An extended abstract of this paper is accepted at the 38th International Colloquium on Automata,
Languages and Programming — ICALP 2011. This is the full version.

Tamper-Proof Circuits:
How to Trade Leakage for Tamper-Resilience

Sebastian Faust!, Krzysztof Pietrzak? and Daniele Venturi®

June 14, 2011

Abstract

Tampering attacks are cryptanalytic attacks on the implementation of cryptographic algo-
rithms (e.g. smart cards), where an adversary introduces faults with the hope that the tampered
device will reveal secret information. Inspired by the work of Ishai et al. [Eurocrypt’06], we pro-
pose a compiler that transforms any circuit into a new circuit with the same functionality, but
which is resilient against a well-defined and powerful tampering adversary. More concretely,
our transformed circuits remain secure even if the adversary can adaptively tamper with every
wire in the circuit as long as the tampering fails with some probability § > 0. This additional
requirement is motivated by practical tampering attacks, where it is often difficult to guarantee
the success of a specific attack.

Formally, we show that a g-query tampering attack against the transformed circuit can
be “simulated” with only black-box access to the original circuit and log(q) bits of additional
auxiliary information. Thus, if the implemented cryptographic scheme is secure against log(q)
bits of leakage, then our implementation is tamper-proof in the above sense. Surprisingly,
allowing for this small amount of information leakage — and not insisting on perfect simulability
like in the work of Ishai et al. — allows for much more efficient compilers, which moreover do
not require randomness during evaluation.

Similar to earlier work our compiler requires small, stateless and computation-independent
tamper-proof gadgets. Thus, our result can be interpreted as reducing the problem of shielding
arbitrary complex computation to protecting simple components.

'K.U. Leuven ESAT-COSIC/IBBT and Aarhus University.
2CWI Amsterdam.
3SAPIENZA University of Rome.

1 Introduction

Modern security definitions usually consider some kind of game between an adversary and the
cryptosystem under attack, where the adversary interacts with the system and finally must break
it. A distinctive feature of such notions is that the adversary has only black-box access to the
cryptosystem. Unfortunately, in the last decade it became evident that such black-box notions
do not capture adversaries that attack the physical implementation of a cryptosystem. Recently,
significant progress has been made to close this gap [24, [10, 28] 2, 12), 19 26, B1, 9]. With few
exceptions most of this research is concerned with “side-channel attacks”. These are attacks where
the adversary measures information that is leaked from the cryptodevice during computation.

In this work we explore active physical attacks which so far got much less attention from the
theory community. We study the security of cryptographic implementations when the adversary
can not only measure, but actively tamper with the computation of the physical device, e.g. by
introducing faults. Such attacks, often called fault analysis or tampering attacks, are a serious threat
to the security of real-world implementations and often allow to completely break otherwise provably
secure schemes. In this work we investigate the general question whether any cryptographic scheme
can be implemented efficiently such that it resists a very powerful adversary tampering with the
whole computation and the memory.

Many techniques to induce faults into the computation of a cryptodevice have been proposed.
Important examples include heating up the device, expose it to infrared radiation or alter the inter-
nal power supply or clock [3, 8, [30]. One might think that an adversary that obtains the result of
faulty computation will not be very useful. In a seminal paper Boneh et al. [§] show that already a
single fault may allow to completely break an RSA based digital signature scheme. Different meth-
ods to counter such attacks have been proposed. Most such countermeasures have in common that
they protect against specific adversarial strategies and come without a rigorous security analysis.
This is different from the provable security approach followed by modern cryptography, where one
first defines a precise adversarial model and then proves that no (resource-bounded) attacker exists
who breaks the scheme.

An influential work on provable security against tampering attacks is the work on private circuits
of Ishai et al. [19, I8]. Informally, such “private circuits” carry out a specific cryptographic task
(e.g., signing), while protecting the internal secret state against a well-defined class of tampering
attacks. The authors construct a general circuit compiler that transforms any Boolean circuit C
into a functionally equivalent “private circuit” C. It is shown that an adversary who can tampe
with at most ¢ wires in-between any two invocations of C , cannot learn anything more about the
secret state than an adversary having just black-box access to C. Security is proven by a simulation
argument: for any adversary A that can mount a tampering attack on the circuit, there exists an
(efficient) simulator S having only black-box access to the circuit, such that the output distribution
of A and S are statistically close.

To achieve this goal their transformation uses techniques from multi-party computation and
combines randomized computation with redundant encodings to detect faulty computation. If
tampering is detected a self-destruction mechanism is triggered that overwrites the complete state,
so that, from there on, regular and tampering queries to the circuit can be trivially simulated.
One difficulty that needs to be addressed is that this self-destruction mechanism itself is exposed

!Tampering with a wire means permanently set its value to the constant 1 or 0 or toggle the wire, which means
that whatever value is put on the wire gets inverted.

to tampering attacks. In particular, an adversary could just try to cancel any trigger for self-
destruction and from then on apply arbitrary attacks without being in danger of detection. Ishai
et al. face this problem by spreading and propagating errors that appear during the computation.

As discussed later we will use similar techniques in our work. We discuss some further related work
in the Appendix [A]

1.1 Our Contribution

The “holy grail” in this line of research is to find an efficient general circuit compiler that provably
resists arbitrary tampering attacks to an wunlimited number of wires. This goal might be too
ambitious since an adversary might just “reprogram” the circuit such that it outputs its complete
secret state. Hence, to have any hope to formally analyze the security against tampering attacks
we will need to limit the power of the adversary. As just discussed, Ishai et al. limit the adversary
to tamper with at most ¢ wires in each round. Their construction blows up the circuit size quite
significantly and makes extensive use of randomness: for a statistical security parameter k, the size
of the transformed circuit is by a factor of O(k3t) larger and requires O(k?) bits of randomness in
each invocation.

“Noisy” tampering. In this work we consider a somewhat different (and incomparable) adver-
sarial model, where the adversary can tamper with every wire (not just some small number ¢) in the
circuit, but tampering with every wire will fail (independently) with some probability § > OE| This
model is partially motivated by existing attacks [27) [7, [§]. Concrete examples of attacks covered
by our model are e.g. optical attacks and Eddy currents attacks (cf. [27] for details).

Leakage. Another crucial difference between our work and [I8] is that we use a relaxed security
definition which allows the tampering adversary to learn a logarithmic amount of information about
the secret state (in total, not per invocation). This relaxation buys us a lot in terms of efficiency
and simplicity. In particular, for security parameter k we achieve statistical security by blowing
up the circuit size by only O(k) and requiring no randomness during run-time (and only 2k bits
during production).

If ¢ is the number of queries and n the size of the output of the original circuit, the amount
of leakage is log(q - n) bits. Intuitively, the only advantage an adversary gets by being able to
tamper the transformed circuit is to “destroy” its internal state, but the point in the computation
where the destruction happens can depend on the secret state. The information leaked by allowing
tampering is this point of failure.

