
An Efficient Attack on All Concrete KKS Proposals

Ayoub Otmani1,2 Jean-Pierre Tillich1

1 SECRET Project - INRIA Rocquencourt
Domaine de Voluceau, B.P. 105 78153 Le Chesnay Cedex - France

ayoub.otmani@inria.fr, jean-pierre.tillich@inria.fr
2 GREYC - Université de Caen - Ensicaen

Boulevard Maréchal Juin, 14050 Caen Cedex, France.

Abstract. Kabastianskii, Krouk and Smeets proposed in 1997 a digital signature scheme
based on a couple of random error-correcting codes. A variation of this scheme was proposed
recently and was proved to be EUF-1CMA secure in the random oracle model. In this paper
we investigate the security of these schemes and suggest a simple attack based on (essentially)
Stern’s algorithm for finding low weight codewords. It efficiently recovers the private key
of all schemes of this type existing in the literature. This is basically due to the fact that
we can define a code from the available public data with unusual properties: it has many
codewords whose support is concentrated in a rather small subset. In such a case, Stern’s
algorithm performs much better and we provide a theoretical analysis substantiating this
claim. Our analysis actually shows that the insecurity of the proposed parameters is related
to the fact that the rates of the couple of random codes used in the scheme were chosen to
be too close. This does not compromise the security of the whole KKS scheme. It just points
out that the region of weak parameters is really much larger than previously thought.

Keywords. Code-based cryptography, digital signature, random error-correcting codes,
cryptanalysis.

1 Introduction

Digital signature schemes are probably among the most useful cryptographic algorithms. If quan-
tum computers were to become reality, it would be useful to devise such schemes which would
resist to it. A possible approach to meet this goal could be to build such schemes whose security
relies on the difficulty of decoding linear codes. Two code based schemes of this kind have been
proposed, namely the Courtois-Finiasz-Sendrier signature scheme [CFS01] and the Kabatianskii,
Krouk and Smeets (KKS) scheme [KKS97,KKS05].

The Courtois-Finiasz-Sendrier (CFS) scheme presents the advantage of having an extremely
short signature and its security has been proven to rely on the well-known syndrome decoding
problem and the distinguishability of binary Goppa codes from a random code. However, it has
been proved in [FGO+10] that the latter problem can be solved in the range of parameters used
in the CFS signature algorithm. This does not prove that their proposal is insecure. However, it
invalidates the hypotheses of their security proof. The main difficulty in suggesting a CFS type
scheme is to come up with a family of very high rate codes with an efficient decoding algorithm
and whose structure can be hidden in the same way as in the McEliece scheme. This narrows
down quite a bit the families of codes which can be used in this setting and up to now only Goppa
codes are known to meet this goal. It should be emphasized that it is precisely their rich algebraic
structure which makes it possible to distinguish them from random codes.

On the other hand, the KKS proposal does not rely on Goppa codes and can be instantiated
with random codes. Moreover, unlike in the CFS signature scheme, it does not compute a signature
by using a decoding algorithm for the code and thus completely avoids the necessity of having
to use restricted families of codes with a “hidden” trapdoor. Moreover, a variation of it has
been proposed in [BMJ11] and has been proved to be EUF-1CMA secure in the random oracle
model. The security of the KKS scheme has been investigated in [COV07]. It was shown that
a passive attacker who may intercept just a few signatures can recover the private key. All the

schemes proposed in [KKS97] can be broken in this way with the help of at most 20 signatures.
The security of the scheme is not compromised by this attack however if only one signature is
computed, and this especially in the variant proposed in [BMJ11] where some random noise is
added on top of the signature.

The purpose of this article is to present a new security analysis of the KKS scheme and its
variant proposed in [BMJ11]. Our approach for breaking the scheme is to define a certain error
correcting code from the couple of public matrices used in the scheme and to notice that certain
rather low weight codewords give actually valid signatures. It is therefore natural to use standard
algorithms for finding low-weight codewords in this setting, such as Stern’s algorithm [Ste88] or its
Dumer variant [Dum96,FS09] (see also [BLP11]). It turns out that such algorithms are unusually
successful in this setting due to the conjunction of three factors: (i) there are many low-weight
codewords, (ii) they are localized on a rather small support, (iii) some part of this support is
known to the attacker. It appears that all parameters suggested in [KKS97,KKS05,BMJ11] are
easily broken by this approach and this without even knowing a single signature pair. Moreover,
this approach can exploit the knowledge of a message-signature pair which speeds up the attack.

We provide an analysis of this attack which explains what makes it feasible for the parameters
proposed in [KKS97,KKS05,BMJ11]. The KKS scheme relies on a couple of matrices which can
be viewed as parity-check matrices of two linear codes. We show that when the first code has a
rate which is smaller than the rate of the second one (or has approximately the same rate), then
our attack is quite successful. This was exactly the case for all the parameters suggested in the
past. In other words, our attack does not compromise the security of the whole KKS scheme. It
just points out that the region of weak parameters is really much larger than previously thought.

