
Improved Meet-in-the-Middle Cryptanalysis of KTANTAN

Lei Wei1, Christian Rechberger2, Jian Guo3, Hongjun Wu1, Huaxiong Wang1, and San Ling1

1 Division of Mathematical Sciences,
School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

{weil0005,wuhj,hxwang,lingsan}@ntu.edu.sg
2 Katholieke Universiteit Leuven, ESAT/COSIC and IBBT, Belgium

christian.rechberger@groestl.info
3 Institute for Infocomm Research, A∗STAR, Singapore.

ntu.guo@gmail.com

Abstract. We revisit meet-in-the-middle attacks on block ciphers and recent developments in
meet-in-the-middle preimage attacks on hash functions. Despite the presence of a secret key in
the block cipher case, we identify techniques that can also be mounted on block ciphers, thus
allowing us to improve the cryptanalysis of the block cipher KTANTAN family. The first and
major contribution is that we spot errors in previous cryptanalysis, secondly we improve upon the
corrected results. Especially, the technique indirect-partial-matching can be used to increase the
number of matched bits significantly, as exemplified by our attacks. To the best of our knowledge,
this is the first time that a splice-and-cut meet-in-the-middle attack is applied to block ciphers.
When the splitting point is close to the start or the end of the cipher, the attack remains to be at
very low data complexity. The secret key of the full cipher can be recovered faster than exhaustive
search for all three block sizes in the KTANTAN family. The attack on KTANTAN32 works with a
time complexity 272.9 in terms of full round encryptions. The attack has a time complexity of 273.8

and 274.4 on KTANTAN48 and KTANTAN64, respectively. Moreover, all the three attacks work
with 4 chosen ciphertexts only. These results compare favourably with the factor 2 speed-up over
brute force obtained in earlier work4, and hence these attacks are the best cryptanalysis results so
far.

Keywords: block cipher, hash function, meet-in-the-middle attack, KTANTAN, indirect-partial-
matching, splice-and-cut

1 Introduction

Low-end computing devices such as RFID tags are usually characterized by extremely tight cost
and power consumption requirements. The needs of cryptography on such devices have been
increasing with the growing pervasiveness and mass deployment of these devices. There are sev-
eral block cipher primitives proposed in recent years, targeting very small footprint and reduced
power consumption, in particular DESL [22], PRESENT [4], HIGHT [19], mCrypton [23], the
KATAN/KTANTAN family [7] and PRINTcipher [21] which is proposed as a cryptography
solution for IC-printing.

In this paper, we examine several techniques developed on meet-in-the-middle preimage
attacks of hash functions and find that they are still effective when applied to block ciphers.
With a circular configuration, we arrive at a more general framework compared to [6]. As an
example we apply the attack to the KTANTAN family, the key of the full cipher can be found
in time complexity faster than exhaustive search by an order of 27.1, 26.2 and 25.6 for block size
32, 48 and 64. Moreover, these attacks require only 4 chosen ciphertexts.

Organization. In Section 2, we review the results and techniques developed in meet-in-the-
middle attacks on both block ciphers and hash functions. In Section 3, we briefly introduce the

4 This refers to [6], which was later updated to [5].

design of the KTANTAN family. In Section 4, we introduce earlier cryptanalysis in [6] followed
by our observations and experiment results. In Section 5 we extend the meet-in-the-middle
attack with the hash techniques in Section 2 to achieve the best cryptanalysis results. Section 6
concludes the paper with discussions and possible open problems.

2 Developments in MITM Attacks

Meet-in-the-middle (MITM) is a generic cryptanalytic approach originally developed from crypt-
analysis of block ciphers. Early development starts with cryptanalysis of DES, which dates back
to 1977. Similar ideas have been applied to round-reduced variants of AES in last 12 years. More
recently, these techniques are found to be quite useful in preimages attacks of hash functions.
We will review these results and techniques developed on DES, AES and hash functions in the
following Section 2.1, 2.2 and 2.4, respectively.

2.1 Basic MITM Attacks on DES

DES is a block cipher standardized as FIPS 46 in 1976. It has a block size of 64 and key
size 56. In an early cryptanalysis by Diffie and Hellman [13] in 1977, a meet-in-the-middle
attack was proposed to examine the security of a cascade of the encryption function EK(·) with
two independent 56-bit keys K1 and K2. A ciphertext C is computed as EK2

(EK1
(P)) from

plaintext P . Given text pair (P,C), an intermediate value M can be computed as both EK1
(P)

and E−1
K2

(C), with parallel guesses of K1 and K2. By first storing values of M computed from P
with all values of K1, compute M ′ with guesses of K2 to find match with the stored M values,
the correct (K1,K2) pair certainly gives a match and is expected to be revealed by excluding
the false positives with additional text pairs. The attack is able to recover 112-bit key in at
most 257 rather than 2113 in number of full DES encryptions.

In practice it is rare that key materials are completely separated into two halves of the
cipher, as in the case of doubly cascaded DES. Meet-in-the-middle remains effective even in less
desirable scenarios. In 1985, Chaum and Evertse published several meet-in-the-middle attacks
against reduced DES [8]. The idea is to find “bits in the middle” that are independent of certain
key bits when computed from both ends. For an R-round case with encryption function EK(·),
let the GK(·) be the first S rounds and HK(·) be the rest R − S rounds, we have EK(·) =
HK ◦GK(·). Given text pair (P,C), we can compute the intermediate values M := GK(P) and
M

′

:= H−1
K (C) for a key guess K. The attack is effective if there is K̃ (K and for some nonzero

mask b such that b ·GK̃(P) = b ·H−1
K̃

(C) for all (P,C) pairs, where · is the bit-wise logic AND.

The wt(b)-bit match can be used to filter 2−wt(b) ratio of wrong keys during the MITM attack,
wt(·) computes the weight of the binary vector b. The attack covers at most 7 rounds (round
2-8) of DES faster than exhaustive search. Further work due to [15] on DES reduced to 4, 5, 6
rounds has involed novel methods to reduce the time complexity.