If we apply our transformation to a particular cryptosystem in order to get a tamper-resilient
version C of it, it is crucial that the scheme C' remains secure even given A. Some primitives
like public-key encryption [I] or digital signatures [14, [12] are always secure against a logarithmic
amount of arbitrary leakage, but a logarithmic amount of leakage can decrease the security of the
PKE or signature scheme by a polynomial factor. Recently signature schemes [22] 2] and public-key
encryption schemes [I], 26] have been constructed where the security does not degrade at all, even
if the amount of leakage is quite substantial. Using such schemes we can avoid the loss in security
due to the leakage.

2The adversary can tamper the same wire several times, but only once in-between every two invocations. As
tampering is persistent, after a sufficiently large number of attempts the tampering will succeed almost certainly, i.e.
with probability 1 — ' after ! rounds.

Overview of the construction. Starting with any Boolean (probabilistic) circuit C' our trans-
formation ® outputs a transformed circuit C that consists of k subcircuits (which we will call the
core). Each subcircuit is made out of special constant size tamper-proof masked “Manchester gad-
gets”. Instead of doing simple Boolean operations, these gadgets compute with encodings, so called
masked Manchester encodings (which encode a single bit into 4 bits). If the inputs are not valid
encodings, this gadgets output the invalid state 0000. Since each of the k subcircuits is made solely
out of such special gadgets, errors introduced by a tampering attack will propagate to the output
of the core and are input to a self-destruction phase (essentially identical to the one introduced
by [18]). In contrast to the core of the circuit which is built with gadgets of constant size, the
self-destruction phase (in the following also called cascade phase) will require (simple, stateless and
deterministic) tamper-proof gadgets of linear (in k) size. Ishai et al. require tamper-proof gadgets
of linear (in kt) size in the entire circuit, albeit simpler ones than we doE] Unlike [18], we do not
require so called “reversible” NOT gates. Such gadgets propagate a fault on the output side to
their input side and are highly non-standard.

It is not difficult to see that the transformation as outlined above is not secure in the setting
of Ishai et al. (i.e. when § = 0 and the adversary can tamper with up to ¢ wires in each round).
Nevertheless, we show in Appendix [B] how to adjust our compiler to achieve similar efficiency
improvement when § = 0 and some small amount of leakage is allowed.

On tamper-proof gadgets. Assuming simple components that withstand active physical attacks
has been frequently made in the literature [I8, [14] (and several others in the context of leakage [13,
211, [16]). Of course, the simpler the components are, the stronger the result is that one gets.

1. The components we use are fixed, standard and universal elements that can be added to once
standard cell library. This is far better than designing over and over task specific tamper-proof
components.

2. Our gadgets are simple, stateless and deterministic. In particular, the gadgets used in the
core of the circuit have a small constant size.

3. Our transformation for the core is independent of the cascade phase, which uses linear size
gadgets. Thus one can implement a universal “tamper-proof cascade phase”, and only has to
compile and implement the core.

Outline of the security proof. We construct an efficient simulator S that — having only black-
box access to the circuit C' — can simulate access to the transformed circuit C including adversarial
tampering queries. The main challenge here is consistency, that is, answers computed by S must
have the same distribution as an adversary would see when tampering with C.

If an adversary tampers with C , a subsequent invocation of C can have one of three different
outcomes:

1. Nothing happens: the invocation goes through as if no tampering did happen (this is e.g. the
case if a wire is set to 0, but its value during the invocation is 0 anyway).

2. Self-destruct: the redundancy added to C “detects” tampering, and the entire state is deleted.

3More precisely, they require tamper-proof AND gadgets that take 4kt bits as input.

3. Successful Tampering: the outcome of C changes as a consequence of the tampering, and this
tampering was not detected.

In a first step, we show that case 3 will not happen but with exponentially small probability. To
show this, we use the fact that tampering with any particular wire fails with probability J, and
moreover that every bit carried by a wire in C' is encoded in C with a highly redundant and
randomized encoding. This guarantees that the chance of an adversary to change a valid encoding
of a bit to its complement is tiny: either she has to be lucky — in the sense that she tampers
with many wires at once and all attacks succeed — or she has to guess the randomness used in the
encoding.

As we ruled out case 3., we must only build a simulator S that simulates C as if no tampering
has happened (i.e. case 1.). This is easy as S has access to C' which is functionally equivalent.
Moreover, at some point S has to simulate a self-destruct (i.e. case 2.). Unfortunately there is no
way for S to know when the self-destruct happens (as the probability of this event can be correlated
with the secret state). As explained before, we provide the exact point of failure as auxiliary input
to S.

The simulator has to continue simulation even after the self-destruct. This seems easy, as now
all the secret state has been deleted. There is one important technicality though. As tampering
is permanent, even after self-destruct the simulator S must simulate a circuit in a way that is
consistent with the simulation so far. A priori the simulator only knows which wires the adversary
tried to tamper, but recall that each tampering is only successful with probability 1 — §. For
this reason, we let the simulator choose all the randomness used, including the randomness of
the compiler (which generates C' from C') and the randomness that determines the success of the
tampering attacks. Knowledge of this randomness, allows the simulator to continue simulation
after self-destruct.

Note that the above-mentioned auxiliary information (i.e., the point at which self-destruct is
triggered) can be computed as a function of this randomness, and the randomness used by the
adversary.

2 Definitions

Notation. If D is a distribution over a set D, then x « D means a random variable x is drawn
from D (if D is a set with no distribution specified, then 2 < D denotes a random variable with
uniform distribution over D). If D is an algorithm, then y <+ D(z) means that y is the output of
D on input z; in particular when D is probabilistic, y is a random variable. Two distributions D
and D’ are e-close, written D ~v, D', if their statistical distance 3 >° 5, |D(z) — D’(z)| is less than
or equal to e.

We write A®") to denote an algorithm A with oracle access to O(-).

Given two codewords z,y € {0,1}" their Hamming distance, 0 < dg(z,y) < n, is the number
of positions in which = and y differ.

2.1 Owur Model

Our physical model of computation is very similar to [I§]. We consider (probabilistic) stateful
Boolean circuits C and present circuit compilers ® that transform any such circuit into a new
circuit C resistant against a well-defined class of tampering attacks. Details follow below.

Circuits. A Boolean circuit C' is a directed acyclic graph whose vertices are standard Boolean
gates and whose edges are the wires. The depth of C, denoted depth(C), is the longest path from
an input to an output. A circuit is clocked if it evolves in clock cycles (or rounds). The input and
output values of the circuit C' in clock cycle i are denoted by X; and Y;, respectively. A circuit
is probabilistic if it uses internal randomness as part of its logic. We call such probabilistic logic
randomness gates and denote them with $. In each clock cycle $ outputs a fresh random bit.