2 Terminology and Notation

In the whole paper q denotes some prime power and we denote by Fq the finite field with q elements.
Let n be a non-negative integer. The set of integers i such that 1 6 i 6 n is denoted by [1 · · ·n].
The cardinality of a set A is denoted by |A|. The concatenation of the vectors x = (x1, . . . , xn) and
y = (y1, . . . , ym) is denoted by (x||y) def= (x1, . . . , xn, y1, . . . , ym). The support supp(x) of x ∈ Fn

q

is the set of i’s such that xi 6= 0. The (Hamming) weight |x| is the cardinality of supp(x). For a
vector x = (xi) and a subset I of indices of x, we denote by xI its restriction to the indices of I,
that is:

xI
def= (xi)i∈I .

We will also use this notation for matrices, in this case it stands for the submatrix formed by the
columns in the index set, i.e. for any k × n matrix H

HJ
def= (hij)16i6k

j∈J
.

A linear code C of type [n, k, d] over Fq is a linear subspace of Fn
q of dimension k and minimum

distance d where by definition d
def= min{|x| : x ∈ C and x 6= 0}. The elements of C are

codewords. A linear code can be defined either by a parity check matrix or a generator matrix. A
parity check matrix H for C is an (n− k)× n matrix such that C is the right kernel of H:

C = {c ∈ Fn
q : HcT = 0}

where xT denotes the transpose of x. A generator matrix G is a k×n matrix formed by a basis of
C . We say that G is in systematic form if there exists a set J such that GJ = Ik. The syndrome
s by H of x ∈ Fn

q is defined as sT def= HxT . A decoding algorithm for H is an algorithm such
that, given s in Fr

q, finds a vector e of minimum weight whose syndrome is s.

3 The Kabatianskii-Krouk-Smeets Signature Scheme and its Variant

This section is devoted to the description of two code-based signature schemes proposed in [KKS97]
and more recently in [BMJ11], where the latter can be viewed as a “noisy” version of the former
[KKS97]. Our presentation presents the main ideas without giving all the details which can be
found in the original papers. We first focus on the scheme of [KKS97] whose construction relies
on the following ingredients:

1. a full rank binary matrix H of size (N −K)×N with entries in a finite field Fq.
2. a subset J of {1, . . . , N} of cardinality n,
3. a linear code Chidden over Fq of length n 6 N and dimension k defined by a generator matrix

G of size k × n. Let t1 and t2 be two integers such that with very high probability, we have
that t1 6 |u| 6 t2 for any non-zero codeword u ∈ Chidden.

The matrix H is chosen such that the best decoding algorithms cannot solve the following search
problem.

Problem 1. Given the knowledge of s ∈ FN−K
q which is the syndrome by H of some e ∈ FN

q whose
weight lies in [t1 · · · t2], find explicitly e, or eventually x in FN

q different from e sharing the same
properties as e.

Finally let F be the (N−K)×k matrix defined by F
def= HJGT . The Kabatianskii-Krouk-Smeets

(KKS) signature scheme is then described in Figure 1.

Fig. 1. Description of the KKS scheme given in [KKS97].

– Setup.
1. The signer S chooses N , K n, k, t1 and t2 according to the required security level.
2. S draws a random (N −K)×N matrix H.
3. S randomly picks a subset J of {1, . . . , N} of cardinality n.
4. S randomly picks a random k× n generator matrix G that defines a code Chidden such that with

high probability t1 6 |u| 6 t2 for any non-zero codeword u ∈ Chidden.

5. F
def
= HJGT where HJ is the restriction of H to the columns in J .

– Keys.
• Private key. J and G
• Public key. F and H

– Signature. The signature σ of a message x ∈ Fk
q is defined as the unique vector σ of FN

q such that
σi = 0 for any i 6∈ J and σJ = xG.

– Verification. Given (x, σ) ∈ Fk
q × FN

q , the verifier checks that t1 6 |σ| 6 t2 and HσT = FxT .

The scheme was modified in [BMJ11] to propose a one-time signature scheme by introducing
two new ingredients, namely a hash function f and adding an error vector e to the signature. It
was proved that such a scheme is EUF-1CMA secure in the random oracle model. The description
is given in Figure 2.

4 Description of the Attack

The purpose of this section is to explain the idea underlying our attack which aims at recovering
the private key. The attack is divided in two main steps. First, we produce a valid signature for
some message using only the public key. To do so, we build a new public code from matrices H and
F , and then we apply Dumer’s algorithm [Dum91] in order to find low weight codewords that are
closely related to codewords that belong to the hidden code Chidden with high probability. Because

Fig. 2. Description of the scheme of [BMJ11].

– Setup.
1. The signer S chooses N , K n, k, t1 and t2 according to the required security level.
2. S chooses a hash function f : {0, 1}∗ × FN−K

2 −→ Fk
2 .

3. S draws a random binary (N −K)×N matrix H.
4. S randomly picks a subset J of {1, . . . , N} of cardinality n.
5. S randomly picks a k × n generator matrix G that defines a binary code Chidden such that with

high probability t1 6 |u| 6 t2 for any non-zero codeword u ∈ Chidden.

6. F
def
= HJGT where HJ is the restriction of H to the columns in J .

– Keys.
• Private key. J and G
• Public key. F and H

– Signature. The signature of a message x ∈ {0, 1}∗ is (h, σ) defined as follows:
• S picks a random e ∈ FN

2 such that |e| = n.

• Let h
def
= f(x, HeT) and y be the unique vector of FN

2 such that (i) supp(y) ⊂ J , (ii) yJ = hG.

