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Abstract. Secure group communication systems have become increasingly im-
portant for many emerging network applications. An efficient and robust group
key management approach is indispensable to a secure group communication sys-
tem. Motivated by the theory of hyper-sphere, this paper presents a new group key
management approach with a group controller GC. In our new design, a hyper-
sphere is constructed for a group and each member in the group corresponds to
a point on the hyper sphere, which is called the member’s private point. The GC
computes the central point of the hyper-sphere, intuitively, whose “distance” from
each member’s private point is identical. The central point is published such that
each member can compute a common group key, using a function by taking each
member’s private point and the central point of the hyper-sphere as the input.
This approach is provably secure under the pseudo-random function (PRF) as-
sumption. Compared with other similar schemes, by both theoretical analysis and
experiments, our scheme (1) has significantly reduced memory and computation
load for each group member; (2) can efficiently deal with massive membership
change with only two re-keying messages, i.e., the central point of the hyper-
sphere and a random number; and (3) is efficient and very scalable for large-size
groups.

Keywords: Group Communication, Key Management, Hyper-Sphere, Pseudo-Random
Function (PRF), Provable Security

1 Introduction

With the rapid development of Internet technology and the popularization of multi-
cast, group-oriented applications, such as video conference, network games, and video
on demand, etc., are playing important roles. How to protect the communication secu-
rity of these applications are becoming more and more significant. Generally speaking,
a secure group communication system should not only provide data confidentiality,
user authentication, and information integrity, but also accommodate perfect scalabil-
ity. Without any doubt, a secure, efficient, and robust group key management approach
is essential to a secure group communication system.
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Our Contributions. This paper presents a secure group key management approach
based on the properties of hyper-sphere. In mathematics, a hyper-sphere is a general-
ization of the surface of an ordinary sphere to arbitrary dimension. The distance from
any point on the hyper-sphere to the central point of the hyper-sphere is identical. In-
spired by this principle, a secure group key management scheme is designed. The most
significant advantages of the proposed approach are the reduction of user storage, user
computation, and the amount of update information while re-keying. The group key is
updated periodically to protect its secrecy. Each key is completely independent from
any previously used and future keys. A formal security proof for our scheme is given
under the pseudo-random function.

Organization. The remainder of this paper is organized as follows. A brief survey
of some related schemes on secure group key management is described in Section 2.
Some preliminaries and security model are given in Section 3. The proposed secure
group key management approach is presented in Section 4. Security is formally proven,
and performance is discussed in Section 5. Comparisons with related work are presented
in Section 6. Finally, Section 7 summarizes the major contributions of this paper.

2 A Brief Survey of Related Work

There are various approaches on the key management for secure group communication.
Rafaeli and Hutchison [30] presented a comprehensive survey on this area. Existing
schemes can be divided into three different categories: centralized, distributed, and de-
centralized schemes.

In a centralized system, there is an entity GC (Group Controller) controlling the
whole group [30]. Some typical schemes in this category include Group Key Manage-
ment Protocol (GKMP) [19, 20], Secure Lock (SL) [12], Logical Key Hierarchy (LKH)
[41], etc. The Group Key Management Protocol (GKMP) [19, 20] is a direct extension
from unicast to multicast communication. It is assumed that there exists a secure chan-
nel between the GC and every group member. Initially, the GC selects a group key K0
and distributes this key to all group members via the secure channel. Whenever a mem-
ber joins in the group, the GC selects a new group key KN and encrypts the new group
key with the old group key yielding K′ = EK0 (KN) then broadcasts K′ to the group
members. Moreover, the GC sends KN to the joining member via the secure channel
between the GC and the new member. Obviously, the solution is not scalable [30]. The
Secure Lock (SL) scheme [12] takes advantage of Chinese Remainder Theorem (CRT)
to construct a secure lock to combine all the re-keying messages into a single message
while the group key is updated. However, CRT is a time-consuming operation. As men-
tioned in [12], the SL scheme is efficient only when the number of users in a group is
small, since the time to compute the lock and the length of the lock (hence the transmis-
sion time) is proportional to the number of users. The Logical Key Hierarchy (LKH)
scheme [41] adopts tree structure to organize keys. The GC maintains a virtual tree,
and the nodes in the tree are assigned keys. The key held by the root of the tree is the
group key. The internal nodes of the tree hold key encryption keys (KEK). Keys at leaf
nodes are possessed by individual members. Every member is assigned the keys along
the path from its leaf to the root. When a member joins or leaves the group, its parent
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node’s KEK and all KEKs held by nodes in the path to the root should be updated. The
number of keys which need to be changed for a joining or leaving is O(log2 n) and the
number of encryptions is O(2× log2 n). If there are a great deal of members need to join
or leave the group, then the re-keying overhead will increase proportionally to the num-
ber of members changed. There are some other schemes that adopt tree structures, for
example, OFT (One-way Function Tree) [37], OFCT (One-way Function Chain Tree)
[10], Hierarchical α-ary Tree with Clustering [11], Efficient Large-Group Key [29], etc.

In the distributed schemes, there is no explicit GC and the key generation can be
either contributory or done by one of the members [30]. Some typical schemes in-
clude: Burmester and Desmedt Protocol [9], Group Diffie-Hellman key exchange [38],
Octopus Protocol [5], Conference Key Agreement [7], Distributed Logical Key Hierar-
chy [34], Distributed One-way Function Tree [16], Diffie-Hellman Logical Key Hierar-
chy [28, 21], Distributed Flat Table [40], etc. Recent references paid more attentions to
contributory and collaborative group key agreement [14, 46, 24, 25, 1, 2], etc. Recently,
the concepts of asymmetric group key agreement and contributory broadcast encryp-
tion were proposed [42, 43]. An asymmetric group key agreement (ASGKA) protocol
[42] lets the group members negotiate a shared encryption key instead of a common
secret key. The encryption key is accessible to attackers and corresponds to different
decryption keys, each of which is only computable by one group member. A contribu-
tory broadcast encryption (CBE) [43] enables a group of members negotiate a common
public encryption key while each member holds a decryption key.

In the decentralized architectures, the large group is split into small subgroups.
Different controllers are used to manage each subgroup [30]. Some typical schemes
include: Scalable Multicast Key Distribution [4], Iolus [26], Dual-Encryption Proto-
col [15], MARKS [8], Cipher Sequences [27], Kronos [36], Intra-Domain Group Key
Management [13], Hydra [31], etc.

The secure group key management approaches can be applied to a lot of applica-
tion areas. For example: wireless/mobile network [33, 18, 44, 35, 39, 45], wireless sen-
sor network [32], storage area networks [22], etc.

3 Preliminaries

In this section, we briefly introduce the concept of hyper-sphere, and present some syn-
tax used throughout this paper. Then we define Pseudo-Random Function (PRF), and
describe the security model in which we prove the security of our group key manage-
ment protocol.

