + 1/hk2 + 1/hj)⇐⇒
s∏
j=1

(1/hk1⊕j) =
s∏
j=1

(1/hk2⊕j)

⇐⇒ 1
s∏
j=1

hk1⊕j

=
1

s∏
j=1

hk2⊕j

⇐⇒
s∏
j=1

hk1⊕j =
s∏
j=1

hk2⊕j ,

which is true since k1 and k2 belong to the same block (the matrix is s× s dyadic).
Essentially, this corresponds to multiplying together the elements of a string of length s (sub-
string of a row) on two different rows of the same block, which, because of the dyadicity, we
know being just a rearrangement one of the other. Hence the equality holds, and this terminates
the proof. 4

9



Proposition 1 tells us that there are n′0− 1 distinct variables (like before, we can arbitrarily
fix one of them). Now, the dimension of the blocks is smaller (as s < `), so we will have more
equations, but the numbers are not increasing at the same rate. In fact k/s = (n −mst)/s =
(n′0s−mst)/s = s(n′0 −mt)/s = n′0 −mt. We will then have:

• n′0 − 1 unknowns Yi

• n′0 −mt linear equations

which give a solution space of dimension mt − 1. This is a major improvement since now the
security does not rely entirely and only on m; we can instead increase t so that we are not forced
to use a big extension field, which gives large and unpractical keys, while making the attack
less effective.

In the following tables we give various sets of parameters in order to better illustrate the
features of our scheme. We also include experimental results about resistance to the attack just
presented (column “FOPT cost”); these are obtained by using the upper bound provided by
equation (13) in [10, Section 6]. We remark that the resulting numbers are just a theoretical
upper bound that gives the approximate cost of computing a Gröbner basis with the indicated
dimensions and variables, but nevertheless are useful to give an idea of the expected cost of the
attack against that specific set of parameters. The numbers obtained by the theorem match
with the costs obtained for the attacks successfully mounted against the codes of [3] and [15]. It
also seems to emerge why the authors indicate 20 as a safe threshold, since all the parameters
that produce a number of free variables greater than 20 generate a complexity superior to 2128.

Table 1 highlights the differences in performance and security according to the choice of m and
t when keeping fixed the other parameters. The column “ISD cost” refers to the estimated
complexity of decoding attacks1(log2 of binary operations). Note that the first line (t = 1)
represents a Goppa code.

Table 1: Example of parameters for GS codes over the base field F22 , for a fixed number (mt− 1 = 23)
of free variables. The column “Size” refers to the public key size.

m n k s t Errors Size (bytes) ISD cost FOPT cost
24 12288 6144 28 1 128 36864 128 150
12 6144 3072 27 2 128 18432 128 150
8 4096 2560 26 3 96 15360 128 160

Here we chose to keep constant this particular number of free variables mainly because mt = 24
gives a lot of possibilities for factoring (i.e. a lot of different choices for m and t) and the
resulting amount 23 is well above the threshold of 20 indicated in [10].
It is also possible to observe that choosing an odd value for t gives better results even with
a smaller number of errors introduced (e.g. compare line 2 and 3). That is because while
the product st decreases (and consequently the numbers of correctable errors), so do the code
minimum requirements for size (n) and dimension (k). This allows a tighter choice of parameters
and overall works better for our purposes.

1To compute this number we refer to [18] and use the corresponding script provided by Christiane Peters in
http://www2.mat.dtu.dk/people/C.Peters/isdfq.html.

10



Table 2: GS codes over the base field F22 with fixed length n = 1920 and extension degree m = 6.

k s t Errors Size (bytes) ISD cost FOPT cost
960 25 5 80 7200 90 186
768 26 3 96 3456 80 105

From Table 2 it is evident that a bigger t allows the construction of a code with better per-
formance, but results in a much bigger key. It is also clear how deeply all the parameters are
intertwined, at the same time contributing to the flexibility of the scheme: the first code, for
instance, generates a much greater complexity against the structural attack, while achieving an
even smaller key size than any of the codes in Table 1. However, the security against general
decoding attacks decreases considerably.
Keeping all of this in mind, we give in Table 3 a sample of some smaller codes with the aim to
minimize the public key size.