The second part of the signature σ is then given by σ
def
= y + e.

– Verification. Given a signature (h, σ) ∈ Fk
2 × FN

2 for x ∈ {0, 1}∗, the verifier checks that |σ| 6 2n and
h = f(x, HσT + FhT).

of this close relationship, we are able to produce one valid message/signature pair, and since each
signature reveals partial information about the private key, we can reuse it to get another valid
message/signature pair revealing more information. We repeat this process a few times until we
totally recover the whole private key. More details will be given in the following sections.

In what follows, we make the assumption that all the codes are binary because all the concrete
proposals are of this kind. The non-binary case will be discussed in the conclusion.

4.1 An auxiliary code

We give here the first ingredient we use to forge a valid message/signature pair for the KKS
scheme just from the knowledge of the public pair H,F . This attack can also be used for the
second scheme given by Figure 2. In the last case, it is not a valid message/signature pair anymore
but an auxiliary quantity which helps in revealing J . This ingredient consists in a linear code Cpub

of length N +k defined as the kernel of Ĥ which is obtained by the juxtaposition of the two public
matrices H and F as given in Figure 3. The reason behind this definition lies in the following
Fact 1.

Fig. 3. Parity-check matrix Ĥ of the code Cpub

N k

N−KH =
^

H F

Fact 1. Let x′ be in FN+k
2 and set (σ||x)

def
= x′ with σ in FN

2 and x in Fk
2 . Then σ is a signature

of x if and only if:

1. Ĥx′T = 0
2. t1 6 |σ| 6 t2.

The code Cpub is of dimension k + K, and of particular interest is the linear space Csec ⊂ Cpub

that consists in words that satisfy both conditions of Fact 1 and that are obtained by all pairs
(σ,x) of valid message/signature, that is to say:

Csec
def=
{

(σ||x) ∈ FN+k
2 : x ∈ Fk

2 , σ ∈ FN
2 , σJ = xG, σ[1···N]\J = 0

}
. (1)

Clearly, the dimension of Csec is k. Additionally, we expect that the weight of σ is of order n/2 for
any (σ,x) in Csec, which is much smaller than the total length N . This strongly suggests to use
well-known algorithms for finding low weight codewords to reveal codewords in Csec and therefore
message/signature pairs. The algorithm we used for that purpose is specified in the following
subsection.

4.2 Finding low-weight codewords

We propose to use the following variation on Stern’s algorithm due to [Dum91] (See also [FS09]).
The description of the algorithm is given in Algorithm 1. It consists in searching for low-weight
codewords among the candidates that are of very low-weight 2p (where p is typically in the range
1 6 p 6 4) when restricted to a set I of size slightly larger than the dimension k + K of the code
Cpub, say |I| = k + K + l for some small integer l. The key point in this approach is to choose I
among a set S of test positions. The set S will be appropriately chosen according to the considered
context. If no signature pair is known, then a good choice for S is to take:

S = [1 · · ·N]. (2)

This means that we always choose the test positions among the N first positions of the code Cpub

and never among the k last positions. The reason for this choice will be explained in the following
subsection.

3

H H

H

0

1
1

...

10

0

1 2

N−K−l(K+k+l)/2(K+k+l)/2

N−K−l

l

Fig. 4. A parity-check matrix for Cpub in quasi-systematic form.

4.3 Explaining the success of the attack

It turns out that this attack works extremely well on all the parameter choices made in the
literature, and this even without knowing a single message/signature pair which would make life
much easier for the attacker as demonstrated in [COV07]. In a first pass, the attack recovers
easily message/signature pairs for all the parameters suggested in [BMJ11,KKS97,KKS05]. Once

Algorithm 1 KKSforge: algorithm that forges a valid KKS signature.
PARAMETERS:

r : number of iterations,
l : small integer (l 6 40),
p : very small integer (1 6 p 6 4).
S : a subset of [1 · · ·N] from which in each iteration a subset of cardinality K +k + l will be randomly
chosen.

INPUT: Ĥ
OUTPUT: a list L containing valid signature/message pairs (σ, x) ∈ FN

2 × Fk
2 .

1: L ← ∅.
2: for 1 6 t 6 r do
3: Step 1: Randomly pick K + k + l positions among S to form the set I. This set is partitioned into

I = I1 ∪ I2 such that ||I1| − |I2|| 6 1.
4: Step 2: Perform Gaussian elimination over the complementary set {1, 2, . . . , N + k} \ I to put Ĥ

in quasi-systematic form (as shown in Figure 4).
5: Step 3:
6: Generate all binary vectors x1 of length b(K + k + l)/2c and weight p and store them in a table at

the address H1 xT
1

7: for all binary vectors x2 of length d(K + k + l)/2e and weight p do
8: for all x1 stored at the address H2 xT

2 do

9: Compute x3
def
= (x1||x2)H

T
3 and form the codeword x

def
= (x1||x2||x3) of Cpub

10: if t1 6 |x[1···N]| 6 t2 then
11: L ← L ∪ {x}
12: end if
13: end for
14: end for
15: end forL

a signature/message pair is obtained, it can be exploited to bootstrap an attack that recovers the
private key as we will explain later.