3.1 N-dimensional Hyper-sphere

For any natural number N ∈ N, an N-dimensional hyper-sphere or an N-sphere is a
generalization of the surface of an ordinary sphere to arbitrary dimension. In particular,
an 0-sphere is a pair of points on a line, an 1-sphere illustrated in Fig. 1 is a circle in
a plane, and an 2-sphere is an ordinary sphere in three-dimensional space. Spheres of
dimension N > 2 are sometimes called hyper-spheres.
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Fig. 1. An 1-sphere or a circle in a plane

Hyper-sphere in Euclidean Space. In mathematics, an N-sphere of radius r ∈ R with
a central point C = (c0, c1, . . . , cN) ∈ RN+1 is defined as the set of points in (N + 1)-
dimensional Euclidean space which are at distance r from the central point C. Any point
X = (x0, x1, . . . , xN) ∈ RN+1 on the hyper-sphere can be represented by the equation

(x0 − c0)2 + (x1 − c1)2 + . . . + (xN − cN)2 = r2. (1)

Any given N + 2 points Ai = (ai,0, ai,1, . . . , ai,N) ∈ RN+1, where i = 0, 1, . . . ,N + 1,
can uniquely determine a hyper-sphere as long as certain conditions are satisfied, which
will be presented at the end of this subsection. By applying the coordinates of the points
A0,A1, . . . ,AN+1 to (1), we can obtain a system of N + 2 equations

(a0,0 − c0)2 + (a0,1 − c1)2 + . . . + (a0,N − cN)2 = r2,
(a1,0 − c0)2 + (a1,1 − c1)2 + . . . + (a1,N − cN)2 = r2,

. . . . . .
(aN+1,0 − c0)2 + (aN+1,1 − c1)2 + . . . + (aN+1,N − cN)2 = r2.

(2)

By subtracting the j-th equation from the ( j+1)-th equation, where j = 1, 2, . . . ,N+

1, we can get a system of linear equations with N + 1 unknowns c0, c1, . . . , cN :


2(a0,0 − a1,0)c0 + . . . + 2(a0,N − a1,N)cN =

N∑
j=0

a2
0, j −

N∑
j=0

a2
1, j,

. . . . . .

2(aN,0 − aN+1,0)c0 + . . . + 2(aN,N − aN+1,N)cN =
N∑

j=0
a2

N, j −
N∑

j=0
a2

N+1, j.

(3)

If and if only the determinant of the coefficients in (3) is non-zero, this system
of linear equations can have unique solution c0, c1, . . . , cN . By applying the values of
c0, c1, . . . , cN to one of the equations in (2), we can obtain r2.

Hyper-sphere over Finite Field. We can extend the concept of Hyper-sphere to finite
fields. For simplicity, the Galois field GF(p) is adopted as the ground field, where p is a
large prime number. However, the results can be easily extended to other forms of finite
fields. For any given positive integer N, and vector C = (c0, c1, . . . , cN) ∈ GF(p)N+1,
we define function
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R : GF(p)N+1 → GF(p)

as
R(X) ≡ ‖X − C‖2 mod p, (4)

where X = (x0, x1, . . . , xN) ∈ GF(p)N+1, and

‖X − C‖2 ≡ (x0 − c0)2 + (x1 − c1)2 + . . . + (xN − cN)2 mod p.

For a given R ∈ GF(p), the hyper-sphere determined by R and C is defined by

R(X) ≡ R mod p, (5)

or
(x0 − c0)2 + (x1 − c1)2 + . . . + (xN − cN)2 ≡ R mod p. (6)

Notice that only R is needed in our scheme, and the square-root of R over GF(p) is never
required throughout this paper. The square-root may not always be a valid operation
over GF(p).

3.2 Syntax

If κ ∈ N, then 1κ is the string consisting of κ ones. If A is a randomized algorithm,
then y ← A(x) denotes the assignment to y of the output of A on input x when run with
fresh random coins. We use the notation u ←R S to denote that u is chosen randomly
from S . Unless noted, all algorithms are probabilistic polynomial-time (PPT) and we
implicitly assume that they take an extra parameter 1κ in their input, where κ is a security
parameter. A function ν : N →[0, 1] is negligible if for all c ∈ N there exists a κc ∈ N
such that ν(κ) < κ−c for all κ > κc.

3.3 Pseudo-Random Function (PRF)

Let κ be a security parameter, Fκ : Keys(Fκ) × D → R be a family of functions with
input length lin(κ), output length lout(κ), and key length lkey(κ), where Keys(Fκ) stands
for the key space of Fκ, D and R represent the input space and output space respectively.
Let Func : D→ R be a set of all functions from D to R. We adopt some expressions of
pseudo-random function in [6, 17], and its definition is given as follows.

Definition 1 (Pseudo-Random Function). We say that Fκ is a pseudo-random func-
tion (or PRF for short) if FK(x) is polynomial-time computable in κ, where FK ∈ Fκ,
K ∈ Keys(Fκ) and x ∈ D, and for every PPT distinguisher D who is given access to
an oracle for a function g : D → R, where g can be chosen at random from Func or is
chosen at random from Fκ, the advantage AdvPRF

Fκ ,D is negligible in κ. AdvPRF
Fκ ,D is defined

by indistinguishability of the following two experiments,
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Experiment EXPprf−1(D) Experiment EXPprf−0(D)

K ←R Keys(Fκ) g←R Func

b←D(FK) b←D(g)

return b return b

The advantage AdvPRF
Fκ ,D is defined as

AdvPRF
Fκ ,D = |Prob[EXPprf−1(D) = 1] − Prob[EXPprf−0(D) = 1]|.

PRF Assumption: There exists no (t, ε)-PRF distinguisher in κ. In other words, for
every probabilistic, polynomial-time, 0/1-valued distinguisher D, AdvPRF

Fκ ,D ≤ ε for any
sufficiently small ε > 0.

In our construction of group key management protocol, we specify a family of
pseudo-random functions Fκ : GF(p) ×GF(p)→ GF(p), i.e. Fκ = { fa(·) | a ∈ GF(p)}.
The cardinalities of Fκ and Func are p and pp respectively.

3.4 Security Model

Usually, a group key management scheme includes some phases like initialization,
adding members, removing members, massively adding and removing members, and
periodically update.

Our adversarial model described below is similar to the formal security model of
Atallah et al. [3] and Dutta et al. [14]. Let P = {U1,U2, · · · ,UN} be a set of N users
or group members. At any point of time, any subset of P may decide to establish a
session key via the group controller GC who is a trusted third party. We identify the
execution of protocols for initial group key establishment, adding member, removing
member, and periodically re-keying as different sessions. The adversarial model al-
lows each user an unlimited number of instances of joining or leaving or re-keying.
We assume that an adversary never participates as a user in the protocol. This ad-
versarial model allows concurrent execution of the protocol. The interaction between
the adversary A and the protocol users occur only by querying oracles, which mod-
els the adversary’s capabilities in real attacks. Let G, G1, and G2 be three user sets
such that G ∩ G1 = φ and G2 ⊆ G. More precisely, let G = {(U1, i1), ..., (Un, in)},
G1 = {(Un+1, in+1), ..., (Un+k, in+k)}, G2 = {(U j1 , i j1 ), ..., (U jk , i jk )}, where {U1, ...,Un} is
any non-empty subset of P. We will require the following notations.
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LSGC Long-term secret kept by the group controller GC.
LSU Long-term secret of user U.
Πi

U The i-th instance of user U.
ski

U Session key after execution of the protocol by Πi
U .

sidi
U Session identity for instance Πi

U . We set sidi
U = G = {(U1, i1),

· · · , (Un, in)} such that (U, i) ∈ G and users U1, · · · ,Un wish to
agree upon a common key in a session using unused instances
Π

i1
U1
, · · · ,Πin

Un
.

pidi
U Partner identity for instance Πi

U , defined by pidi
U = {U1, · · · ,Un},

such that (U j, i j) ∈ sidi
U for all 1 ≤ j ≤ n, where i j comes from

sidi
U defined above.

acci
U 0/1-valued variable which is set to be 1 by Πi

U upon normal
termination of the session and 0, otherwise.