2.2 MITM Attacks on AES and Other Block Ciphers

MITM attacks against AES are a bit different from the techniques described in last subsection.
It aims to find some special properties of M := GK(P), such as the balanced property, and
then try to decrypt (i.e., compute M ′ := H−1

K (C)) the second half to match M ′ with the special
properties so that wrong key guesses can be filtered out. This type of attacks on AES starts with
a 6-round result in the Rijndael submission [9], then has been improved to 7/8-round results in
a series of work [10, 12, 14, 16]. More dedicated attacks with meet-in-the-middle technique can
be found in the practical attack to KeeLoq [20] and cryptanalysis of reduced round IDEA [11].

2

2.3 More Recent MITM Attacks

In [6] the framework is made clearer with different notions as compared with the basic idea in [8].
Some key bits of K are not used in the first S1 rounds, i.e., GK = GK1

with K1 (K being the
key bits essentially used in the first S1 rounds. Similarly, HK = HK2

with K2 (K for the last
S2 rounds. In addition, the matching is done in a separate partial matching phase of the middle
R − S1 − S2 rounds transformation I(·) from two fully determined states M := GK1

(P) and
M ′ := H−1(K2), i.e., EK(·) = HK2

◦ I ◦GK1
(·). The formalization allows better understanding

of the attack and may breed powerful extensions. We will discuss the attack details in Section 4,
which is the first attack that applies to the full KTANTAN32. Similar MITM attacks have been
applied to block ciphers including reduced GOST [26] and XTEA [27] recently.

2.4 Developments of MITM Preimage Attacks on Hash Functions

In 2008, Aoki and Sasaki noticed that the MITM attacks could be applied to hash functions, to
find (second) preimages faster than brute-force. The attacks have successfully broken the one-
wayness of several designs in the MD4 hash family including MD5 [25], round-reduced SHA-0
and SHA-1 [2], round-reduced SHA-2 [1], and also some other Davies-Meyer hash constructions,
e.g., Tiger [17], reduced HAS-160 [18] and HAVAL [24]5. Besides the basic techniques, several
new techniques have been developed in these hash attacks, namely, splice-and-cut, initial struc-
ture (IS), partial-matching (PM), and indirect-partial-matching. We describe them here in detail
as in Fig. 1, and later in the paper apply to KTANTAN family to obtain the best cryptanalytic
results. A detailed review of MITM preimage attacks on hash functions can also be found in [17].

LOOKUP

P C
IS PM

H1 G H2

Fig. 1. A general setup for MITM attacks

Splice-and-Cut To prevent (second) preimage attacks for narrow-pipe (i.e., the state size
equals to digest size) hash designs, feedforward is usually required. Davies-Meyer is among the
most popular ways to construct a compression function from a block cipher, i.e., h′ = Em(h)⊕h,
where ⊕h is called feedforward and E is a block cipher keyed by message m. In contrast to the
MITM attacks against block ciphers, splice-and-cut makes use of the feedforward, and split the
block cipher E(·) into three sub-ciphers, e.g., E(h) = H2◦G◦H1(h). Let hinter = H1(h), we can
refine the expression to H−1

2 (H−1
1 (hinter) ⊕ h′) = G(hinter). With the information of h and h′,

one can compute the output h⊕ h′ of the block cipher, this is called splice, which connects the
input and output of E. The attack starts with the intermediate point hinter of the E, and cut
the compression function into two parts: G(·) and H−1

2 (H−1
1 (·)⊕h′), then carry out the MITM

attacks (note in a preimage attack against hash functions, h′ is given as the target, hence can
be treated as a constant and values of hinter can be chosen freely). This enables the attacker to
choose the splitting point (position of hinter) wherever he wants. Hence it allows to search for
globally better set of neutral bits which might lead to a lower attack complexity.

5 We only cite the best attacks on each hash function here.

3

In case of block ciphers, such feedforward does not exist. However, one can still build a
virtual feedforward by making use of a lookup table between plaintext and ciphertext. Instead
of using H−1

1 (hinter)⊕h′ as the output of E, we use LOOKUP (H−1
1 (hinter)), where LOOKUP

outputs a ciphertext given the plaintext H−1
1 (hinter) under the correct key. Hence the MITM

attack can be carried out from the two sides of the equation H−1
2 (LOOKUP (H−1

1 (·))) = G(·).
The original MITM attacks can be viewed as a special case in this generalized setting with H1

being the identity, i.e., H1 covers 0 round with hinter being the plaintext.

The table LOOKUP can be constructed by computing from a randomly chosen hinter. The
set of possible H−1

1 (hinter) for varying keys are the chosen plaintexts to index the ciphertexts
accordingly. The entire codebook is necessary when H1 involves more secret key bits than the
block size. If much less entries are used in the table, it can be further compressed to a dense
table to reduce memory requirement. The data complexity of the attack is the number of entries
in this table. More details are in Section 5.

Initial Structure In a hash attack, one can choose the value of hinter freely. It is noted
that, under certain conditions, some neighbouring key bits can be swapped, and yet leave
the computation result unchanged. With help of this, some steps near hinter can be skipped as
demonstrated in Fig. 1, and smaller size of K1 and K2 can be found for the forward computation
GK1

and backward HK2
, hence a reduced time complexity is possible.

Partial-Matching Let Kc := K1 ∩K2, i.e., the key bits used in both computing forward for
M and backward for M ′ from the same hinter. It is noted that it is not necessary to match M
and M ′ fully at the early stage of the attacks. For 2|K1|−|Kc| candidates of M , and 2|K2|−|Kc|

candidates of M ′, it is expected to have 2|K1|+|K2|−2|Kc|−m pairs left if only m bits are checked
and matched. Then one can further check the candidates left if the rest of bits in M and M ′ are
also matched. This additional step takes about 2|K1|+|K2|−2|Kc|−m full encryptions. Actually it
is much less due to the fact that the re-check needs only to repeat the portion of PM as shown
in Fig. 1. Let α denotes the percentage of steps covered by PM over that of the full cipher. The
re-check will not dominate the overall complexity when

(|K1|+ |K2| − 2|Kc| −m) + log2(α) < max(|K1| − |Kc|, |K2| − |Kc|).

