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Abstract. Traffic analysis (TA) is a powerful tool against the security and privacy of cryptographic primitives,
permitting an adversary to monitor the frequency and timing characteristics of transmissions in order to
distinguish the senders or the receivers of possibly encrypted communication. Briefly, adversaries may leak
implementation-specific information even for schemes that are provably secure with respect to a classical model,
resulting in a breach of security and/or privacy.

In this work we introduce the notion of indistinguishability in the presence of traffic analysis, enhancing
any classical security model such that no adversary can distinguish between two protocol runs (possibly
implemented on different machines) with respect to a TA oracle (leaking information about each protocol run).
This new notion models an attack where the adversary taps a single node of in- and outgoing communication
and tries to relate two sessions of the same protocol, either run by two senders or for two receivers.

Our contributions are threefold: (1) We first define a framework for indistinguishability in the presence of

TA, then we (2) fully relate various notions of indistinguishability, depending on the adversary’s goal and the

type of TA information it has. Finally we (3) show how to use our framework for the SSH protocol and for a

concrete application of RFID authentication.
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1 Introduction

Cryptographic protocols aim at securing communication between two or more parties which interact via an inse-
cure channel. In classical security models, adversaries may observe communication or interact with honest and
dishonest parties in certain, fixed ways. Provable secure in this sense is essential, but not sufficient, particularly
due to the increasing popularity and efficiency of side-channel attacks. Many recently proposed attacks, which
effectively break “provably secure” schemes, exploit the physical, implementation-specific characteristics of a
primitive, e.g. running-time [28, 10], power consumption [29], and electromagnetic radiation [37, 21, 30].

In order to provide for side-channel attacks, one must build primitives that retain provable security even
when run on machines prone to (as wide a class as possible of) side-channels. Starting from the seminal works
of Micali and Reyzin [32] and Ishai et al. [24], great progress has been made in the area of leakage resilience,
where the main idea is to “ease” an adversary A’s task of winning a game against a primitive Π by giving
A access to a leakage oracle. The adversary can forward arbitrary functions f(·, ·) and input values x to a
leakage oracle, which evaluates f(sk, x) for some secret key sk. By using game information and evaluations of
the functions f , the adversary must win the security game. The choice of f is restricted to exclude trivial cases,
e.g. the adversary could ask for the key itself. In fact, several existing models allow for positive results (see
e.g., [19, 2, 36, 27, 34, 14, 41, 17, 18, 20, 8, 9, 7]).
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This paper shows a different approach from leakage resilience. Instead of querying functions f of sk, ad-
versaries tap a single in- and outgoing communication node running a primitive. Receivers in communication
are called users, associated with some global parameters, and senders are implementations of the primitive. A
sender-receiver pair, their parameters, and the interchanged communication define instantiations. Receivers can
be viewed as parties in a protocol, whereas senders are applications/machines of a single sending party, running
the same primitive (e.g. encryption can be used from an SSH terminal sender and an eMail client sender).
For each instantiation of the security game, the adversary queries a predefined leakage oracle, not necessarily
depending on the secret key. This oracle models traffic analysis of the tapped node, i.e. fingerprinting in- and
outgoing communication, timing processing delays, counting the messages received by the node, etc.

Consider the case of a military basis (the tapped communication node) in contact with various military
camps (receivers). The basis uses multiple transceivers (senders), either domestic or belonging to incoming, new
personnel. An adversary may now want to know which receivers interact with the basis, or whether new personnel
(new senders) has arrived to the basis. To achieve this, the adversary may “fingerprint” the communication by
detecting transmission-specific characteristics of senders and receivers. If this is achievable, an adversary can
accurately distinguish between two senders or between two receivers of a message.

There are three fundamental security notions involved in our framework. We start from classical security
games in a special template, called a canonical form. Here, adversaries Asmall attempt to break the appropriate
security notion (which could be indistinguishability, pseudo-randomness, privacy, etc.) in a classical way, having
access to a number of primitive-specific oracles. This notion is called the classical security of the primitive.

As a first step, classical security can be extended to give Asmall access to a traffic analysis (TA) oracle on
top of game-specific oracles. This idea appears for a particular model (IND-CCA security) in [35]. Our general
TA oracle models analysing transmission patterns, thus leaking data. Now Asmall attempts to break classical
security, but with an additional oracle. The enhanced model, called security in the presence of traffic analysis,
covers, though it is not limited to, non-adaptive leakage resilience (see Appendix A).

Finally, the main achievement of this paper is to further enhance security by considering adversaries Abig

that may create instantiations of classical security games (this adversary Abig taps a node’s transmissions in
several sender-receiver sessions) and may play these instantiations as in the classical game. However, Abig also
has access to the TA oracle, and it aims to distinguish between two instantiations for different senders (was
the transmission sent from the SSH terminal or from the eMail client?), or for different receivers (was the
transmission sent to Alice or for Bob?). This new notion is called indistinguishability in the presence of traffic
analysis. Note that by modelling indistinguishability of senders or of receivers, we cover classical traffic analysis
issues, which focus on anonymous routing. We describe in more detail how indistinguishability compares with
existing concepts in the literature in Appendix A.

Our notion is used as follows: for a pre-set, non-adaptively chosen traffic analysis oracle Θ and some primitive
Π, we consider instantiations of the appropriate classical security notion for Π. An adversary with access to
the instantiations and to Θ, must now distinguish between two instantiations. Note that such an adversary
will trivially win if it breaks either classical security, or security in the presence of TA. However, the reverse
is not true: indistinguishability is a strictly stronger notion, as we show in Section 3 and in Appendix C. In
fact, indistinguishability combines two notions, security and sender/receiver privacy in a single model; this saves
us from having to model privacy for each notion, and allows us to write a single proof of both security and
indistinguishability. For applications which do not require such strong security, the proofs can be done in the
weaker model of security in the presence of TA (if the TA oracle always returns ⊥, this is equivalent to classical
security); however, high-level security applications in say, the military, should consider attaining the strong
indistinguishability notion rather than just classical security.

A Running Example. Although our framework is general, we give an intuition of it by means of a running
example for public key encryption (PKE), which is formally a tuple of algorithms (Gen,Enc,Dec) for which
the classical security game is indistinguishability against chosen ciphertext attacks (IND-CCA) as described in
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Appendix B. This game has a so-called canonical form (see Section 2). We consider two receivers for a PKE
scheme, Alice and Bob, both communicating with a common node, Carol, in the presence of an adversary Eve,
who taps Carol’s transmissions over an insecure channel. Alice and Bob are associated with tuples (skA, pkA)
and (skB, pkB); Carol uses various senders to encrypt plaintexts m under either pkA or pkB, obtaining ciphertexts
c. Eve intercepts and possibly changes such values of c. In the classical IND-CCA security game, Eve must
break the PKE scheme: given ciphertext c, which is the encryption of either message m0 or m1 (both chosen by
Eve) under pk ∈ {pkA, pkB}, and given pk, Eve wants to distinguish which of the two plaintexts was encrypted.
Decryption Dec requires the secret key corresponding to pk; Eve does not have the secret key (she just knows
pk), but she may submit non-challenge ciphertexts ci to a decryption oracle, which outputs the corresponding
plaintexts mi. Intuitively, Eve wins against IND-CCA if it learns at least one bit of plaintext-information.

For indistinguishability in the presence of traffic analysis, Eve does not need to break the encryption scheme,
and she does not have access only to a public key and a decryption oracle. Eve can additionally query a TA
oracle, leaking additional information from the tapped channel (e.g. by measuring processing time, Eve could
learn a part of the randomness used to encrypt). In our model, Carol sends messages to Alice and Bob in various
sessions (determined by the receiver – Alice or Bob – and the sender – Carol’s machine/application). Eve’s new
goal is one of the following: either (a) to distinguish, given a ciphertext c generated for a particular public key
pk, which sender Carol used, or (b) to distinguish, given ciphertext c generated for either pkA or pkB, who the
receiver was (Alice or Bob).

In the first case, called sender Indistinguishability in the presence of Traffic Analysis, Eve must learn which
application or machine has generated c. To see why this attack is motivated by practice, imagine that Carol
encrypts eMails to Alice regarding an auction. Carol eMails Alice for every bid. At the same time, Carol also
encrypts information to Alice over SSH for a different purpose. If Eve can distinguish whether Carol’s ciphertexts
were encrypted in the eMail client or in SSH, she will know if Carol keeps bidding on the auction (and may try
to outbid her, or she may even delay the encrypted eMail ciphertext till the auction is finished). The second
notion we consider, called receiver Indistinguishability in the presence of Traffic Analysis, models the case where
Eve must learn who is the receiver of the ciphertext, i.e. either Alice or to Bob. This is important in our auction
scenario if Carol now organises the auction and, at the end of the bidding process, Carol contacts the winner to
confirm the purchase. Now Eve should not learn who has won the auction.

1.1 Our Contributions

The Models. In this paper we formalise indistinguishability (in the presence of traffic analysis) between runs
of a security game for a cryptographic primitive. Here, traffic analysis is abstractly modelled by an oracle leak-
ing some pre-set sender- and receiver-specific information. For cryptographic primitives as defined in Section 2,
we consider classical, so-called canonical security games, played between adversaries Asmall and challengers G.
Separate sessions of the classical security game, containing an adversary instance Asmall , a challenger instance
G, and additional parameters (UPar, IPar), are called instantiations. Recall that we call receivers users: the
parameters UPar associated with them are global (they are run at game setup). Sender-specific local parameters
IPar are created after setup, including values used for challenge ciphertexts, pseudorandom output, etc. Two
instantiations are same-user if they share their global parameters, and mixed-user otherwise. In our framework,
same-user instantiations model implementations of a cryptographic primitive on different senders e.g. an appli-
cation (an SSH-terminal or an eMail client) or a machine (a laptop). A sender is thus simply a set of parameters
corresponding to the application or machine.

In the indistinguishability model, adversaries Abig create many instantiations of the security game for a given
primitive and must distinguish between two instantiations. In order to do so they either manipulate Asmall in
each instantiation, or they query a pre-set traffic analysis (TA) oracle which, on input an instantiation, leaks
some information. The TA oracle may be restricted, i.e. yielding only information about local parameters, or
unrestricted, if it leaks information about both local and global parameters. The strength of the TA oracle
reflects the physical capabilities of an adversary, which may, for instance, only be able to learn a single bit of
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local input, or on the contrary, it may fully fingerprint either the receiver or the sender of a transmission.
The aim of Abig can be either (a) to distinguish between two same-user instantiations (sender indistin-

guishability in the presence of traffic analysis – indSenderTA), or (b) to tell apart two mixed-user instantiations
(receiver indistinguishability in the presence of traffic analysis, indReceiverTA). The former goal models attacks
trying to distinguish the sender (i.e. the implementation running the game), whereas the latter models trying
to distinguish the intended receiver. We show how our notion relates to existing work in Appendix A.

Relating the Models. We formally prove that indistinguishability for unrestricted traffic analysis oracles
is strictly stronger than indistinguishability for projections of such oracles; these projections are restricted TA
oracles. We also show that indistinguishability in the presence of TA is strictly stronger than security in the
presence of the same oracle (see above). Finally, we show that sender and receiver indistinguishability in the
presence of TA are independent. In particular, the ability to tell apart two same-user instantiations does not
guarantee the ability to distinguish between two mixed-user instantiations (one’s ability to distinguish the latter
depends on the TA oracle output). A complete diagram relating these notions appears in Figure 2.

Using our Framework. Besides providing a formal definition for indistinguishability in the presence of traf-
fic analysis, we apply our framework in two different scenarios.

Encode-then-Encrypt & MAC. Recently Paterson et al. [16, 35] have shown that the “provably secure”
SSH-$NPC protocol is vulnerable to implementation-specific information not included in IND-CCA security
(i.e. leakage of the length field in an encrypted packet, dependence of the decryption process on the length field,
byte-by-byte processing, etc). They extend the security model by explicitly considering all this side-channel
information, and prove that the related SSH-CTR protocol achieves this extended notion.