Table 3: Sets of parameters for smaller GS codes, obtained by choosing larger base fields and increasing
t, while lowering the extension degree.

Base Field m n k s t Errors Size (bytes) ISD cost FOPT cost
F25 2 992 416 25 9 144 4680 128 105
F24 3 768 432 24 7 56 4536 80 132
F25 2 512 256 24 23 64 2560 80 96

6 Conclusions

We have given a detailed description of a construction based on Quasi-Dyadic Generalized
Srivastava codes. This is a generalization of [15], and is suitable as a trapdoor for a McEliece
or Niederreiter scheme. The public keys are considerably smaller than the original McEliece’s
proposal, and the construction easily gives codes secure against general decoding attacks.

Thanks to the introduction of the parameter t we are able to modulate our scheme in a much
more flexible way, allowing us to consider codes over smaller extension fields without losing in
security; moreover, the parameter t balances both the ratio (extension degree)/(number of free
variables), and the reduction in the public key size, as this depends solely on s, which grows or
shrinks according to t (for a fixed dimension and error-correction capacity).
The result of this is a flexible and practical scheme which produces very small keys and resists
all the attacks presented so far. As a comparison, take the codes presented in [15]:

Table 4: Quasi-Dyadic Goppa codes ([15, Table 2]) over F2 and with extension degree m = 16.

n k ` Size (bytes) ISD cost FOPT cost
8192 4096 256 8192 256 99
6912 2816 256 5632 192 95
4092 2048 128 4096 128 98
3584 1536 128 3072 112 95
2304 1280 64 2560 80 100

11



For all these codes, the level of security (m− 1 = 15) against the FOPT attack [9] is the same
of the last code in Table 3, but only one has the same key size (2560 bytes), whereas the others
are all considerably larger. If our main concern is resistance against structural attacks rather
than general decoding attacks, it is then evident that we have an advantage.
An example could be represented by the codes in Table 3, line 1 and Table 4, line 3. For the
same security level of 2128 we have a solution space of dimension mt− 1 = 17 for the former as
opposed to 15 for the latter.

We remark that until a precise complexity analysis for the structural attacks is given, we
should obey the condition obtained from the experimental results presented in [10], thus keeping
the dimension of the solution space for the Yi strictly greater than 20.

The choice of a base field other than F2, though actually increasing the public key size,
looks like a better choice for the construction. Unlike the case of Goppa codes, GS codes do not
benefit from an increased error-correction capacity in the binary case, so there is no particular
reason to choose binary over nonbinary. Instead, choosing a bigger base field allows us to further
reduce the extension degree to values for which the scheme would otherwise be infeasible.
We have also given (appendix A) an estimate of the probability of getting a full-rank matrix
after the projection on the base field. This is necessary to be sure that the key generation
algorithm is efficient. Since also this probability depends on the choice of the base field, this is
yet another reason to choose nonbinary codes.

Further ideas of research include developing a precise security analysis which would allow
a better optimization of the parameters. An implementation of a McEliece encryption scheme
using quasi-dyadic GS codes is currently being designed; it would be interesting to apply the
same framework to other cryptographic applications such as, for example, signature schemes
(as in [2]).

12



References

[1] A. A. de Andrade and R. Palazzo Jr. “Goppa and Srivastava codes over finite rings.” In
Comp. Appl. Math, volume 24, issue 2, pages 231-244, 2005.

[2] P. S. L. M. Barreto, P.-L. Cayrel, R. Misoczki, and R. Niebuhr, “Quasi-dyadic CFS signa-
tures”. In Inscrypt 2010, LNCS, Springer, October 2010.

[3] T. P. Berger, P. L. Cayrel, P. Gaborit and A. Otmani. “Reducing key length of the McEliece
cryptosystem”. In Bart Preneel, editor, Progress in Cryptology - Second International Con-
ference on Cryptology in Africa (AFRICACRYPT 2009), volume 5580 of Lecture Notes in
Computer Science, pages 77-97, Gammarth, Tunisia, June 21-25, 2009.

[4] T. P. Berger and P. Loidreau. “How to mask the structure of codes for a cryptographic use”.
In Design, Codes and Cryptography, volume 35, pages 63-79, 2005.