In our setup we assume that each user U with instanceΠi
U knows his partners’ iden-

tities pidi
U in a session. Two instances Π

i j1
U j1

and Π
i j2
U j2

are partnered if sidi j1
U j1

= sidi j2
U j2

and acci j1
U j1

= acci j2
U j2

= 1.

An adversary’s interaction with principals in the network is modeled by allowing it
to have access to the following oracles.

– Execute(G) : This query models passive attacks in which the attacker eavesdrops
on honest execution of group key management protocol among unused instances
Π

i1
U1
, ...,Πin

Un
and outputs the transcript of the execution. A transcript consists of the

messages that were exchanged during the honest execution of the protocol.
– Send(U, i,m) : This query models an active attack, in which the adversary A may

intercept a message and then either modify it, create a new one or simply forward it
to the intended participant. The output of the query is the reply ( if any ) generated
by the instance Πi

U upon receipt of message m.
– Reveal(U, i) : This query unconditionally outputs session key ski

U if it has pre-
viously been accepted by Πi

U , otherwise a value NULL is returned. This query
models the misuse of the session keys, i.e. known session key attack.

– Corrupt(U) : This query outputs the long-term secret LSU (if any) of user U. We
say that user Ux is honest if and only if no query Corrupt(Ux) has ever been made
by the adversary. Corrupt(GC) is not allowed since the GC is a trusted third party
in the adversarial model we adopt.

– Test(U, i) : This query is allowed only once, at any time during the adversary’s
execution. A bit b ∈ {0, 1} is chosen uniformly at random. The adversary is given
ski

U if b = 1, and a random session key otherwise.

Throughout the paper, we assume that all communications in the group key manage-
ment protocol are authenticated. The adversary can ask Execute, Reveal and Corrupt
queries several times, while Test query is asked only once and on a fresh instance.
We say that an instance Πi

Ux0
is fresh unless either the adversary, at a certain point,

queried Reveal(Ux0 , i) or Reveal(Ux1 , j) with (Ux1 , j) ∈ sidi
Ux0

or the adversary queried

Corrupt(Ux2 ) with Ux2 ∈ pidi
Ux0

.
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Finally, the adversary outputs a guess bit b′. Such an adversary is said to win the
game if b′ = b, where b is the hidden bit used by Test oracle.

Let Succ denote the event that the adversaryA wins the game for the protocol. We
define

Adv := |2Prob[Succ] − 1|

to be the advantage of the adversaryA in attacking the protocol.

Definition 2. We say that a group key management protocol is secure if for any PPT
adversary A who makes qE Execute queries, runs in time t and does not violate the
freshness of the Test instance, the advantage Adv(t) is negligible in κ.

4 The Proposed Scheme Based on Hyper-Sphere

4.1 The Proposed Approach

Inspired by the mathematical principle that any point on the hyper-sphere is at the same
distance from the central point, a new secure group key management scheme is pro-
posed.

Before the establishment of a group, the group controller GC chooses a large prime
number p and a family of pseudo-random function Fκ = { fK : GF(p) × GF(p) →
GF(p)} which is described in Section 3.3, and publishes them to the public. Hereafter,
all computations are conducted over the finite field GF(p).

Intuitively, a hyper-sphere is constructed for the group, and each member in the
group corresponds to a point on the hyper-sphere. The GC, who manages the group
initialization and membership change operations, computes the central point C of the
hyper-sphere and publishes it to the public. Then each member can calculate R via (5) or
(6). Therefore, the value K = (R−‖C‖2) mod p can be assigned as the group key, which
can be computed by all members of the group. Any illegitimate user cannot calculate
this value without the knowledge of the legitimate private point, therefore cannot derive
the group key.

Our group key management approach includes the phases of initialization, adding
members, removing members, massively adding and removing members, and periodi-
cally update.

Initialization. The GC lets the first user U1 join the group at the initialization phase,
including the following steps.

Step 1) The GC selects two different 2-dimensional private points S0 = (s00, s01) ∈
GF(p)2 and S1 = (s10, s11) ∈ GF(p)2 at random, and keeps them secret.

Step 2) After authenticating U1, the GC chooses an 2-dimensional private point
A1 = (a10, a11) at random for the user U1, where a10 , 0, a11 , 0 and a10 , a11. The
GC stores the point A1 securely and transmits it to the user U1 via a secure channel.

A1 is the private information of U1, and should be kept secret by both the member
U1 and the GC.

Step 3) The GC selects a random number u ∈ GF(p) and computes:

b00 = fs00 (u), b01 = fs01 (u),
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b10 = fs10 (u), b11 = fs11 (u),

b20 = fa10 (u), b21 = fa11 (u).

Then the GC constructs new points B0, B1, and B2:

B0 = (b00, b01),B1 = (b10, b11),B2 = (b20, b21).

If

2(b00 − b10) · 2(b11 − b21) − 2(b10 − b20) · 2(b01 − b11) . 0 mod p, (7)

go to Step 4; otherwise, the GC repeats Step 3.
Notice that the condition in (7) can guarantee that the points B0, B1, and B2 can

uniquely determine a circle in 2-dimensional space.
Step 4) The GC establishes a hyper-sphere, herein a circle, in 2-dimensional space

using the above points B0, B1, and B2. Suppose the central point of the hyper-sphere
is C = (c0, c1) ∈ GF(p). By applying points B0, B1, and B2 to (5) or (6), the GC can
construct the following system of equations:

(b00 − c0)2 + (b01 − c1)2 ≡ R mod p,
(b10 − c0)2 + (b11 − c1)2 ≡ R mod p,
(b20 − c0)2 + (b21 − c1)2 ≡ R mod p.

(8)

By subtracting the first equation from the second one, and subtracting the second
equation from the third one, we can get a system of linear equations with two unknowns
c0 and c1:{

2(b00 − b10)c0 + 2(b01 − b11)c1 ≡ b2
00 + b2

01 − b2
10 − b2

11 mod p,
2(b10 − b20)c0 + 2(b11 − b21)c1 ≡ b2

10 + b2
11 − b2

20 − b2
21 mod p. (9)

The condition in (7) guarantees that (9) has one and only one solution (c0, c1). Then
the central point C = (c0, c1) of the hyper-sphere is determined.