Indirect-Partial-Matching The indirect partial matching is a way to extend the partial
matching for more steps. Usually partial matching starts only when key bits in K2 \Kc appear
after the end of G (otherwise, one can extend G for more steps). Similarly for the other side,
i.e., key bits in K1 \ Kc appear just before H2. If one can find several bits in the IS portion
such that it can be expressed as GK1

+ φK2
from one direction, and HK2

+ µK1
from the other

direction. Instead of computing the actual values and doing the match directly, one can compute
GK1

− µK1
and HK2

− φK2
independently from two directions to check for match. The power

of this technique will be demonstrated in our results in Section 5.

There are more techniques such as partial-fixing, precomputed-initial-structure, probabilistic-
partial-matching developed in these hash attacks, however they are not much related to our
results.

3 The KTANTAN Family of Block Ciphers

KATAN and KTANTAN are two flavors of a family of hardware oriented block ciphers proposed
at CHES’09 [7]. The design is aiming at encryption needs on low-end devices such as RFID

4

tags hence the cipher is targeting low gate count and reduced power consumption, besides an
80-bit security level supported by a large security margin on differential cryptanalysis, linear
cryptanalysis and other attacks.

Both KATAN and KTANTAN have three variants with block sizes of 32-bit, 48-bit and
64-bit and each of them takes 80-bit user key. In addition, KATAN and KTANTAN share the
same data path specification, including the round transformation and round constants. The
data path is best illustrated with Fig. 2 cited from [7]. The round transformation is repeated
for 254 rounds with a sequence of values of IRi for i = 1 . . . 254.

Fig. 2. Illustration of KATAN/KTANTAN round transformation

The cipher state consists two parts L1 and L2 with different lengths. During the encryption,
the plaintext is loaded into the two registers for L1 and L2 in little-endian. In each round of
KTANTAN32, L1 and L2 are shifted to the left by 1 position with their least significant bits
filled by results of fb,r(·) and fa,r(·), respectively. fa,r and fb,r are the only non-linear functions
in the round transformation, defined as

fa,r(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IRr)⊕ ka,r (1)

fb,r(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb,r (2)

where ka,r and kb,r are 2 bits subkey of round r and IRr is the round r constant. For the
case of KTANTAN48 and KTANTAN64, the round transformation is repeated 2 and 3 times,
respectively. The specification of version specific constants can be found in Table 1 and IR in
Table 2.

Table 1. Parameters defined for the KATAN/KTANTAN family of ciphers

Blocksize |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

32 13 19 12 7 8 5 3 18 7 12 10 8 3

48 19 29 18 12 15 7 6 28 19 21 13 15 6

64 25 39 24 15 20 11 9 38 25 33 21 14 9

Differences in round transformation are introduced first by IR, a 254-bit binary string
termed the irregular update sequence. In addition, two bits ka and kb are generated from the
80-bit user key for reach round. How the subkeys are generated is the only difference between
KATAN and KTANTAN. Here we discuss the key schedule of KTANTAN. Two bits of the
80-bit K = k79k78 . . . k1k0 are selected each round, by the state of an 8-bit LFSR defined by the

5

Table 2. Round constant: the irregular update sequence

1111111000 1101010101 1110110011 0010100100 0100011000 1111000010
0001010000 0111110011 1111010100 0101010011 0000110011 1011111011
1010010101 1010011100 1101100010 1110110111 1001011011 0101110010
0100110100 0111000100 1111010000 1110101100 0001011001 0000001101
1100000001 0010

feedback polynomial x8 + x7 + x5 + x3 + 1. With an initial value 0xFF, it is clocked 254 times.
In each round the state of the LFSR is used to select two bits from K.

First divide K into five 16-bit words, let K = w4||w3||w2||w1||w0, where the LSB of w0 is
the LSB of K and the MSB of w4 is the MSB of K. Let T7T6 · · ·T1T0 be the state of LFSR at
a particular round r, then let ai = MUX16to1(wi, T7T6T5T4) where MUX16to1 is a multiplexer
that outputs the value of a bit in wi with position specified by T7T6T5T4. After that, the subkey
bits ka,r and kb,r are selected as

ka,r = T̄3 · T̄2 · (a0)⊕ (T3 ∨ T2) ·MUX4to1(a4a3a2a1, T1T0)

kb,r = T̄3 · T2 · (a4)⊕ (T3 ∨ T̄2) ·MUX4to1(a3a2a1a0, T̄1T̄0)

where MUX4to1 is a multiplexer that selects 1 bit from 4, similar as MUX16to1. In fact, when
the LFSR is clocked each round, the MSB is taken to form the irregular update sequence. The
reference IR may be useful to verify the implementation of the key schedule. It is noted that
the reference implementation has been updated several times, we list the entire key schedule in
Appendix A to avoid ambiguity, in accord with implementation [3].

4 The Previous Meet-in-the-Middle Attack

Here we briefly describe the attack in [6]. The attack manages to recover the secret key with
very low data complexity, as required by the unicity distance in the known plaintext setting.
The attack to KTANTAN32 runs at a time complexity of 279, although arguably marginal, is
the first key-recovery attack applicable to the full 254 rounds faster than brute force. For block
size b of 48 and 64, the attack manages to break 251 and 248 rounds respectively.

The main idea of this attack is to cut the R-round KTANTAN-b cipher into three parts for
some α, β < R, i.e., the first α rounds as the forward phase, the last β rounds as the backward
phase and the middle R − α − β rounds as the partial matching (MITM) phase. Let xi be the
state after round i, for 0 ≤ i ≤ 254. Let ϕi,j be the transformation from round i to round j
(inclusive) of the R-round KTANTAN-b, under an unknown fixed key K := k79k78 . . . k1k0. It
is found that the key bits in A1 := {k15, k79} are neutral to H := ϕ254−β+1,254 (i.e., the last β
rounds) for 1 ≤ β ≤ 118, and A2 := {k5, k37, k69} neutral to G := ϕ1,α (i.e., the first α rounds)
for 1 ≤ α ≤ 105. The rest of the bits A0 := {k0, k1, . . . , k78, k79} \ (A1

⋃
A2) are used in both

the forward and the backward phases. The attack to KTANTAN32 proceeds as described in
Section 2 with a text pair (P,C).