As discussed in more detail in Appendix A, length-leakage is exactly one of the means used in traffic analysis
to achieve classification of SSH flows. This is consistent with our framework: in Appendix C.4 we show a simple
attack against the indSenderTA security of any “Encode-then-Encrypt & MAC” scheme (such as SSH). This
is actually a separation proving that indTA is a strictly stronger notion than security in the presence of traffic
analysis, secTA (see the proof of Lemma C.8). We also show a theoretical solution to achieve indSenderTA,
based on an ideal distribution for the padding length. This solution introduces a large overhead, however, and is
hard to implement, as no such ideal distribution is known in practice (though some heuristics, e.g. [31, 23] exist).

RFID authentication. Our second scenario is tag-to-reader authentication for RFID systems, more concretely
the destructive-private protocol due to Vaudenay [43], where keys are updated by means of a Pseudo-Random
Function (PRF). The RFID tag keeps only (a copy of) the current authentication key, whereas the RFID reader
keeps the original key and looks for the number i of times that this key has been updated. In this scenario, a
(possibly response-time based) traffic analysis oracle may reveal the value i. An attack against the indSenderTA
security of this notion (where security is defined in the Juels and Weiss model [26]) is to output as a challenge a
session where both tags have updated keys, and one where both have the original key. By using traffic analysis
Abig will distinguish between the updated or not-updated tag.

In Appendix D we show that in order to render traffic analysis useless, either the tag must store multiple
keys, called pseudonyms, or the reader must store a (potentially very large number of) intermediate states, such
that it matches the updated key against a table, rather than search for i by means of computation.
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2 Preliminaries

2.1 Notation

If S is a distribution over a set S, then x← S signifies that x is drawn at random from S according to S (unless
otherwise specified, sets S are associated with the uniform distribution). If S is an algorithm, then y ← S(x)
denotes an execution of S on input x with output y; in particular when S is probabilistic, y is a random variable.

If A is an algorithm and O is an oracle queried on some input, we write AO(·)Q for an adversary who queries
O a number Q of times (for Q ∈ N). A function in λ is negligible, written negl(λ), if it vanishes faster than
the inverse of any polynomial in λ. An algorithm A is probabilistic polynomial time (PPT) if A uses some
randomness as part of its logic (i.e. A is probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x)
terminates in at most poly(|x|) steps.

2.2 Games in Canonical Form

Cryptographic primitives. A cryptographic primitive Π(P) = (Setup,F) for a player set P = {P1, . . . , Pn}
consists of an initialisation algorithm Setup and a set of PPT algorithms F . We often shorten the notation to
just Π. There may be just two players (e.g., the prover and the verifier for authentication, or the signer and
the verifier for signature schemes), or possibly n players executing a multiparty protocol (e.g., in an electronic
voting scheme). The Setup algorithm takes as input parameters (λ,mpar) with λ ∈ N and mpar containing some
master parameters (like the description of an underlying prime field, the parameters of a pairing-friendly curve,
etc.) and outputs (ppar , spar)← Setup(1λ,mpar) where ppar ∈ {0, 1}∗ are public parameters and spar ∈ {0, 1}∗
are private (secret) parameters for the primitive Π. The interactive use of algorithms F (by parties Pi ∈ P)
yields a transcript τ ∈ {0, 1}∗, containing the public inputs and outputs of the algorithms. If the primitive
aborts during its execution, τ ends with ⊥.

Classical Security – Hard games. Classical security of cryptographic primitives Π(P) is typically defined
through a game between an adversary Asmall and an honest entity G called the challenger. We assume that
Asmall is stateful, i.e. it carries state from one step to another; Asmall and G exchange messages via a shared
communication tape, and G runs (a subset of) algorithms in F in a black-box way on Asmall ’s input. At some
point, Asmall prompts G to issue a challenge, for which Asmall must output a guess; given the challenge and this
guess, G outputs a decision bit d. If d = 1 we say Asmall has won the game, else the game is lost.

Our definitions apply to games in so-called canonical form as defined below; this notion is not too restrictive:
most definitions in cryptography are canonical – see Appendix B. A canonical game Game is a tuple of PPT
algorithms sharing state, Game = (Setup, Learn,ChGen,Match) such that:

Setup. Upon input (λ,mpar) with λ ∈ N, this algorithm runs the algorithm Setup of Π(P) and outputs pub-
lic/secret parameters (ppar , spar) ← Setup(1λ,mpar). Here, spar are used by G, and ppar are used by
Asmall . We require that Asmall is equally successful in breaking the game regardless of which parameters
are output by Setup.

Learn. Upon input a parameter set Qi, the challenger runs Learn, outputting a (partial) transcript τi ∈ {0, 1}∗.

ChGen. Upon input a set of parameters Q∗, G runs ChGen outputting a challenge Υ∗. After ChGen has been
successfully run, any further attempts to run it will output ⊥.

Match. On input a guess Γ∗ and a challenge Υ∗, Match outputs a bit d. We say the guess is correct if d = 1.

Security with respect to Game = (Setup, Learn,ChGen,Match) is defined as follows.
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Experiment ExpGame
Π(P)(Asmall , λ):

1. (ppar , spar)← Setup(1λ,mpar). Adversary Asmall is given ppar .

2. Q∗ ← ALearn(·)Q′

small (ppar).
3. Υ∗ ← ChGen(Q∗).
4. Γ∗ ← ALearn(·)Q′′

small (ppar ,Υ∗).
5. The experiment outputs d← Match(Υ∗,Γ∗).

Let Q = Q′ + Q′′ be the total number of queries to Learn (both before and after Υ∗ is issued). If
ChGen has no output, as e.g., in the case of MACs, cf. Appendix B, we set Υ∗ to be the empty string.

Definition 2.1 (Hard games in canonical form) Let Game = (Setup, Learn,ChGen,Match) be the canonical
security game for a primitive Π. We say Π is (t, Q, ε)-secure if for all PPT adversaries Asmall running in time
at most t and making at most Q queries in the experiment above, we have∣∣∣Prob

[
ExpGame

Π(P)(Asmall , λ) = 1
]
− δ
∣∣∣ ≤ ε,

where the probability is taken over the randomness of the challenger G and resp. that of Asmall in a single
execution. The parameter δ (with 0 ≤ δ < 1) is the hardness of game G. For any Asmall against Game, we call∣∣∣Prob

[
ExpGame

Π(P)(Asmall , λ) = 1
]
− δ
∣∣∣ the advantage of Asmall and we denote it AdvGame

Π(P)(Asmall ).

As no exact functionality is specified for it, Match may in fact allow for restrictions in Asmall ’s use of the
oracles before and after the challenge. In the examples in Appendix B, Match conditions the Asmall ’s success on
the challenge input (in our PKE example, Match outputs 0 if the challenge messages m0 and m1 have different
bit lengths, as required by IND-CCA). Similarly, we include restrictions on Asmall ’s oracle use in Match. For
PKE, Match outputs 0 if the decryption oracle is used on the challenge ciphertext.

Security in the presence of Traffic Analysis. If we additionally give Asmall access to a pre-set, stateful
traffic analysis (TA) oracle Θ, we have security in the presence of TA. Each run of the classical game is now an
instantiation, and an adversary Asmall in an instantiation Inst may run Θ on Inst receiving some output (Θ is
stateful, thus Asmall gets different output depending on when it queries the oracle). The game for security in
the presence of traffic analysis is otherwise the same as that for classical security.1 The goal of Asmall is still
to output Γ∗ such that Match returns 1. We refer the reader to Appendix C for a formalization of this notion.
Figure 1 depicts the essential differences between classical security, security in the presence of traffic analysis,
and the notion of indistinguishability in the presence of traffic analysis, which we define in what follows.

3 Security Definitions

Classical security models usually take into account neither (a) weaknesses in implementation, nor (b) leakage by
traffic analysis. In fact, the set of oracles O which Asmall may query in a (canonical) security game (as defined
previously) is primitive- and not machine- or implementation-specific. The implementation of a primitive may,
however, leak important information, e.g. parts of the randomness used, or a fingerprint of the machine (sender)
running it. We proceed to enhance security models to account for traffic analysis leakage. We first give an
intuition of our notion, then proceed to the formal definitions.

1Note that the term security is somewhat ambiguous, as classical security for a primitive might be a notion of privacy as in the
case of RFID (cf. Appendix B).
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Informal Intuition. We consider instantiations of the security game, i.e. each run of the game is assumed to
be dependent on the implementation and the machine running the primitive. The parameters of an instantiation
are global, generated by Setup or local, (sender-specific as in Section 1). In our running example, the global
parameters (pk, sk) are output by Setup = Gen, and pk is given to Asmall . We say that a user is created when
Setup is run to output new parameters.2

Each user may run parallel instantiations of the game, having their own local parameters, e.g. challenge bits,
or preimages. For IND-CCA security, once a user is generated, the public key pk is given to Asmall , who may
query ChGen on inputs m0,m1. Then the challenger G picks a bit b, which is part of its local input. In fact, once
Asmall starts playing Game, we speak of an instantiation (uniquely determined by the oracle queries/replies of
Asmall and G and by the local and global parameters), to which there corresponds a transcript τ . By contrast,
users correspond to the global parameters only. Instantiations are subject to traffic analysis (which is modelled
by an oracle Θ), yielding information that is either local (the oracle is then restricted) or both local and global
(this oracle is unrestricted). The model is non-adaptive in the sense that indTA-security is proved with respect
to a pre-defined Θ oracle (e.g. we may choose to prove that encryption is secure in the presence of an oracle
yielding half of the randomness used for encrypting ciphertexts).

Two instantiations sharing global parameters are same-user instantiations; instantiations with different
global input are mixed-user. Our framework defines the notion of indistinguishability in the presence of traffic
analysis, indTA, where the adversary must distinguish between two instantiations (either same- or mixed-user)
of the security game. As aforementioned, an adversary that breaches the security (or the security in the presence
of traffic analysis) of a protocol will also trivially win against indistinguishability, but this is not the only way
to relate sessions. Indeed, fingerprinting an implementation will not necessarily break security, but it will make
an adversary distinguish sessions.

Figure 1: The three flavours of security considered in this paper: (a) Classical security, (b) Security in the presence of
traffic analysis and (c) Indistinguishability in the presence of traffic analysis.

Formal Intuition. Concretely, let Π be a primitive with canonical security game Game = (Setup, Learn,
ChGen,Match). Adversaries Abig play against a challenger Gbig . Initially an algorithm Init is run on some λ
to output the master parameters; then Abig can create new users (using Setup on input λ and mpar) or new
instantiations Inst for a user (see also Figure 1).

A user User for Π and Game is a set of parameters UPar such that (UPar)← Setup(1λ,mpar) for some λ and
mpar. In our running example, Gbig runs Setup to generate keys for users Alice and Bob. The adversary Abig

receives pk for both users and may create instantiation Inst for, say Alice, creating a local Asmall manipulated
by Abig and a local G handled by Gbig . This corresponds to Abig tapping Carol’s transmission to Alice generated
for SSH or eMail.

2The term “user” is rather loose, as some models, e.g. RFID privacy (cf. Appendix B), create many tags in a single Setup.