Step 5) The GC delivers C and u to the member U1 via open channel.
Step 6) The member U1 can calculate the group key by using its private point A1 =

(a10, a11) along with the public information C = (c0, c1) and u:

K = (R − ‖C‖2) mod p

= (b2
20 + b2

21 − 2b20c0 − 2b21c1) mod p

= (( fa10 (u))2 + ( fa11 (u))2 − 2 fa10 (u)c0 − 2 fa11 (u)c1) mod p,

(10)

where C is the central point of the hyper-sphere, and ‖C‖2 = c2
0 + c2

1.

Notice that in order to keep our scheme clear and simple, the dimension of the con-
structed hyper-sphere is designed to equal the number of the group members. Therefore,
an 1-sphere or a circle is constructed if the condition in (7) is satisfied, since the first
member U1 is enrolled in the group at this phase.
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Adding Members. Suppose that there are n − m members in the group before the
enrollment of new members, where n > 0 and n > m ≥ 0. Now there are m new
members want to join the group. After new members are admitted, there will be n
members in the group, which can be denoted by Ui1 ,Ui2 , · · · ,Uin . The steps are as
follows.

Step 1) After the new user Ux is authenticated, the GC selects unique 2-dimensional
private point Ax = (ax0, ax1) ∈ GF(p)2 for each new member Ux, where ax0 , 0,
ax1 , 0, ax0 , ax1, and x = (n − m) + 1, (n − m) + 2, · · · , n.

The points Ax should satisfy Ai , A j if i , j, where 1 ≤ i, j ≤ n.
Step 2) The GC sends the point Ax to the user Ux via a secure channel.
The point Ax is the private information of Ux, and should be kept secret by both the

member Ux and the GC.
Step 3) The GC selects a random number u ∈ GF(p), and computes

b00 = fs00 (u), b01 = fs01 (u),

b10 = fs10 (u), b11 = fs11 (u).

For j = 2, 3, · · · , n + 1, the GC computes

b j0 = fai j−1 ,0
(u), b j1 = fai j−1 ,1

(u).

Then the GC constructs new points B0,B1, · · · ,Bn+1:

B0 = (b00, b01),B1 = (b10, b11),B2 = (b20, b21),

· · · · · ·

Bn+1 = (bn+1,0, bn+1,1).

If the condition

(2(b00 − b10) · 2(b11 − b21)− 2(b10 − b20) · 2(b01 − b11))×
n+1∏
t=3

(−2bt1) . 0 mod p (11)

satisfies, go to Step 4; otherwise, the GC repeats Step 3.
Step 4) The GC expands each B j to become an (n + 1)-dimensional point V j.

Then the GC constructs an n-dimensional hyper-sphere based on the set of points
V0,V1, · · · ,Vn+1. Suppose that the central point of the hyper-sphere is C = (c0, c1, · · · , cn) ∈
GF(p)n+1.

Step 4.1) The GC expands each B j to become an (n + 1)-dimensional point V j .
For j = 0, 1, and 2, the point B j is supplemented (n − 1) zeros to become V j, i.e.,

V0 = (b00, b01, 0, · · · , 0),

V1 = (b10, b11, 0, · · · , 0),

V2 = (b20, b21, 0, · · · , 0).
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For j = 3, 4, · · · , n + 1, let

V3 = (b30, 0, b31, 0, · · · , 0),

· · · · · ·

V j = (b j0, 0, · · · , 0, b j1, 0, · · · , 0),

· · · · · ·

Vn+1 = (bn+1,0, 0, · · · , 0, bn+1,1),

where the number of 0 between b j0 and b j1 is ( j − 2) , and there are (n + 1 − j) zeros
supplemented after b j1.

Step 4.2) The GC constructs the system of equations about the hyper-sphere by
applying the set of points V0,V1, · · · ,Vn+1 to (5) or (6):

(b00 − c0)2 + (b01 − c1)2 + (0 − c2)2 + · · · + (0 − cn)2 = R,
(b10 − c0)2 + (b11 − c1)2 + (0 − c2)2 + · · · + (0 − cn)2 = R,
(b20 − c0)2 + (b21 − c1)2 + (0 − c2)2 + · · · + (0 − cn)2 = R,
(b30 − c0)2 + (0 − c1)2 + (b31 − c2)2 + · · · + (0 − cn)2 = R,

· · · · · ·

(bn+1,0 − c0)2 + (0 − c1)2 + (0 − c2)2 + · · · + (bn+1,1 − cn)2 = R.

(12)

By subtracting the j-th equation from the ( j + 1)-th equation in (12), where j =

1, 2, · · · , n, we can get a system of linear equations with (n+1) unknowns c0, c1, ..., and cn.


2(b00 − b10) 2(b01 − b11) 0 ... 0
2(b10 − b20) 2(b11 − b21) 0 ... 0
2(b20 − b30) 2b21 −2b31 ... 0

...... ...
2(bn0 − bn+1,0) 0 ... ... −2bn+1,1




c0
c1
c2
...
cn

 =


b2

00 + b2
01 − b2

10 − b2
11

b2
10 + b2

11 − b2
20 − b2

21
b2

20 + b2
21 − b2

30 − b2
31

...
b2

n0 + b2
n1 − b2

n+1,0 − b2
n+1,1

 .
(13)

Let matrix

Y =


2(b00 − b10) 2(b01 − b11) 0 ... 0
2(b10 − b20) 2(b11 − b21) 0 ... 0
2(b20 − b30) 2b21 −2b31 ... 0

...... ...
2(bn0 − bn+1,0) 0 ... ... −2bn+1,1


and vectors

CT =


c0
c1
c2
...
cn

 , Z =


b2

00 + b2
01 − b2

10 − b2
11

b2
10 + b2

11 − b2
20 − b2

21
b2

20 + b2
21 − b2

30 − b2
31

...
b2

n0 + b2
n1 − b2

n+1,0 − b2
n+1,1

 ,
where CT denotes the transpose of C.
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Then (13) can be expressed in the matrix and vector form

Y × CT = Z. (14)

The condition in (11) guarantees that (13) or (14) has one and only one solution
CT = Y−1 × Z. Then the central point C = (c0, c1, · · · , cn) of the hyper-sphere is deter-
mined.

Step 5) The GC multicasts C and u to all the group members Ui1 , Ui2 , · · · ,Uin via
open channel.

Step 6) Each group member Ux can calculate the group key by using its private
point Ax(ax0, ax1) along with the public information C = (c0, c1, · · · , cn) and u :

K = (R − ‖C‖2) mod p

= (b2
x+1,0 + b2

x+1,1 − 2bx+1,0c0 − 2bx+1,1cix ) mod p

= (( faix ,0
(u))2 + ( faix ,1

(u))2 − 2 faix ,0
(u)c0 − 2 faix ,1

(u)cix ) mod p,
(15)

where C is the central point of the hyper-sphere, and ‖C‖2 = c2
0 + c2

1 + · · · + c2
n.

Removing Members. Suppose that there are n + w members in the group before
membership exclusion, where n > 0 and w ≥ 0. Now there are w members want to leave
the group, then there will be n members in the group after w users leave. Suppose the
set of remaining members in the group is {Ui1 ,Ui2 , · · · ,Uin } after removing members.
The steps are as follows.