The reason why the attack works much better here than for general linear codes comes from
the fact that Ĥ does not behave like a random matrix at all even if the two chosen matrices for
the scheme, namely H and G are chosen at random. The left part and the right part H and F
are namely related by the equation:

F = HJGT .

Indeed, the parity-check matrix Ĥ displays peculiar properties: Cpub contains Csec as a subcode and
its codewords are precisely what we would like to find in order to generate valid message/signature
pairs. This subcode has actually a very specific structure that helps greatly the attacker:

1. There are many codewords in Csec, namely 2k.
2. The support of these codewords is included in a fixed (and rather small) set of size k + n.
3. k positions of this set are known to the attacker.
4. These codewords form a linear code (of dimension k).

Because of all these properties, the aforementioned attack will work much better than should be
expected from a random code. More precisely, let us bring in:

I ′
def= I ∩ J.

Notice that the expectation E {|I ′|} of the cardinality of the set I ′ is equal to:

E {|I ′|} =
n

N
(k + K + l) = (R + αρ + λ)n (3)

where we introduced the following notation:

R
def=

K

N
, ρ

def=
k

n
, α

def=
n

N
and λ

def=
l

N
.

The point is that whenever there is a codeword c in Csec which is such that |cI′ | = 2p we have
a non-negligible chance to find it with Algorithm 1. This does not hold with certainty because the
algorithm does not examine all codewords x such that |xI | = 2p, but rather it consists in splitting
I in I1 and I2 of the same size and looking for codewords x such that |xI1 | = |xI2 | = p. In other
words, we consider only a fraction δ of such codewords where:

δ =

(
(K+k+l)/2

p

)(
(K+k+l)/2

p

)(
K+k+l

2p

) ≈

√
(K + k + l)

πp(K + k + l − 2p)
.

We will therefore obtain all codewords c in Csec which are such that |cI1 | = |cI2 | = p. Consider
now the restriction C ′

sec of Csec to the positions belonging to I ′, that is:

C ′
sec =

{
(xi)i∈I′ : x = (xi)i∈[1···N+k] ∈ Csec

}
. (4)

The crucial issue is now the following question:

Does there exist in C ′
sec a codeword of weight 2p?

The reason for this is explained by the following proposition.

Proposition 1. Let I ′s
def
= Is ∩ J for s ∈ {1, 2}. If there exists a codeword x′ in C ′

sec such that
|x′

I′1
| = |x′

I′2
| = p, then it will be the restriction of a codeword x in Csec which will belong to the

list L output by Algorithm 1.

Proof. Consider a codeword x′ in C ′
sec such that |x′

I′1
| = |x′

I′2
| = p. For s ∈ {1, 2}, extend xI′s with

zeros on the other positions of Is and let xs be the corresponding word. Notice that x1 and x2

will be considered by Algorithm 1 and x1 will be stored at the address H1x
T
1 . By definition of x′,

(x1||x2) is the restriction of a codeword x of Csec to I, say x = (x1||x2||y) with y ∈ FN−K−l
2 . Since

Csec ⊂ Cpub we have ĤxT = 0. Let Ĥ
′
be the matrix obtained from Ĥ put in quasi-systematic

form through a Gaussian elimination as given in Figure 4. We also have Ĥ
′
xT = 0 and hence:

H1x
T
1 + H2x

T
2 = 0 (5)

and
H3(x1||x2)T + yT = 0. (6)

Equation (5) shows that x1 is stored at address H2x
T
2 and will be considered at Step 4.2 of the

algorithm. In this case, x will be stored in L. ut

We expect that the dimension of C ′
sec is still k and that this code behaves like a random

code of the same length and dimension. Ignoring the unessential issue whether or not x′ satisfies
|x′

I′1
| = |x′

I′2
| = p, let us just assume that there exists x′ in C ′

sec such that |x′| = 2p. There is a
non negligible chance that we have |x′

I′1
| = |x′

I′2
| = p and that this codeword will be found by our

algorithm. The issue is therefore whether or not there is a codeword of weight 2p in a random
code of dimension k and length |I ′|. This holds with a good chance (see [BF02] for instance) as
soon as:

2p > dGV(|I ′|, k) (7)

where dGV(|I ′|, k) denotes the Gilbert-Varshamov distance of a code of length |I ′| and dimension
k. Recall that [MS86]:

dGV(|I ′|, k) ≈ h−1 (1− k/|I ′|) |I ′|

where h−1(x) is the inverse function defined over [0, 1
2] of the binary entropy function h(x) def=

−x log2 x− (1− x) log2(1− x). Recall that we expect to have:

|I ′| ≈ (R + αρ + λ)n,

which implies
k

|I ′|
≈ ρ

R + αρ + λ
≈ ρ

R

when α and λ are small. Roughly speaking, to avoid such an attack, several conditions have to be
met:

1. ρ has to be significantly smaller than R,
2. n has to be large enough.

This phenomenon was clearly not taken into in the parameters suggested in [KKS97,KKS05,BMJ11]
as shown in Table 1. The values of dGV(|I ′|, k) are extremely low (in the range 1 − 6). In other
words, taking p = 1 is already quite threatening for all these schemes. For the first parameter
set, namely (k, n,K, N) = (60, 1023, 192, 3000), this suggests to take p = 3. Actually taking p = 1
gives an attack with less complexity. More iterations have to be performed but each iteration is
less complex.