Additionally, a circuit may contain memory gates. Memory gates, which have a single incoming
edge and any number of outgoing edges, maintain state: at any clock cycle, a memory gate sends
its current state down its outgoing edges and updates it according to the value of its incoming edge.
Any cycle in the circuit graph must contain at least one memory gate. The state of all memory
gates at clock cycle ¢ is denoted by M;, with My denoting the initial state. When a circuit is run
in state M;_1 on input Xj;, the circuit will output Y; and the memory gates will be in a new state
M;. We will denote this by (Y;, M;) «— C[M;—1](X;).

Adversarial model. We consider adversaries that can adaptively tamper in ¢ clock cycles with
up to t wires. In this paper we are particularly interested in the case where ¢ is unbounded, i.e.
the adversary can tamper with an arbitrarily large number of wires in the circuit in every round.
For each wire we allow the adversary to choose between the following types of attacks: set, i.e.
setting a wire to 1, reset, i.e. setting a wire to 0 and toggle, i.e. flipping the value on the wire. For
each wire such an attack fails independently with some probability. This is captured by the global
parameter ¢, where § = 0 means that the attack succeeds always, and § = 1 that no tampering
takes place. The model of [I8] considers the case in which ¢ is a small integer and tampering is
always successful, i.e. § = 0.

When an attack fails for one wire the computation continues with the original value on that wire.
Notice that once a fault is successfully placed it stays permanently. Let us stress that we do allow
the adversary to “undo” (with zero error probability) persistent attacks induced in previous rounds
(this captures so called transient faults). We call such an adversary, that can adaptively tamper
with a circuit for up to ¢ clock cycles attacking up to t wires per round, an (t,d, q)-adversary and
denote the attack strategy for each clock cycle as W = {(w1,a1),..., (w, at)}. The first element in
each such tuple specifies which wire in the circuit is attacked and the second element specifies the
type of attack (i.e. set, reset or toggle). When the number of faults per clock cycle is unbounded,
we will explicitely write ¢t = oc.

2.2 Tamper-Proof Security

The definitions below are given for (0o, d, ¢)-adversaries, but can be adapted to the case where the
number ¢ of faults in every clock cycle is bounded in a straight forward way.

Transformation. A circuit transformation ® takes as input a security parameter k, a (probabilis-
tic) circuit C' and an initial state My and produces a transformed initial state]/\4\0 and a transformed
(probabilistic) circuit C. This is denoted by (C,]/\4\0) — ®(C, Mp). The compiled circuit can use a
different set of gates, and this will be the case for the compiler we construct. The transformation
itself can be randomized and we let pg denote the random coins of the transformation. We say
that the transformation ® is functionality preserving if for all C, My and any set of public inputs

X1,Xo,..., X, the original circuit C starting with state My and the transformed circuit C starting
with state]\70 result in an identical output distribution.

Following [I8], we define security of circuit transformations against tampering attacks by a
simulation-based argument, but we augment the simulation by allowing auxilliary input. Loosely
speaking, for every (o0, d, ¢)-adversary A tampering with 6, there exists a simulator Sy, that gets
as input some A-bounded auxiliary information A and only has black-box access to the original
circuit C, such that the output distribution of A and Sy are close. We will specify the nature of
the auxiliary information below.

Real world experiment. The adversary A can in each round ¢ adaptively specify an input X;
and an attack strategy W; that is applied to the transformed circuit C when run on input X; with
secret state]\Z_l. The output Y; resulting from the (possibly) faulty computation is given to the
adversary and the state is updated to]\Z for the next evaluation. To formally describe such a
process we introduce a special oracle, Tamper, that can be queried on (X;, W;) to return the result
Y:. More precisely, for any (00, d, ¢)-adversary A, any circuit C' and any initial state My, we define
the following experiment:

Experiment Expl‘geal (A, C, My):
(C7M0) — (I)(C7 MO)
Output ATamper(CyMoy.’.) (C)

Simulation. The simulator Sy simulates the adversary’s view, however, she has to do so without
having tampering access to the transformed circuit. More precisely, the simulator only has oracle
access to C[My](-). Additionally, we will give the simulator some A-bounded auxiliary information.
This is described by letting Sy choose an arbitrary function f : {0,1}* — {0, 1}* and returning the
result of f evaluated on input the secret state My, i.e. A def f(My). For a simulator Sy we define
the following experiment for any circuit C, any initial state My and any (oo, d, ¢)-adversary A:

Experiment Exp3™(Sy, C, My, A):
f — S\(A,C) where f: {0,1}* — {0,1}*
Output Sf[Mi](')(A) where A = f(Mp)

Tamper-resilient circuit transformations. A circuit transformation is said to be tamper-

resilient if the outputs of the two experiments are statistically close. More formally:

Definition 1. (Tamper-Resilience of Circuit Transformation). A circuit transformation ®
is (00,0, q, A\, €)-tamper-resilient if for any (00, d, q)-adversary A, for every circuit C' and any initial
state My, there exists a simulator Sy such that

Expa™(Sx, C; Mo, A) ~c Exph® (A, C, M),

where the probabilities are taken over all the random coin tosses involved in the experimentsﬁ

4The parameters §, ¢, A and e are all parameterized by the security parameter k.

3 A Compiler Secure against (0o, d, ¢)-Adversaries

We describe a compiler & which is secure against (0o, d, ¢)-adversaries. A different construction for
the case of a small ¢t and § = 0 — i.e. when the number of faults per round is bounded but attacks
succeed always — is given in Appendix R

Instead of computing with bits the compiled circuit C' will operate on redundant and randomized
encodings of bits.

3.1 Encodings

Our transformation is based on three encoding schemes, where each is used to encode the previous

one. The first encoding, so called Manchester encoding, can be described by a deterministic function

that takes as input a bit b € {0,1} and has the following output: MC(b) % (b,b).. Decoding is

done just by outputting the first bit. The output (b,b) is given as input to the next level of our
encoding procedure where we use a probabilistic function mask : {0,1}%x {0,1}2 — {0,1}*. Such a
function uses as input additionally two random bits for masking its output. More precisely, we have

mask(MC(b), (r,7")) % (b r,r,b@® ', r"), with (r,r") « {0,1}2. We denote with MMC c {0,1}*
the set of valid masked Manchester encoded bits, and with MMC «f {0,1}*\ MMC the non-valid
encodings. Our final encoding consists of k independent masked Manchester encodings:

Enc(b,) def mask(MC(b), (r1,7))), - .., mask(MC(b), (rx, 7)), (1)

with 7= (r1,7], 72,75, ..., 7k, 7}) € {0,1}?*. Thus it has length 4k bits and uses 2k bits of random-
ness. When the randomness in an encoding is omitted, it is uniformly sampled, e.g. Enc(b) denotes

the random variable Enc(b,) where i € {0, 1}2* is sampled uniformly at random.