7



Adversary Abig may either “play” a created Inst (by manipulating Asmall and using Learn and ChGen with
appropriate parameters) or may use Θ on Inst. Running ChGen in an instantiation invalidates it. Formally,
an instantiation is a tuple (Asmall ,G, τ,UPar, IPar), where: τ is a (potentially partial) transcript including a
validity bit initialized to 1 and flipped to 0 upon successful running of ChGen; UPar are global (user-specific)
parameters; and IPar are local parameters. We assume consecutive indexing of instantiations (in the order of
their creation). Eventually Abig picks valid Inst∗i and Inst∗j and forwards them to Gbig , with challenge inputs Q∗i ,
resp. Q∗j .3 Challenger Gbig runs ChGen for both Inst∗i and Inst∗j and gets Υ∗i and Υ∗j , then picks a bit b, and

forwards Υ∗big = (Inst∗,Υ∗) to Abig , where (Inst∗,Υ∗) = (Inst∗i ,Υ
∗
i ) if b = 0 and (Inst∗,Υ∗) = (Inst∗j ,Υ

∗
j ) for b = 1.4

Finally, Abig outputs guess Γ∗big for the bit b and wins if Γ∗big = b. This notion is called indistinguishability in
the presence of TA, denoted indTA.

We consider two flavours of indTA: sender indistinguishability – indSenderTA – where Inst∗i and Inst∗j are
same-user instantiations, and receiver indistinguishability – indReceiverTA – where the chosen instantiations are
mixed-user. There are two types of traffic analysis: restricted, denoted Θrest , which outputs only information
about the local parameters IPar; and unrestricted, denoted Θ, yielding both IPar and UPar information.

indTA as a canonical game. Our definition of indTA is a canonical indistinguishability-based security game
Gamebig = (Setupbig = Init, Learnbig ,ChGenbig = Challenge,Matchbig). The algorithm Setupbig takes as input a
parameter λ and outputs master parameters mpar. Adversary Abig plays game Gamebig against challenger Gbig .
The oracle Learnbig consists of the traffic analysis oracle Θ and a set OAbig

of oracles (see the next section). The
set OAbig

includes the set O defined for Game, but also includes oracles to create new users and instantiations,
and to play instantiations. The input Q∗big to ChGenbig consists of: valid instantiations Inst∗0 and Inst∗1, and
respective challenge inputs Q∗0 and Q∗1. The algorithm ChGenbig picks a random bit b, runs ChGen for both
instantiations, then outputs Υ∗big = (Inst∗b ,Υ

∗
b). The adversary Abig may play Inst∗b or learn more information,

and finally outputs a guess Γ∗big for the bit b. The algorithm Matchbig takes as input Υ∗big and Γ∗big and outputs
1 iff: (1) the bit Γ∗big = b; (2) Inst∗0 and Inst∗1 are both valid; and either (3a) the two instantiations are same-user
(for indSenderTA) or (3b) the two instantiations are mixed-user (for indReceiverTA).

3.1 Definitions of Indistinguishability for Traffic Analysis

There are two dimensions to our model: the adversary’s goal and the strength of the TA oracle Θ. We have
motivated the use in considering sender and receiver indistinguishability; we now briefly motivate our flavours
of Θ before we formalise our definitions.

Restricted and Unrestricted TA. In our framework, we prove protocols indistinguishable in the presence
of certain, pre-set TA oracles Θ. On input an instantiation, Θ outputs information on this instantiation. In
practice, Θ models an adversary’s ability to learn information related to a primitive, e.g. a delay in a response
could leak information regarding key-update status (see also Appendix D).

We consider two types of traffic analysis, depending on the their output. If Θ yields only local information,
we say it is restricted and denote it Θrest ; in practice, Θrest models sender-specific flaws for implementations
which protect receiver data well (a sender might take longer to generate a challenge bit, or it may always send a
tell-tale header). An oracle leaking both local and global information is called unrestricted. In our framework,
indistinguishability for unrestricted oracles is stronger than for restricted oracles. The oracle is pre-set, and it
may give more or less information: thus in the running example, a weak restricted oracle may yield a bit of the
randomness used to generate the challenge ciphertext; a strong, unrestricted one may leak sk.

3We say that the adversary forwards the instances to the challenger if it forwards indices i and j.
4When we say the challenger forwards instantiation Inst∗, we mean Abig may use the handle Inst∗ to play it or to use Θ on it,

without knowing which instantiation it is.
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We relate the two types of oracles by projecting unrestricted onto restricted oracles: Θrest is a projection
proj(·) of Θ if: (a) Θrest is restricted, and (b) the output of Θrest = proj(Θ) for any instantiation is included in
the output of Θ for the same instantiation.

Algorithms and Oracles. As aforementioned, Gbig begins the game by querying an oracle Init, which,
on input a security parameter λ, outputs parameters mpar. We require that it is on average equally hard
to break instances of the security game for different values of mpar. We now list the oracles that Abig may
query in indTA against a primitive Π with canonical security game Game = (Setup, Learn,ChGen,Match). Here
OAbig

= (NewUser,NewInst,Play).

NewUser. On input λ and master parameters mpar (output by Init), this oracle runs Setup, outputting UPar =
(ppar , spar) and a user identifier User. The values User, ppar , and spar are added on a new row of (an
initially empty) table D. By abusing notation we write User ∈ D iff there exists a row in D containing
User. An (empty) table IUser is created for each user.

NewInst. On input user User, if User ∈ D, then NewInst creates an instantiation Inst and adds it to IUser and to
a list L. Else, NewInst outputs ⊥.

Play. On input an instantiation Inst, an oracle Mode ∈ {Learn,ChGen,Match}, and some input state view, this
algorithm forwards Mode to adversary Asmall in Inst, who queries Mode and forwards the output value(s)
out. At every query, the values (Mode, view, out) are added to the transcript τ corresponding to Inst and
to the table IUser. Furthermore, ChGen is only run if Inst is in the list of valid instantiations L. Once the
challenge is issued, Inst is removed from L.

Challenge. On input instantiations Inst∗0 and Inst∗1 and input Q∗0 resp. Q∗1, Challenge checks instantiation validity,
then runs ChGen for both instantiations, removing them from L. Then the algorithm picks a bit b at
random and outputs instantiation Inst∗b with relevant Υ∗b .

Θ. On input an instantiation Inst, the oracle Θ outputs state information ϑ.

Considering the conditions on Init and Setup we may assume an uniformity of the instantiations, namely an
adversary is about as likely to break the security of two (same-user or mixed-user) instantiations.

Sender Indistinguishability with Traffic Analysis. For sender indistinguishability we consider both
restricted and unrestricted traffic analysis as defined above. We first define the restricted oracle Θrest :

Definition 3.1 (Restricted Θ oracle) A Θ oracle is restricted iff for all mpar output by Init and for all PPT
adversaries Asmall having access only to the NewUser, NewInst, and Θ oracles, for all Inst0 and Inst1 output by
Asmall such that for all j with Userj ∈ D, Inst0 ∈ IUserj implies Inst1 6∈ IUserj , it holds that:

Θ(Inst0) = Θ(Inst1).

In general, we write Θrest to denote that the Θ oracle is restricted.

We now define indSenderTA security. Let Π be a primitive with canonical security game Game = (Setup, Learn,
ChGen,Match). Consider the following experiment:

Experiment ExpindSenderTA
Π(P),Θrest

(Abig , λ)

1. mpar← Init(1λ).
2. User← NewUser(1λ,mpar). Let OUser = (NewInst(User),Play(·)).
3. Q∗big = (Inst∗0, Inst

∗
1,Q∗0,Q∗1)← AOUser,Θrest (·)

big .
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4. Υ∗big = (Inst∗b ,Υ
∗
b)← Challenge(Q∗big) for a random bit b.

5. Γ∗big ← A
OUser,Θrest (·)
big (Υ∗big).

6. Output 1 iff Γ∗big = b and (Inst∗0, Inst
∗
1) ∈ L.

Let Q, resp. QTA denote the number of queries to OUser, resp. Θrest . The adversary’s advantage is:

AdvindSenderTA
Π(P) (Abig ,Θrest) =

∣∣∣Prob
[
ExpindSenderTA

Π(P),Θrest
(Abig , λ) = 1

]
− 1

2

∣∣∣ .
Definition 3.2 (Restricted indSenderTA security) The primitive Π is (t, Q,QTA, ε)-secure against restricted
indSenderTA attacks for restricted oracle Θrest in a (canonical) game Game if for every PPT adversary Abig

running in time at most t and making at most Q, resp. QTA queries it holds that:

AdvindSenderTA
Π(P) (Abig ,Θrest) ≤ ε.

We also define sender indistinguishability for unrestricted oracles Θ, leaking both local and global information.
The adversary must still distinguish between same-user instantiations. We replace Θrest by Θ above to obtain
ExpindSenderTA

Π(P),Θ (Abig , λ).

Definition 3.3 (Unrestricted indSenderTA security) The primitive Π is (t, Q,QTA, ε)-secure against unre-
stricted indSenderTA attacks for unrestricted oracle Θ in a (canonical) game Game if for every PPT adversary
Abig running in time at most t, and making at most Q, resp. QTA queries it holds that:

AdvindSenderTA
Π(P) (Abig ,Θ) ≤ ε.

Receiver Indistinguishability with Traffic Analysis. For indReceiverTA, Θ is unrestricted (in this
sense, indReceiverTA is stronger than indSenderTA, see Section 3.2). We define indReceiverTA analogously to
indSenderTA, for the following experiment:

Experiment ExpindReceiverTA
Π(P),Θ (Abig , λ)

1. mpar← Init(1λ). Let OUser = (NewUser(1λ,mpar),NewInst(·),Play(·)).
2. Q∗big = (Inst∗0, Inst

∗
1,Q∗0,Q∗1)← AOUser,Θrest (·)

big .

3. Υ∗big = (Inst∗b ,Υ
∗
b)← Challenge(Q∗big) for a random bit b.

4. Γ∗big ← A
OUser,Θ(·)
big (Υ∗big).

5. Output 1 iff: (i) Γ∗big = b; (ii) Inst∗0, Inst
∗
1 6∈ IUser for any user User output by NewUser;

and (iii) Inst∗0, Inst
∗
1 ∈ L.

Again, Q, resp. QTA are the number of queries made to OUser, resp. Θ, and the advantage is:

AdvindReceiverTA
Π(P) (Abig ,Θ) =

∣∣∣Prob
[
ExpindReceiverTA

Π(P),Θ (Abig , λ) = 1
]
− 1

2

∣∣∣ .
Definition 3.4 (indReceiverTA security) The primitive Π is (t, Q,QTA, ε)-secure against indReceiverTA at-
tacks for unrestricted oracle Θ in a (canonical) game Game if for every PPT adversary Abig running in time at
most t, and making at most Q, resp. QTA queries in the experiment above we have:

AdvindReceiverTA
Π(P) (Abig ,Θ) ≤ ε.
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3.2 Relation between Security Notions

In the previous section we gave three security definitions (cf. Definitions 3.2 – 3.4), i.e. two flavours of
indSenderTA, (restricted and unrestricted), and indReceiverTA. Here we state, and give an intuition for, the
relations of the notions. Exact statements and the proofs are given in Appendix C.

Firstly, unrestricted indSenderTA is strictly stronger than restricted indSenderTA: the unrestricted Θ gives
more data than Θrest = proj(Θ). A trivial separation is to consider Θ leaking Θrest data and a secret key. Relating
unrestricted indSenderTA and indReceiverTA is more difficult (Θ is the same, but in one case the challenge
instantiations are same-user and in the other, mixed-user). In fact, the two notions are independent, and the
separation relies on the fact that one can define a TA oracle that is only useful for sender distinguishability, and
not for receiver distinguishability, or viceversa.

We also show that the enhancement from security in the presence of traffic analysis – see Section 2 and
Appendix C – to indistinguishability in the presence of traffic analysis is not trivial. In particular we prove that
indTA is strictly stronger than secTA: if Π is indTA-secure with respect to Game, then it is also secTA-secure.
The reverse is not true: our counterexample is the Encode-then-Encrypt & MAC paradigm with a length-
leaking oracle. The adversary can manipulate the challenge input so that the TA oracle allows it to distinguish
instantiations without necessarily breaking security.