Finally, let us observe that when this attack gives a message/signature pair, it can be used as
a bootstrap for an attack that recovers the whole private key as will be explained in the following
subsection.

Table 1. KKS Parameters with the corresponding value of dGV(n′, k).

Article ρ n l n′ def
= E {|I ′|} R N dGV(n′, k)

[KKS97] 60
1023
≈ 0.059 1,023 8 89 192

3000
≈ 0.064 3,000 6

[KKS05] 48
255
≈ 0.188 255 8 65 260

1200
≈ 0.208 1,200 3

[KKS97] 48
180
≈ 0.267 180 8 64 335

1100
≈ 0.305 1,100 3

[BMJ11] 1/2 320 12 165 1/2 11,626 1

[BMJ11] 1/2 448 13 230 1/2 16,294 1

[BMJ11] 1/2 512 13 264 1/2 18,586 1

[BMJ11] 1/2 768 13 395 1/2 27,994 2

[BMJ11] 1/2 1,024 14 527 1/2 37,274 2

4.4 Exploiting a signature for extracting the private key

If a signature σ of a message x is known, then y
def= (σ,x) is a codeword of Csec which has weight

about n/2 when restricted to its N first positions. This yields almost half of the positions of J .
This can be exploited as follows. We perform the same attack as in the previous subsection, but we
avoid choosing positions i for which σi = 1. More precisely, if we let Jσ

def= supp(σ) = {i : σi = 1},
then we choose K + k + l positions among [1 · · ·N] \ Jσ to form I. The point of this choice is that
we have more chances to have a smaller size for I ′ = I ∩ J . Let n′

def= |I ′|, we have now:

E {n′ |Jσ } =
n− |Jσ|
N − |Jσ|

(k + K + l) (8)

E {|I ′|} = E {E {n′ |Jσ }} ≈
n/2

(N − n/2)
(k + K + l). (9)

The last approximation follows from the fact that the weight |σ| is quite concentrated around
n/2. The same reasoning can be made as before, but the odds that the algorithm finds other valid
signatures are much higher. This comes from the fact that the expectation |I ′| is half the expected

size of I ′ in the previous case as given in Equation (3). Previously we had E
{
|I ′|
k

}
≈ R

ρ
, whereas

now we have:

E
{
|I ′|
k

}
≈ R

2ρ
.

In other words, in order to avoid the previous attack we had to take ρ significantly smaller than R
and now, we have to take ρ significantly smaller than R/2. For all the parameters proposed in the
past, it turns out that dGV(|I ′|, k) is almost always equal to 1, which makes the attack generally
successful in just one iteration by choosing p = 1.

Moreover, if another valid signature σ′ is obtained and by taking the union Jσ ∪ Jσ′ of the
supports, then about 3/4 of the positions of J will be revealed. We can start again the process
of finding other message/signature pairs by choosing K + k + l positions among {1, 2, . . . , N} \
(Jσ ∪ Jσ′) to form the sets I. This approach can be iterated as explained in Algorithm 2. This
process will quickly reveal the whole set J and from this, the private key is easily extracted as
detailed in [COV07].

Algorithm 2 Recovering the private key from t > 1 signatures.
PARAMETERS:

r : number of iterations
l : small integer (l 6 40)
p : very small integer (1 6 p 6 4).

INPUT:

Ĥ : public matrix as defined in Figure 3
{σ1, . . . , σt} : list of t > 1 valid signatures

OUTPUT: J ⊂ [1 · · ·N] of cardinality n

1: J ← ∪t
i=1supp(σi)

2: repeat
3: S ← [1 · · ·N] \ J
4: L ← KKSforge(r,l,p,S,Ĥ)
5: for all σ ∈ L do
6: J ← J ∪ supp(σ)
7: end for
8: until |J | = n J

Finally, let us focus on the variant proposed in [BMJ11]. In this case, we have slightly less
information than in the original KKS scheme. This can be explained by the following reasoning. In
this case too, we choose S again as [1 · · ·N]\Jσ, where as before Jσ is defined as Jσ

def= {i : σi = 1}.
However this time, by defining n′ again as n′

def= |I ′|, we have

E {n′ |Jσ } =
|J ′

σ|
N − |Jσ|

(k + K + l)

where
J ′

σ = J \ Jσ.

However, this time due to the noise which is added, |Jσ| is expected to be larger than before
(namely of order n

2 + (N−n)n
N).

5 Analysis of the Attack

The purpose of this section is to provide a very crude upper-bound on the complexity of the attack.
We assume here that the code Crand of length n which is equal to the restriction on J of Csec:

Crand
def=
{

(xj)j∈J : x = (x1, . . . , xN+k) ∈ Csec

}
behaves as a random code. More precisely we assume that it has been chosen by picking a random
parity-check matrix Hrand of size (n− k)×n (by choosing its entries uniformly at random among
F2). This specifies a code Crand of length n as Crand = {x ∈ Fn

2 : HrandxT = 0}. We first give in
the following section some quite helpful lemmas about codes of this kind.

5.1 Preliminaries about random codes

We are interested in this section in obtaining a lower bound on the probability that a certain
subset X of Fn

2 has a non empty intersection with Crand. For this purpose, we first calculate the
two following probabilities.