For each guess of key bits in A0:

1. For each guess of A1, compute M := G(P) = ϕ1,105(P). Then, 3-bit of x128 can be computed
from M and used as an index to store value of A1 in a table.

2. For each guess of A2, compute M ′ := H−1(C) = ϕ−1
137,254(C). Compute the same 3-bit of

x128 from M ′. If the value is the index to some stored A1, do the key testing.

6

Key testing: Test whether M ′ = ϕ106,136(M) for K, i.e., current guessed values for bits in
A0, A1 and A2. If K passes, try additional pairs one by one. Continue the search if K is rejected.
If K manages to survive all pairs, we conclude that it is the correct key with probability close
to 1.

Data Complexity: Roughly ⌈80/b⌉ text pairs are necessary to identify the correct key for
block size b. (i.e., each pair has a filtering power of 2−b). Each time the key passes the test of
one pair, an additional pair is used, until the key is rejected or all text pairs exhausted - we
conclude that K is the correct guess.

Time Complexity: The claimed complexity is at around 2|A0|(2|A1|+2|A2|)+280−3 = 279 basic
operations. Considering that a more accurate calculation will better reflect the attack at the
marginal value, the number of full block encryptions that the attack works at is

2|A0|(2|A1| · α/R + 2|A2| · β/R + 2|A1|+|A2|−m(R− α− β)/R)
.
= 277.6.

4.1 New Experimental Observations on the Attack

We have implemented the family of KTANTAN and examined the attack by Bogdanov and
Rechberger in [6], with respect to both the cipher design paper [7] and its reference imple-
mentation [3]. We managed to find different sets of neutral key bits for the KTANTAN key
schedule, these neutral key bits lead to the first non-marginal attack of the cipher family for the
full rounds of all the three block sizes. The new set of neutral key bits are presented in Table 3.
The first example of the comparison to the B-R attack on KTANTAN32 would be that the set of
key bits A2 neutral to ϕ1,105 is {13, 27, 32, 39, 44, 59, 61, 66, 75}, and A1 = {3, 20, 41, 47, 63, 74}
neutral to ϕ137,254 while at most 3 bits can be matched in the middle6. We compare the attacks
in Table 3.

Table 3. The B-R attack and our results

b R α β A1 A2 m Time Data

32 254 105 118 15, 79 5, 37, 69 3 279.0 3 KP [6]
48 251 107 112 11, 15, 75, 79 5, 69 1 279.7 2 KP [6]
64 248 107 112 9, 73 5, 69 2 279.58 2 KP [6]

32 254 111 122 3, 20, 41, 47, 63, 74 32, 39, 44, 61, 66, 75 12 273.88 3 KP This paper
32 254 110 122 3, 20, 41, 47, 63, 74 27, 32, 39, 44, 59, 61, 66, 75 4 273.88 3 KP This paper
32 254 109 122 3, 20, 41, 47, 63, 74 13, 27, 32, 39, 44, 59, 61, 66, 75 3 274.33 3 KP This paper
48 254 123 122 3, 20, 41, 47, 63, 74 32, 44, 61, 66, 75 37 274.53 2 KP This paper
48 254 111 121 3, 20, 41, 47, 63, 74 32, 39, 44, 61, 66, 75 4 273.97 2 KP This paper
64 254 123 122 3, 20, 41, 47, 63, 74 32, 44, 61, 66, 75 44 274.53 2 KP This paper

For an attack with m-bit matching value and b-bit block size we follow a more detailed
calculation of the time complexity in number of full block encryptions (for m > |A1|+ |A2| the
last term can be dropped):

2|A0|(2|A1| · α/R + 2|A2| · β/R) + 280−m · (R− α− β)/R.

6 This refers to the pre-proceeding version [6]. The authors updated in [5]. It is noted that the reference imple-
mentation had been updated several times, some confusion stemming from updated reference implementations
seem to be the cause of the different attack results. Nevertheless, our attack applies to the cipher according
to the design paper, and also in accord with the final version of the reference implementation retrieved.

7

4.2 Low Complexity Implementation of the Attack

The attack works at time complexity above 270 which is still out of reach for nowadays computing
power. Nevertheless, due to the very low data complexity at merely the unicity distance, it is
feasible to launch the attack with just a handful of text pairs (e.g., by eavesdropping a small
amount of ciphertexts that correspond to known protocol headers). Moreover, in the cases that
the secret keys are not derived with full 80-bit entropy, such an attack may become a real threat
when time complexity becomes 26 to 27 times less due to the attack of this paper.

We implement such an attack scenario as a cryptanalytic game, one of the authors as the
attacker tries recovering the complete secret key when a few plaintexts and their ciphertexts
are given by another author, who then verifies whether the attack is successful as only he knows
the real key. We assume that the attacker has already gained knowledge of part of the key bits
in A0. The attack works on the full 254-round KTANTAN32, with α = 111, β = 122, A1 =
{3, 20, 41, 47, 63, 74}, A2 = {32, 39, 44, 61, 66, 75}. By computing forward up to the end of round
126 and backward before round 127, there are 12 bits match. The details of the matching are
given in the same notations used in [6]. e.g., k1 = 1 means the key bit is active (unknown) and
k2 = 0 means the key bit is inactive (known). An 1 in the state means the bit is affected by an
active key bit, and 0 means it is not affected (i.e., this state bit can be fully determined from
previous state).

forward part: Neutral bits: 32 39 44 61 66 75

forward R=112: k1=1, k2=1, 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

forward R=113: k1=0, k2=0, 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

forward R=114: k1=0, k2=0, 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

forward R=115: k1=0, k2=0, 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

forward R=116: k1=0, k2=0, 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

forward R=117: k1=0, k2=0, 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

forward R=118: k1=0, k2=0, 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1

forward R=119: k1=0, k2=0, 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0

forward R=120: k1=0, k2=0, 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1

forward R=121: k1=0, k2=0, 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1

forward R=122: k1=0, k2=0, 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1

forward R=123: k1=0, k2=0, 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0

forward R=124: k1=1, k2=0, 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1

forward R=125: k1=0, k2=0, 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1

forward R=126: k1=0, k2=0, 0 0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1

backward part: Neutral bits: 3 20 41 47 63 74

backward R=132: k1=0, k2=1, 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=131: k1=1, k2=1, 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=130: k1=0, k2=0, 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=129: k1=0, k2=0, 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=128: k1=0, k2=0, 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=127: k1=0, k2=0, 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit map of 12 matched bits: 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1