These relationships are summarized in Figure 2. Formal statements are given in Theorems 3.1 – 3.3 and
proved in Appendix C.2 – C.4.

Figure 2: Relationships of the notions: arrows refer to implications, hatched arrows to separations; the notation “proj.”
refers to oracle projection, cf. Section 3.1.

Sender vs. Receiver Indistinguishability.

Theorem 3.1 (indSenderTA and indReceiverTA) The following relationships hold:

1. If primitive Π is secure for a canonical game Game and unrestricted indSenderTA-secure for some oracle
Θ, then it is also restricted indSenderTA-secure for any Θrest s.t. Θrest = proj(Θ).

2. There exists a primitive Π secure against a canonical game Game, such that one of the following holds:

(a) Π is restricted indSenderTA-secure for Θrest , but unrestricted indSenderTA-insecure for some Θ sat-
isfying proj(Θ) = Θrest .

(b) Π is indReceiverTA-secure for oracle Θ, but unrestricted indSenderTA-insecure for Θ.

(c) Π is unrestricted indSenderTA-secure for oracle Θ, but indReceiverTA-insecure for Θ.

Security vs. indistinguishability. We consider security in the presence of traffic analysis (see section 2
and Appendix C) for both restricted and unrestricted oracles, i.e. secRestTA-security and resp. secTA-security.
We prove the following results:
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Theorem 3.2 (Restricted and unrestricted security) The following relationships hold:

1. If Π is secure for a canonical game Game and secTA-secure for unrestricted Θ, then it is also secRestTA-
secure for any restricted Θrest s.t. proj(Θ) = Θrest .

2. There exists a primitive Π that is: secure for a canonical game Game; secRestTA-secure for restricted
Θrest ; but secTA-insecure for unrestricted Θ s.t. proj(Θ) = Θrest .

Theorem 3.3 (Security and indistinguishability) The following relationships hold:

1. Let Π be secure for a canonical game Game:

(a) if Π is restricted indSenderTA-secure for restricted Θrest , then it is also secRestTA-secure for Θrest .

(b) if Π is unrestricted indSenderTA-secure for oracle Θ, then it is also secTA-secure for Θ.

2. There exists a primitive Π secure for a canonical game Game, such that one of the following holds:

(a) Π is secRestTA-secure for restricted Θrest , but restricted indSenderTA-insecure for Θrest .

(b) Π is secTA-secure for oracle Θ, but unrestricted indSenderTA-insecure for Θ.

(c) Π is restricted indSenderTA-secure for Θrest , but secTA-insecure for some Θ s.t. proj(Θ) = Θrest .

(d) Π is secTA-secure for oracle Θ, but restricted indSenderTA-insecure for some oracle Θrest s.t. Θrest =
proj(Θ).

4 Case Study: The “Encode-then-Encrypt & MAC” Paradigm

We apply our framework in the context of the Secure Shell (SSH) protocol [5]. SSH is a particular instantiation
of the “Encode-then-Encrypt & MAC” paradigm, which we briefly recall below.

Let Π?(Ψ,ΠE ,ΠM ) = (Gen?,Enc?,Dec?) be a symmetric encryption scheme for encoding scheme Ψ, on
block cipher ΠE = (GenE ,Enc,Dec) with input length B (in bytes) and on a message authentication code
ΠM = (GenM ,MAC,VRFY). In what follows all lengths |·| are in bytes. The key-generation algorithm Gen?

takes as input the security parameter λ and outputs K = (KE ,KM ) ← Gen?(1λ), where KE ← GenE(1λ) and
KM ← GenM (1λ). A message m of length |m| = L bytes is encoded into Ψ(m) for random padding u of length
|u|, as follows:

Ψ(m) = (|〈|u| ,m, u〉| , |u| ,m, u),

It is crucial that |u| is standardized, chosen such that the length of the padded message is an integer multiple
of the block length B of the underlying block cipher. Thus, |u| ≤ B bytes. In the following, denote by mpad the
padded message preceded by the padding length, i.e. mpad = 〈|u| ,m, u〉. Note that decoding relies on the fact
that the length |mpad| is fixed by the standardization.

The encoded message Ψ(m) is encrypted to c← EncKE
(Ψ(m)); since ΠE is a block-cipher, this requires the

use of an operational mode, e.g. CBC. Finally, a tag φ← MACKM
(Ψ(m)) of the encoded message is computed

using key KM . The ciphertext is then c? = (c, φ)← Enc?K(m).
Decryption of c? works as follows. Upon decrypting the first block of c, the length field |mpad| is recovered;

if something goes wrong, a special symbol ⊥L is returned. Once the length field is known, c? is parsed as (c, φ).
If parsing fails, a special symbol ⊥P is output. Then c is decrypted, yielding Ψ(m) = DecKE

(c); the tag φ is
verified as in VRFYKM

(Ψ(m), φ). If verification fails a special symbol ⊥M is output.5

5It is well known that an instantiation of the “Encode-then-Encrypt & MAC” using any CPA-secure encryption scheme ΠE

and any secure MAC ΠM does not yield a CCA-secure scheme. There are, however, other combinations of symmetric encryption
with MACs. For instance the “Encrypt-then-MAC” paradigm (where the MAC is applied to the encrypted message and not to the
encoded plaintext) is known to be CCA-secure for any choice of CPA-secure ΠE and universally unforgeable ΠM .

12



The SSH protocol is a concrete example of the above paradigm for which Ψ(m) has standard bounds |u| ≤
Fpad = 1, |mpad| ≤ Fenc = 4; messages m are encoded to reach a length compatible with the length B of the
blockcipher, by using an amount |u| of random padding as in:

|u| = B − (|m|+ Fenc + Fpad mod B) = B − (|m|+ 5 mod B).

Security in the Presence of Traffic Analysis. Bellare et al. [4] proved that two variations of the SSH
protocol, namely SSH-$NPC (using CBC mode with explicit random IVs and random padding) and SSH-CTR
(using counter mode), achieve IND-CCA security. However, very recently [16] shows a plaintext recovery attack
against SSH-$NPC, despite the proof in [4]. This apparent contradiction is due to the fact that [16] exploited
several characteristics of SSH implementations that are not modelled by classical IND-CCA, i.e. (1) the ability
of adversaries to recover the (otherwise encrypted) packet length field and (2) the fact that decryption is stateful
and byte-oriented. On a high level the attack goes as follows: the adversary sends a target ciphertext as the
length field in the first block of a new SSH packet, then feeds the SSH connection with random blocks of
ciphertext and measures the number of bytes needed before the MAC check fails. Due to CBC standardization,
the adversary now knows the decryption of the length field block, i.e. the target.

To model such attacks, Paterson and Watson [35] naturally extend the standard IND-CCA model to allow
for stateful decryption in a blockwise manner. Also the adversary may query a length-leaking oracle to get the
(otherwise encrypted) packet length. Then [35] proves that SSH-CTR is secure in this model. The model in
[35] can be modelled in our framework for secRestTA (cf. Definition C.1) as follows. We enhance IND-CCA
security for Π?, with a TA oracle Θlength . Whenever the adversary queries the decryption oracle, Θlength updates
a database with all the ciphertexts submitted by the adversary. When the challenge ciphertext is output in
IND-CCA, it is added to the database. Then on input an instantiation Inst, Θlength outputs the lengths |mpad|
of all encodings in ciphertexts in the instantiation’s database. Thus Θlength is restricted.

Privacy in the Presence of Traffic Analysis. The attack in [16] is only the tip of the iceberg. Several
traffic analysis methods are known to breach SSH privacy. It is possible to e.g. very accurately classify traffic flows
by exploiting length field leaks for SSH packets. This fact fits well in our framework: we prove in Appendix C.4
that “Encode-then-Encrypt & MAC” protocols like SSH are restricted indSenderTA-insecure (cf. Definition 3.2)
for Θlength , even if the scheme is secRestTA-secure (cf. Definition C.1) for Θlength . This separates indSenderTA
and secRestTA – cf. claim (2a) in Theorem 3.3 and Lemma C.8. Intuitively, in this attack an adversary Abig

against indSenderTA simply chooses inputs Q∗0 := {m0
0,m

0
1},Q∗1 = {m1

0,m
1
1} in the two instantiations Inst∗0, Inst

∗
1

submitted to Gbig in such a way that the messages in the input-set Q∗0 have different length from those in Q∗1.
By using Θlength on the challenge instantiation Inst∗b , Abig distinguishes the two instantiations w.p. 1.

This attack can be prevented by ensuring that the padding length is not fixed and “hard to predict” (as
aforesaid, the problem with SSH is that the padding length is predictable based on the message length and is
always less than 1 block). A näıve solution is to require that all messages are padded until the maximum allowed
length is reached: then the information leaked by Θlength is useless. Whereas this guarantees indistinguishability,
it also creates a huge overhead in practice. We show below how to achieve indistinguishability for less, though
still a considerable, overhead; our method is a proof of concept rather than a practical solution.

Recall that the length of the padded message is |Ψ(m)| = Fenc + Fpad + |m| + |u|. The main idea is to let
the padding length |u| be drawn from a distribution U for which some trapdoor information allows a receiver to
correctly parse the message and decrypt a ciphertext. More precisely, we modify the encoding scheme of Π? as
follows. Given message m with |m| = L, the length |u| of the (random) padding u is drawn from U . An encoding
of m still has the form Ψ(m) = (|mpad| , |u| ,m, u), but now |u| is not fixed anymore. Then the ciphertext c?

corresponding to m is computed in the same way as in the “Encode-then-Encrypt & MAC” paradigm. On the
receiver side c? is parsed as c? = (c, φ) and the encoding Ψ(m) is recovered. Since |u| is chosen at random by
the sender, the receiver must recover it to get m. This is done by using a function f for some (private) trapdoor
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key tk generated at setup. The function f takes as input the trapdoor and an encoding Ψ(m) of message m and
outputs (|u| , |mpad|) = ftk (Ψ(m)), allowing to retrieve m at the receiver side.

Intuitively the distribution U should be such that the length of padded messages reveals negligible information
about the length of original messages. This is not trivial, as shown by the following example. Assume that
the adversary has access to two distributions for the plaintexts in the message space: one distribution always
outputs very short messages and the other always outputs very long messages. Suppose that we choose U to
be the uniform distribution over a space of fixed dimension. In this case an adversary can easily distinguish
the encoded version of two arbitrary messages drawn from the two distributions, since the length of the padded
messages will not change much: on average the encodings of the messages drawn from the first distribution will
still be short, whereas the encodings of the messages drawn from the second distribution will still be long.

We formally consider the following experiment for the encoding scheme Ψ defined above (for distribution U
and function f with trapdoor tk), an adversary A, and a challenger G. The challenger first chooses f, tk , and U .
The adversary A is given the security parameter and a description of f and may submit m to G. The challenger
chooses |u| ← U , computes mpad = 〈|u| ,m, u〉 where u ← {0, 1}|u| and forwards |mpad| to A. At some point A
chooses arbitrary m0,m1,6 receives Υ∗ = |mpad|b, and must guess the bit b. We say that the distribution U is
ideal – and we denote it by Uideal – if no adversary can guess b with probability larger than 1/2.

We show that any distribution U which is indistinguishable from Uideal yields restricted indSenderTA for
Θlength .

Proposition 4.1 (Towards security & privacy for SSH) Let Π?(Ψ,ΠE ,ΠM ) be (tsmall , Q,QTA, εsmall )-secure
against secRestTA attacks for Θlength . Moreover, let U be a distribution such that U and Uideal are (t, ε)-
computationally indistinguishable. If the encoding scheme Ψ in Π? uses U , then Π? is (t?, Q,QTA, ε

?)-secure
against restricted indSenderTA attacks, where

t? ≈ t ε? ≤ εsmall + ε.

Proof. The proof uses game hopping. We denote by Xi the output of the experiment in the ith game.