Lemma 1. Let x and y be two different and nonzero elements of Fn
2 . Then

prob(x ∈ Crand) = 2k−n (10)
prob(x ∈ Crand,y ∈ Crand) = 22(k−n) (11)

To prove this lemma, we will introduce the following notation and lemma. For x = (xi)16i6s

and y = (yi)16i6s being two elements of Fs
2 for some arbitrary s, we define x · y as

x · y =
∑

16i6s

xiyi,

the addition being performed over F2.

Lemma 2. Let x and y be two different and nonzero elements of Fn
2 and choose h uniformly at

random in Fn
2 , then

prob(x · h = 0) =
1
2

(12)

prob(x · h = 0,y · h = 0) =
1
4

(13)

Proof. To prove Equation (12) we just notice that the subspace {h ∈ Fn
2 : x·h = 0} is of dimension

n− 1. There are therefore 2n−1 solutions to this equation and

prob(x · h = 0) =
2n−1

2n
=

1
2
.

On the other hand, the hypothesis made on x and y implies that x and y generate a subspace of
dimension 2 in Fn

2 and that the dual space, that is {h ∈ Fn
2 : x · h = 0,y · h = 0} is of dimension

n− 2. Therefore

prob(x · h = 0,y · h = 0) =
2n−2

2n
=

1
4

ut

Proof (of Lemma 1). Let h1, . . . ,hn−k be the n− k rows of Hrand. Then

prob(x ∈ Crand) = prob(HrandxT = 0)
= prob(h1 · x = 0, . . . ,hn−k · x = 0)
= prob(h1 · x = 0) . . .prob(hn−k · x = 0) (14)
= 2k−n (15)

where Equation (14) follows by the independence of the events and Equation (15) uses Lemma 2.
Equation (11) is obtained in a similar fashion. ut

Lemma 3. Let X be some subset of Fn
2 of size m and let f be the function defined by f(x)

def
=

max
(
x(1− x/2), 1− 1

x

)
. We denote by x the quantity m

2n−k , then

prob(X ∩ Crand 6= ∅) ≥ f(x).

Proof. For x in X we define Ex as the event “x belongs to Crand” and we let q
def= 2k−n. We first

notice that

prob(X ∩ Crand 6= ∅) = prob

(⋃
x∈X

Ex

)
.

By using the Bonferroni inequality [Com74, p. 193] on the probability of the union of events we
obtain

prob

(⋃
x∈X

Ex

)
≥
∑
x∈X

prob(Ex)−
∑

{x,y}⊂X

prob(Ex ∩ Ey) (16)

≥ mq − m(m− 1)
2

q2 (17)

≥ mq − m2q2

2
≥ mq(1−mq/2),

where (17) follows from Lemma 1. This bound is rather sharp for small values of mq. On the
other hand for larger values of mq, another lower bound on prob(X ∩Crand 6= ∅) is more suitable
[dC97]. It gives

prob

(⋃
x∈X

Ex

)
≥
∑
x∈X

prob(Ex)2∑
y∈X prob(Ex ∩ Ey)

(18)

≥ mq2

q + (m− 1)q2
(19)

≥ mq2

q + mq2
(20)

≥ 1
1 + 1

mq

≥ 1− 1
mq

,

By taking the maximum of both lower bounds, we obtain our lemma. ut

5.2 Estimating the complexity of Algorithm 1

Here we estimate how many iterations have to be performed in order to break the scheme when
no signature is known and when S = [1 · · ·N]. For this purpose, we start by lower-bounding
the probability that an iteration is successful. Let us bring the following random variables for
i ∈ {1, 2}:

I ′i
def= Ii ∩ J and Wi

def= |I ′i| .

By using Lemma 1, we know that an iteration finds a valid signature when there is an x in Csec

such that
|xI′1

| = |xI′2
| = p.

Therefore the probability of success Psucc is lower bounded by

Psucc ≥
∑

w1,w2:w1+w26n

prob(W1 = w1,W2 = w2)prob
{
∃x ∈ Csec : |xI′1

| =
∣∣xI′2

| = p|W1 = w1,W2 = w2

}
(21)

On the other hand, by using Lemma 3 with the set

X
def=
{
x = (xj)j∈J : |xI′1

| =
∣∣xI′2

| = p
}

which is of size
(
w1
p

)(
w2
p

)
2n−w1−w2 , we obtain

prob
{
∃x ∈ Csec : |xI′1

| =
∣∣xI′2

| = p|W1 = w1,W2 = w2

}
≥ f(x). (22)

with

x
def=

(
w1
p

)(
w2
p

)
2n−w1−w2

2n−k
=
(

w1

p

)(
w2

p

)
2k−w1−w2

The first quantity is clearly equal to

prob(W1 = w1,W2 = w2) =

(
n

w1

)(
n−w1

w2

)(
N−n

(K+k+l)/2−w1

)(
N−n−(K+k+l)/2+w1

(K+k+l)/2−w2

)(
N

(K+k+l)/2

)(
N−(K+k+l)/2

(K+k+l)/2

) . (23)

Plugging in the expressions obtained in (22) and (23) in (21) we have an explicit expression
of a lower bound on Psucc. The number of iterations for our attack to be successful is estimated
to be of order 1

Psucc
. We obtain therefore an upper-bound on the expected number of iterations,

what we denote by UpperBound. Table 2 shows for various KKS parameters, p and l the expected
number of iterations.