[5] T. P. Berger and P. Loidreau. “Designing an efficient and secure public-key cryptosystem
based on reducible rank codes”. In INDOCRYPT, volume 3348 of Lecture Notes in Computer
Science, pages 218-229, 2004.

[6] T. P. Bernstein, T. Lange and C. Peters. “Attacking and defending the McEliece cryptosys-
tem”. In J. Buchman and J. Ding, editors, Post-Quantum Cryptography- Second Interna-
tional Workshop (PQCrypto 2008), volume 5299 of Lecture Notes in Computer Science,
pages 31-46, Springer, Berlin, 2008.

[7] T. P. Bernstein, T. Lange and C. Peters, “Smaller Decoding Exponents: Ball-Collision
Decoding”. In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 743-760, Santa Barbara, CA, USA, August 14-18, 2011.

[8] T. P. Bernstein, T. Lange, C. Peters and H. C. A. van Tilborg, “Explicit bounds for generic
decoding algorithms for code-based cryptography”. In Pre-proceedings of WCC 2009, pages
168-180, 2009.

[9] J. C. Faugère, A. Otmani, L. Perret and J. P. Tillich, “Algebraic Cryptanalysis of McEliece
Variants with Compact Keys”. In Advances in Cryptology - EUROCRYPT 2010, 29th An-
nual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 279-298, French Riviera, May 30 - June 3, 2010.

[10] J. C. Faugère, A. Otmani, L. Perret and J. P. Tillich, “Algebraic Cryptanalysis of Compact
McEliece’s Variants - Toward a Complexity Analysis”. preprint 2010.

[11] P. J. Lee and E. F. Brickell, “An observation of the security of McEliece’s public-key
cryptosystem”. In G. Günther, editor Advances in cryptology - EUROCRYPT ’88, volume
330 of Lecture Notes in Computer Science, pages 275-280, Springer, Berlin, 1988.

[12] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large error-
correcting codes”. In IEEE Transactions on Information Theory, volume 34, issue 5, pages
1354-1359, 1988.

[13] F. J. MacWilliams and N. J. Sloane, “The theory of error-correcting codes”. North Holland,
Amsterdam, 1977.

[14] R. J. McEliece, “A Public-Key System Based on Algebraic Coding Theory”. In DSN
Progress Report 44, pages 114-116, Jet Propulsion Lab, 1978.

13



[15] R. Misoczki and P. S. L. M. Barreto, “Compact McEliece keys from Goppa codes”. In
Selected Areas in Cryptography (SAC 2009), Calgary, Canada, August 13-14, 2009.

[16] R. Niebuhr and J. Buchmann, “Application of Algebraic-Geometric Codes in Cryptogra-
phy”, Master’s Thesis, 2006.

[17] H. Niederreiter, “A public-key cryptosystem based on shift register sequences”. In EURO-
CRYPT, volume 219 of Lecture Notes in Computer Science, pages 35-39, 1985.

[18] C. Peters, “Information-set decoding for linear codes over Fq”. In Post-Quantum Cryptog-
raphy, Third International Workshop, (PQCrypto 2010), volume 6061 of Lecture Notes in
Computer Science, pages 81-94, Darmstadt, Germany, May 25-28, 2010.

[19] D. V. Sarwate, “On the complexity of decoding Goppa codes”. In IEEE Transactions on
Information Theory, volume 23, issue 4, pages 515-516, 1977.

[20] S. Schechter, “On the inversion of certain matrices”. In Mathematical Tables and Other
Aids to Computation, volume 13, issue 66, pages 73-77, 1959.

[21] J. R. Silvester, “Determinants of block matrices”. In The Matematical Gazette, volume 84,
pages 460-467, 2000.

[22] J. Stern, “A method for finding codewords of small weight”. In G. D. Cohen and J. Wolf-
mann, editors, Coding theory and applications, volume 388 of Lecture Notes in Computer
Science, pages 106-113, Springer, New York, 1989.

14



A Full-rank matrices

We give an estimate of the expected probability of having an invertible submatrix after the
co-trace operation defined in point 6 of the key generation algorithm, so that row reduction to
the systematic form is actually possible. To do this, we start by considering random matrices
as a general case.