Game 0. The first game is indSenderTA using Θlength , where the encoding scheme Ψ uses the ideal distribution
Uideal . Define Esmall to be the event that there exists an adversary Asmall able to break the secRestTA security
of Π? using Θlength . Clearly,

Prob[X0 = 1] = Prob[X0 = 1 | Esmall ] + Prob
[
X0 = 1 | Esmall

]
≤ Prob[Esmall ] + Prob

[
X0 = 1 | Esmall

]
(a)

≤ εsmall + Prob
[
X0 = 1 | Esmall

]
(b)

≤ εsmall + 1/2.

Here, (a) follows as Π? is (tsmall , Q,QTA, εsmall )-secure against secRestTA and (b) holds because Ψ is based on
the ideal Uideal .

Game 1. The second game is identical to Game 0, but we replace Uideal by U . We claim that:

|Prob[X1 = 1]− Prob[X0 = 1]| ≤ ε.

Assume this is not the case. We build an adversary Bsmall which can distinguish U from Uideal with advantage
> ε, contradicting the indistinguishability of U and Uideal . Adversary Bsmall has access to an oracle returning

6Note that as the padding length is always random and hard to retrieve, we need not assume that |Ψ(m0)| = |Ψ(m1)|.
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samples |u| drawn from either U or Uideal . Intuitively Bsmall uses the fact that Abig can guess with only negligible
probability against indSenderTA for Uideal : if Abig wins, Bsmall guesses that the encoding is done using U and
not Uideal .

Adversary Bsmall simulates the environment for Abig as follows: (1) Whenever Abig asks to create a new
instantiation of the IND-CCA security game, draw K = (KE ,KM , (U , f, tk)) ← Gen?(1λ); (2) When Abig

asks the encryption of a message m, query the oracle. Let |u| be the sample returned by the oracle. Set
mpad = 〈|u| ,m, u〉 where u← {0, 1}|u|. Answer Abig ’s query computing c? using the key K as described in Π?;
(3) When Abig asks the decryption of a ciphertext c?, answer with the message m obtained by decrypting c?

using the key K as described in Π?; (4) When Abig queries the Θlength oracle with an instantiation Inst, return
the values ϑ = |mpad| corresponding to the chosen instantiation. (5) When Abig outputs Q∗big = (Inst∗0,Q∗0 =

{m0
0,m

0
1}, Inst∗1,Q∗1 = {m1

0,m
1
1}), query the oracle. For a random bit b, compute c?b encrypting a random message

in Q∗b as specified in Π?. Return the challenge Υ∗big = (Inst∗b ,Υ
∗
b) for Abig ; (6) Given the guess Γ∗big from the

adversary, conclude that the oracle is U iff Γ∗big = b.
Clearly Bsmall runs in time t ≈ t?. Moreover it is easy to see that when the samples |u| are chosen from U

the view of Abig is distributed like in Game 1, whereas when the samples |u| are chosen from Uideal the view
of Abig is distributed like in Game 0. Thus Bsmall can tell apart U and Uideal with advantage > ε, against the
assumption that U and Uideal are (t, ε)-computationally indistinguishable. Putting all together we have shown
that

ε? := Prob[X1 = 1]− 1/2 ≤ εsmall + ε,

as desired. �

It remains open the problem how to realize the distribution Uideal . To this extent, only heuristic solutions are
known. For instance in [23] it is shown how to achieve indistinguishability of padded SSH flows using the optimal
overhead, assuming one is given in advance the probability distributions of the packet lengths output by the
application. However the overhead introduced is still very high (up to 35% of the transmitted data).
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A Existent and Future Work

Related Work. We have mentioned key-related leakage resilience as a related field. In fact, key-related
leakage resilience and our notion of indistinguishability in the presence of traffic analysis are non-overlapping.
Whereas our notion models arbitrary leakage (the TA oracle can yield information wholly unrelated to the secret
key), leakage resilience allows the adversary to adaptively choose functions that it wishes to evaluate on the secret
key (possibly with other adversary-chosen input parameters). This is not possible in our framework, which pre-
sets the traffic analysis oracle, and proves indistinguishability in the presence of that particular oracle. Note
that a TA oracle can be composite, i.e. it can yield a possibly large (but not infinite) set of outputs, modelling
for example a large set of pre-set functions of the secret key that need to be evaluated (but this set is still
not adaptively updated). However, as argued by Standaert et al [42, 45], non-adaptivity is enough in many
applications of side-channel attacks (and full-adaptivity is in general a too strong requirement).

Further groundwork on privacy for traffic analysis has also been laid (see [39] for a survey and further
references). The explicit goal of traffic analysis is usually described as sender-recipient matching (if the sender
of a message is known, identify the receiver, and if the receiver is known, identify the sender). This is exactly
the notion we attempt to capture by our indistinguishability framework: indReceiverTA-security hides receivers,
whereas indSenderTA hides senders. However, previous works on traffic analysis, building on Chaum’s work on
anonymous communication [12] and on Rackoff and Simon’s work on anonymous traffic [38], mainly reflects an
adversary’s ability to monitor a communication channel and tell whether it is used or not. Usually one extensively
elaborates on the topic of routing, arguing that anonymising routing would make it impossible for an adversary
to tell the sender of a message even if it knows the recipient, and viceversa. The adversary described in this
framework has the ability to manipulate nodes, time routes, and handle messages, but not to leak information
from the implementation of a primitive. In fact, this aspect is explicitly outside the scope of [12, 38].

Our approach is more general. In particular, non-anonymous routing can be modelled by our traffic analysis
oracle, but we do not limit ourselves to this. Even if routing is anonymised, thus making message delivery
untraceable, it is still possible to match senders to recipients by other implementation characteristics, such as
response duration or fingerprints in the communication. We note that though Rackoff and Simon’s framework
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[38] is thorough, it does not reflect an adversary’s ability to use side-channel analysis and fingerprint commu-
nication. Here, the authors use techniques from Secure Multiparty Computation (SMC) and Non-Interactive
Zero-Knowledge (NIZK) to achieve message “untraceability” in a network of synchronously communicating
players.

Berman, Fiat, and Ta-Shma [6] address traffic analysis in the asynchronous case, introducing “obscurant
networks” – i.e., networks able to obscure the destination of each particular player – further allowing the
adversary to have some a-priori information about the communication patterns (e.g., some players exchange
less messages than others). Whereas this is a particular case of our approach here, we consider far more
general settings, allowing the adversary to learn further information than just the message load on a line of
communication.

In fact, to the best of our knowledge our theoretical framework is the first to extend general provable-
security models to account for traffic analysis and prove security and privacy in the presence thereof. We also
comprehensively outline the relations between different flavours of traffic analysis.

Limitations of our Model. Classical traffic analysis can have two goals. One is distinguishing the source
of communication. The second is to tell whether communication is taking place at all. In our model, we
address only the first threat. The second notion – known as steganography [11] or covert computation [44] in
its generalised form – is, however, much stronger and less practical to achieve [15, 22]. Communication can be
hidden by simulating honest interactions on random communication lines, such that the set of honest protocol
runs and the set of simulated ones are distributed in a computationally indistinguishable way with respect to
time. For infrequently used communication lines, this is impossible to do in practice (here the set of simulated
communication would be much larger than the set of honest communication, thus the overhead is overwhelming).
A general, frequently used solution to hiding communication is frequency hopping, i.e. the properties of the
communication channel are changed in a random fashion such that an adversary monitoring traffic cannot guess
in advance which frequency the parties are using. This solution is not always useful, as an adversary may analyse
the patterns of frequency hopping, thus distinguishing the randomiser that is being used.

Apart from its scope, our model is also limited by its generality. We try to encompass as many types of
security notions and primitives as possible; however, in order to prove and generalise our results, we need to
make some assumptions regarding the structure of the security game, something we call a canonical form. This
canonical form is not too restrictive: indeed we show that many “classical” security definitions fit our framework.
We have thus far considered only game-based security, leaving simulation-based notions for future work.

Finally, in this work we consider two concrete cases of traffic analysis. An interesting and natural extension
would be to consider a larger, more abstract class of traffic analysis attacks (in a way similar to the context of
leakage-resilient cryptography) for which to assess security. We leave this as an open problem for future research.

Traffic Analysis in Practice. Traffic analysis has its roots in the military context; indeed it has been
widely used already during the World War I to learn the intentions and actions of the enemy. It is within
the development of wireless communication, however, that TA has become a so powerful means, since radio
communications allow to easily deduce information by monitoring patterns in communication. Traffic analysis is
not only used for military purposes, but it is also a big concern in computer security, especially over the Internet.
In this context several attacks are known to obtain traffic monitoring: traffic classification is possible based on
statistical features of packet flows. Among the others features, packet length is one of the most used.

A concrete example is SSH [5], one of the most widely used secure network protocols. Several techniques are
known (e.g. [23, 35] and cited references) to learn (otherwise encrypted) message lengths for SSH tunnels. This
allows for very accurate traffic monitoring and classification, generating a huge privacy problem. See also [13]
for applications of TA over the Internet, in contexts different from SSH.

The main attraction of TA with respect to side-channel leakage is that the former is much cheaper and easy
to realize: traffic data can be automatically collected and processed to provide high level intelligence.
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B Canonical Games in Cryptography

As stated before, the assumption that security games are canonical is not too strong. In this section we show
how various known definitions fit our framework.

Public-key encryption. Let Π(A,B) = (Setup = Gen,Enc,Dec) be a public-key encryption scheme. The
set of players P = (A,B) is made of only two parties, called Alice and Bob. The set F consists of
Enc,Dec. The strongest notion of security is IND-CCA2 security, which is a canonical game with algorithms
(Setup, Learn,ChGen,Match) as follows.

On input a security parameter λ, algorithm Setup runs the key-generation algorithm Gen on 1λ, outputting
spar = sk and ppar = pk, i.e. a private-public key pair. The algorithm Learn on input any query
Q = (Dec, c) for ciphertexts c, outputs transcripts of the form τ = (Dec, c,m), where m ← Decsk(c). For
administrative purposes, this algorithm keeps a database recording the transcripts for all i = 1, . . . , Q =
Q′ +Q′′. Upon input set Q∗ = (m0,m1), the challenge algorithm ChGen picks a bit b← {0, 1}, then runs
Υ∗ ← Encpk(mb). Finally, on inputs a guess Γ∗ ∈ {0, 1} and a challenge Υ∗, the algorithm Match outputs
d = 1 iff (2) Γ∗ = b (i.e. the bit that was chosen by the challenger), (2) the messages in Q∗ have the same
length |m0| = |m1|, and (3) there exists no j ∈ {Q′ + 1, . . . , Q} such that Qj = (Dec,Υ∗).

For the security of this game, note that the hardness of the game is δ = 1/2.

Message authentication codes. Let Π(A,B) = (Setup = Gen,MAC,VRFY) be a Message Authentication Code
(MAC). The set of players P = (A,B) consists again of only Alice and Bob. The set F consists of
MAC,VRFY. The standard notion of security is universal unforgeability, which is a canonical game with
algorithms (Setup, Learn,ChGen,Match) as follows.

On input a security parameter λ, algorithm Setup runs the key-generation algorithm Gen on 1λ, outputting
spar = K and ppar = ε, i.e. the public parameters are the empty string ε. The algorithm Learn takes
input of two forms. On input queries Q = (MAC,m) for message m, the learning algorithm runs φ ←
MACK(m) and outputs transcripts of the form τ = (MAC,m, φ). On input queries Q = (VRFY,m, φ), the
learning algorithm runs b ← VRFYK(m,φ) and outputs transcripts of the form τ = (VRFY,m, φ, b). For
administrative purposes, this algorithm keeps a database recording all query-transcript pairs (Qi, τi) for all
i = 1, . . . , Q = Q′+Q′′. The challenge phase is empty, i.e. on any input Q∗, the algorithm ChGen outputs
Υ∗ = ε. On input a guess Γ∗ = (m∗, φ∗) for message m∗ and tag φ∗, the algorithm Match outputs d = 1 iff
(1) VRFYK(m∗, φ∗) = 1 and (2) there exists no entry j ∈ {1, . . . , Q} in the database of the learning oracle
such that Qj = (MAC,m∗). For the security of this game, note that the hardness of the game is δ = 0.

