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Abstract. In this paper, statistical testing of N multinomial
probabilities is studied and a new box-test, called Quadratic
Box-Test, is introduced. The statistics of the new test has χ2

s
limit distribution as N and the number of trials n tend to
infinity, where s is a parameter. The well-known empty-box
test is a particular case for s = 1. The proposal is quite differ-
ent from Pearson’s goodness-of-fit test, which requires fixed
N while the number of trials is growing, and linear box-tests.
We prove that under some conditions on tested distribution
the new test’s power tends to 1. That defines a wide region
of non-uniform multinomial probabilities distinguishable
from the uniform. For moderate N an efficient algorithm to
compute the exact values of the first kind error probability
is devised.

Keywords: Statistical Testing, Chi-square Goodness-of-fit Test, Allo-
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1 IN T R O D U C T I O N

The security of most cryptographic systems depends upon a random se-
quence. For example, the secret key in block ciphers and stream ciphers,
the primes p, q in RSA encryption and digital signature schemes, the
nonce in most authentication protocols. As "a true random sequence"
is a theoretical abstraction, its producing is not possible. Therefore a
pseudorandom sequence, often generated by a deterministic algorithm, is
used in cryptography instead. Ideally, it should be indistinguishable
from a true random sequence within available computer power. Various
statistical tests can be applied to check this.

In this paper, a new statistical test, named Quadratic Box-Test, is pre-
sented. It can be used for randomness evaluation and distinguishing
attacks in cryptography. The main idea of our approach is to compare
the distribution of repeated patterns in the tested data with a true
random data. In Section 2, a theoretical background and related work
are presented. In Section 3 the new test is introduced and in Section 4,
which is the main part of our contribution, we will prove that its power
tends to 1 when N tends to infinity. The first kind error probability
of the test for low and moderate N is computed in Section 5, where a
relatively efficient algorithm is devised. In Section 6, an application to
functions with finite number of outputs is discussed. We will conclude
in Section 7.

2 TH E O R E T I C A L BA C K G R O U N D O F BO X -TE S T

The problem of computing the box-test is related to the classical shot
problem. Let n particles be allocated into N boxes, where the k-th box
appears with the probability ak and a = (a1, . . . , aN). Let µr(a) denote
the number of boxes with exactly r particles. In Theorem 2.1.1 of [6] it
was proved that in case a = h, where h = ( 1

N , . . . , 1
N ), we have:

Eµr(h) = Npr + O(1),

Cov(µr(h), µt(h)) = Nσrt + O(1),

where α = n
N , pr =

αr

r! e−α, and σrt are entries of the limit covariance
matrix B. They are defined by

σrr = pr (1− pr − pr
(α− r)2

α
), (1)

σrt = −pr pt (1 +
(α− r)(α− t)

α
).
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Generally, for the box probabilities a = (a1, . . . , aN) we have:

prk =
(αNak)

r

r!
e−αNak , pr(a) =

1
N

N

∑
k=1

prk,

σrr(a) =
1
N

N

∑
k=1

prk −
1
N

N

∑
k=1

p2
rk −

1
α

[
1
N

N

∑
k=1

prk(αNak − r)

]2

,(2)

σrt(a) = − 1
N

N

∑
k=1

prk ptk

− 1
α

[
1
N

N

∑
k=1

prk(αNak − r)

] [
1
N

N

∑
k=1

ptk(αNak − t)

]
.

where σrt(a) are entries of a matrix A. Theorem 3.1.5 in [6] states that
if N tends to infinity and Nak ≤ C for a constant C, and α0 ≤ α ≤ α1,
then

Eµr(a) = Npr(a) + O(1),

Cov(µr(a), µt(a)) = Nσrt(a) + O(1).