Step 1) The GC deletes the leaving members’ private 2-dimensional points.
Step 2) The GC’s private 2-dimensional points S0 and S1, and the remaining mem-

bers’ private points Ai1 ,Ai2 , · · · ,Ain should be stored securely by the GC.
The following steps are the same as Steps 3 - 6 in the “Adding Members” phase,

i.e., the GC re-selects a new random number u ∈ GF(p) and constructs new points
B0,B1, · · · ,Bn+1 in Step 3. Then the GC constructs a new hyper-sphere in Step 4, and
publishes the new random number u and the new central point C of the hyper-sphere in
Step 5. Finally, each group member can calculate the new group key by using its private
point in Step 6.

Massively Adding and Removing Members. This subsection manipulates the situa-
tion that a lot of members join and other members leave the group at the same time in
batch mode. Suppose that there are n + w−m members in the group before membership
change, where n > 0 and w ≥ 0, n + w > m ≥ 0. Now there are w members want to
leave, and v new members want to join the group simultaneously. After the membership
update, there will be n members in the group. The steps are as follows.

Step 1) The GC deletes the leaving members’ private 2-dimensional points, and let
new users join in at the same time. After new user Ux is authenticated, the value of x is
assigned as the identifier of the new joining members, where x = (n −m) + 1, (n −m) +

2, · · · , n.
The GC selects unique 2-dimensional point Ax = (ax0, ax1) ∈ GF(p) as Ux’s private

information, where ax0 , 0, ax1 , 0 , and ax0 , ax1. The private points Ax should satisfy
Ai , A j if i , j, where 1 ≤ i, j ≤ n.
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Step 2) The GC sends the private point Ax to the user Ux via a secure channel.
The point Ax is the private information of Ux, and should be kept secret by both the

member Ux and the GC.
Other steps are for w members to leave the group, which are the same as Steps 3 -

6 described in the “Adding Members” phase. By executing Step 3 to Step 6, the GC re-
selects a new random number u ∈ GF(p), constructs a new hyper-sphere, and publishes
the new random number u and the new central point C of the hyper-sphere. Then each
group member can calculate the new group key.

Periodically Update. If the group key is not updated within a period of time, the GC
will start periodically update procedure to renew the group key to safeguard the secrecy
of group communication. The GC needs to re-select a new random number u ∈ GF(p),
then construct a new hyper-sphere, and publish the new random number u and the new
central point of the hyper-sphere. These steps are the same as Steps 3 - 6 in “Adding
Members” phase.

5 Security and Performance Analysis

5.1 Security Analysis

We will show (in Theorem 1) that our group key management protocol is secure, sup-
posed that all communications are authenticated. The proof is similar to the way to
prove the security of the unauthenticated protocol by Dutta-Barua[14] and Mikhall et
al.[3]. In our security model, the adversary A can access five oracles, i.e., Execute,
Reveal, Corrupt, Send and Test. The Send query may be ignored by A because all
communications are assumed to be authenticated. Some notations, such as Fκ, Func, p
and GF(p), are defined in Section 3.

Theorem 1. Our protocol is secure under PRF assumption, and the adversary’s ad-
vantage Adv(t) satisfies the following:

Adv(t) ≤ (2n + 4) × (qE × AdvPRF
GF(p)(t

(1)) +
1

pp−1 ),

where qE is the number of Execute queries that the adversary can call and run in time t,
and t(1) = t + O(n3)M + O(n)H, in which n is the number of members in the group, M is
the average time required to perform multiplication over GF(p), and H is the average
time to compute f .

Proof. LetA be an adversary for the group key management protocol. By using this, we
can construct an algorithmD that will distinguish between random and pseudo-random
functions. Assume that A will make qE Execute queries, and choose rth session as the
Test session. And assume that D correctly guessed the Test session r. Then, when A
makes Execute query, (except for the rth session), D follows the real protocol. When
A makes Reveal or Corrupt oracle (other than for the rth session), D sends A all the
corresponding information as in a real interaction.
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Real :=



u←R GF(p) :
b00 = fs00 (u), b01 = fs01 (u),
b10 = fs10 (u), b11 = fs11 (u),
for j = 2, 3, · · · , n + 1 :

b j0 = fa j−1,0 (u), b j1 = fa j−1,1 (u);
V0 = (b00, b01, 0, · · · , 0),
V1 = (b10, b11, 0, · · · , 0),
V2 = (b20, b21, 0, · · · , 0).
for j = 3, 4, · · · , n + 1 :

V j = (b j0, 0, · · · , b j1, 0, · · · , 0);

Y =


2(b00 − b10) 2(b01 − b11) 0 ... 0
2(b10 − b20) 2(b11 − b21) 0 ... 0
2(b20 − b30) 2b21 −2b31 ... 0

...... ...
2(bn0 − bn+1,0) 0 ... ... −2bn+1,1

 ;

Z =


b2

00 + b2
01 − b2

10 − b2
11

b2
10 + b2

11 − b2
20 − b2

21
b2

20 + b2
21 − b2

30 − b2
31

...
b2

n0 + b2
n1 − b2

n+1,0 − b2
n+1,1

 ;
CT = (c0, c1, · · · , cn+1)T = Y−1 × Z;
R = ‖Vi − C‖2 ;
T = {u; C}
K = R − ‖C‖2 .



,

Fake(0,0) :=



u←R GF(p) :
b00 = g00(u), b01 = fs01 (u),
b10 = fs10 (u), b11 = fs11 (u),
for j = 2, 3, · · · , n + 1 :

b j0 = fa j−1,0 (u), b j1 = fa j−1,1 (u);
the rest are the same as the ones in Real.


.

In the rest of the proof, we will assume that D correctly guessed the Test session.
Since such a priori guess is correct with 1/qE chance, this affects the exact security of
the reduction proof by a factor of qE .

As a stepping stone, we first define distributions Real and Fake(0,0) above for tran-
script/session key pair (T,K) as follows, where Real is the real execution scenario
of our protocol while fs00 is replaced with a truly random function g00 in Fake(0,0).
Similarly, we can define the distributions Fake(0,1), . . . , Fake(n+1,0), Fake(n+1,1). For
i = 0, 1, . . . , n + 1, Fake(i,1) is the same as Fake(i,0) except that let bi1 = gi1(u) where gi1
is a truly random function, and Fake(i+1,0) is the same as Fake(i,1) except that let bi+1,0 =

gi+1,0(u) where gi0 is a truly random function. Finally, the distribution Fake(n+1,1) (we
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denote as Fake hereafter) is described as follows, where for i = 1, 2, . . . , n + 1, gi0 and
gi1 are all truly random functions

Fake :=


u←R GF(p);
for i = 0, 1, · · · , n + 1 :

bi0 = gi0(u), bi1 = gi1(u);
the rest are the same as the ones in Real.

 .
Due to the PRF assumption, we can obtain from Lemma 1 below that

|Prob[(T,K)← Real : A(T,K) = 1]
−Prob[(T,K)← Fake(0,0) : A(T,K) = 1]|

≤ AdvPRF
GF(p)(t

(1)) + 1
pp−1 ,

(1)

where t is the running time ofA, t(1) = t+O(n3)M+O(n)H, n is the number of members
in the group, M is the average time required to perform multiplication over GF(p), and
H is the average time to compute f .

