Efficient 2-Round General Perfectly Secure Message
Transmission: A Minor Correction to Yang and
Desmedt’s Protocol*

Qiushi Yang and Yvo Desmedt

Department of Computer Science, University College London, UK
{q.yang, y.desmedt}@cs.ucl.ac.uk

Abstract. At Asiacrypt '10, Yang and Desmedt proposed a number of perfectly secure
message transmission protocols in the general adversary model. However, there is a minor
flaw in the 2-round protocol in an undirected graph to transmit multiple messages. A
small correction solves the problem. Here we fix the protocol and prove its security.

1 Brief Introduction

The aim of perfectly secure message transmission (PSMT) is to transmit messages from a
sender S to a receiver R in a network graph with perfect privacy and perfect reliability. Suppose
a Byzantine adversary exists in the network, perfect privacy means that the adversary learns
no information about the message, and perfect reliability means that the receiver R can output
the messages correctly.

We consider the general adversary model, in which the adversary is characterized by an
adversary structure A [1]. Our protocol uses the following techniques: linear code, pseudo-basis
and pseudo-dimension and randomness extractor. Since the goal of this paper is to fix a small
part of Yang and Desmedt’s Asiacrypt paper, we refer to [2] for the other details, such as the
model, the settings, etc.

2 Old 2-Round Undirected Protocol

Here we copy the 2-round undirected protocol for multiple message transmission in an undi-
rected network graph [2, pp. 460].

2-round undirected protocol for ¢/ = wt(n — sz — 1) messages s, ..., s¢

Round 1 - R to S:

1. R chooses wtn random k-vectors ry,...,rya, € F* and for each 1 < i < wtn, S
encodes r; to get codeword ¢; = EC(r;) = (¢i1, ..., Cin)-

2. For each 1 <4 < n, R sends vectors T g..t4, Tip1.mtd, - - - Lig(wiA—1)wtA Via path w;.
R also sends codewords ¢y, ..., Cyua, via W with respect to .

Round 2 - S to R:

1. S receives wt* k-vectors r’

i+0-wtA> r;+1_th, e
n), and also receives wtAn h-vectors X1, ..., X4, from W. For each 1 < i < wtn, let
X = (Tit, -+, Tin)-

2. For each 1 < i < thn, S uses the pseudo-basis construction scheme to construct a
pseudo-basis B from X1, ..., X,4,. Let b be the pseudo-dimension of B, then b < wtA.

,r;+(th71)th on each path w; (1 <7 <

* This result was originally going to appear in the full version of [2]. However, as required by some
recent studies of this model, we show this correction on Cryptology ePrint Archive in advance.

3. For each 1 < i < wt“n, S encodes 1} to get codeword c; = EC(r}) = (c}y,...,c};). S
then constructs a set D; such that for each 1 < j < h, iff z;; # ¢j;, then (c};, j) € D;.

4. For each 1 < i < wt*n, S decodes r, = DC(r}). S then constructs a set T such that iff
|D;| < wtA, then 7} € T. S uses the randomness extractor to get (z1,...,2,) = RE(T),
and for each 1 <14 < /¢, S computes o; = s; + z;.

5. S broadcasts the pseudo-basis B and o1, ..., 0. For each 1 <i < wtn, if |D;| > wt,
then S broadcasts “ignore i”; else, then S broadcasts D;.

Recovery Phase

1. R finds the final error locator F' from B.

2. For each D; that R receives on W, R constructs an h-vector ¢ = (cfj,...,c}) such
that for each 1 < j < h, if (¢};,7) € D;, then ¢} = cj;; else, then ¢, = ¢;;. R then
decodes the information r;’ of ¢}’ such that for any j € F, ¢; is not used for decoding.
R puts r in a set T".

3. R uses the randomness extractor to get (21,...,2;) = RE(T"), and for each 1 < ¢ < ¢,
R computes s, = 0; — z]. End.

The original design of this protocol is to enable ¢}, = ¢j; for each j ¢ F (1 < j < h) in
the Recovery Phase. However, due to the existence of the invalid error vector [2], it is possible
that c;; # c;; for some j ¢ F and (cj;,7) ¢ D;. In this case ¢}; = ¢;; # c};. This may make the
decoding unreliable. A minor correction can solve this problem, thus we fix this protocol in the
next section.

3 Fixed 2-Round Undirected Protocol

Here we give a fixed PSMT protocol which guarantees that 77 = T, and hence the protocol is
perfectly reliable. The protocol is almost the same as the original one. The only modifications
are in Step 3 of Round 2 and Step 2 of the Recovery Phase. We emphasize the modifications
using bold font and footnotes.

Fixed 2-round undirected protocol for ¢ = wt*(n — sz* — 1) messages s1,...,s;

Round 1 - R to S:

1. R chooses wt*n random k-vectors ry,...,rya, € F¥ and for each 1 < i < wtn, S
encodes r; to get codeword ¢; = EC(r;) = (¢i1,- -, Cin)-

2. For each 1 <4 < n, R sends vectors T .4, Tit1.mtds - - - Lig(wiA—1)wtA Via path w;.
R also sends codewords cy, ..., Cyua, via W with respect to .