The game works as follows:

1. First, player A chooses an 80-bit secret key and generates 3 text pairs. Then he sends the
lower 40 bits of A0 together with the text pairs to Player B. The 80-bit secret key in bit
stream order looks as:

100*1101 01001010 0101*111 01010110 *111101* 1*01*0** ******** ******** ******** ********

8

where ∗ denotes unknown bit and 0/1 the known bit. The text pairs are (0x1314B499,
0xE995A2BE), (0x39AF5959,0xA7B2C77C), and (0xF5128319, 0x1A54138F).

2. Second, player B recovers the bits under ∗ with the following results: A1 : 111110, A2 :
010100 and A0 : 1001100111001011011100001000, where each bit from low to high order
corresponds to the masked bits in A1, A2 and A0.

3. Lastly, player A acknowledges that the recovered bits are correct.

Note: The attack in Step 2 successfully recovers the 40-bits in 5 hours 34 seconds on a Quad-core
HP xw4600 workstation of 2.40GHz. The implementation makes use of the reference bit-slice
code which fits well in this attack as 26 instances of partial transformations are required on both
the forward and backward phase, i.e., for ϕ1,111 and ϕ−1

133,254 respectively. On each direction, the
64 bit-sliced instances are loaded with 64 guesses of A1 and A2 respectively. With 40 bits known,
the estimated complexity 274 is reduced to around 234 full encryptions. The estimation matches
the experiment well since the bit-sliced reference implementation encrypts 226 text blocks in
roughly 45 seconds on this workstation. As a comparison, recovering 40 bits by exhaustive search
will take roughly half a month using the same computational resources.

5 More General MITM Attacks on KTANTAN Family

The attacks described in Section 4 are due to a weakness in the key schedule of the KTANTAN
family, especially, the efficiency of the attacks depends crucially on how many neutral key bits
can be found on the forward phase and the backward phase. Hence a natural question is, is
there an optimal partitioning if we are allowed to relax some requirements? We employ the
splice-and-cut technique described in Section 2.4, start by randomly choosing a value for the
state at a middle round and compute both forward and backward to check how many bits can
be matched by the indirect-partial-matching technique. The core idea of this setup is almost
identical with the basic form, i.e., the B-R attack. For m-bit match, under the correct key
guess, the match and re-check followed will all pass while for a random wrong guess, the match
will hold with probability 2−m, i.e., a ratio of 2−m of the overall guesses will be filtered in the
partial matching phase. This effectively reduces the amount of key testing below brute-force.

5.1 Indirect Partial Matching

We employ this technique due to an important observation on the mixing of key bits. In each
round the transformation with fr,a and fr,b are repeated 1, 2 and 3 times for respective block
size 32, 48 and 64. For each of the evaluations of (1) and (2), a single round key bit is mixed
XOR-linearly into the LSB of L1 or L2, hence affecting the lowest 1 to 3 bits considering the
shift(s). In the round that follows, very few bits of the state get involved in the nonlinear terms
of (1) and (2) when computing fr,a and fr,b. This means after the round key bits are mixed
into the state, they will remain linear for quite a number of rounds. With this observation,
the indirect-partial-matching technique is considered to try tracing more state bits during the
partial matching. These additional state bits are those affected by active key bits, but just
linearly affected.

5.2 Splice-and-Cut

Let xi be the state after round i for 1 ≤ i ≤ 254 then x254 is the ciphertext and denote
the plaintext x0. Let b0 and b1 be the round numbers of the start and the end of backward

9

computation, and f0 and f1 be that of the forward computation. The rounds between (exclusive)
b0 and f0 are used for the initial structure. However in the case of KTANTAN, the search result
shows that this technique is not particularly relevant to a better attack, therefore we are setting
f0 to b0 + 1 to allow no initial structure. The indirect partial matching is performed between
two fully determined states M := xf1 (after round f1) and M ′ := xb1−1 (before round b1). The
search is done with the fact in mind, that a huge LOOKUP table may be necessary to splice
the two ends of cipher together as described in Section 2.4. Nevertheless, the block sizes of all
three versions are less than the key size, in the worst case, the key recovery attack will have to
use the entire codebook. Note that the attack is still strictly better than owning the codebook
since it is able to recover the secret key.

From the search result shown in Table 4, in the optimal partition of KTANTAN32 and
KTANTAN64 as well as a near-optimal partition of KTANTAN48, the backward phase and the
forward phase are split before round 254. In total only 4 ciphertexts have to be computed from
the chosen state x253 as ϕ254,254(x253) with all possible values of the round key k71k7. Hence the
data complexity is at 4 chosen ciphertexts. For each iteration of the attack, we refer the active
entry of the LOOKUP table the active pair, and other entries in the table as non-active pairs.
During the key testing, besides the reuse of the active pair, one or two additional non-active
pairs can be used to reject false positives. In the optimal partition of KTANTAN48 that gives
the least time complexity, the entire codebook is necessary since the chosen state x107 is in the
middle of the cipher. In Fig. 3 below we illustrate the cases in which the splitting point is at
the end of the cipher. With notations of previous sections, G := ϕ1,f1 ◦LOOKUP ◦ϕf0,254 and
H := ϕb1,b0 .