Additionally, according to the Theorem 3.5.2 in [6], under the same
conditions the multivariate random variable

ν(a) =
(

µr1(a)− Eµr1(a)√
N

, . . . ,
µrs(a)− Eµrs(a)√

N

)
asymptotically has multivariate normal distribution as N and n tend
to infinity. We assume those conditions fulfilled throughout this article.
The asymptotical normality of ν(a) may be used to check whether a
multinomial sample was produced with prescribed box probabilities
for large enough N. We are going to test the hypothesis a = h.

Any such test is naturally to call a box-test. For instance, a test based on
the distribution of µ0−Eµ0√

N
is called empty box-test and was introduced by

David in [3]. It may have some advantage over Pearson’s χ2 goodness-
of-fit test, which requires α = n

N → ∞ to approach limit distribution;
see [5, 8].

2 .1 L I N E A R BO X -TE S T

A linear box-test, which is a generalization of the empty-box test, was
studied in [6]. It is defined by the dot-product ν(a)c, where c is a
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constant vector of length s. Linear box-test statistic has asymptotically
normal distribution too. The random vector(

µr1(a)− Npr1(a)√
N

, . . . ,
µrs(a)− Nprs(a)√

N

)
has the same limit distribution as ν(a) and is denoted with the same
character in this section. Similarly, we put

η(a) =
(

µr1(a)− Npr1(h)√
N

, . . . ,
µrs(a)− Nprs(h)√

N

)
.

Let c = (c1, . . . , cs) be any real vector, whose entries do not depend
on N. The random variable νc asymptotically as N tends to infinity
has normal distribution with variance cBc and expectation 0, denoted
N(0,

√
cBc). Let 0 < ε < 1 be a required significance level. From

N(0,
√

cBc) distribution tables one finds Dε such that

Pr(|N(0,
√

cBc)| ≥ Dε) = ε.

An allocation of n particles into N boxes is observed and statistic
η(a)c is computed. If |η(a)c| ≤ Dε, then the hypothesis a = h is ac-
cepted and otherwise rejected.

Example I: We take the statistic η(a)c to depend only on µ0 and µ1
and put c = (1, 1). Let α = 1, then p0 = p1 = e−1. Therefore,

η(a)c =
µ0(a) + µ1(a)− 2Ne−1

√
N

and

B =
1
e2 ×

(
e− 2 −1
−1 e− 1

)
.

Then cBc = 2e−5
e2 . The distribution of νc = η(h)c becomes close to

N(0,
√

2e−5
e2 ) as N grows. We put, for instance, ε = 0.1 and find the

quantile Dε = 0.3998.
Let n = N = 20 and the observed sequences of outcomes(boxes) is

19, 18, 5, 6, 17, 20, 14, 17, 3, 16, 20, 6, 3, 15, 7, 8, 7, 12, 14, 5. (3)

One finds µ0 = 7 as boxes numbered 1, 2, 4, 9, 10, 11, 13 are absent,
and µ1 = 6 as boxes numbered 8, 12, 15, 16, 18, 19 appear just once,
and µ2 = 7 as boxes 3, 5, 6, 7, 14, 17, 20 appear twice. No box appears
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more than twice. So η(a)c = −0.3835 and as |η(a)c| ≤ 0.3998 the
hypothesis "multinomial distribution is uniform" is accepted with the
first kind error probability at most 10%(in fact, the real value of the
error probability is something different as N is fairly small here).

3 QU A D R AT I C BO X -TE S T

In this section, our statistical test, called Quadratic Box-Test, is defined. It
will be proved in Section 4 that under condition N

3
2 ∑N

k=1(ak− 1
N )2 → ∞

for non-uniform distribution a, the power of quadratic box-test tends
to 1 when the number of possible patterns, N, tends to infinity. That
defines a set of non-uniform distributions a distinguishable by this test
with probability tending to 1.

The test was found during a study on cryptographic hash-functions.
A good hash-function should have values indistinguishable from those
produced with multinomial uniform probabilities. Hash-function values
are naturally to consider as allocations into boxes labeled with its
different values. According to NIST requirements, the total number of
a hash function different values may be as big as 2512 [7]. Therefore, in
order to apply a box-test the values are split into N regions of equal
probability.