Indistinguishability from random. Let Π(P) = (Setup = Gen,PRF) be a Pseudo-Random Function (PRF)
with key space K, domain X and range Y. The set of players P consists of a single party (namely
the user of the PRF). The security definition is based on indistinguishability between PRFK(·) (for a
randomly chosen K ← K) and a truly random function π(·) (chosen at random from all possible functions
with domain X and range Y). The security of the PRF, i.e. pseudorandomness, is a canonical game
(Setup, Learn,ChGen,Match) defined as follows.

On input a security parameter λ, algorithm Setup runs the key-generation algorithm Gen on 1λ, outputting
a randomly chosen spar = K ∈ K and ppar = ε. A random bit b is drawn and kept secret by the challenger.
The algorithm Learn, on input of the formQ = (PRF, x), returns⊥ if Υ∗ is undefined. Else, if Υ∗ has already
been output (see below), if the challenger’s private bit is b = 1, algorithm Learn outputs y = PRFK(x), or
else if b = 0, it outputs a truly random value y = π(x). The transcript output by Learn is τ = (PRF, x, y).
The challenge phase is empty, i.e. on any input Q∗, the algorithm ChGen outputs Υ∗ = ε. On input a guess
Γ∗ ∈ {0, 1} and the empty challenge ε, the algorithm Match outputs d = 1 iff Γ∗ = b. For the security of
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this game, note that the hardness of the game is δ = 1/2.7

Authentication. We recall here the indistinguishability-based privacy experiment for RFID authentication, es-
sentially the model in [26]. The primitive is defined as Π(P) = (Setup,ORFID = {InitR,SendT , SendR,Corrupt})
for a set of players P consisting of tags T1, . . . , Tn and a single reader R. The integer number of tags n is
a parameter of Setup. Informally security is defined as the adversary’s inability to tell two tags Ti and Tj
apart, i.e. the security game is canonical with algorithms (Setup, Learn,ChGen,Match) as follows.

On input a security parameter λ and an integer n, algorithm Setup runs the tag- and reader-initialisation
algorithms Setup and InitR, such that to each tag there corresponds an (initial) key K0

Ti and some initial
state Σ0

Ti . The public output of this algorithm is a set of public parameters ppar , which contain information
such as the public IDs of tags, the reader’s public identifier, etc. The algorithm Learn runs on inputs of four
types. On input Q = InitR, the learning algorithm initialises a new reader, and outputs the empty string in
a partial transcript of the form τ = (InitR, ε). On input Q = (SendT , j,m), if tag Tj is already associated
with a partial transcript τ j , the learning algorithm forwards the message m to this tag and collects its
response r, appending the following entry to the partial transcript: (SendT , j,m, r); if no partial transcript
is associated with the tag, a new transcript is initiated with this entry. Then the learning algorithm outputs
the updated transcript τ j ← τ j ||(SendT , j,m, r). Similarly, queries of the form Q = (SendR, j,m) will
yield updated partial transcripts of the form τ j ← τ j ||(SendR, j,m, r) (the index j specifies that the
message will be sent to the reader in the session between it and tag Tj). Finally, on input Q = (Corrupt, j),
the learning algorithm updates the partial transcript of the current session associated with tag Tj with
the entry (Corrupt, j,K∗Tj ,Σ

∗
Tj ), i.e. the current key and state information of this tag. The updated partial

transcript τ j ← τ j ||(Corrupt, j,K∗Tj ,Σ
∗
Tj ) is output by Learn. For administration purposes, each query to

the learning oracle is indexed in a database D in the form (Qi, τ i) for all queries i = 1, . . . , Q = Q′ +Q′′.
On input two tags Ti and Tj , the algorithm ChGen picks a bit b and starts a new partial transcript (and
corresponding session) τ b for tag Ti if b = 0 and for tag Tj if b = 1. By abusing notation we will refer to
Tb as taking the values Ti or Tj , depending on the value of b. The initial partial transcript Υ∗ = τ b is then
output. On input a guess Γ∗ ∈ {0, 1}, the algorithm Match outputs d = 1 iff (1) Γ∗ = b, (2) there is no
query of the form (Corrupt, b, ∗, ∗) in D, and (3) there are no queries of the form (ORFID, i, ∗) or (ORFID, j, ∗)
in D. Else, the algorithm Match outputs d = 0.

C Proof of Theorems 3.1 – 3.3

C.1 Security in the presence of Traffic Analysis

In indTA an adversary Abig may query a traffic analysis oracle Θ which leaks information related to the imple-
mentation of a primitive. The aim of Abig is to distinguish between two instantiations of the security game, thus
a single bit of information suffices to win against indTA. If we now allow local adversaries Asmall in Game access
to Θ, we have security in the presence of traffic analysis, where Asmall ’s goal is to break the underlying canonical
security game Game. If the traffic analysis oracle is restricted, we speak of security in the presence of restricted
TA (secRestTA); else, for unrestricted Θ we have security for unrestricted TA (secTA). The formal treatment
of secRestTA is as follows. For a primitive Π(P) and player set P, let Game be its canonical security game. We
give adversary Asmall against secRestTA access to the oracle Θrest (for secTA we consider an unrestricted oracle
Θ). The security experiment is outlined below. Let Π(P) = (Setup,F) be a primitive, with canonical-form
security game Game = (Setup, Learn,ChGen,Match). Consider the following experiment:

Experiment ExpsecRestTA
Π(P),Θrest

(Asmall , λ):

7Let us stress that the standard definition for PRFs requires to compare the output of the distinguisher, rather than guessing the
bit b. Nevertheless, it is immediate to see that the two definitions are equivalent.
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1. (ppar , spar)← Setup(1λ). Adversary Asmall is given ppar .

2. Q∗ ← ALearn(·)Q′ ,Θrest (·)Q
′
TA

small (ppar).
3. Υ∗ ← ChGen(Q∗).

4. Γ∗ ← ALearn(·)Q′′ ,Θrest (·)Q
′′
TA

small (ppar ,Υ∗).
5. The experiment outputs d← Match(Υ∗,Γ∗).

Let Q = Q′+Q′′ denote the number of queries to Learn in both the learning and the guessing phases;
similarly, QTA = Q′TA + Q′′TA is the number of queries to the Θrest oracle. The advantage of the
adversary in this game is defined as:

AdvsecRestTA
Π(P) (Asmall ,Θrest) =

∣∣∣Prob
[
ExpsecRestTA

Π(P),Θrest
(Asmall , λ) = 1

]
− δ
∣∣∣ .

Definition C.1 (secRestTA security) The primitive Π(P) is (t, Q,QTA, ε)-secure against secRestTA attacks
for restricted Θrest and (canonical) game Game if for every PPT adversary Asmall running in time at most t,
and making at most Q, resp. QTA queries, we have:

AdvsecRestTA
Π(P) (Asmall ,Θrest) ≤ ε.

Analogously, we define secTA for unrestricted Θ by replacing Θrest in the definition above by Θ.

C.2 Receiver and Sender Indistinguishability

Lemma C.1 (Unrestricted indSenderTA ⇒ Restricted indSenderTA) If a primitive Π is (t, Q, ε)-secure
with respect to a canonical security game Game and if there exists an adversary Abig which (trest, Q,QTA, εrest)-
breaks the restricted indSenderTA security of Π for Θrest , then there exists an adversary Bbig which (tunr, Q,QTA, εunr)-
breaks the unrestricted indSenderTA security of Π for any unrestricted Θ oracle such that proj(Θ) = Θrest , where:

tunr ≈ trest and εunr ≥ εrest.

In other words, unrestricted sender indistinguishability in the presence of traffic analysis implies restricted sender
indistinguishability.

Proof. This proof is trivial and follows from the definition of the two experiments. �

Lemma C.2 (Unrestricted indSenderTA : Restricted indSenderTA) There exists a primitive Π, a restricted
Θrest oracle, and an unrestricted Θ oracle with proj(Θ) = Θrest such that the following holds: (1) Π is (t, Q, ε)-
secure with respect to a canonical security game Game (for negligible ε); (2) Π is (trest , Q,QTA, εrest)-secure
against restricted indSenderTA attacks using Θrest (for negligible εrest); (3) Π is insecure against unrestricted
indSenderTA attacks using Θ. In other words, restricted sender indistinguishability does not imply unrestricted
sender indistinguishability.

Proof. The intuition of the separation is to use the unrestricted Θ oracle to forward the adversary information
that allows it to break the security of the underlying game, thus winning with probability 1.

We consider as a counterexample an encryption scheme Π(A,B) = (Setup = Gen,Enc,Dec) with the canonical
IND-CCA2 game outlined in Appendix B. Assume that Π is (t, Q, ε)-secure with respect to this game. Let Θrest

be a restricted traffic analysis oracle such that Π is (trest , Q,QTA, εrest)-secure against restricted indSenderTA
attacks using Θrest (for negligible εrest).

Now consider the unrestricted oracle Θ such that Θ(Inst) = (Θrest(Inst), skUser) for Inst ∈ IUser, where we
write skUser for the secret key of user User. We build an adversary Abig against unrestricted indSenderTA as
follows: the game is first set up by the challenger and a user User is created. Then Abig starts (by using NewInst)
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two (same-user) instantiations Inst∗0 and Inst∗1 of User. Firstly, Abig queries Θ to learn skUser. It then picks
Q∗0 = (m0,m0) for Inst∗0 and Q∗1 = (m1,m1) 6= Q∗0 for Inst∗1 and forwards input Q∗big = (Inst∗0,Q∗0, Inst∗1,Q∗1).
The challenger runs ChGen in both instantiations and forwards to Abig the challenge Υ∗big = (Inst∗b ,Υ

∗
b), where

Υ∗b ← Encpk(mb). By using skUser, the adversary decrypts the challenge ciphertext and thus guesses bit b with
probability 1. �

Lemma C.3 (Unrestricted indSenderTA : indReceiverTA) There exists a primitive Π and an unrestricted
oracle Θ such that the following holds: (1) Π is (t, Q, ε)-secure with respect to a canonical security game Game (for
negligible ε); (2) Π is (tGlob , Q,QTA, εGlob)-secure against indReceiverTA attacks using Θ (for negligible εGlob);
(3) Π is insecure against unrestricted indSenderTA attacks using Θ. In other words, receiver indistinguishability
does not imply unrestricted sender indistinguishability.

Proof. The intuition for this counterexample is to consider a tailored TA oracle, which will only give the
adversary valuable information if the challenge instantiations are same-user instantiations of Game. In this way,
the adversary can only distinguish same-user instantiations. This is a rather artificial counterexample, but one
which nonetheless reflects the gap between the two notions.

We again take the example of IND-CCA2 secure encryption. Let Π(A,B) = (Gen,Enc,Dec) be an encryption
scheme that is (t, Q, ε)-secure against IND-CCA2. We introduce an unrestricted traffic analysis oracle Θ as
follows. Whenever this oracle is run before the challenge Υ∗big is generated, Θ simply outputs ⊥. The challenge
is generated on instantiations Inst∗0, Inst∗1; if they are mixed-user instantiations, the Θ oracle continues to output
the value ⊥ for any future query. If Inst∗0 and Inst∗1 are same-user instantiations, the Θ oracle will output,
when queried on input Inst∗b , the secret key skb. In other words, if the two instantiations forwarded by Abig are
same-instance, Abig learns the value of the secret key in the challenge instantiation.