We denote with Enc C {0, 1}#* the set of all valid encodings and with Enc def {0,1}* \ Enc the

non-valid ones.

3.2 The Compiler

Consider any (probabilistic) Boolean circuit C' that consists of Boolean NAND gates, randomness
gates $ and memory cells. We assume that the original circuit handles fanout through special copy
gates taking one bit as input and outputting two copies. If k copies are needed, the original value is
passed through a subcircuit of £ — 1 copy gadgets arranged in a tree structure. Let us first describe
the transformation for the secret state. On factory setup 2k random bits po = (r1,7], ..., 7%, 7})
are sampled uniformly. Then, each bit of the secret state m; is encoded by Enc(m;, pgp). Putting
all these encodings together we get the initial transformed secret state]\//.70. The encoded secret
state will be stored in the memory cells of C , but we will discuss this below. Notice that we use
the same randomness for each encoding.

The global picture of our transformer consists of four different stages: the encoder, the in-
put/output cascade phase, the transformation for the core and the decoder. These stages are

connected as shown in Figure and are described below.

The encoder and the decoder. Since the compiled circuit computes with values in encoded
form, we need to specify how to encode and decode the public inputs and outputs of C. The

encoder (which is deterministic and build from copy and negation gates) encodes every bit of the
input using randomness pg:

Encoder(z1, ...,) def Enc(x1, ps),...,Enc(as, pp) where xy,...,2 € {0,1}.

The decoding phase simply outputs the XORs of the first two bits of every encoding:

def

Decoder(Xl, ce ,Xt/) = Xl[l] D X1[2], ce ,Xt/[l] D Xt’[2] where X, € {0, 1}4k.

The input and output cascade phases. For self-destruction we use a tool already introduced
by Ishai et al. — the cascade phase (cf. Figure . In our construction we make use of
two cascade phases: an input cascade phase and an output cascade phase. As shown in Figure
the input cascade phase takes as input the output of the encoder and the encoded secret
state. The output cascade phase takes as inputs the output of the core and the updated secret
state[’] As discussed later in Section [4] for technical reasons we require that the secret state is
always in the top part and the public output is always on the bottom part of the cascade phase.
For ease of description we call the part of the cascade phase that takes the inputs as the first half
and the part that produces the outputs as the second half. This is shown in Figure [6 on page 21

Inside the cascade phase we make use of special cascade gadgets 1 : {0,1}%% — {0,1}%*. The
gadgets behave like the identity function if the inputs are valid encodings using randomness pg,
and output 0%* otherwise, i.e.

AvB if AaB € {Enc(O,pq,),Enc(l,pq>)}
0% otherwise.

(A, B) = {

The gadgets are assumed to be tamper-proof, i.e. the adversary is allowed to tamper with their
inputs and outputs, but she cannot modify their internals.

The core. With I\mm/ : {0,1}2%* — {0,1}* we define a NAND gate which works on masked
Manchester encodings using randomness r, ' (on input and output). If the input contains anything
else than a valid masked Manchester encoding , the output is 0* € MMC. The truth table of
these gadgets is given in Figure Il Similarly we denote with copy,.,. : {0, 1}* — {0,1}2** a copy

1st Input 2nd Input Output
mask(MC(0,r,7")) | mask(MC(0,r,7")) | mask(MC(1,7,1"))
mask(MC(0,r, ")) | mask(MC(1,7,7")) | mask(MC(1,r,r"))
mask(MC(1,r,7")) | mask(MC(0,7,7")) | mask(MC(1,r,r"))
mask(MC(1,r,7")) | mask(MC(1,r,7")) | mask(MC(0,r,1"))
* * 04

Figure 1: Truth table of I\mm/ {0,134 — {0,1}%.

gate which takes as input a masked Manchester encoding using randomness 7,7’ and outputs two

®Notice that the input and the output cascade phases might have a different number of inputs/outputs.

copies of it. Whenever the input contains anything else than a masked Manchester encoding using
randomness 7,7, the output is 02 € MMC.

_ [A A if A e {mask(MC(0,r,r")), mask(MC(1,r,r"))}
copy,.,/(A) —{ 0° otherwise.

Finally we let §m“’ denote a randomness gadget outputting a fresh masked Manchester encoded
random bit.

With émx we denote the circuit we get by replacing every wire in C' with 4 wires (carrying an
encoding in MMC using randomness r, ') and every NAND gate (resp. copy gate, $ gate) in C' with
a N/Am)m/ (resp. co/Fym,,, §T77J). Similar to the II gadgets, we require the N/Am)m«/, co/ﬁyml, §m/
gadgets to be tamper-proof, i.e. the adversary is allowed to tamper with their inputs and outputs,
but cannot modify the internals. Note that if we want to avoid the use of $,,, gadgets we can
derandomize the original circuit C' replacing the $ cates with the output of a PRG. The core of the

. /
transformed circuit consists of the k circuits C’,ﬂm/l Yo ,Crk% (where the 7,7 are from pg).

4 The Simulator S

In this section we define the simulator Sy and show that she has the property as required by
Definition [1} thus proving the tamper-resilience of the compiler defined in the previous section.

4.1 The Bad Events

Consider the experiment ExpRe® (A, C, My). We will say that the adversary “triggered” the self-
destruct, if in an invocation of C we get (as a consequence of tampering with c) an invalid encoding
at the input to a cascade gadget II. The high level idea behind our circuit compiler, which will
make simulation possible, can be summarised as follows:

1. Any kind of tampering attempt is much more likely to trigger self-destruct than to succeed
in changing a valid encoding of b into an encoding of 1 — b.

2. Once self-destruct is triggered, the entire secret state of C gets erased with overwhelming
probability.

The reason the latter could actually fail is that even though we have an invalid encoding at the
input to II, the adversary can also tamper with its output (which will be all zeros), potentially
changing it back to a valid encoding. We define two event bad; and bad, which hold if the first or
second of the unlikely cases above occurs.

bad; = 1 if in the experiment Exp3d (A, C, My) at some point the encoding Enc(b, pg) occurs

either at the output of the core of C' or within a cascade phase, whereas in the untampered
circuit this value should be Enc(1 — b, pg). Moreover this happens before self-destruct was
triggered.

bady = 1 if self-destruct is triggered, but “undone” before the entire state has been erased. Notice
that if the IT gadget where self-destruct is triggered lies in the first half of the (input or
output) cascade phase, then the entire state is erased if the inputs to all the following IT’s in
this phase are not valid, as in this case the output of the cascade phase is all zeros. If the

IT gadget lies in the second half of the input (resp. output) cascade phase, then the state is
erased if all inputs to the IT gadgets in the first half of the next output (resp. input) cascade
phase are not valid encodings.