Lemma 2 Let M be a random n× n matrix over the finite field Fq. Then the probability that
M is nonsingular is:

p =

n∏
i=1

(
qn − qi−1

)
qn2 .

Proof A matrix M is nonsingular if and only if its rows are linearly independent vectors. The
choices for the first row are qn − 1, while for each row after the first, we have to be sure that it
is not in the span of the previous vectors; hence for the i-th row we have only qn− qi−1 choices.
This gives (qn − 1)(qn − q) . . . (qn − qn−1) choices over the total qn

2
, which is what we wanted

to prove. 4

Now, we take into account the special form of our matrix. Since it is dyadic, the number of
choices for the row vectors is restricted, since every time we choose a row, the following s − 1
are uniquely determined according to the dyadic form (permutations). Practically speaking, we
are considering an r × r quasi-dyadic matrix, where r = mst = r0s, and we are choosing only
r0 row vectors.

However now, in each choice, we must also ensure that the set of s rows produced is by itself
linearly independent. Since each of those is composed by r0 square blocks of side s, we first
focus on a single block.

Lemma 3 Let D = ∆(h̄) be an s × s matrix over the finite field Fqm (q = 2λ) given by the
signature h̄ = (h0, . . . , hs−1), with s being a power of 2. Then:

D is singular ⇐⇒
s−1∑
i=0

hi = 0.

Proof Since s is a power of 2, say 2j , we know D is of the following form:

D =
(

A B
B A

)
whereA,B are dyadic submatrices of dimension 2j−1 defined, respectively, by h̄A = h0, . . . , hs/2−1

and h̄B = hs/2, . . . , hs−1. All we need is to consider the determinant of D that, thanks to an
easy generalization of [21], we can claim (see appendix B) is equal to det(A2 +B2).
Applying the argument recursively (and remembering that we are in characteristic 2) we arrive
at the conclusion that detD = (h0 + · · · + hs−1)2

j
. Now, D is singular ⇐⇒ detD = 0 ⇐⇒

(h0 + · · ·+ hs−1)2
j

= 0 ⇐⇒ h0 + · · ·+ hs−1 = 0, which terminates the proof. 4

15



Thanks to Lemma 3 it is now easy to give a description of how to select the first row. We
call a row vector v good if the set of s vectors consisting of v and its dyadic rearrangements is
linearly independent, and we call v bad if it is not good. Now, for every choice of s − 1 field
elements, the sum will still be a field element; hence, for each block we have qs−1 signatures
that sum to 0, and overall (qs−1)r0 bad sequences. It is then sufficient to subtract this number
from the total possible choices qr, and we obtain that the number of good choices for the first
row vector is:

qr − (qs−1)r0 = qr − qr0(s−1) = qr − qr−r0 = qr−r0(qr0 − 1).

Let’s call G the set of all good rows. As a last precaution, we need to determine how many
linear combinations of the rows in a size-s set produce a row which is still in G, so that we can
exclude them at the moment of choosing the next one.

This is easy for the first set.

Lemma 4 Let v(1), . . . , v(s) be the first s row vectors of a quasi-dyadic matrix, and suppose the

first row is good. Then for every v =
s∑
i=1

aiv
(i):

v ∈ G ⇐⇒
s∑
i=1

ai 6= 0.

Proof Let’s analyze, without loss of generality, the first block and write v1 + v2 + · · · + vs =
(a1v

(1)
1 +a2v

(2)
1 +· · ·+asv(s)

1 )+(a1v
(1)
2 +a2v

(2)
2 +· · ·+asv(s)

2 )+· · ·+(a1v
(1)
s +a2v

(2)
s +· · ·+asv(s)

s ) =
(a1v

(1)
1 +a1v

(1)
2 +· · ·+a1v

(1)
s )+(a2v

(2)
1 +a2v

(2)
2 +· · ·+a2v

(2)
s )+· · ·+(asv

(s)
1 +asv

(s)
2 +· · ·+asv(s)

s ) =

a1

s∑
i=1

v
(1)
i + a2

s∑
i=1

v
(2)
i + · · ·+ as

s∑
i=1

v
(s)
i .