Table 2. KKS Parameters with the corresponding value of 1
Psucc

.

Article ρ n l p n′ def
= E {|I ′|} R N UpperBound

[KKS97] 60
1023
≈ 0.059 1,023 8 1 91 192

3000
≈ 0.064 3,000 111.26

60
1023
≈ 0.059 1,023 14 2 91 192

3000
≈ 0.064 3,000 14.17

[KKS05] 48
255
≈ 0.188 255 8 1 66 260

1200
≈ 0.208 1,200 12.17

48
255
≈ 0.188 255 14 2 66 260

1200
≈ 0.208 1,200 2.76

[KKS97] 48
180
≈ 0.267 180 8 1 65 335

1100
≈ 0.305 1,100 6.07

48
180
≈ 0.267 180 15 2 65 335

1100
≈ 0.305 1,100 1.82

[BMJ11] 1/2 320 12 1 165 1/2 11,626 1.24

[BMJ11] 1/2 448 13 1 230 1/2 16,294 1.34

[BMJ11] 1/2 512 13 1 264 1/2 18,586 1.39

[BMJ11] 1/2 768 13 1 395 1/2 27,994 1.61

[BMJ11] 1/2 1,024 14 1 527 1/2 37,274 1.85

5.3 Number of operations of one iteration

The complexity of one iteration of Algorithm 1 is C(p, l) = CGauss + Chash + Ccheck where CGauss

is the complexity of a Gaussian elimination, Chash is the complexity of hashing all the x1’s and
Ccheck is the complexity of checking all the x2’s with the following expressions:

CGauss = O
(
(N + k)(N − k)(N − k − l)

)
= O(N3) (24)

Chash = O

((
(K + k + l)/2

p

))
(25)

Ccheck = O

(
1
2l

(N −K − l)2
(

(K + k + l)/2
p

)2
)

(26)

The last expression giving Ccheck comes from the fact that the algorithm considers
(
(K+k+l)/2

p

)
elements x2, and for each of these candidates, we check about O

(
1
2l

(
(K+k+l)/2

p

))
elements x1’s,

which involves a matrix multiplication in Step 4.2. Let us note that l will be chosen such that
Chash and Ccheck are roughly of the same order, say 2l ≈

(
(K+k+l)/2

p

)
.

6 Experimental Results

The attack described in Section 4 was implemented in Magma [BCP97] in order to validate the
analysis developed in Section 5. Table 3 presents the average number of iterations that were
necessary to obtain a codeword of weight in the range [t1 · · · t2]. The average is computed with 100
tests for p = 1 and 10 tests for p = 2. The values of t1 and t2 are taken from [KKS97] and [BMJ11].
The algorithm halts whenever it finds a word in the prescribed set. Note that for [BMJ11], we have
taken t1 = n/2 − 3

2

√
n and t2 = n/2 + 3

2

√
n as advocated by the authors. All the codes that we

considered during our simulations were randomly chosen. This setting does not completely comply
with the recommendations made by the authors for the schemes given in [KKS97]. In one case, it
is suggested to use binary BCH codes of length n = 255 and dimension k = 48, and in another
case a binary code of length n = 180 and dimension k = 48 that was constructed by means of
12 random binary equidistant codes of length 15, dimension 4 and minimum distance 8. However,
we emphasize that these specific constraints are irrelevant because the attack is generic and only
requires public data (F and H) and aims at forging a valid signature. We can see in Table 3 that
the number of iterations are in accordance with the theoretical upper-bound UpperBound on the
value of 1

Psucc
obtained in the previous section, which is an upper bound on the average number

of iterations.

Table 3. Average number of iterations of Algorithm 1.

Article ρ n l p n′ def
= E {|I ′|} R N UpperBound t1 t2 Iterations

[KKS97] 60
1023
≈ 0.059 1,023 8 1 91 192

3000
≈ 0.064 3,000 111.26 352 672 111.65

60
1023
≈ 0.059 1,023 14 2 91 192

3000
≈ 0.064 3,000 14.17 352 672 8.67

[KKS05] 48
255
≈ 0.188 255 8 1 66 260

1200
≈ 0.208 1,200 12.17 48 208 22.32

48
255
≈ 0.188 255 14 2 66 260

1200
≈ 0.208 1,200 2.76 48 208 5.67

[BMJ11] 1/2 320 12 1 165 1/2 11,626 1.24 133 187 1.13

[BMJ11] 1/2 448 13 1 230 1/2 16,294 1.34 192 256 1.24

[BMJ11] 1/2 512 13 1 264 1/2 18,586 1.39 222 290 1.42

[BMJ11] 1/2 768 13 1 395 1/2 27,994 1.61 342 426 1.83

[BMJ11] 1/2 1,024 14 1 527 1/2 37,274 1.85 464 560 1.83

7 Concluding Remarks

Design principles. As explained in Section 3, the parameters of the KKS scheme were chosen in
order to make decoding of Cknown intractable when the weight of errors is in the range [t1 · · · t2],
where Cknown denotes the code defined by the parity-check matrix H. In [BMJ11], it is further
required that Cknown is of minimum distance greater than 4n. Both requirements are clearly
insufficient to ensure that the scheme is secure as demonstrated by this paper. We suggest here to
replace all these requirements by choosing the parameters such as to make our attack impracticable.
This algorithm is exponential in nature when the parameters are well chosen. If we want to avoid
that the knowledge of a message/signature pair allows to recover the secret key, this implies for
instance that the rate R of Cknown should be significantly larger than 2ρ, that is twice the rate
of the secret code Chidden. This would change the parameters of the scheme significantly and give
much larger key sizes than has been proposed in [KKS97,KKS05,BMJ11].