4.2 Description of S,

The simulator Sy must “fake” the experiment Expgeal(.A, C, My), which basically means to simulate

the answers coming from the tampering oracle Tamper(a, MO, -,+), having only black-box access to
CMo)()-

S, first samples all the coin tosses for the experiment Expgeal(.A, C, Mp). This includes the
following uniform coin tosses: the coins p4 for the adversary and the coins pg for the transformation.
Additionally, S) samples a sufficiently long string pg which will model the failure of each tampering
attempt. The bits of pg are iid. and each bit is 1 with probability 6 (pg[i] = 1 meaning the ith
tampering attempt fails).

Next, the simulator can define the auxiliary input function f : {0,1}* — {0,1}*. The function
f gets My as input, and thus can completely simulate the experiment Exp%eaLl (A, C, Mp) using the
randomness just sampled. This experiment defines the following three values, which are f’s output:

e abort € {0,1} is a predicate which is 1 if either of the predicates bad; or bads (as defined
above) is 1.

e ¢* € [1,q] specifies the round (if there is any) in which a self-destruct is triggered, that is, the
first round where an input from Enc appears as input to a cascade gadget II.

e n* € [0,n] specifies which cascade gadget this is, as illustrated in Figure [8 on page 22| If this
is not one of the gadgets computing the final (public and secret) output we set n* = 1. If this

is one of the gadgets computing the secret output we set n* = 0. Otherwise n* specifies the
gadget exactly.

After getting this auxiliary input the simulator checks if abort = 1, in this case the simulator stops
with output “simulation failed”. Otherwise Sy runs the experiment ExpR¢® (A, C, M) using p4 as
A’s randomness. We will show in Lemma [I] below that Sy can do so perfectly. Then we show in

Lemma [2| that the probability that abort = 1 is very low.
Lemma 1. There exists a simulator S\ (and we define it in the proof of this lemma) such that

whenever abort = 0 the simulation is perfect, i.e. the output is exactly the output of the real

experiment ExpR®® (A, C, My) (where the experiment uses the same randomness as sampled by Sy).

Lemma 2. The probability that f returns abort = 1 is at most 3(1 — §/2)".
These lemmas, whose proofs we postpone for a moment, imply our main theorem.

Theorem 1 (Tamper-resilience against (00, d, ¢)-adversaries). Let 0 < 6 < 1/2, k > 0. The
compiler ® of Section [is (00,6, q, A, €)-tamper resilient, where A = log(g) + log(n + 1) + 1 and
e=3(1-0/2)k.

Proof. Let R be the randomness space of the experiment Exp%eal(A, C,My). For p € R let
Exphedl(A, C, My)[p] denote the outcome of the experiment when using randomness p. Similarly

10

let Exp3™(Sy, C, My, A)[p] denote the outcome of the experiment Expa™(Sy, C, My, A), assuming
Sy initially samples randomness p. For any p where abort = 0 we have by Lemma

Exp™ (S, C, Mo, A)[p] = Expg™ (A, C, Mo)[p].

By Lemma |2 for a random p € R we have abort = 1 with probability at most €. This implies that
for a random p, the output of the two experiments is e-close, i.e.

EXpSIm(S/\7 Ca M07 A) ~e EXpReal(Av C? M0)7

as claimed. n

4.3 Proof of Lemma 1]

Proof. We have to specify how (in the case abort = 0) the simulator answers A’s queries to the
Tamper(C, My, -, -) oracle. The answers must be exactly the same as the answers in the experiment
Expiedl(A, C, Mp)[p] when using the same randomness p = {pg, p4, po} as chosen by S.

The first ¢* — 1 queries. For i = 1,...,¢* — 1, if A makes the query (X;,W;) the simulator
forwards X; to C[Mp](-) and gives the output Y; to A.

Queries ¢* + 1 to q. AsAabort = 0 (and thus bady = 0), in the query ¢* or ¢* + 1 there is some
point in the evaluation of C' where all wires are 0, and the simulator knows this point (from ¢*,n*).
Moreover, as the simulator chooses the randomness p of the experiment, she knows the state of C
exactly, in particular which wires were successfully tampered. Thus from the point where all wires
are (0, the simulator can continue to compute the answers of the Tamper(C’ Mo, ,+) oracle itself.

The ¢*th query. We haven’t yet covered the query ¢*. This query is a hybrid between the two
cases considered above. If n* = 0 (i.e. the self-destruct is triggered at the end of the output cascade
phase after the public output is already computed) we can handle this query exactly like the first
q* — 1 queries. Also if n* =1 (i.e. self-destruct is triggered early in the query, before the cascade
gadgets outputting the final public output were invoked), this query can be handled like in the
previous case.

If n* > 1 the simulator first queries (as in the first ¢* — 1 queries) for Y+, but before forwarding
this value to A she must adapt it to take into account that parts of it were deleted: the first n* — 1
bits of Y, remain unchanged, the others are set to 0.

Finalising. Finally S\ outputs whatever A outputs. By inspection, the queries above have
exactly the same distribution as the outputs of the Tamper(C, My, -,-) oracle in the experiment
Expieal(A, C, My)]p]. O

4.4 Proof of Lemma [2]

We will first state some properties of the transformed circuit C which will be used in the proof of the
lemma. The proofs of these properties can be found in Appendix We first show (Lemma below)
that tampering with (a non-empty subset of)) four wires holding a masked Manchester encoded value
— where tampering with a wire fails independently with probability § and the adversary may know

11

the encoded value, but not the randomness used in the encoding — will result in an invalid value
with probability §/2.

Tampering with Masked Manchester Encodings. Let 0 < 6 < 1/2 and consider the follow-
ing game.

e An adversary chooses b € {0,1, L} and four functions f1, fa, f3, fa : {0,1} — {0,1} of which
at least one is not the identity function.

o If b = L set (w1,29,23,24) = (0,0,0,0), otherwise sample random r,7’ € {0,1} and let
(21,2, 23,24) = mask(MC(b), (r,7")) be the masked Manchester encoding of b.

e For each i € {1,2,3,4}, with probability 1 — § set y; = f;(x;) and y; = z; otherwise.

Lemma 3 (Tampering with MMC). The probability that at the end of the experiment just de-
scribed (y1,y2,ys,ya) € MMC (i.e. it is not a valid masked Manchester encoding) is at least §/2.

Recall that abort = 1 if either bad; or bady (as defined at the beginning of this section) are 1.
We upper bound the probability that bad; = 1 and bady = 1 below.

Bounding Prlbad; = 1]. By Lemma (3| tampering with the output wires of a N/Am)m/ (or
copy,.,») gate (which is 0* or mask(MC(b),,r')) will result in an invalid encoding with probability
at least §/2. We next show a general composition lemma, which essentially states that the property
proven in Lemma [3| composes to an arbitrary subcircuit made of masked Manchester gadgets as
used in C.

Lemma 4 (Tampering with the core of (7) The probability that in the experiment Expye® (A, C, M)
we have an encoding Enc(b, pp) at the output of the core, where in the untampered circuit this values
would be Enc(1 — b, pg) and this happens before self-destruct is triggered, is at most (1 — §/2)*.