Round 2 - S to R:

1. S receives wt* k-vectors r’

/ ’) .
0wt Thg Loaptds -2 Thg (utA— 1ypp4 0D €ach path w (1<i<

n), and also receives wtAn h-vectors Xy, ..., Xypa, from W. For each 1 < i < wtn, let
X; = ({L‘il, . ,l'ih).
2. Foreach 1 < i < thn, S uses the pseudo-basis construction scheme to construct a
pseudo-basis B from X1, ..., Xy4,. Let b be the pseudo-dimension of B, then b < wtA.
3. For each 1 < i < wt“n, S encodes 1} to get codeword c; = EC(r}) = (c}y,...,c};). S
then constructs a set D; such that for each 1 < j < h, iff x;; # c;, then (c};,x:j,7) €
D;.!

4. For each 1 < i < wt?n, S decodes r} = DC(r}). S then constructs an ordered set

T such that iff |D;| < wt?, then 7/ € T. S uses the randomness extractor to get
(21,...,21) = RE(T), and for each 1 <14 < ¢, S computes o; = s; + 2;.

! The only difference is that each tuple (c§j7zij,j) € D; has 3 elements now. In the old protocol the
entry x;; was not involved. A careful re-reading shows that a pair, i.e., ((c¢i; — xi;),7), can also be
used, but here we use the 3-tuple for a simpler presentation.

5. S broadcasts the pseudo-basis B and o71,...,0,. For each 1 < i < wt?n, if |D;| > wtA,

then S broadcasts “ignore i”; else, then S broadcasts D;.
Recovery Phase

1. R finds the final error locator F' from B.

2. For each D; that R receives on W, R constructs an h-vector ¢ = (cfj,...,c}) such
that for each 1 < j < h, if (c};, 745, 7) € D;, then ciy = ciy— (i —ci;);? else ;= i3
R then decodes the information ;" of ¢;’ such that for any j € F, ¢; is not used for
decoding. R puts /' in a set T".

3. R uses the randomness extractor to get (21,...,2;) = RE(T"), and for each 1 < ¢ < ¢,
R computes s, = 0; — z]. End.

Theorem 1 The fized 2-round undirected protocol is a PSMT protocol for multiple messages.

Proof. Without loss of generality, we assume that the adversary corrupts the set of paths
{wi,...,w} € A;fe., t < sz,

First we prove that the protocol is perfectly private. In Round 1, the adversary can learn
wtAt random k-vectors:

/ / /
LirowtAr Tip1apeds -+ s Tig (A —1)wiA

for 1 < i < t. With the pseudo-basis B broadcast in Round 2, the adversary can learn (at most)
extra b codewords, and hence extra b random k-vectors. Now if a pair (cgj,a:ij,j) € D;, then
either r} or z;; is corrupted, or both are corrupted. Either way, the adversary knows c;j already
before the broadcast in Round 2. That is, the broadcast in Round 2 does not reveal any extra
information. Thus in total, the adversary can learn at most wt*t + b (< wt?(sz* +1)) random
k-vectors that R has chosen in Round 1. Since wtAn — (wtt + b) > wtA(n — sz — 1) = ¢,
there are at least ¢ k-vectors that remain secret. For any k-vector r; that remains secret, it
is straightforward that |D;| < wt*, and hence r, € T and 7/ is secret to the adversary. Thus
the adversary has no knowledge on at least ¢ elements in 7. We can then use the randomness
extractor to get £ perfectly private randomnesses. That is, there are enough number of secret
pads z1,...,z¢ to be used to encrypt the messages, thus the protocol is perfectly private.

Next we prove that the protocol is perfectly reliable. First, we show that for each D; that R
receives, R gets r// = r}. First, for each 1 <4 < wt*, we have x; = ¢; + e; where e; is an error
vector. From Theorem 2 of [2], we know that the information of ¢; can be decoded from x; if the
final error locator F' is given. Let e; = (e;1,...,€;), for each 1 < j < h, we have z;; = ¢;; + €.
Now in the Recovery Phase, if (cgj,:vij7j) € D;, then C;/J = cgj — (235 — i) = c;j — e;;; else
(which means z;; = c;j)7 c;’] =Cj =T;j—€ = c;j —e;;. Thus in either case, for each 1 < j < h,
we have c}; = c}; — e;;, and hence ¢}’ = c; — e;. Therefore, as we showed above, if the final error
locator F is given, then the information of ¢ can be decoded from c/. Thus R can get r} =
for each D; received, and simultaneously get (21,...,2;) = (21,...,2¢) to recover the messages
with perfect reliability. O

Since we only changed the number of elements from 2 to 3 in each vector of each D;, the
transmission complexity (TC) of the protocol remains O(hnf) as shown in [2].

References

1. M. Hirt and U. M. Maurer. Player simulation and general adversary structures in perfect multiparty
computation. J. Cryptology, 13(1):31-60, 2000.

2. Q. Yang and Y. Desmedt. General perfectly secure message transmission using linear codes. In
Proc. Asiacrypt ’10, volume 6477 of LNCS, pages 448-465, 2010.

? The only difference is that if (cj;, zij, j) € D;, then the fixed protocol computes cj; = c; — (z; — cij)
instead of ¢f; = ¢i;.

3 Note that ¢’ is not a codeword. Instead, it is a corrupted decoding-end-vector, but correct information
can be decoded from it.