Suppose that an allocation of n particles into N boxes is observed
and only the values µr1 , . . . , µrs are computed. Let again

η(a) =
(

µr1(a)− Npr1(h)√
N

, . . . ,
µrs(a)− Nprs(h)√

N

)
,

where a is the tested box distribution. The statistic of quadratic box-test
is the quadratic form ηB−1η where B is the limit covariance matrix for
ν = ν(h) with entries σrt defined by (1).

Standard argument ([5], Section 15.10) shows that νB−1ν has asymp-
totically χ2

s -distribution as N tends to infinity. From χ2
s -distribution

tables one finds Cε such that Pr(χ2
s ≥ Cε) = ε, where ε is the signif-

icance level probability. If ηB−1η ≤ Cε, then the hypothesis a = h is
accepted, otherwise rejected. When s = 1 and r1 = 0 the quadratic test
is equivalent to the empty-box test.

For a = h we have ηB−1η = νB−1ν. By the limit Theorem, the test’s
first kind error probability Pr(νB−1ν ≥ Cε)→ ε as N → ∞. In Section
?? the exact values of Pr(νB−1ν ≥ Cε) for some µ = (µr1 , . . . , µrs),
s = 1, 2, 3, 4 and low N are presented. Numerical results demonstrate
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that the convergence rate depends on ri and may be slow. Therefore, a
test only based on the limit probability might not be reliable for such
N.

Example II: We want the statistic ηB−1η to depend only on µ0 and
µ1. Let α = 1 as Example I. One computes

B−1 =
e2

e2 − 3e + 1
×
(

e− 1 1
1 e− 2

)
and

η(a) =
(

µ0(a)− Ne−1
√

N
,

µ1(a)− Ne−1
√

N

)
.

Therefore,

ηB−1η =
e2N−1

(e2 − 3e + 1)

×
(

µ0 − Ne−1

µ1 − Ne−1

)t (e− 1 1
1 e− 2

)(
µ0 − Ne−1

µ1 − Ne−1

)
. (4)

As N grows, the distribution of ηB−1η becomes close to χ2
2 for a = h. We

put ε = 0.1 and find Cε = 4.6051. For the outcomes (3), where n = N,
µ0 = 7 and µ1 = 6, we compute ηB−1η = 3.9664 < Cε. Therefore the
hypothesis "multinomial distribution is uniform" is accepted with the
first kind error probability at most 10%. With the method described in
Section 5 we compute that the real error probability is about 8%.

4 PO W E R O F T H E QU A D R AT I C BO X -TE S T

In this section, we prove that our test is consistent when n and N tends
to infinity for some non-uniform a. The second kind error probability is
the probability to accept a = h, whereas this is wrong. It is defined by
β(a) = Pr(ηB−1η ≤ Cε). We will prove β(a) tends to zero for those a,
or, in other words, the test’s power Wn,N(a) tends to 1 if (n, N) −→ ∞,
as Wn,N(a) = 1− β(a).

When N tends to infinity, under the uniformity condition a = h, the
distribution of ηB−1η tends to the distribution of χ2

s and its expectation
tends to s, which is a constant. First, we prove that if the multinomial
distribution a satisfies some restrictions, and in particular it is not
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uniform, then the expectation of ηB−1η tends to infinity. Then we will
prove that Wn,N(a)→ 1 when (n, N)→ ∞. Let

δ =

(
Eµr1(a)− Eµr1(h)√

N
, . . . ,

Eµrs(a)− Eµrs(h)√
N

)
(5)

so that η(a) = ν(a) + δ.

Theorem 1. E(ηB−1η)→ ∞ if and only if |δ| → ∞.

Proof. We write η = ν + δ. Therefore,

E(ηB−1η) = E(νB−1ν) + 2E(δB−1ν) + δB−1δ,

where E(δB−1ν) = δB−1E(ν) = 0. Then νB−1ν ≥ 0 as B−1 is positive
definite. So if δB−1δ tends to infinity, then E(ηB−1η) tends to infinity.
The former is true if and only if |δ| → ∞.