The above lemma does not cover all cases of the bad; = 1 case. The other possibility to get
bad; = 1 is by tampering within the cascade phase, hoping to change Enc(b, pg) into Enc(1 —b, ps).
The probability that this succeeds can also be bounded by (1 — §/2)%. As the proof is similar (but
somewhat simpler) that the proof of Lemma we omit it here. Taking both cases into account, we
get

Pr[bad; = 1] < 2(1 — §/2)*.

Bounding Pr[badys = 1]. Recall that bady = 1 if the adversary manages to change the out-
put 0% of a II gadget (which was queried on an invalid input) back to something valid, i.e.
Enc(b, pa), Enc(V/, pg) for some bits b, b’ € {0,1}. Even in the case 6 = 0 (i.e. when tampering
always succeeds), we can upper bound the probability that the adversary can “undo” tampering on
one particular IT gadget by 272*. To see this assume an adversary changes 08% to a valid encoding
with advantage e. In this case we can extract pg from its tampering queries, but as pp € {0, 1}2¥
is uniform (and the answers from the Tamper oracle are independent of pg), it follows that the
adversary has 2k bits min-entropy about pe and thus e < 272%. Taking into account that the
adversary can use different guesses for pg on the outputs of the different II gadgets, the probability
that bady = 1 is ¢ - 272% where t is the number of IT gadgets in C. Assuming ¢ -272F < (1—5/2)F
(which is the case for any interesting range of parameters) we get

Pr[bady = 1] < (1 —4§/2)%.

12

Acknowledgments

We thank Yuval Ishai and Manoj Prabhakaran for helpful discussions on their work in [I§].

References

1]

[10]

[11]

[12]

Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In Omer Reingold, editor, T'C'C, volume 5444 of Lecture
Notes in Computer Science, pages 474-495. Springer, 2009.

Joél Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in
the bounded-retrieval model. In Halevi [I7], pages 36-54.

Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC’96: Pro-
ceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic
Commerce, pages 1-1, Berkeley, CA, USA, 1996. USENIX Association.

Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key
attacks and applications. to appear in the 2nd Symposium on Innovations in Computer Science
(ICS 2011), 2011. Full version available on http://eprint.iacr.org/.

Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In Rabin [29], pages 666—684.

Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT, volume 2656 of
Lecture Notes in Computer Science, pages 491-506. Springer, 2003.

Johannes Blomer and Jean-Pierre Seifert. Fault based cryptanalysis of the advanced encryption
standard (AES). In Rebecca N. Wright, editor, Financial Cryptography, volume 2742 of Lecture
Notes in Computer Science, pages 162—181. Springer, 2003.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating
errors in cryptographic computations. J. Cryptology, 14(2):101-119, 2001.

Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary
input. In Michael Mitzenmacher, editor, STOC, pages 621-630. ACM, 2009.

Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293-302. IEEE Computer Society, 2008.

Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew
Chi-Chih Yao, editor, ICS, pages 434-452. Tsinghua University Press, 2010.

Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-resilient
signatures. In Daniele Micciancio, editor, Theory of Cryptography, 7th Theory of Cryptography
Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978
of Lecture Notes in Computer Science, pages 343-360. Springer, 2010.

13

http://eprint.iacr.org/

[13]

[14]

[15]

[18]

[19]

[20]

[21]

22]

23]

Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan. Pro-
tecting circuits from leakage: the computationally-bounded and noisy cases. In Henri Gilbert,
editor, FUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 135—156.
Springer, 2010.

Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hardware tamper-
ing. In Naor [25], pages 258-277.

David Goldenberg and Moses Liskov. On related-secret pseudorandomness. In Daniele Mic-
ciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages 255-272.
Springer, 2010.

Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous leakage.
In Rabin [29], pages 59-79.

Shai Halevi, editor. Adwvances in Cryptology - CRYPTO 2009, 29th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume
5677 of Lecture Notes in Computer Science. Springer, 2009.

Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits 1I: Keeping
secrets in tamperable circuits. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 308-327. Springer, 2006.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 463-481. Springer, 2003.

Antoine Joux, editor. Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science. Springer,
20009.

Ali Juma and Yevgeniy Vahlis. Protecting cryptographic keys against continual leakage. In
Rabin [29], pages 41-58.

Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience.
In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science,
pages 703—-720. Springer, 2009.

Stefan Lucks. Ciphers secure against related-key attacks. In Bimal K. Roy and Willi Meier,
editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 359-370. Springer,
2004.

Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In
Naor [25], pages 278-296.

Moni Naor, editor. Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume 2951 of Lecture Notes
in Computer Science. Springer, 2004.

14

[26] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Halevi [17],
pages 18-35.

[27] Martin Otto. Fault Attacks and Countermeasures. PhD thesis, University of Paderborn,
Germany, 2006.

[28] Krzysztof Pietrzak. A leakage-resilient mode of operation. In Joux [20], pages 462-482.

[29] Tal Rabin, editor. Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture
Notes in Computer Science. Springer, 2010.

[30] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In Burton
S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, CHES, volume 2523 of Lecture
Notes in Computer Science, pages 2—12. Springer, 2002.

[31] Frangois-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for the analysis
of side-channel key recovery attacks. In Joux [20], pages 443-461.

15

A Related Work

A special case of tampering attacks are “related-key” attacks, where an adversary is allowed to
query a primitive not only under the target key, but under other “related” (chosen by her) keys
derived from it. A theoretical framework for this setting has been developed for pseudorandom
functions and permutations [0, 23] [5, 15] and semantic security [4].

Gennaro et al. [14] consider a model where an adversary can attack a circuit G with secret state
S; G could e.g. compute digital signatures where S contains the secret key. The adversary can
make regular queries to the cryptosystem, where on input X she receives G(S, X). Additionally she
can make “tamper” queries, where she chooses a function f, and the secret state is replaced with
f(S). The solution they propose is to sign the state. More precisely, they compile the circuit/state
pair G, S into G’, S” where the new state S’ = {5, 0} contains a digital signature o = sign(sk, S).
The circuit G'(S’) parses S” = {S, o}, checks if ¢ is a valid signature for S, and if so, outputs G(S5);
otherwise it “self-destructs”. The main advantage of this solution is that it works for any efficient
tampering function f, but some problems remain. For example G has to be stateless (i.e. it cannot
overwrite its state) as the public G’ cannot contain the secret signing key sk. Moreover, as in our
work, the attacker can learn some information about S by using tamper-queries (though at most
log(q) bits where ¢ is the number of tamper-queries).

In [I1] the notion of “non-malleable codes” is proposed. It is shown that by encoding the state
S (instead of appending a signature) one can avoid most of the above problems. We refer to [11]
for a detailed discussion.