LOOKUP

P C
f0b0b1IPMf1

H G1G2 M M ′

Fig. 3. Illustration of MITM attack with splice-and-cut

5.3 The Attack with Splice-and-Cut and Indirect-Partial-Matching

The first step is to construct the table LOOKUP as to splice the two ends of cipher. It is
done with the chosen ciphertext (C,P) pairs, or the entire codebook. For the attack illustrated
by Fig. 3, the splitting point is at the end, we select a random value for xb0 and compute
C := G1(xb0) for all the possible values of key bits involved in G1 := ϕf0,254. For each C
find the corresponding plaintext P and add (C,P) to the table LOOKUP with C as the in-
dex and P as the value. If the splitting point is in a middle round and we need the entire
codebook, LOOKUP is constructed by adding all the (C,P) pairs when f1 < f0 or all the
(P,C) pairs when b0 < b1. We do not discuss this scenario since it is almost identical to the
algorithm for the illustrated attack. Following the notations we use A1 for the key bits neu-
tral to the backward transformation H−1 := ϕ−1

b1,b0
and A2 for the key bits neutral to forward

G := G2 ◦ LOOKUP ◦G1 = ϕ1,f1 ◦ LOOKUP ◦ ϕf0,254.

Attack Algorithm: For each guess of key bits in A0:

1. For each guess of A1, compute M := G(xb0). Then, m-bit partial matching signature can be
computed from M and used as an index to store value of A1 in a table.

10

2. For each guess of A2, compute M ′ := H−1(xb0). Then compute the same m-bit partial
matching signature from M ′. If the value is the index to some stored A1, do the key testing.

Indirect Partial Matching: The m-bit partial matching signature are m bits values at the
position of the matched bits, computed as described in Section 2.4 on indirect partial match-
ing. Searching of such signature requires to find state bits either independent of the active key
bits in the IPM phase or dependent but only linearly affected. The technique significantly im-
proved the number of bits that can be matched. This allows us to have more rounds for partial
matching hence possibly more neutral bits. The detailed matching of the current optimal attack
to KTANTAN32 can be found in Appendix B. To compute the matching signature, we take
KTANTAN32 for example, the matching point in the optimal attack shown above is after round
115. To simplify the notations, let x := x115 and x[i] be the i-th bit of x, for 0 ≤ i ≤ 31. For
the forward part of the indirect partial matching, it is not hard to find the following key bits
appear only as linear terms in corresponding state bits, k27 in x[0], k13 in x[1], k39 in x[3], k59
in x[4] and k39 in x[22]. For the backward part, similarly we have linear terms of k74 in x[26],
k74 in x[21], k74 in x[3] and k20 in x[2]. Hence the matching signature is (x[26] − k74, x[22] −
k39, x[21]− k74, x[7], x[6], x[5], x[4] − k59, x[3]− k39 − k74, x[2]− k20, x[1]− k13, x[0]− k27) which
can be computed from both sides without knowing the value for the active key bits from that
side.

Key testing: Test whether M ′ = ϕf1+1,b1−1(M) for K, i.e., current guessed values for bits
in A0, A1 and A2. If K passes, try non-active pairs. Continue the search if K is rejected. If K
manages to survive a number of pairs at the unicity distance, we conclude that it is the correct
key with probability close to 1.

Table 4 shows the result of search that leads to better complexities.

Table 4. MITM attack with splice-and-cut and indirect-partial-matching techniques

b R b1 b0 f0 f1 A1 A2 m Time Data

32 254 148 253 254 109 13, 27, 32, 39, 44, 59, 61, 66, 75 3, 20, 41, 47, 63, 74 11 272.93 4 CC This paper
48 254 246 107 108 208 0, 3, 32, 47, 60, 63, 64 13, 27, 39, 44, 59, 61 9 273.43 248 KP This paper
48 254 150 253 254 111 32, 39, 44, 61, 66, 75 3, 20, 41, 47, 63, 74 15 273.77 4 CC This paper
64 254 151 253 254 112 32, 44, 61, 66, 75 3, 20, 41, 47, 63, 74 54 274.38 4 CC This paper

6 Conclusions

We presented new experimental observations that lead to improved cryptanalytic results for
the KTANTAN family. In addition, we have implemented the attack to KTANTAN32 in a
low complexity version. The result confirms the validity of such attacks and the reduction on
time complexity. Moreover, the techniques developed from cryptanalysis of hash functions in the
MITM framework are shown to be effective on analysis of block ciphers as well, despite the pres-
ence of a secret key, as we obtained the best cryptanalysis on KTANTAN family. In particular,
the splice-and-cut technique allows searching of optimal partitioning on neutral bits and match.
In conjunction with indirect-partial-matching, significantly more bits can be matched in our
attacks, this helps to have more rounds covered by partial matching hence it becomes possible
to have more neutral bits to improve the time complexity. Other techniques like precomputed-
initial-structure do not contribute to our attack, but we expected them to be effective in analysis
of other block ciphers in the MITM framework. It is yet open to examine the real potential of

11

MITM attacks in general on block cipher cryptanalysis if more powerful enhancements can be
discovered. More dedicated matching techniques might be possible for particular block ciphers.

References

1. Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preimages for Step-Reduced
SHA-2. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 578–597. Springer, 2009.

2. Kazumaro Aoki and Yu Sasaki. Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1.
In Shai Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 70–89. Springer, 2009.

3. Jean-Phillipe Aumasson, Miroslav Knezevic, and Orr Dunkelman. Bit-sliced Reference Implementation of
KATAN/KTANTAN Family. http://www.cs.technion.ac.il/~orrd/KATAN/katan.c, 2010. Accessed on 6
August 2010.

4. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Rob-
shaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier
and Ingrid Verbauwhede, editors, CHES, volume 4727 of LNCS, pages 450–466. Springer, 2007.

5. Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the
Lightweight Block Cipher KTANTAN. In Selected Areas in Cryptography, pages 229–240, 2010.

6. Andrey Bogdanov and Christian Rechberger. Generalized Meet-in-the-Middle Attacks: Cryptanalysis of the
Lightweight Block Cipher KTANTAN. 2010. In preproceedings of SAC, http://homes.esat.kuleuven.be/

~abogdano/talks/ktantan_sac10.pdf.
7. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - A Family of

Small and Efficient Hardware-Oriented Block Ciphers. In Christophe Clavier and Kris Gaj, editors, CHES,
volume 5747 of LNCS, pages 272–288. Springer, 2009.