We can write E(νB−1ν) ≤ c E(|ν|2), where c is a constant dependent
on B. The latter is bounded by the maximal of

E
(

µrk (a)− Eµrk (a)√
N

)2

=
Cov(µrk (a), µrk (a))

N
(6)

times a positive constant defined by B. With (2), the value (6) is bounded
in case Nak ≤ C and α0 ≤ α ≤ α1. So as N tends to infinity E(νB−1ν)
is bounded too. Therefore, E(ηB−1η) → ∞ if and only if δB−1δ → ∞.
That proves the Theorem.

We say Nak → 1 if for any τ > 0 there exists Nτ such that |Nak− 1| <
τ for all N > Nτ and k = 1, . . . , N.

Theorem 2. Assume Nak → 1 for each k as N tends to infinity. Then
|δ| = o(

√
N). If additionally (α− ri)

2 6= ri for some i, then |δ| → ∞ if and
only if N

3
2 ∑N

k=1(ak − 1
N )2 → ∞.

That defines the area of a, where Theorem 4 is valid. For instance,
ak =

1
N + γk

N5/4 , where γk tends to infinity such that γk = o(N1/4) .
We now study conditions for |δ| → ∞. Consider two events:∣∣∣∣Eµr(a)− Eµr(h)√

N

∣∣∣∣→ ∞, (7)

N
3
2

N

∑
k=1

b2
k → ∞, (8)
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where ak =
1
N + bk. Theorem 3 implies that if (α− ri)

2 6= ri for some i,
then |δ| → ∞ if and only if (8).

Theorem 3. Let Nak → 1 for each k as N tends to infinity.

1. (7) is o(
√

N),

2. If (7) is hold, then (8) is correct,

3. Assume (α− r)2 6= r, then (7) is hold if and only if (8) is hold.

Proof. Nak → 1 if and only if xk = Nbk → 0. We put f (x) = (1 +
x)re−αx and with (2) compute

Eµr(a)− Eµr(h)√
N

=
αre−α

r!
√

N

N

∑
k=1

( f (xk)− f (0) ) + O(
1√
N
)

=
αre−α

r!
√

N

N

∑
k=1

(
(r− α) xk + f ′′(θk xk)

x2
k

2

)

+O(
1√
N
)

=
αre−α

r!
√

N

N

∑
k=1

f ′′(θk xk)
x2

k
2

+ O(
1√
N
)

where 0 ≤ θk ≤ 1 and because ∑N
k=1 xk = 0. There exist two constants

c1 and c2 such that c1 ≤ f ′′(x) ≤ c2 for all small enough x. Therefore,

αre−αc1

2 r!

(
N

3
2

N

∑
k=1

b2
k

)
≤ Eµr(a)− Eµr(h)√

N
+ O(

1√
N
)

≤ αre−αc2

2 r!

(
N

3
2

N

∑
k=1

b2
k

)
(9)

That implies the first and second statements. We compute f ′′(0) =
(α− r)2 − r. If (α− r)2 6= r, then c1 and c2 may be taken both positive
or both negative. That implies the last statement.

Theorem 2 is a corollary of Theorem 3. Now, we want to proof that
the power of our test goes to 1 when (n, N) → ∞ and it is done in
Theorem 4.
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Theorem 4. Let |δ| → ∞ as N tends to infinity, then β(a) = O(|δ|−2)→ 0,
therefore Wn,N(a)→ 1.

Proof. First, we estimate the variance of ηB−1η and then prove the state-
ment with the Chebyshev inequality. We use the notation in Theorem 1,
where η(a) = ν(a) + δ, so

ηB−1η = νB−1ν + 2δB−1ν + δB−1δ.