Note that Π is (t, Q, ε)-secure against IND-CCA2 (since Θ cannot be used by adversaries Asmall against
Game). Furthermore, Abig against indReceiverTA learns no information from the traffic analysis oracle Θ
(as its challenge instantiations are mixed-user). Finally, we describe an adversary Abig against unrestricted
indSenderTA: this adversary generates same-user instantiations Inst∗0 and Inst∗1 and chooses m0

0 and m0
1 6= m0

0

as input for Inst∗0 and m1
0 6∈ {m0

0,m
1
0} and m1

1 6∈ {m0
1,m

1
0,m

0
0} (all four challenge messages are distinct) as

input for Inst∗1. The adversary Abig forwards this input to the challenger, who runs the challenge phases in both
instantiations, and outputs (Inst∗b ,Υ

∗
b) to Abig . The adversary Abig runs Θ on Inst∗b , thus learning the value of

skb, decrypting the challenge message, and distinguishing the challenge instantiation with probability 1.
�

Lemma C.4 (Unrestricted indSenderTA ; indReceiverTA) There exists a primitive Π and an unrestricted
Θ oracle such that the following holds: (1) Π is (t, Q, ε)-secure with respect to a canonical security game Game
(for negligible ε); (2) Π is (tLoc , Q,QTA, εLoc)-secure against unrestricted indSenderTA attacks using Θ (for
negligible εLoc); (3) Π is insecure against indReceiverTA attacks using Θ. In other words, unrestricted sender
indistinguishability does not imply receiver indistinguishability.

Proof. The intuition for this counterexample is to modify the primitive such that it reveals information specific
to users (but which remains the same for all instantiations of the same user). In this way, indSenderTA security
is preserved, but indReceiverTA can be broken.

Take again the example of an encryption scheme Π′(A,B) = (Gen′,Enc′,Dec′) which is (t, Q, ε)-secure against
IND-CCA2, and let Θ be any unrestricted TA oracle such that Π′(A,B) is (tLoc , Q,QTA, εLoc)-secure against
unrestricted indSenderTAattacks using Θ (for negligible εLoc).

We modify Π′(A,B) to Π(A,B) = (Setup = Gen,Enc,Dec) such that at each instantiation of this scheme, Gen
first picks a random session id sid , then runs Gen′, and finally outputs sk = sk′ and pk = (pk′, sid). The output
of Enc on message m is (Enc′pk′(m), sid). The decryption algorithm Dec discards sid and simply runs Dec′. Note
that Π is still (t, Q, ε)-secure against IND-CCA2 and (tLoc , Q,QTA, εLoc)-secure against unrestricted indSenderTA
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attacks using Θ, as sid gives no information about the ciphertext and since all same-user instantiations Inst∗0
and Inst∗1 have the same sid . However, an adversary Abig against indReceiverTA security will create users User0
and User1, and instantiations Inst∗0 of User0 and Inst∗1 of User1, receiving the public keys of both users (thus in
particular their session ids). Then Abig checks that sid0 6= sid1 (this will happen w.h.p., but if the two id’s
are equal, Abig will continue creating users until it finds two users with distinct sid values). In the challenge
phase, Abig picks a random message m, then forwards Q∗big = (Inst∗0,Q∗0 = (m,m), Inst∗1,Q∗1 = (m,m)) to the

challenger, who runs ChGenbig on this input and outputs Υ∗big = (Inst∗b ,Υ
∗
b), where Υ∗b = (Enc′pk′b

(m), sid b). Now

Abig guesses the bit b by comparing the value of sid b with sid0 and sid1 and wins with probability 1. �

C.3 Restricted and Unrestricted Security with Traffic Analysis

Lemma C.5 (secTA ⇒ secRestTA) If Π is (t, Q, ε)-secure with respect to a canonical security game Game and
if there exists an adversary Asmall which (trest , Q,QTA, εrest)-breaks the secRestTA security of Π for Θrest , then
there exists an adversary Bsmall which (tunr , Q,QTA, εunr )-breaks the secTA security of Π for any unrestricted Θ
oracle such that proj(Θ) = Θrest , where:

tunr ≈ trest and εunr ≥ εrest .

In other words, unrestricted security against traffic analysis implies restricted security against traffic analysis.

Proof. The proof for this statement is trivial by the definition of the security games, as in particular we can take
Θ = Θrest . �

Lemma C.6 (secTA : secRestTA) There exists a primitive Π, a restricted Θrest oracle, and an unrestricted
Θ oracle with proj(Θ) = Θrest such that the following holds: (1) Π is (t, Q, ε)-secure with respect to a canonical
security game Game(for negligible ε); (2) Π is (trest , Q,QTA, εrest)-secure against secRestTA attacks for Θrest (for
negligible εsmall); (3) Π is insecure against secTA attacks using Θ. In other words, restricted security against
traffic analysis does not imply unrestricted security against traffic analysis.

Proof. We can use the encryption counterexample for the proof of Lemma C.2 for this separation. Knowing
the secret key by means of the unrestricted Θ oracle now allows the adversary to break the security of the
IND-CCA2 game. �

C.4 Security and Indistinguishability with Traffic Analysis

Lemma C.7 (Restricted indSenderTA ⇒ secRestTA) If a primitive Π is (t, Q, ε)-secure with respect to a
canonical security game Game = (Setup, Learn,ChGen,Match) with hardness δ and if there exists an adversary
Asmall which (t, Q,QTA, εsmall )-breaks the secRestTA security of Π for a restricted Θrest , then there exists an
adversary Abig which (tbig , Q+ 2, QTA, εbig)-breaks the restricted indSenderTA security of Π for Θrest , where:

tbig ≈ t and εbig ≥ εsmall/2− ε/2.

In other words, restricted sender indistinguishability implies restricted security against traffic analysis.

Proof. We build adversary Abig as follows: (1) Firstly the challenger creates user User; (2) Then Abig creates
instantiations Inst∗0 and Inst∗1 (this accounts for the 2 additional queries made by Abig to the learning oracles); (3)
Abig runs Asmall on Inst∗0, answering all the TA queries that Asmall makes by using its own Θrest oracle on input
Inst∗0; (4) When Asmall returns an input Q∗0 for the challenge phase of Inst∗0, adversary Abig chooses (same-user)
instantiations Inst∗0 and Inst∗1 and forwards as input Q∗0 for the challenge in Inst∗0 and a random input Q∗1 for
Inst∗1; (6) The challenger enters the challenge phase, picks a bit b and outputs challenge Υ∗big = (Inst∗b ,Υ

∗
b), which

Abig forwards to Asmall in instantiation Inst∗0 and continues answering the TA queries by Θrest(Inst
∗
0); (7) Finally,
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Asmall outputs a guess Γ∗small , which it forwards to Abig , and Abig forwards it to the challenger in Inst∗b , receiving
a bit d (indicating if the game has been won or lost); (8) Abig outputs 1− d as its own guess.

Intuitively, the adversary Abig guesses in advance that the challenger will pick the bit b = 0 and runs Asmall

on this instantiation; if the game is won, Abig outputs 0 as its guess, whereas if the game is lost, Abig assumes
that it was the other instantiation and outputs a guess of 1. Note that the responses of Abig simulate Asmall ’s
TA queries perfectly if b = 0. For the analysis of the game note that we can express Abig ’s advantage as:

εbig = Prob[Abig wins]− 1/2.

Recall that Abig wins if 1− d = b. Hence we can write Abig ’s probability of winning as follows:

Prob[Abig wins] = Prob[ b = 0] · Prob[Asmall wins Inst∗0] + Prob[ b = 1] · Prob[Asmall loses Inst∗1] .

By assumption and by the fact that the underlying game Game has hardness δ, we have

Prob[Abig wins] ≥ 1
2 (εsmall + δ) + 1

2 (1− Prob[Asmall wins Inst∗1]) .

We now show that Prob[Asmall wins Inst∗1] ≤ δ + ε. Assume the contrary, i.e. Asmall wins with probability
greater than this value against random instantiation Inst∗1, for challenge Υ∗1 generated on random input Q∗1,
with all queries to Θrest being answered as in Inst∗0. In this case, we build an adversary Bsmall which breaks
the underlying security of the game with advantage greater than ε (which would contradict the hypothesis that
Π is ε-secure). Note that Bsmall essentially plays the same game as Asmall , but has no Θrest information. The
adversary Bsmall runs Asmall internally, but answers all its Θrest queries by random values of appropriate length,
and outputs Asmall ’s guess at the end. As a first game hop, we replace the parameters in Bsmall ’s game by the
parameters in Inst∗1. As instantiation Inst∗1 was generated at random, this does not decrease Bsmall ’s winning
probability. In the next game hop, we replace the challenge by Υ∗1, which again does not decrease Bsmall ’s
winning probability. Finally, we note that as no Θrest queries were made to Inst∗1, Bsmall ’s responses to Θrest do
not affect Asmall ’s probability to win Inst∗1. Thus Bsmall wins with advantage greater than ε (contradiction).

Thus we have shown that,
Prob[Asmall wins Inst∗1] ≤ δ + ε.

Plugging this value, we have:

Prob[Abig wins] ≥ 1
2(εsmall + δ) + 1

2 (1− (δ + ε)) = εsmall/2− ε/2 + 1/2,

and therefore we obtain the claimed bound.
�

Lemma C.8 (Restricted indSenderTA : secRestTA) There exists a primitive Π and a restricted Θrest oracle
such that the following holds:(1) Π is (t, Q, ε)-secure with respect to a canonical security game Game (for negligible
ε); (2) Π is (t, Q,QTA, εsmall )-secure against secRestTA attacks using Θrest (for negligible εsmall); (3) Π is insecure
against restricted indSenderTA attacks using Θrest . In other words, restricted security against traffic analysis
does not imply restricted sender indistinguishability.

Proof. We use as a counterexample the “Encode-then-Encrypt & MAC” paradigm exemplified by SSH-CTR
(cf. Section 4). The underlying game is IND-CCA security. Concretely let Π?(Ψ,ΠE ,ΠM ) be as in SSH-CTR.
Claim (1) in the lemma comes from the fact that Π? is IND-CCA secure, as proven in [4, Theorem 8.2].

We now formally define security in the presence of Traffic Analysis; let Θlength be the restricted TA oracle of
Section 4. Consider the following experiment:
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Experiment ExpCCARestTA
Π?,Θlength

(Asmall , λ)

1. K ← Gen?(1λ). Let O? = {Enc?K(·),Dec?K(·)}.
2. (m0,m1)← AΘlength (·),O?

small (1λ).
3. Υ∗ = c?b ← Enc?K(mb) for a random b← {0, 1}.
4. Γ∗ ← AΘlength (·),O?

small (1λ, c?b).
5. Output 1 iff: (i) Γ∗ = b; (ii) O? has not been queried on c?b ; and (iii) |Ψ(m0)| = |Ψ(m1)|.

Here, Q, resp. QTA denote the number of queries to O?, resp. Θlength .

In particular, Π? is (t, Q, ε)-secure against secRestTA for restricted Θlength if for every PPT adversary Asmall

running in time at most t and making at most Q, resp. QTA queries, we have

Prob
[
ExpCCARestTA

Π?,Θlength
(Asmall , λ) = 1

]
≤ 1

2
+ ε.

It follows from [35, Theorem 1], that Π? is secRestTA-secure as claimed in (2).
To prove (3) we will build an adversary Abig breaking restricted indSenderTA security of Π? (for Θlength)

in polynomial time and with probability 1. The intuition for Abig is simple: in order to distinguish between
two instantiations it suffices to choose the challenge messages in the two instantiations with different length.
Then the Θlength leakage applied to the challenge ciphertext will allow the adversary to distinguish the two
instantiations.