Now, each of these sums is exactly the sum of the elements of each row, which because of the
dyadicity is constant, say equal to α, and by hypothesis different from 0; hence we can write
α(a1 + · · ·+ as) = 0⇐⇒ a1 + · · ·+ as = 0, which terminates the proof. 4

According to Lemma 4 then, qs−1(q−1) linear combinations of the rows in the first set produce
a row in G. Unfortunately the same reasoning doesn’t work when we consider the next sets,
as the rows in the next set will sum in principle to a different element (say β, γ etc.). Hence,
we can just obtain a lower bound, by excluding all the qs linear combinations. However, it is
reasonable to think that very few linear combinations produce a bad row, so our lower bound
is not far from the real value.

Theorem 1 Let H be an r × n parity-check matrix over Fq as in step 6, with r = mst = r0s.
Then the row-reduction to the systematic form for H succeeds with probability at least:

p =
r0−1∏
i=0

(
1− 1

qr0
− 1
q(r0−i)s

)
.

Proof Follows directly from our last considerations: we get p =

r0−1∏
i=0

(
qr − qr−r0 − qis

)
qr0r

.

This is a product of r0 terms and since qr0r = (qr)r0 we can divide each term by qr and obtain
the conclusion. 4

Experimental results suggest this number looks roughly like (q − 1)/q.

16



B Determinant of block matrices

We state the following result, which we will need to prove Lemma 3:

Lemma 5 Let D be an n × n block-symmetric matrix over a finite field F of characteristic 2,
i.e. D is in the form:

D =
(

A B
B A

)
.

where A and B are themselves block-symmetric matrices of dimension n/2.
Then detD = det(A2 +B2).

Proof We know from [21] that det
(
A B
0 C

)
= det

(
A 0
B C

)
= detAdetC.

Now, consider the following product M =
(

A B
B A

)(
A 0
B I

)
. Since A and B are both

symmetric, A = AT , B = BT and AB = (AB)T , hence we can rewrite the product as:

M =
(

A B
BT A

)(
AT 0
B I

)
=
(

A2 +B2 B
BTAT +AB A

)
=
(

A2 +B2 B
(AB)T +AB A

)
=

=
(
A2 +B2 B

0 A

)
.

Looking at determinants, and applying the hypothesis, we read:

detM = detD detA = det(A2 +B2) detA

which implies in particular (detD+ det(A2 +B2)) detA = 0 and the result follows immediately
if we assume detA 6= 0. However, we don’t even need this assumption if we use the following
trick: instead of working over F, let’s do our calculations over the corresponding polynomial

ring F[x] by defining Ax = A+ xI and Dx =
(

A B
B Ax

)
.

We obtain (detDx + det(AAx + B2)) detAx = 0 but now this time we are considering a
product of polynomials and detAx = det(A + xI) is certainly not the zero polynomial, hence
the left-hand side must be.
Thus detDx = det(AAx + B2) follows, from which it is enough to put x = 0 to get our result.
4

17



C Note on the choice of ω

In this section we point out some considerations about the choice of the offset ω during the key
generation process.

The usual decoding algorithm for alternant codes, for example as in [13], relies on the special
form of the parity-check matrix (Hij = yjx

i−1
j ). The first step is to recover the error locator

polynomial σ(x), by means of the euclidean algorithm for polynomial division; then it proceeds
by finding the roots of σ. There is a 1-1 correspondence between these roots and the error
positions: in fact, there is an error in position i if and only if σ(1/xi) = 0.
Of course, if one of the xi’s is equal to 0, it is not possible to find the root, and to detect the
error.

Now, the generation of the error vector is random, hence we can assume the probability of
having an error in position i to be around st/2n; since the codes give the best performance
when mst is close to n/2, we can estimate this probability as 1/4m, which is reasonably low for
any nontrivial choice of m; however, we still argue that the code is not fully decodable and we
now explain how to adapt the key generation algorithm to ensure that all the xi’s are nonzero.

As part of the key generation algorithm we assign to each xi the value Li, hence it is enough
to restrict the possible choices for ω to the set {α ∈ Fqm |α 6= 1/hi + 1/h0, i = 0, . . . , n − 1}.
In doing so, we considerably restrict the possible choices for ω but we ensure that the decoding
algorithm works properly.

18