Then Var(ηB−1η) = Var(U1 + U2), where U1 = νB−1ν and U2 =
2δB−1ν as δB−1δ is not a random variable. Therefore,

Var(ηB−1η) = Var(U1) + Var(U2) + 2Cov(U1, U2).

The variance of U1 = νB−1ν is bounded as the coordinates of ν(a) are
asymptotically normal with zero means and bounded covariance matrix
A defined by (2). The latter follows as Nak ≤ C. Then

Var(U2) = 4δB−1AB−1δ = O(|δ|2).

We also have

|Cov(U1, U2)| ≤
√

Var(U1)Var(U2) = O(|δ|).

All this implies Var(ηB−1η) = O(|δ|2). By the Chebyshev inequality,
we get

β(a) = Pr
(

ηB−1η ≤ Cε

)
≤ Pr

(
| ηB−1η − E(ηB−1η) | ≥ E(ηB−1η)− Cε

)
≤ Var(ηB−1η)

(E(ηB−1η)− Cε)2 = O
(

1
|δ|2

)
→ 0

as in Theorem’s condition E(ηB−1η) ≥ c |δ|2 for a positive constant c;
see the proof of Theorem 1. By assumption |δ| tends to infinity and Cε

is a constant. That proves the Theorem.
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5 F I R S T K I N D ER R O R PR O B A B I L I T Y F O R LO W N

In this section, the first error probability for low N is studied. For
enough large N, this type of error tends to ε which is the significance
level, but for low N it is different and calculated in this section. In case
of a = h for low and moderate N, the statistic Qs = ηB−1η = νB−1ν is
a function of µ = (µr1 , . . . , µrs).

The goal is to compute Pr(Qs ≥ Cε), where Cε is the χ2
s -quantile

of level ε. This is the first error probability of test. The probability
Pr(Q1(µ0) ≥ Cε) is computed with a simplified method, where the
values Pr(µ0 = k) are found by the recurrent relation (5) in Chapter 1
of [6]. As above we denote

ν =

(
µr1(h)− Npr1√

N
, . . . ,

µrs(h)− Nprs√
N

)
.

For C = Cε we are to compute the probability

Pr(Qs ≤ Cε) = Pr
(

νB−1ν ≤ C
)
= ∑

K
Pr(µ = K). (10)

Over all integer s-vectors K with zero or positive entries such that

(
K− Np√

N
)B−1(

K− Np√
N

) ≤ C,

where p = (pr1 , . . . , prs). Let µ(n, N) = (µr1(n, N), . . . , µrs(n, N)), then
by formula (35) in Chapter 2 of [6],

Pr[µ(n, N) = K] = Pr [µ(n− (k, r), N − k) = 0]×

× N[k] n[(k,r)]

∏s
i=1 ki!(ri!)ki

×
(1− k

N )n−(k,r)

N(k,r)
, (11)

where k = k1 + . . .+ ks, x[k] = x(x− 1) . . . (x− k+ 1) and (k, r) = k1r1 +
. . . + ksrs. The probability Pr[µ(n− (k, r), N− k) = 0] is computed with
the recurrent relation:

Pr[µ(n, N) = 0] = Pr[µ(n− t, N − 1) = 0]×

× Pr[µ(t, 1) = 0]×
n

∑
t=0

(
n
t

)
(N − 1)n−t

Nn , (12)

where the initial values are

Pr[µ(n, 1) = 0)] = 0, n ∈ {r1, . . . , rs},
Pr[µ(n, 1) = 0)] = 1, n /∈ {r1, . . . , rs}.
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Sometimes it is better to use a more general recurrence. Let 1 ≤ N1 < N,
then

Pr[µ(n, N) = 0] =
n

∑
t=0

(
n
t

)(
N1

N

)t (
1− N1

N

)n−t

× Pr[µ(t, N1) = 0]× Pr[µ(n− t, N − N1) = 0].

Cauchy-Schwarz inequality implies xB−1x ≥ b−1
jj |xj|2, where B = (bij).