More formally Abig runs ExpindSenderTA
Π?,Θlength

(Abig , λ). Initially, user User ← NewUser(1λ,mpar) is created. The

adversary then creates two instantiations of User: Inst∗0 ← NewInst(User) and Inst∗1 ← NewInst(User). Now Abig

has to specify the inputs Q∗0, Q∗1 for the challenge phase of resp. Inst∗0 and Inst∗1. The attacker does this as follows:

Q∗0 = {m0
0,m

0
1} Q∗1 = {m1

0,m
1
1},

for any choice of m0
0, m0

1, m1
0, m1

1 in the message space, such that
∣∣m0

0

∣∣ =
∣∣m0

1

∣∣ = L0 and
∣∣m1

0

∣∣ =
∣∣m1

1

∣∣ = L1 6= L0.
(Note that due to the encoding restrictions, this ensures also that

∣∣Ψ(mb
0)
∣∣ =

∣∣Ψ(mb
1)
∣∣ for b ∈ {0, 1}.)

The external challenger runs ChGen for both Inst∗0 and Inst∗1 updating their state; then a random bit b← {0, 1}
is drawn and Υ∗big = (Inst∗b ,Υ

∗
b) is passed to Abig . (Recall that Υ∗b in Υ∗big consists of the challenge ciphertext for

Inst∗b , i.e. it is an encryption of a randomly chosen message in Q∗b .) Thus Abig can query the Θlength oracle with
input Inst∗b and Υ∗b , receiving ϑb = |mpad|b. Finally Abig outputs 1 iff L1 + |u1| = ϑb − 1, where |u1| is computed
as |u1| = B − (L1 + 5 mod B). (B is the input length of the underlying block-cipher ΠE .)

Clearly, Abig runs in polynomial time. Moreover by the definition of Ψ(·) and using the fact that L0 6= L1,
exactly one between L0 and L1 will satisfy the equation above. Hence Abig can guess the bit b with probability
1, finishing the proof. �

Lemma C.9 (Unrestricted indSenderTA ⇒ secTA) If a primitive Π is (t, Q, ε)-secure with respect to a canon-
ical security game Game and if there exists an adversary Asmall which (t, Q,QTA, εsmall )-breaks the secRestTA
security of Π for Θ, then there exists an adversary Abig which (tbig , Q + 2, QTA, εbig)-breaks the unrestricted
indSenderTA security of Π for the same Θ oracle, where:

tbig ≈ t and εbig ≥ εsmall/2− ε/2.

In other words, unrestricted sender indistinguishability implies unrestricted security against traffic analysis.

Proof. This proof is essentially the same as the proof of Lemma C.7, and we therefore do not repeat it here. �

Lemma C.10 (Unrestricted indSenderTA : secTA) There exists a primitive Π and an unrestricted Θ oracle
such that the following holds: (1) Π is (t, Q, ε)-secure with respect to a canonical security game Game (for
negligible ε); (2) Π is (t, Q,QTA, εsmall )-secure against secTA attacks using Θ (for negligible εsmall); (3) Π is
insecure against unrestricted indSenderTA attacks using Θ. In other words, unrestricted security against traffic
analysis does not imply unrestricted sender indistinguishability.
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Proof. The same proof holds here as for Lemma C.8, as any restricted Θrest oracle is also a particular case of
an unrestricted Θ oracle. �

Lemma C.11 (Restricted indSenderTA ; secTA) There exists a primitive Π, a restricted Θrest oracle, and
an unrestricted Θ oracle with proj(Θ) = Θrest such that the following holds: (1) Π is (t, Q, ε)-secure with re-
spect to a canonical security game Game (for negligible ε); (2) Π is (t, Q,QTA, εsmall )-secure against restricted
indSenderTA attacks using Θrest (for negligible εsmall); (3) Π is insecure against secTA attacks using Θ. In
other words, restricted sender indistinguishability does not imply unrestricted security against traffic analysis.

Proof. The counterexample for this separation is the same as the one used for Lemma C.2, where the unrestricted
Θ oracle also outputs the secret key sk. This breaks the security of the underlying game Game as well. �

Lemma C.12 (Restricted indSenderTA : secTA) There exists a primitive Π, a restricted Θrest oracle, and
an unrestricted Θ oracle with proj(Θ) = Θrest such that the following holds: (1) Π is (t, Q, ε)-secure with respect
to a canonical security game Game (for negligible ε); (2) Π is (t, Q,QTA, εsmall )-secure against secTA attacks
using Θ (for negligible εsmall); (3) Π is insecure against restricted secTA attacks using Θrest . In other words,
unrestricted security against traffic analysis does not imply restricted sender indistinguishability.

Proof. By taking Θ = Θrest , we reduce this proof to the proof of Lemma C.8. �

D Case Study II: RFID Authentication

A fast-developing technology used in manufacturing, logistics, transportation, and even personal identification
(such as passports or IDs) is Radio F requency IDentification (RFID). RFID systems consist of low-cost tags,
which authenticate to readers by using RF signals (thus requiring no line of sight). The main security interest
for RFID authentication is privacy, i.e. no adversary can trace an RFID tag back to its owner. Several privacy
models exist for RFID authentication. Amongst these, the indistinguishability based notion due to Juels and
Weiss [26] is presented (in canonical form) in Appendix B. In short, the adversary uses four oracles InitR,
SendT ,SendR, Corrupt, and its goal is to distinguish between two tags which have not been corrupted.

An enhanced RFID privacy model due to Vaudenay [43] allows arbitrary corruptions; one of their security
notions is so-called forward privacy, where past sessions of a tag are unlinkable after corruption. Vaudenay’s
model compares the adversary’s success to that of a blinded adversary, i.e. an adversary which cannot corrupt
tags. In this sense, this privacy model is simulation-based.

In practice, forward privacy requires updating keys (e.g. through a Pseudo-Random Function – PRF). We
outline the following forward private protocol from [43].8 The protocol works as shown in Figure 3, for two
PRFs PRF1 and PRF2.

R(K0
Ti , IDR) T (Kj

Ti , Ti)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pick NR ← {0, 1}∗
NR−−−−−−−−−−−−−−→y = PRF1(Kj

Ti , NR)
y←−−−−−−−−−−−−−− Run Kj+1

Ti ← PRF2(Kj
Ti)

Find j such that y = PRF1(PRFj2(K0
Ti), NR)

Else output 0

Figure 3: A forward-private protocol.

8This protocol actually achieves Vaudenay’s destructive privacy notion, which is stronger than the model due to Juels and Weiss.
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This protocol is not very efficient, as the reader must always search its entire database to find the correct
value of the key and of the index j. The latter search is due to the fact that the reader retains only the original
key for each tag, whereas the tag itself retains only the key’s current value. This prevents desynchronization
attacks, where an adversary tries to bring the reader and the tag out of sync with respect to the key. By doing
so, the adversary also trivially distinguishes between tags.

We briefly introduce some terminology for the assessment of RFID privacy and security. We speak of reader
impersonation when the adversary takes the part of a reader in its interaction with a tag, and tag impersonation
when the adversary plays the part of a reader. The adversary can also play a relaying adversary, forwarding
messages between the two parties: we say that the adversary then observes a legitimate protocol run.

Note that the run-time of the protocol in Figure 3 may leak information to an adversary regarding how many
times the tag updates its key. Indeed, if the integer j for which y verifies is found quickly, then the adversary
knows j is small. Let Θ be an unrestricted TA oracle, which, on input an instantiation of the privacy game of
Appendix B, returns a partial transcript ϑ of all the values j which the reader has successfully identified up
until the query is made.

We now show a simple attack to break the secTA of this primitive for oracle Θ. The adversary Asmall creates
only two tags T0 and T1 in the reader’s database. It then runs a reader-impersonation on T0 (i.e. the adversary
prompts the tag with a fresh random nonce making the tag respond and update its key). Then Asmall chooses
challenge tags T0 and T1 and forwards them to the challenger. Upon receiving the challenge tag Tb, the reader
runs an observation round on Tb and then runs Θ on this instantiation to receive the integer j ∈ {1, 2}, outputting
guess Γ∗ = 0 if j = 2 and Γ∗ = 1 otherwise (during the observation run, the challenge tag has updated its key).

For the analysis note that T0 runs key K1
T0 (because of the reader impersonation run) and T1 runs key K0

T1 ,
therefore the adversary guesses the correct tag and breaks the privacy of this primitive.

A näıve solution is to let the tag update a random number of times at every successful authentication.
However, this enables the adversary to mount a statistical attack, considering the expected values of the number
of updates. In order to render traffic analysis oracle useless, the reader should always search for an equal amount
of time in its database. At the same time, tags must use different keys, thus ensuring forward privacy. Thus, a
solution would be equipping each tag Ti with a number of distinct keys, or pseudonyms.9 In its basic-most form,
the solution has each tag equipped with a number k of keys, K1

Ti , . . . ,K
k
Ti , also stored by the reader. After each

authentication attempt, a key is discarded and the next key is used. We depict this in Figure 4.

R(K1
Ti , . . . ,K

k
Ti , IDR) S = {K1

Ti , . . . ,K
k
Ti} T (S, Ti)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pick NR ← {0, 1}∗
NR−−−−−−−−−−−−−−→Pick Kj

Ti at random from S.

y = PRF(Kj
Ti , NR)

y←−−−−−−−−−−−−−−S ← S \ {Kj
Ti}

Find j such that y = PRF(Kj
Ti , NR)

Else output 0.

Figure 4: Pseudonym-based forward-private protocol.

Clearly, this protocol is both private in the sense of the definition in Appendix B and secTA-secure for oracle
Θ. Indeed, we can prove the following:

Proposition D.1 (Privacy of the modified RFID protocol) If there exists an adversary Asmall that (tsmall ,
Q, εsmall )-breaks the privacy of the scheme in Figure 4, then there exists a (t, ε)-distinguisher Bsmall against PRF,

9This idea is extensively investigated in the literature, namely in [40]. Sadeghi et al. introduce the concept of an anonymizer – a
third party in an RFID system, which creates new pseudonyms for tags such that they can authenticate with a fresh key every time.
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with t ≈ tsmall and ε = εsmall . Furthermore, if there exists an adversary Asmall that (tsmall , Q,QTA, εsmall )-breaks
the secTA security of the scheme in Figure 4 for Θ as defined above, then there exists a (t, ε)-distinguisher Bsmall

against PRF, with t ≈ tsmall and ε = εsmall . Finally, if there exists an adversary Abig that (tbig , Q,QTA, εbig)-
breaks the unrestricted indSenderTA, resp. indReceiverTA security of the scheme in Figure 4 for Θ as defined
above, then there exists a (t, ε)-distinguisher Bsmall against PRF, with t ≈ tbig and ε = εbig .

Proof. We sketch the proof here. Note first that the proof for secTA follows from the proof for privacy,
as the oracle Θ yields no useful information (the key is no longer updated and Θ always returns 0). Also,
instantiations are as indistinguishable as the tags in a single instantiation, as the Θ oracle does not return any
further information on the instantiations.

Therefore we only have to prove the security of the scheme against the underlying privacy game. The main
steps of the proof go as follows: given an adversary Asmall against the RFID authentication scheme in Figure 4,
we build a distinguisher Bsmall against PRF. Adversary Bsmall receives outputs yi from a challenger G, such
that yi is either output by PRF or truly random. The distinguisher Bsmall returns random values to Asmall

in reader-adversary sessions (i.e. when prompted by Asmall to start a new communication round), and it also
returns random values for the corruption oracle. The response for SendT queries are outputs yi from G. This is
a perfect simulation for Asmall , which eventually returns two tags T0 and T1. The adversary picks a bit b and
returns responses yi for tag Tb and for tag T1−b. If the adversary correctly distinguishes between the tags, then
Bsmall guesses that the output comes from PRF. Indeed, the keys used by the PRF are indistinguishable, hence
this is a perfect simulation for Asmall . If Asmall wins with advantage εsmall , then Asmall wins with the same
probability. �
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