There are two fundamental difference between our work and the line of research presented
in [6, 23| [, 15, 4, 14, 11]. On the one hand the adversary considered in [6, 23, 5] [15], 4 [14] [1T]
is much stronger, since she can apply tampering attacks from a much larger class of tampering
functions (in the work of [14] even arbitrary polynomial time functions). On the other hand, we
(as well as [I8]) consider adversaries that tamper with the entire computation. This is in contrast
to [0, 23, Bl [15] [4], 14l 1], where the adversary is restricted solely to attack the memory, but the
computation is assumed to be completely tamper proof.

Other Circuit Compilers. We will briefly discuss some other circuit compilers that protect
against physical attacks. In [19] Ishai et al. consider general circuit compilers that produce circuits
resilient to passive observing adversaries. In particular, they present a circuit compiler such that
no adversary will succeed in breaking the cryptographic scheme when probing up to ¢ wires. Notice
that here probes are released in every clock cycle so huge parts of the computation stay oblivious
to the adversary. Recently, this result has been generalized in [I3]. In this work circuit compilers
are proposed, where the compiled circuit remains secure even if the attacker can learn a global
low-complexity (or noisy) function of the secret state and all intermediate results. Both compilers
make heavy use of randomness and have a blow-up in size of O(k?) for some security parameter k.

More recently Juma and Vahlis [2I] and Goldwasser and Rothblum [16] proposed circuit com-
pilers for leakage that adheres the “only computation leaks information” assumption. As in this
work, the compilers from [I3] 211 [I6] require special leak-free hardware.

16

1st Input | 2nd Input | Output 1st Input | 2nd Input Output
02kt 02kt 12kt Oth 02kt (O2kt7 02kt)
02kt 12kt 12kt Oth 12kt (O2kt 12kt)
12kt 02kt 12kt 12kt 02kt (12kt7 02kt)
12kt 12kt 02kt 12kt 12kt (12kt 12kt)
* * Oktlkt * * (Oktlkzt7 Oktlkt)

Figure 2: Truth table of a NAND gadget
in the case of (¢, 0, ¢)-adversaries.

Figure 3: Truth table of a cascade gad-
get in the case of (¢, 0, ¢)-adversaries.

B A Compiler Secure against (¢,0,q)-Adversaries

In [I§] Ishai et al. proposed a circuit transformation ®jpsw for § = 0 and ¢ being a small integer. In
this section we consider this setting but allow the adversary to learn a small amount of information
(this is captured in our definition by the leakage A). Similar to the transformation from the previous
section, aiming for a weaker security notion results in significant efficiency improvements.

Before we discuss the details of our new compiler ®;, let us outline why the transformation
from Section [3] is not secure when the failure probability of attacks on individual wires is highly
correlated (the model of [18] is such a case). In a nutshell, the reason is that the gadgets in the
core operate on encodings of constant length c. A (¢,0, g)-adversary can successfully tamper with
such encodings if ¢ < t (e.g. she can fix it to a fixed encoding). In this section we outline how
to significantly improve the efficiency of the compiler ®psyw when a small amount of leakage is
tolerated.

For readers familiar with [I8] we recall the compiler ®|psw here. The transformation ®jpsy uses
randomization and redundant encodings and works in two steps. First, using the transformation
from [19] the original circuit C[Mp] is transformed into a randomized circuit C'[M{)]. That is, each
wire w in C' is represented by a k-bit wire bundle in C’ of the form (r1,..., 71,711 ®...®B7r_1Dw).
The gates in C' are replaced by gadgets that operate on such randomized encodings. The gadgets
have to satisfy the invariant that learning up to k — 1 wires does not reveal any information about
the encoded computation. This first transformation blows up the size of the circuit by O(k?).

The circuit C’ uses standard Boolean gates. In the next step each wire in C’ (that is part of a
wire bundle) is encoded with a 2kt bit long redundant encoding. The encoding that is used maps 0
to 02%* and 1 to 12**. The value 0F1* is a special invalid state. The Boolean gates in C’ are then
replaced using the NAND gadgets given in Figure These gadgets compute with the encoding just
outlined above. This concludes the description of the core of the transformed circuit C. The output
of the core is given as input to a cascade phase. This is essentially identical to the one described in
Section [3| but built with the cascade gadgets shown in Figure|3] Notice that the gadgets in Figure
and [3| are not atomic. Instead they can be built from standard Boolean gates and tamper-proof
AND gates that take 4kt bits as input. The result of the above outlined transformation gives us
C[Moy].

If we allow the tampering adversary to learn a small amount of information, then we can
eliminate most of the overhead resulting from the first step. Our transformation ®; essentially
follows the transformation ®psw with two changes. First, instead of randomizing each wire in C
with k& — 1 random bits (to achieve statistical security with security parameter k), in C’ we use only
a single bit of randomness. More precisely, each wire w; in C' is represented in C’ by two wires

17

that carry the values (w; @ r;,7;). The computation in C’ is done in such a way that learning the
value of a single wire in C’ does not reveal information. This can be done with the techniques
introduced in [19] (i.e. replacing each gate in C' by gadgets that are constructed from standard
Boolean gates and probabilistic gates). Second, the gadgets in Figure [2| and |3| are tamper-proof.
That is, an adversary can tamper with its inputs and outputs but the internals are not subject to
attacks. These tamper-proof gadgets can be implemented in size linear in kt.

We give some further details below. For security parameter k we define the probabilistic encod-
ing scheme Enc; : {0,1} — {0, 1}*** as Enc(b) = (b?** @ r2¥ 12F) where r « {0,1}. Each bit b of
the initial secret state My is then replaced by Enc(b). Hence, the memory cells in C are replaced
by 4kt memory cells.

As the transformation in Sectlon I C' is structured in three phases: the encoder/decoder, the
input/output cascade phases and the core. The encoder encodes every input bit b with Enc;. The
decoder takes the first bit of the encoding and the (2kt + 1)th bit and outputs the XOR. The
input /output cascade phase is similar to the one described in Section [3| with the difference that it
makes use of the tamper-proof cascade gadgets of Figure

Transformation of the core. Essentially, C — ®,(C) operates with encodings Enc; instead of
plain bits. To achieve this it proceeds in two steps. First every gate in C' is replaced by gadgets
(built from Boolean and randomness gates) that operate with masked bits, i.e. (b@ r,r). This can
for instance be done with the transformation ®1gw from [19]. Next each gate in C” is replaced with
NAND gadgets of Figure |2 I This gives us the transformed circuit C. Notice that even if the original
circuit C' was deterministic, the transformed circuit C will contain randomness gates (this is due
to the transformation ®1gw). We can use the PRG construction proposed in [I8] to de-randomize
¢l

It is easy to see that changing the transformation ®psw as outlined above decreases the size of
C by a factor of O(k?). Also, the amount of randomness is decreased from O(sk?) to O(s) (where
s is the size of C).