Similarly, for i = 0, 1, . . . , n + 1, we can further conclude that

|Prob[(T,K)← Fake(i,0) : A(T,K) = 1]
−Prob[(T,K)← Fake(i,1) : A(T,K) = 1]|

≤ AdvPRF
GF(p)(t

(1)) + 1
pp−1 ,

(2)

and

|Prob[(T,K)← Fake(i,1) : A(T,K) = 1]
−Prob[(T,K)← Fake(i+1,0) : A(T,K) = 1]|

≤ AdvPRF
GF(p)(t

(1)) + 1
pp−1 .

(3)

From equation (2) and (3), we have

|Prob[(T,K)← Real : A(T,K) = 1]
−Prob[(T,K)← Fake : A(T,K) = 1]|
≤ (2n + 4)(AdvPRF

GF(p)(t
(1)) + 1

pp−1 ).
(4)

Furthermore, from Lemma 2, the success probability ofA in distinguishing between
the keys from the distribution Fake and keys randomly chosen from GF(p) is just 1

2 .
That is,

|Prob[(T,K0)← Fake; K1 ←R GF(p); b←R {0, 1} : A(T,Kb) = b] = 1
2 . (5)

Hence by Lemmas 1 and 2, we can conclude that

|Prob[(T,K0)← Real,K1 ←R GF(p), b←R {0, 1} : A(T,Kb) = b] − 1
2 |

= |Prob[(T,K0)← Real,K1 ←R GF(p), b←R {0, 1} : A(T,Kb) = b]
−Prob[(T,K0)← Fake,K1 ←R GF(p), b←R {0, 1} : A(T,Kb) = b]|

≤ (2n + 4) × (AdvPRF
GF(p)(t

(1)) + 1
pp−1 ).

(6)



16 S. Tang, L. Xu, N. Liu, J. Ding, Z. Yang

We assumed that D correctly guessed the Test session above, which affects the
exact security of the reduction proof by a factor of qE . Finally we conclude that the
adversary’s advantage is negligible under the pseudo-random function assumption,

Adv(t) ≤ (2n + 4) × (qE × AdvPRF
GF(p)(t

(1)) + 1
pp−1 ). (7)

Lemma 1. For any algorithm A running in time t, we have the following where t(1) =

t + O(n3)M + O(n)H:

|Prob[(T,K)← Real : A(T,K) = 1]
−Prob[(T,K)← Fake(0,0) : A(T,K) = 1]|

≤ AdvPRF
GF(p)(t

(1)) + 1
pp−1 .

Proof. We construct a distinguisher D by using A which on an input g1 ∈ Func. D
first generates a pair (T,K) according to the distribution Dist′ described below which
depends on g1, then runsA on (T,K) and outputs whateverA outputs.

Dist′ :=



u←R GF(p) :
b00 = g1(u), b01 = fs01 (u),
b10 = fs10 (u), b11 = fs11 (u),
for j = 2, 3, · · · , n + 1 :

b j0 = fa j−1,0 (u), b j1 = fa j−1,1 (u);
the rest are the same as the ones in Real.


.

Define set E1 = {g | g ∈ Func\Fκ}. The distribution Real and distribution {(T,K) :
g1 ∈ Fκ; (T,K)← Dist′(g1)} are statistically equivalent. On the other hand, the distribu-
tion Fake(00) and the distribution {(T,K) : g1 ∈ E1; (T,K)← Dist′(g1)} are statistically
equivalent but for a factor of p

pp since g1 is not in Fκ. These two distributions are statis-
tically equivalent by the definition of PRF,

|Prob[(T,K)← Real : A(T,K) = 1] − Prob[(T,K)← Fake(0,0) : A(T,K) = 1]|

≤ |Prob[g1 ←R Fκ : D(g1) = 1] − Prob[g1 ←R E1 : D(g1) = 1]| +
|Fκ|

|Func|

≤ AdvPRF
GF(p)(t

(1)) +
1

pp−1 .

The time required to perform n×n matrix inversion and n×n matrix multiplying an
n-dimensional vector operation in GF(p) are O(n3)M and O(n2)M respectively. There
are 2n+3 computations of f in Dist′. Hence t(1) is basically equal to t+O(n3)M+O(n)H.

ut

Lemma 2. For any computationally unbounded adversaryA, we have

Prob[(T,K0)← Fake; K1 ←R GF(p); b←R {0, 1} : A(T,Kb) = b] =
1
2
.
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Proof. We have T = {u; C}, K = R − ‖C‖2 and CT = (c0, c1, · · · , cn+1)T = Y−1 × Z.
Because Test is allowed to call Fresh session for only once, no player in this session
is corrupted, so a2,0, a2,1, · · · , an+1,0, an+1,1 are kept secret and unknown toA. And C =

Y−1 × Z is independent from u, where all elements b j0, b j1 in both Y and Z are chosen
randomly. Thus K is also independent from u and is a random value in GF(p).A gets no
information on both K0 and K1, therefore the probability of guessing the bit b correctly
is exactly 1

2 .
ut

Above we present the static security of our scheme. In the phases of Adding Mem-
bers and Removing Members, when new users join the group or members leave the
group, GC establishes the new group key as in the phase of Initialization by re-selecting
new random value u ∈ GF(p). So both the new users who join the group in Adding
Members and members who leaves the group in Removing Members cannot obtain
any information about the previous group key.

5.2 Performance Analysis

Suppose that the length of the prime p in binary expression is L bits. Table 1 shows the
performance requirements by both the GC and each member.

Storage. Each member needs to store its 2-dimensional private point only. The GC
should store all members’ 2-dimensional private points. Then the storage for each mem-
ber is 2 × L bits, and the storage for the GC is 2 × (n + 2) × L bits.

Computation. The major computation by each member is to calculate the group key
via (13) or (14), which includes two computations of f function, four modular mul-
tiplications and five modular additions over finite field. The computation for the GC
is to solve a system of linear equations. Since the coefficient matrix in (13) can eas-
ily be converted to a lower triangular matrix, the computation complexity of solving
(c0, c1, · · · , cn) from (13) is O(n).

Number and Size of Re-keying Message. The total number of re-keying messages is
two, including the central point of the hyper-sphere and the random number u. The size
of re-keying messages is (n + 2) × L bits.

Batch Processing. If there are a lot of users join and leave the group simultaneously,
only one batch processing is needed.

5.3 Experiments

While f can be any computationally efficient function assumable to be pseudo-random,
we instantiate it by a cryptographic hash function to ease the comparison. Our exper-
imental test bed for the GC is a 2.33GHz Intel Xeon quad-core dual-processor PC
server with 4GB memory and running Linux, and the platform for the member is a
HP XW4600 Workstation with 2.33GHz Intel dual-processor and 2GB memory and
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Table 1. Performance Requirements by the GC and each Member

Storage Computation Re-keying Messages
(bits) Number Size(bits)

GC 2 × (n + 2) × L O(n) 2 (n + 2) × L
Member 2 × L 2H + 4M + 5A 0 0

Notation for Table 1:
n : number of members in the group
L : the length of the prime p in bits
H : average time required by an f function
M : average time required by a modular multiplication
A : average time required by a modular addition

running Linux. C/C++ programming language is adopted to compose the software to
simulate the behavior of the GC and members. We choose L = 128 bits, which de-
notes the length of the prime p in binary form, then we compute the average cost of the
GC and each member. The time was averaged over 20 distinct runs of the experiments,
and the difference among the same experiments is less than 2%. The summary of the
experimental results are presented in Table 2 and Table 3.