8. David Chaum and Jan-Hendrik Evertse. Crytanalysis of DES with a Reduced Number of Rounds: Sequences
of Linear Factors in Block Ciphers. In Hugh C. Williams, editor, CRYPTO, volume 218 of LNCS, pages
192–211. Springer, 1985.

9. Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. NIST AES proposal, 1998.
10. Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round AES. In Kaisa Nyberg,

editor, FSE, volume 5086 of LNCS, pages 116–126. Springer, 2008.
11. Hüseyin Demirci, Ali Aydin Selçuk, and Erkan Türe. A New Meet-in-the-Middle Attack on the IDEA Block

Cipher. In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006
of LNCS, pages 117–129. Springer, 2003.

12. Hüseyin Demirci, Ihsan Taskin, Mustafa Çoban, and Adnan Baysal. Improved Meet-in-the-Middle Attacks
on AES. In Bimal K. Roy and Nicolas Sendrier, editors, INDOCRYPT, volume 5922 of LNCS, pages 144–156.
Springer, 2009.

13. W. Diffie and M. E. Hellman. Exhaustive Cryptanalysis of the NBS Data Encryption Standard. Computer,
10(6):74–84, 1977.

14. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on 8-round AES. In Masayuki
ABE, editor, ASIACRYPT, volume 6477 of LNCS, Singapore, December 2010. Springer. To appear, available
http://eprint.iacr.org/2010/322.pdf.

15. Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved Meet-in-the-Middle Attacks on Reduced-
Round DES. In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors, INDOCRYPT, volume 4859 of
LNCS, pages 86–100. Springer, 2007.

16. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner, and Doug Whiting.
Improved Cryptanalysis of Rijndael. In Bruce Schneier, editor, FSE, volume 1978 of LNCS, pages 213–230.
Springer, 2000.

17. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced Meet-in-the-Middle Preimage
Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2. In Masayuki Abe, editor,
ASIACRYPT, volume 6477 of LNCS, Singapore, December 2010. Springer.

18. Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved Preimage Attack for 68-Step HAS-160. In Donghoon
Lee and Seokhie Hong, editors, ICISC, volume 5984 of LNCS, pages 332–348. Springer, 2009.

19. Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo, Changhoon Lee,
Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung Kim, and Seongtaek Chee. HIGHT:
A New Block Cipher Suitable for Low-Resource Device. In Louis Goubin and Mitsuru Matsui, editors,
CHES, volume 4249 of LNCS, pages 46–59. Springer, 2006.

20. Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart Preneel. A Practical Attack on
KeeLoq. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of LNCS, pages 1–18. Springer, 2008.

21. Lars R. Knudsen, Gregor Leander, Axel Poschmann, and Matthew J. B. Robshaw. Printcipher: A block
cipher for ic-printing. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of
Lecture Notes in Computer Science, pages 16–32. Springer, 2010.

12

22. Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm. New Lightweight DES Variants. In
Alex Biryukov, editor, FSE, volume 4593 of LNCS, pages 196–210. Springer, 2007.

23. Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher for Security of Low-Cost
RFID Tags and Sensors. In JooSeok Song, Taekyoung Kwon, and Moti Yung, editors, WISA, volume 3786
of LNCS, pages 243–258. Springer, 2005.

24. Yu Sasaki and Kazumaro Aoki. Preimage Attacks on 3, 4, and 5-Pass HAVAL. In Josef Pieprzyk, editor,
ASIACRYPT, volume 5350 of LNCS, pages 253–271. Springer, 2008.

25. Yu Sasaki and Kazumaro Aoki. Finding Preimages in Full MD5 Faster Than Exhaustive Search. In Antoine
Joux, editor, EUROCRYPT, volume 5479 of LNCS, pages 134–152. Springer, 2009.

26. Gautham Sekar, Nicky Mouha, and Bart Preneel. Meet-in-the-Middle Attacks on Reduced-Round GOST.
Information Processing Letters. Submitted.

27. Gautham Sekar, Nicky Mouha, Vesselin Velichkov, and Bart Preneel. Meet-in-the-Middle Attacks on
Reduced-Round XTEA. In Aggelos Kiayias, editor, CT-RSA, Lecture Notes in Computer Science. Springer,
2011. To appear, available http://www.cosic.esat.kuleuven.be/publications/article-1505.pdf.

Appendix A The key schedule of the KTANTAN family

rounds (ka,r, kb,r)

1 - 10 63 , 31 31 , 63 31 , 63 15 , 47 14 , 14 60 , 76 40 , 40 49 , 17 35 , 67 54 , 22

11 - 20 45 , 77 58 , 26 37 , 69 74 , 10 69 , 69 74 , 10 53 , 21 43 , 43 71 , 7 63 , 79

21 - 30 30 , 62 45 , 45 11 , 11 54 , 70 28 , 60 41 , 41 3 , 19 38 , 70 60 , 28 25 , 73

31 - 40 34 , 34 5 , 21 26 , 74 20 , 52 9 , 41 2 , 18 20 , 68 24 , 56 1 , 33 2 , 2

41 - 50 52 , 68 24 , 56 17 , 49 3 , 35 6 , 6 76 , 76 72 , 8 49 , 17 19 , 51 23 , 55

51 - 60 15 , 63 14 , 46 12 , 28 24 , 72 16 , 48 1 , 49 2 , 34 4 , 20 40 , 72 48 , 16

61 - 70 17 , 65 18 , 50 5 , 53 10 , 58 4 , 36 8 , 8 64 , 64 64 , 0 65 , 1 51 , 19

71 - 80 23 , 55 47 , 47 15 , 15 78 , 78 76 , 12 73 , 9 67 , 3 55 , 23 47 , 47 63 , 31

81 - 90 47 , 79 62 , 30 29 , 77 26 , 58 5 , 37 10 , 26 36 , 68 56 , 24 33 , 65 50 , 18

91 - 100 21 , 69 42 , 42 5 , 5 58 , 74 20 , 52 25 , 57 3 , 51 6 , 38 12 , 12 56 , 72

101 - 110 16 , 48 33 , 33 3 , 3 70 , 70 60 , 28 41 , 41 67 , 3 71 , 71 78 , 14 77 , 13