We prove security of ®; using the techniques developed in Section 4. This requires to show
that any attempt to change a valid encoding in the core (or the cascade phases) results with high
probability in an invalid encoding at the output of C’s core.

Lemma 5 (Tampering with the core and/or with the cascade phase of 6) Consider any
circuit C and its transformation C = &,(C). Every (t,0,q)-adversary tampering inside the core
ofC' either lets the computation in C unchanged or results with probability at least 1 — 272% to an
invalid encoding on some wire bundle at the output of the core.

Proof. Since C only uses tamper-proof NAND and cascade gadgets, the attack strategy of the ad-
versary can only include the inputs and outputs of such gadget. Notice that the minimal Hamming
distance between two wvalid encodings is dz (0%, 12%) = 2kt. Since the adversary is only allowed
to tamper with at most ¢ wires in every round, either fixing or changing an encoding will require
2k rounds. The main observation is that the randomness of the masking is refreshed in each round.

5Notice that here we require a special PRG (namely the one from [18]), while in Section [3 I 13| we could Just use any
PRG for de-randomization. The reason for this is that in Section |3 l if C' is deterministic, then so is C. On the
other hand if C' is probabilistic we can make it deterministic using any standard PRG, and only afterwards apply our
transformation.

18

1st Input | 2nd Input | Output

MC(0) MC(0) MC(1)

MC(0) MC(1) MC(1)

MC(1) MC(0) MC(1)

MC(1) MC(1) MC(0)
* * 1

Figure 4: Truth table of a NAND gadget when only reset attacks are allowed.

Hence, the adversary is successful in each round with probability at most 1/2. This concludes the
proof. O

Similar to the proof of Section [1|we can use Lemma to show tamper-resilience against (t, 0, q)-
adversaries.

Theorem 2 (Tamper-resilience against (t,0,q)-adversaries). Let k > 0 be the security pa-
rameter and t € N. Let C be a Boolean circuit with n bits of public output. For any q = q(k), the
compiler ®, described above is (t,0,q, \, €)-tamper resilient, where A = log(q) + log(n + 1) + 1 and
e =22,

Proof. The proof is along the lines of Theorem [1| and is therefore omitted. O

C Proofs Omitted from the Main Body

C.1 Proof of Lemma [3

We first look at the case where at least one of the f;’s — for concreteness say f; — is a toggle
function, i.e. fy(z4) = 1 —x4. Any three bits of a masked Manchester encoding uniquely determine
the fourth. In particular, if (y1,y2,y3,v4) € MMC then y; ® y2 ® y3 & 1 = y4. Recall that y4 = x4
with probability ¢ (i.e. we don’t apply f4) and y4 = 1 — 24 with probability 1 — . In one of the
two cases we get (y1,y2,Ys3,y4) € MMC, thus the encoding is invalid with probability at least 4.

Consider now the case where at least one of the f;’s — for concreteness say fy —is a set function,
i.e. fa(x4) =1 (the proof for the reset case is identical). As Prjz4 = 0] =1/2 and y4 = x4 = 0 with
probability §, we get Prlys = 0] = §/2. Again, only in one of the two cases (y4 = 0 or y4 = 1) we
get (y1,Y2,y3,y4) € MMC, thus the encoding is invalid with probability at least 6/2.

C.2 Proof of Lemma [4]

Recall that the core of C is made-up of k independent subcircuits @41774/1 sy érk e each using inde-
pendent randomness 7;,7;. The output of each subcircuits when no tampering took place, consists
of the original output in masked Manchester encoded form (masked using the same randomness).

The first important observation is that if the adversary wants to change one of the encodings
at the output of the core, she must tamper with every subcircuit (either in a single round or in
different rounds). Consider the very last level where the adversary applies a tampering attack in

19

a given subcircuit, say 1 < ¢ < depth(@ri’rg) The value £ = 1 means that the adversary tampers

only with the input of the subcircuit, whereas the value £ = depth(C,, ,/) means that the attack
involves also the encoded output. Since any tampering strategy endinlg at level £ involves the
output of some masked Manchester gadget, Lemma [3] says that the output of that gadget is in
MMC with probability at least /2. The key observation here is that, since ¢ is the last level where
the adversary applies an attack, the invalid encoding will propagate to the output of the subcircuit.
Thus the output of that subcircuit has at least one value in MMC with probability at least &/2.
Moreover this argument applies to all the subcircuits since they use independent randomness. As
a consequence with probability at least 1 — (1 — §/2)* one of the wire bundles at the output carries
a value in Enc, and thus triggers self-destruct.

"Since the transformation in the core is gate-by-gate the depth of é\mrf is the same as the depth of the original
circuit C. ‘

20

I #-:-|
Encoded State iii ji: iii Neyv\ encoded state

Public input

[x

Public output

;

Figure 5: A global picture of our compiler in the case k = 3. In the red-coloured parts we rely on

gadgets of constant size, whereas in the blue-coloured parts gadgets of linear size (in the security
parameter k) are used.

- N

Secret state < | _
CASCADE PHASE L

Public output| | ° ’ °
\ —

First half Second half

Figure 6: The cascade phase for error propagation and self-destruction. Every cascade gadget (in
blue) has size linear in the security parameter k.

- : :
vrufls, | : *
> /bo?« . mask(MC(mq), (TaT»‘

Ty ' ’ E ’ ’
,7¢O_._ mi mask(MC(z1), (r, 7)) mask(MC(m?), (r,r"))
|74/ Y1 ~ mask(MC(y1), (r,7"))
CIRCUIT C ’740 SUBCIRCUIT Or,r/
T2 Yo mask(MC(x2), (r, 7)) mask(MC(yz2), (r, "))
OUTPUT CASCADE PHASE
Enc(my,) Enc(m/, 7)
Enc(y1,7) Enc(y1,7)
Enc(yz, 7) Enc(ys, 7)

Figure 7: The compiler ® applied to a concrete circuit C' (in the top left picﬁure). The top right
picture shows one of the subcircuits C,.,s in the core of the compiled circuit C'. The gadgets used

in 6,1’,"/ are all of constant size. Finally the bottom picture shows the output cascade phase.

21

CASCADE PHASE

4 N
o’ Secret state
(-]
° n* =0
First half of the cascade phase
e 0600
T
o .
o° w € L] Public output

o . %

Figure 8: Cascade gadgets in the second half of the output cascade phase are assigned a label
in [1,n]. The auxiliary information A includes the label n* of the first cascade gadget where L*
appears as an input.

22

	Introduction
	Our Contribution

	Definitions
	Our Model
	Tamper-Proof Security

	A Compiler Secure against (,,q)-Adversaries
	Encodings
	The Compiler

	The Simulator S
	The Bad Events
	Description of S
	Proof of Lemma 1
	Proof of Lemma 2

	Related Work
	A Compiler Secure against (t,0,q)-Adversaries
	Proofs Omitted from the Main Body
	Proof of Lemma 3
	Proof of Lemma 4