In Table 2, the first column represents the size of the group; the second, the storage
for the computation, and the third and fourth, the computation time. For a large group
n = 100000, the GC takes 85.2 ms = 0.0852 seconds to process member adding or
removing. We can observe from this experimental data that the GC can manage a large
group efficiently.

Table 3 shows that the storage and the computation cost does not increase at all for
each group member even when the group size increases, which is very desirable.

Our experimental results confirm that our scheme is very scalable and very efficient
for large groups.

Table 2. Storage and Computation Required by the GC

Size of Storage Computation (ms)
group (bytes) Adding Members Removing Members

10 384 0.06 0.06
100 3,264 0.4 0.4

1,000 32,064 0.7 0.7
10,000 320,064 7.7 7.7

100,000 3,200,064 85.2 85.2
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Table 3. Storage and Computation Required by each Member

Size of Storage Computation (ms)
group (bytes) Adding Members Removing Members

10 32 0.00564 0.00564
100 32 0.00564 0.00564

1,000 32 0.00564 0.00564
10,000 32 0.00564 0.00564

100,000 32 0.00564 0.00564

6 Comparison with Related Work

Our scheme falls into the category of centralized systems, therefore we will compare
our scheme with some typical centralized key management schemes. A summary of the
comparison results are presented in Table 4 and Table 5.

GKMP (Group Key Management Protocol) is a simple extension from unicast to
multicast, but not scalable and very inefficient. Table 4 clearly shows that our scheme
outperforms GKMP with respect to both secrecy and performance.

The LKH (Logical Key Hierarchy) scheme can be considered to be the representa-
tive of tree-based schemes, including OFT [37], OFCT [10], Hierarchical α-ary Tree
with Clustering [11], Efficient Large-Group Key [29], etc. Hence, we compare our
scheme with LKH only, but the results are similar to other tree-based schemes.

The advantages of our scheme over the LKH are as follows: 1) our scheme is scal-
able for massive membership change; 2) the number of re-keying messages is O(1) in
our scheme, but is O(log2 n) in LKH; 3) the computation complexity of each member is
O(1) in our scheme, but is O(log2 n) in LKH.

The major differences between our scheme and LKH are: 1) the principles behind
are different: hyper-sphere is adopted in our scheme, but tree structure is adopted in
LKH; 2) The computation complexity by the GC in our scheme is O(n) simple opera-
tions, but the one in LKH is O(2 log2 n) encryptions. In average conditions, the compu-
tation of simple operations can be faster than encryptions.

Table 4. Feature and Computation Complexity Comparison among Schemes

GKMP LKH Secure Lock This Paper
Major principle adopted Encryption Tree structure Chinese Remainder Theorem Hyper-sphere

Efficient for very large group No Yes No Yes
Scalable to massively adding and No No Yes Yes

removing members
Number of re-keying messages n O(log2 n) O(1) O(1)

Member computation complexity O(1) O(log2 n) O(1) O(1)
decryptions decryptions decryptions and modular operations simple operations

GC computation complexity O(n) O(log2 n) O(n) O(n)
encryptions encryptions encryptions and modular operations simple operations
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Table 5. GC’s Computation Comparison between Secure Lock and our Scheme

Secure Lock This Paper
Computation complexity E · O(n) + M · O(2n) + A · O(n) + R · O(2n) H · O(2n) + M · O(2n) + A · O(4n) + R · O(n)

Difference between schemes E · O(n) + R · O(n) 2H · O(n) + 3A · O(n)

Notation for Table 5:
n : number of members in the group E : average time required by a symmetric encryption
M : average time required by a modular multiplication H : average time required by a hash function

over GF(p) R : average time required by a multiplication
A : average time required by a modular addition over GF(p) reverse over GF(p)

Notice that tree structure can also be adopted by our scheme to divide the mem-
bers into different sub-trees and to further speed up our scheme. We will explore this
direction in our future research.

The SL (Secure Lock) is based on Chinese Remainder Theorem (CRT), which is a
time-consuming operation. Hence, the SL scheme is applicable only for small groups
[12].

There are some similarities between the SL and our scheme: 1) both schemes can
be regarded as flat structure, that is, no hierarchical structures such as tree structures are
adopted; 2) the numbers of re-keying messages in both schemes are O(1); 3) the com-
putation complexity by each member in both schemes are also O(1); 4) the computation
complexity by the GC in both schemes are O(n).

Table 5 compares the computation complexity by the GC in the SL and our scheme.
The one in the SL is based on an optimized CRT [12]. The first row presents the compu-
tation complexity, and the second row shows the difference of computation complexity
of two schemes by omitting the identical items in the first row. The complexity differ-
ences are: E · O(n) + R · O(n) in the SL, and 2H · O(n) + 3A · O(n) in our scheme, where
n is the number of members in the group, E,R,H and A are the average time required
by encryption, modular multiplication reverse, f function, and modular addition, re-
spectively. Usually, we can choose a pseudo-random function f that can be computed
very fast, so E > 2H. Modular reverse operation over finite field is a time-consuming
computation, thus R � 3A , and then

E · O(n) + R · O(n) � 2H · O(n) + 3A · O(n),

or
E · O(n) + M · O(2n) + A · O(n) + R · O(2n)

� H · O(2n) + M · O(2n) + A · O(4n) + R · O(n).

Hence, the computation of our scheme is much faster than that of SL.
Therefore, the advantages of our scheme over the ones of the SL include: 1) our

scheme is efficient for very large group; 2) the performance by each member and the
GC in our scheme is much better than the ones in SL.

Our scheme belongs to the category of centralized systems. Thus some common
disadvantages of the centralized ones, like the group controller being a single point of
failure, are also employed by our scheme. The failure of the group controller could
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compromise the system completely. This is one main disadvantage compared with dis-
tributed or decentralized schemes. However, some techniques to prevent the failure of
single point can be adopted to weaken this disadvantage. In addition, our scheme can
be a fundamental component to construct some decentralized schemes by combining
other techniques.

7 Conclusions

In this paper, we study the problem of group key management from a very different
angle than before. A new secure group key management scheme based on hyper-sphere
is constructed, where each member in the group corresponds to a private point on the
hyper-sphere and the group controller (GC) computes the central point of the hyper-
sphere, intuitively, whose “distance” from each member’s private point is identical. The
central point is published, and each member can compute a common group key using a
function by taking each member’s private point and the central point of the hyper-sphere
as the input. Our new approach is formally proved secure under the pseudo-random
function (PRF) assumption.

The advantages of our scheme include: (1) the re-keying messages can be broad-
casted or multicasted via open channel, and the secure channel is required only once
when new users register to join in the group for the first time; (2) it is very efficient
and scalable for large-size groups and can deal with massive membership change ef-
ficiently with only two re-keying messages, i.e., the central point of the hyper-sphere
and a random number; (3) both the storage and the computation overhead of each mem-
ber is significantly reduced, which is independent of the group size; and (4) the GC’s
storage and computation cost is also acceptable: the storage and computation overhead
increases linearly with the group size.