111 - 120 59 , 27 39 , 39 79 , 15 79 , 79 62 , 30 45 , 45 59 , 27 23 , 71 46 , 46 13 , 29

121 - 130 42 , 74 52 , 20 41 , 73 66 , 2 53 , 69 42 , 42 53 , 21 27 , 75 38 , 38 13 , 13

131 - 140 74 , 74 52 , 20 25 , 57 35 , 35 7 , 7 62 , 78 44 , 44 73 , 9 51 , 67 22 , 54

141 - 150 29 , 61 11 , 43 6 , 22 44 , 76 72 , 8 65 , 65 50 , 18 37 , 37 75 , 11 55 , 71

151 - 160 46 , 46 77 , 13 75 , 75 70 , 6 61 , 29 27 , 59 39 , 39 15 , 31 46 , 78 76 , 12

161 - 170 57 , 73 34 , 34 69 , 5 59 , 75 38 , 38 61 , 29 43 , 75 70 , 6 77 , 77 58 , 26

171 - 180 21 , 53 43 , 43 7 , 23 30 , 78 44 , 44 9 , 25 18 , 66 36 , 36 9 , 9 50 , 66

181 - 190 36 , 36 57 , 25 19 , 67 22 , 54 13 , 45 10 , 10 68 , 68 56 , 24 17 , 49 19 , 51

191 - 200 7 , 39 14 , 30 28 , 76 40 , 40 1 , 1 66 , 66 68 , 4 57 , 25 35 , 35 55 , 23

201 - 210 31 , 79 30 , 62 13 , 61 10 , 42 4 , 4 72 , 72 48 , 16 33 , 33 51 , 19 39 , 71

211 - 220 78 , 14 61 , 77 26 , 58 21 , 53 11 , 59 6 , 54 12 , 44 8 , 24 32 , 64 64 , 0

221 - 230 49 , 65 18 , 50 37 , 37 11 , 27 22 , 70 28 , 60 9 , 57 2 , 50 4 , 52 8 , 40

231 - 240 0 , 0 48 , 64 32 , 32 65 , 1 67 , 67 54 , 22 29 , 61 27 , 59 7 , 55 14 , 62

241 - 250 12 , 60 8 , 56 0 , 32 0 , 16 16 , 64 32 , 32 1 , 17 34 , 66 68 , 4 73 , 73

251 - 254 66 , 2 69 , 5 75 , 11 71 , 7

Appendix B

Here we show the indirect partial matching of the optimal attack to KTANTAN32. When a
state bit is affected by an active key bit, it is denoted + if linearly affected and 1 if nonlinearly
affected. In the match, those bits with + can be matched with the indirect matching technique.
It can be seen that the indirect matching technique gives 8 more bits match than the original
3 using direct partial matching.

forward part: 9 Neutral bits: 13 27 32 39 44 59 61 66 75

13

forward R=110: k1=0, k2=1, 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

forward R=111: k1=1, k2=1, 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +

forward R=112: k1=1, k2=1, 0 0 0 0 0 0 0 0 0 0 + + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + +

forward R=113: k1=0, k2=0, 0 0 0 0 0 0 0 0 0 + + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + 0

forward R=114: k1=0, k2=0, 0 0 0 0 0 0 0 0 + + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 +

forward R=115: k1=0, k2=0, 0 0 0 0 0 0 0 + + + 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 + +

backward part: 6 Neutral bits: 3 20 41 47 63 74

backward R=147: k1=0, k2=0, 0

backward R=146: k1=0, k2=0, 0

backward R=145: k1=0, k2=0, 0

backward R=144: k1=0, k2=0, 0

backward R=143: k1=0, k2=0, 0

backward R=142: k1=0, k2=0, 0

backward R=141: k1=0, k2=0, 0

backward R=140: k1=0, k2=0, 0

backward R=139: k1=0, k2=0, 0

backward R=138: k1=0, k2=0, 0

backward R=137: k1=0, k2=0, 0

backward R=136: k1=0, k2=0, 0

backward R=135: k1=0, k2=0, 0

backward R=134: k1=0, k2=0, 0

backward R=133: k1=0, k2=0, 0

backward R=132: k1=0, k2=1, 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=131: k1=1, k2=1, + 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=130: k1=0, k2=0, 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=129: k1=0, k2=0, 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=128: k1=0, k2=0, 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=127: k1=0, k2=0, 1 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0

backward R=126: k1=0, k2=0, + 1 0 0 0 + 0 0 0 0 0 0 0 1 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0

backward R=125: k1=0, k2=0, 0 + 1 0 0 0 + 0 0 0 0 0 0 1 1 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0

backward R=124: k1=0, k2=0, 1 0 + 1 0 0 0 + 0 0 0 0 0 1 1 1 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0

backward R=123: k1=1, k2=0, 1 1 0 + 1 0 0 0 + 0 0 0 0 1 1 1 1 0 0 0 0 + + 0 0 0 0 0 0 0 0 0

backward R=122: k1=0, k2=1, 1 1 1 0 + 1 0 0 0 + 0 0 0 1 1 1 1 1 0 0 0 0 + + 0 0 0 0 0 0 0 0

backward R=121: k1=0, k2=1, + 1 1 1 0 + 1 0 0 0 + 0 0 1 1 1 1 1 1 0 0 0 0 + + 0 0 0 0 0 0 0

backward R=120: k1=0, k2=0, 1 + 1 1 1 0 + 1 0 0 0 + 0 1 1 1 1 1 1 1 0 0 0 0 + + 0 0 0 0 0 0

backward R=119: k1=0, k2=0, 1 1 + 1 1 1 0 + 1 0 0 0 + 1 1 1 1 1 1 1 1 0 0 0 0 + + 0 0 0 0 0

backward R=118: k1=0, k2=0, 1 1 1 + 1 1 1 0 + 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 + + 0 0 0 0

backward R=117: k1=0, k2=0, 1 1 1 1 + 1 1 1 0 + 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 + + 0 0 0

backward R=116: k1=0, k2=0, 1 1 1 1 1 + 1 1 1 0 + 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 + + 0 0

Bit map of 11 matched bits: 1 1 1 1 1 + 1 1 1 + + 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 + + + + +

14