From the inequality xB−1x ≤ C we get

|xj| ≤
√

Cbjj. (13)

Therefore the values ki used in computing by (10) are restricted by∣∣∣∣∣ k j − Nprj√
N

∣∣∣∣∣ ≤ √C bjj. (14)

and may be searched.
We however explain a better approach now. As B−1 is symmetric

positive definite, the decomposition B−1 = UUT is possible, where U is
an upper triangular square matrix. Algorithm 1 can be used to compute
U such that V = UUT .

Algorithm 1 Compute the upper triangular real matrix Us×s

Input: Real symmetric positive definite s× s matrix V

1. Compute

vij ← vij −
visvjs

vss
, and vis ←

vis√
vss

,

for i = 1, . . . , s and j = 1, . . . , s − 1. So that vsj = 0 for j =
1, . . . , s− 1.

2. First s− 1 rows and first s− 1 columns of V make a symmetric
positive definite matrix. Put s← s− 1 and apply step 1 to that
matrix.

3. Repeat steps above s times. Return V.
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Algorithm 1 is in fact reducing the quadratic form xVx. After B−1 was
decomposed, we get xB−1x = (xU)(xU)T . So the inequality xB−1x ≤ C
is equivalent to

(u11x1)
2 + (u12x1 + u22x2)

2 + . . . + (u1sx1 + . . . + ussxs)
2 ≤ C

and therefore to the inequality system

|x1| ≤
√

C
u11

, (15)

|x2 +
u12

u22
x1| ≤

√
C− (u11x1)2

u22
, (16)

...,

|xs +
u1s
uss

x1 + . . . +
u1s−1

uss
xs−1|

≤
√

C− (u11x1)2 − . . .− (u1s−1x1 + . . . + us−1s−1xs−1)2

uss
.

That gives a clue how to solve xB−1x ≤ C for xj =
kj−Nprj√

N
and integer

k j efficiently.
Algorithm 2 efficiently computes the first error probability for low

N. This algorithm is used to calculate the exact value of first error
probability in case of a = h for low and moderate N. Table 1 is calculated
for s = 3 and µ = (µ2, µ4, µ5). Tables 2-5 are calculated for s = 1, 2, 3, 4
and µ = (µ0, ..., µs−1) respectively. We take ε = 0.01 and 0.05. So that ε
is the limiting value for the probability as N grows to infinity. However
even for relatively large N this is not true.

Table 1: Pr(Q3(µ2, µ4, µ5) ≥ Cε)

ε, N 24 25 26 27 28 29

0.05 0.0449 0.0907 0.0376 0.0561 0.0510 0.0522
0.01 0.0412 0.0163 0.0181 0.0134 0.0142 0.0120
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Algorithm 2 Compute the first kind error probability for low N

Input: N, ε or significant level, s and (r1, r2, ..., rs).

1. Pre-compute probabilities Pr(µ(n2, N2) = 0) for all n2 ≤ n1
and N2 ≤ N1 with (12), which simplifies to

Pr(µ(n, N) = 0)

=
n−sN+s

∑
t=s

(
n
t

)
(N − 1)n−t

Nn Pr(µ(n− t, N − 1) = 0)

in case µ = (µ0, . . . , µs−1). The values n1, N1 are defined below.

2. To compute with (11), we have n− (k, r) ≤ n1 and N − k ≤ N1,
where we can put

n1 = bn−
s

∑
j=1

rj(Nprj −
√

C bjjN)c

and

N1 = bN −
s

∑
j=1

(Nprj −
√

C bjjN)c

as k j = Nprj + δj
√

N and |δj| ≤
√

C bjj by (14).