The performance estimations are further confirmed by our experiments. For exam-
ple, in the case of a group of size n = 100000, the storage cost for each member’s private
information is 32 bytes, the time for each member to compute the group key is 0.000564
ms or 5.64 × 10−7 seconds, and the time for the GC to process membership change is
85.2 ms or 8.52× 10−4 seconds on a 2.33 GHz Intel Xeon quad-core dual-processor PC
server.
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A Toy Example

A toy example is given to illustrate the procedure of massive membership change in our
group key management approach based upon hyper-sphere.

Before the system setup, the group controller GC should choose a large prime num-
ber p and a family of pseudo-random function Fκ = { fK : GF(p) × GF(p) → GF(p)}
which is described in Section 3.3, and publish them to the public. Hereafter, all compu-
tations are conducted over the finite field GF(p).

At the initiazation stage, the GC selects two different 2-dimensional private points
S0 = (s00, s01) ∈ GF(p)2 and S1 = (s10, s11) ∈ GF(p)2 at random, and keeps them
secret.

Now suppose the set of members in the current group is {U1,U2,U3,U4}. The mem-
bers U2 and U4 want to leave the group, and new users U5 and U6 want to join the group.
The following steps can support massively adding and removing of members.

Step 1) The GC deletes the private points A2 = (a20, a21) and A4 = (a40, a41) of the
leaving members.
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After the new users U5 and U6 are authenticated, the GC assigns ID=5 and ID=6 to
the new members U5 and U6 respectively.

The GC selects unique 2-dimensional points A5 = (a50, a51) and A6 = (a60, a61) as
the private information of U5 and U6 respectively.

Now the set of private points of the group members is {A1,A3,A5,A6}, and the
subscripts of the private points are: i1 = 1, i2 = 3, i3 = 5, and i4 = 6. The points Ax

should also satisfy Ay , Az if y , z, where y, z ∈ {1, 3, 5, 6}.
Step 2) The GC sends the point Ax to the member Ux via a secure channel, where

x ∈ {5, 6} .
Step 3) The GC chooses a random number u, and computes:

b00 = fs00 (u), b01 = fs01 (u),

b10 = fs10 (u), b11 = fs11 (u),

b20 = fai1 ,0
(u) = fa10 (u), b21 = fai1 ,1

(u) = fa11 (u),

b30 = fai2 ,0
(u) = fa30 (u), b31 = fai2 ,1

(u) = fa31 (u),

b40 = fai3 ,0
(u) = fa50 (u), b41 = fai3 ,1

(u) = fa51 (u),

b50 = fai4 ,0
(u) = fa60 (u), b51 = fai4 ,1

(u) = fa61 (u).

The GC then constructs points B0,B1, · · · ,B5:

B0 = (b00, b01),B1 = (b10, b11),

B2 = (b20, b21),B3 = (b30, b31),

B4 = (b40, b41),B5 = (b50, b51).

If the condition

(2(b00 − b10) · 2(b11 − b21)− 2(b10 − b20) · 2(b01 − b11))×
5∏

t=3

(−2bt1) . 0 mod p (16)

satisfies, go to Step 4; otherwise, the GC repeats Step 3;
Step 4) The GC expands B0,B1,B2,B3,B4, and B5 to become 5-dimensional points:

V0 = (b00, b01, 0, 0, 0),

V1 = (b10, b11, 0, 0, 0),

V2 = (b20, b21, 0, 0, 0),

V3 = (b30, 0, b31, 0, 0),

V4 = (b40, 0, 0, b41, 0),

V5 = (b50, 0, 0, 0, b51).

The GC is now going to establishe a 4-dimensional hyper-sphere based on the
set of points V0,V1, · · · ,V5. Suppose the central point of the hyper-sphere is C =

(c0, c1, · · · , c4). The GC then constructs the set of equations about the hyper-sphere:
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

(b00 − c0)2 + (b01 − c1)2 + (0 − c2)2 + (0 − c3)2 + (0 − c4)2 ≡ R mod p,
(b10 − c0)2 + (b11 − c1)2 + (0 − c2)2 + (0 − c3)2 + (0 − c4)2 ≡ R mod p,
(b20 − c0)2 + (b21 − c1)2 + (0 − c2)2 + (0 − c3)2 + (0 − c4)2 ≡ R mod p,
(b30 − c0)2 + (0 − c1)2 + (b31 − c2)2 + (0 − c3)2 + (0 − c4)2 ≡ R mod p,
(b40 − c0)2 + (0 − c1)2 + (0 − c2)2 + (b41 − c3)2 + (0 − c4)2 ≡ R mod p,
(b50 − c0)2 + (0 − c1)2 + (0 − c2)2 + (0 − c3)2 + (b51 − c4)2 ≡ R mod p.

(17)

Let matrix

Y =


2(b00 − b10) 2(b01 − b11) 0 0 0
2(b10 − b20) 2(b11 − b21) 0 0 0
2(b20 − b30) 2b21 −2b31 0 0
2(b30 − b40) 0 2b31 −2b41 0
2(b40 − b50) 0 0 2b41 −2b51


and vectors

CT =


c0
c1
c2
c3
c4

 , Z =


b2

00 + b2
01 − b2

10 − b2
11

b2
10 + b2

11 − b2
20 − b2

21
b2

20 + b2
21 − b2

30 − b2
31

b2
30 + b2

31 − b2
40 − b2

41
b2

40 + b2
41 − b2

50 − b2
51

 .
By subtracting the j-th equation from the ( j + 1)-th equation in (17), where j =

1, 2, · · · , 5, we can get a system of linear equations with 5 unknowns c0, c1, · · · , c4,
which can be expressed in the matrix and vector form

Y × CT = Z . (18)

The condition in (16) in Step 3 guarantees that (18) has one and only one solution
CT = Y−1 × Z . Then the central point C = (c0, c1, · · · , c4) of the hyper-sphere is
determined.

Step 5) The GC multicasts C and u to all group members U1,U3,U5, and U6 via
open channel.

Step 6) Each group member can calculate the new group key.
The member U1 can calculate the group key by using its private point A1 = (a10, a11)

along with the public information C = (c0, c1, · · · , c4) and u, and the third equation in
(17):

K = R − ‖C‖2 = b2
20 + b2

21 − 2b20c0 − 2b21c1

= ( fa10 (u))2 + ( fa11 (u))2 − 2 fa10 (u)c0 − 2 fa11 (u)c1.

Similarly, the member U3 can calculate the group key by using its private point
A3(a30, a31) along with the public information C = (c0, c1, · · · , c4) and u, and the forth
equation in (17):

K = R − ‖C‖2 = b2
30 + b2

31 − 2b30c0 − 2b31c2
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= ( fa30 (u))2 + ( fa31 (u))2 − 2 fa30 (u)c0 − 2 fa31 (u)c2.

For users U5 and U6, the computation procedures are similar to that of members
U1 and U3. Finally, all the group members can re-construct the same hyper-sphere and
calculate the same group key K = R − ‖C‖2.