Relating the security to the problem of decoding a linear code. The attack which has
been suggested here is nothing but a well known algorithm for finding low weight codewords or
for decoding a generic linear code. It just happens that this algorithm is much more powerful here
than for a random linear code due to the peculiar nature of the code it is applied to. However
as mentioned above, this attack is exponential in nature and can easily be defeated by choosing
the parameters appropriately. It would be interesting to analyze the relationship of the problem
of breaking the KKS scheme with decoding problems in more depth, or to prove that the problem
which has to be solved is indeed NP hard.

Non-binary codes. Obviously there is a non binary version of the KKS scheme which would
deal with codes defined over larger alphabets. The benefits of the generalized scheme are ques-
tionable. The attack presented here generalizes easily to higher order fields. What is more, moving
to non-binary fields seems to be a poor idea in terms of security. For instance, whereas a mes-
sage/signature pair reveals only half the positions of J in the binary case, in the q-ary case we
expect to obtain roughly a fraction q−1

q of positions of J , which is significantly larger.

Decoding one out of many. Another approach could have been used for attacking the
scheme. Let us denote by s1, · · · , sk the columns of F . These vectors can be considered as k
syndromes of codewords of Chidden with respect to the parity-check matrix H. If we want to
obtain one message/pair we can try to find an error ei of weight in the range [t1 · · · t2] such
that HeT

i = si. This suggests to use “the decoding one out of many” approach [Sen11], that
is we have k words to decode and we want to decode at least one of them. This problem can
be solved more efficiently than just decoding one instance. We can even refine this approach by
considering all possible syndromes obtained by all possible (non-zero) combinations

∑
i αisi. In

this case, we would have to solve “a decoding one out of many” problem with 2k − 1 instances.
However a naive use of the results of [Sen11] would be far from indicating that all the parameters
of [KKS97,KKS05,BMJ11] are easily broken by this approach.

References

[BCP97] W. Bosma, J. J. Cannon, and Catherine Playoust. The Magma algebra system I: The user
language. J. Symb. Comput., 24(3/4):235–265, 1997.

[BF02] A. Barg and G. D. Forney. Random codes: Minimum distances and error exponents. IEEE
Transactions on Information Theory, 48(9):2568–2573, September 2002.

[BLP11] D. J. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: ball-collision decoding.
In Proceedings of Crypto 2011, 2011. to appear.

[BMJ11] P. S.L.M. Barreto, R. Misoczki, and M. A. Simplicio Jr. One-time signature scheme from syn-
drome decoding over generic error-correcting codes. Journal of Systems and Software, 84(2):198
– 204, 2011.

[CFS01] N. T. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital signature
scheme. Lecture Notes in Computer Science, 2248:157–174, 2001.

[Com74] L. Comtet. Advanced Combinatorics. Reidel, Dordrecht, 1974.
[COV07] P.L. Cayrel, A. Otmani, and D. Vergnaud. On Kabatianskii-Krouk-Smeets Signatures. In

Proceedings of the first International Workshop on the Arithmetic of Finite Fields (WAIFI
2007), Springer Verlag Lecture Notes, pages 237–251, Madrid, Spain, June 21–22 2007.

[dC97] D. de Caen. A lower bound on the probability of a union. Discrete Mathematics, 169:217–220,
1997.

[Dum91] I. Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish
Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[Dum96] I. Dumer. Suboptimal decoding of linear codes : partition techniques. IEEE Transactions on
Information Theory, 42(6):1971–1986, 1996.

[FGO+10] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-Pierre
Tillich. A distinguisher for high rate McEliece cryptosystems. Cryptology ePrint Archive,
Report 2010/331, 2010. http://eprint.iacr.org/.

[FS09] M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems. In
M. Matsui, editor, Asiacrypt 2009, volume 5912 of LNCS, pages 88–105. Springer, 2009.

[KKS97] G. Kabatianskii, E. Krouk, and B. Smeets. A digital signature scheme based on random error-
correcting codes. In Proceedings of the 6th IMA International Conference on Cryptography and
Coding, pages 161–167, London, UK, 1997. Springer-Verlag.

[KKS05] G. Kabatiansky, E. Krouk, and S. Semenov. Error Correcting Coding and Security for Data
Networks: Analysis of the Superchannel Concept. John Wiley & Sons, 2005.

[MS86] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North–Holland,
Amsterdam, fifth edition, 1986.

[Sen11] N. Sendrier. Decoding one out of many, 2011. preprint.
[Ste88] J. Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolfmann,

editors, Coding Theory and Applications, volume 388 of Lecture Notes in Computer Science,
pages 106–113. Springer, 1988.