3. One runs over all K = (k1, . . . , ks) such that

(
K− Np√

N
)B−1(

K− Np√
N

) ≤ C. (17)

So k1 is taken such that x1 =
k1−Npr1√

N
satisfies (15), that is ki

belongs to some interval. Upon fixed k1, integer k2 is taken

such that x2 =
k2−Npr2√

N
satisfies (16), that is from some interval,

and so on. If the interval for k j is empty or exhausted, the
algorithm backtracks and takes another k j−1. Any K produced
is a solution to (17). The search space is further reduced with
the restrictions:

k =
s

∑
i=1

ki ≤ N,

(k, r) =
s

∑
i=1

kiri ≤ n.

In case µ = (µ0, . . . , µs−1) we have additional restriction n−
(k, r) ≥ s(N − k). Relevant probabilities Pr(µ(n, N) = K) are
computed by (11) with the pre-computed Pr(µ(n2, N2) = 0)
and summed to Pr

(
νB−1ν ≤ C

)
according to (10).



Igor Semaev and Mehdi M. Hassanzadeh 14

Table 2: Pr(Q1(µ0) ≥ Cε)

ε, N 24 25 26 27 28 29 210

0.05 0.0460 0.0505 0.0440 0.0496 0.0565 0.0472 0.0508
0.01 0.0044 0.0114 0.0155 0.0114 0.0093 0.0107 0.0106

Table 3: Pr(Q2(µ0, µ1) ≥ Cε)

ε, N 24 25 26 27 28 29 210

0.05 0.0354 0.0450 0.0503 0.0476 0.0493 0.0498 0.0499
0.01 0.0066 0.0069 0.0095 0.0093 0.0094 0.0101 0.0099

Table 4: Pr(Q3(µ0, µ1, µ2) ≥ Cε)

ε, N 24 25 26 27 28 29 210

0.05 0.0306 0.0373 0.0468 0.0491 0.0489 0.0490 0.0494
0.01 0.0099 0.0138 0.0121 0.0111 0.0106 0.0102 0.0101

Table 5: Pr(Q4(µ0, µ1, µ2, µ3) ≥ Cε)

ε, N 24 25 26 27 28 29 210

0.05 0.0564 0.0403 0.0621 0.0579 0.0527 0.0515 0.0507
0.01 0.0200 0.0229 0.0178 0.0171 0.0153 0.0134 0.0120

6 STAT I S T I C A L AN A LY S I S

Let F be a function with N values. For instance, F may be produced
from a hash function H, where the output was restricted to log2 N
bits. Let x1, . . . , xn be the sequence of inputs and y1, . . . , yn be the
sequence of related outputs: yi = F(xi). The function is considered
good if for any x1, . . . , xn without repetitions the sequence y1, . . . , yn is
indistinguishable from a multinomial uniform distribution sample. Let
a statistical test with significance level ε be used. For instance, quadratic
box-test with ε = 0.05. In fact one should use exact probabilities from
Section 5. Assume m experiments, where the output were yi1, . . . , yin,
i = 1, .., m and they are produced for different input strings xi1, . . . , xin.
That is a binomial scheme, where a success is the uniformity hypothesis
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rejection for one output string yi1, . . . , yin. The success probability is ε.
One counts the number Sm of strings , where the uniformity hypothesis
was rejected. Let q = Sm

m . Under uniformity condition, Pr( Sm
m = q) ≤

e−2(q−ε)2m by Chernoff’s inequality. Therefore, one says: The uniformity
hypothesis was rejected with error probability at most e−2(q−ε)2m.

Example. Let ε = 0.05 and q = 0.07, and m = 100000. Then F is
rejected with error probability at most 1.81× 10−35.

Remark that one can also use the exact value

Pr(Sm = qm) =

(
m
qm

)
εqm(1− ε)m−qm.

7 CO N C L U S I O N

In this paper, we propose a new statistical test, called Quadratic Box-
Test, of N multinomial probabilities a. For some non-uniform a the
power of the test tends to 1 when the number of trials n and N tend to
infinity. In other words, our test is consistent for large N and those a.
Also we present an efficient algorithm to compute the exact first error
probability and calculate it for low and moderate N. Finally, testing
discrete functions is discussed.
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