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Abstract

These notes present new results to reestablish the differential resistance
of MD6. In this paper we introduce a classification system of differential
weight patterns that allows us to extend previous analysis to prove that
MD6 is resistant to differential cryptanalysis. Our analysis allows us to
more than double the security margin of MD6 against differential attacks.
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1 Introduction

These notes present new research on the security of the MD6 hash function
against differential attacks. This work builds on ideas and methods from the
MD6 SHA-3 NIST report[1], especially with regards to Section 6.9.1 on the
differential security of MD6.

As noted in an Official Comment on MD6 posted to the NIST list, a gap was
discovered in the proof that MD6 is resistant to differential attacks[2]. When this
bug in the computer aided prover was patched, the prover was no longer capable
of proving the differential security of MD6 within the recommended number of
rounds for MD6. With access to the original prover source code, we researched
additional techniques and improvements to the prover such that the differential
security of MD6 could be firmly reestablished within the recommended number
of round.

In this paper we develop an improved method of proving the differential resis-
tance of MD6. The general approach we took was to determine what elements
of the problem represent the greatest performance cost, find a trade-off that
greatly reduces this performance cost for those elements, and use this trade-off
to increase the lower bound by searching more rounds.

More specifically our approach is to classify differential weight patterns into
two classes, trivial patterns and non-trivial patterns (definitions of these pat-
terns of introduced in Section 4.1). In Section 4.1 we analyze why Non-trivial
patterns represent a such significant performance cost. We reduce the perfor-
mance cost of non-trivial patterns by finding an effective trade-off between speed
and active AND gates in Section 4.2. This allows us to find a high lower bound
for non-trivial patterns. Finally we assemble our improved non-trivial pattern
lower bound and our trivial pattern lower bound into a combined lower bound
that encompasses all differential weight patterns. This combined lower bound
is then used, in Section 5, to reestablish the differential security of MD6 for all
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recommended output sizes and rounds. Our combined lower bound proves that
not only is MD6 resistant against differential cryptanalysis, but additionally
MD6 has a security margin against differential cryptanalysis more than twice
as large as originally claimed in the MD6 NIST Proposal[1].

2 Background

In Section 2.1 and Section 2.2 we briefly sketch out the relevant details of MD6
and differential cryptanalysis which we will need for our analysis.

2.1 MD6 Overview

As a complete description of MD6 is not necessary to our analysis we will instead
provide a brief sketch covering the relevant details. A full description of MD6
can be found in the MD6 NIST Proposal[1].

Because the compression function of MD6 is a Feedback Shift Register we
can conceptually view it as two interacting components: an array A of 64-bit
words A[0], A[1], A[2], ...A[n] and a feedback function which reads and writes to
A.

The feedback function starts at index i = 89 (The words A[0] through A[88]
contain the message which is being compressed). It uses six offsets called tap
positions t0, t1, t2, t3, t4, t5 to index words A[i − t0], A[i − t1], A[i − t2], A[i −
t3], A[i − t4], A[i − t5] as input. Processing this input the feedback function
generates a 64-bit output word which it writes to A[i]. Finally it increments i
by 1 to move one word to the right. In this way the feedback function moves
along A generating outputs until it reaches the last word of A. Each increment
of i is the end of a step. Every 16 steps is the end of a round, every 89 steps is
the end of a rotation. The value n is the number of words in A. The feedback
function performs n− 89 steps to compute n− 89 values (the first 89 words of
A are provided as input to the compression and thus are not computed).

For the purposes of our analysis we provide a simplified compression func-
tion. We have removed all features which do not have differential relevance and
therefore have no bearing on our analysis:

Algorithm 1 Compress(A[], ROUNDS)

n← ROUNDS ∗ 16
for i = 89 to n do

x← feedback(A[i− t0], A[i− t1], A[i− t2], A[i− t3], A[i− t4], A[i− t5])
A[i]← x⊕ g(x)

end for

The feedback function is given as:

feedback(I0, I1, I2, I3, I4, I5) : I0 ⊕ (I1 ∧ I2)⊕ (I3 ∧ I4)⊕ I5.

The function g(x) is given as

g(x) : (x >> R)⊕ (x << L)
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where the values R are L determined by a table lookup indexed by i. As the
full nature of the function g(x) goes beyond the scope of this paper we will not
be describing it in more detail.

2.2 Differential Cryptanalysis

Differential cryptanalysis[3] of a function reasons about the probability of par-
ticular differences in outputs given differences in inputs supplied to the func-
tion. The standard differential collision attack with a keyless cryptographic
hash function is to find some difference in inputs to the hash function such that
the resultant outputs have a relevantly high probability of having no differences.

As the compression function moves along the array A it propagates differ-
ences. We refer to a record of all the difference propagated through the com-
pression as a differential path. At certain points the compression function either
propagates or does not propagate a difference. This decision to propagate or
not rests on inputs which can not be expressed wholly as differences. Therefore
more than one differential path may satisfy some input difference. To show that
a function is secure against differential attacks we show that any differential
path has a probability of occurring less than 1

2n/2 . Thus any interesting differ-
ential path is useless to an attacker because finding a real input which results
in that path is as computationally costly as a brute force attack.

2.2.1 Terms

Active AND Gates (AAGs) are the places at which a differential path may
split into two or more differential paths. They are decision points in which
a number of particular differences are either propagated or not depending on
values which are not specified by differences. For example, a difference may
specify that one bit is the same as another bit but a difference can not specify
the actual value of the bits, that the bits are both zero or that the bits are both
one. To explain AAGs we provide the following demonstration.

Consider four values, A,B,A′, B′ ∈ {1, 0} supplied to an AND gate in pairs
(A ∧B) and (A′ ∧B′). The difference of their outputs is

Z = (A ∧B)⊕ (A′ ∧B′).

We can calculate the probability of Z having a particular value given information
about the equality of A and A′, and B and B′. Knowing only that A is not
equal to A′ and B is equal to B′ we can not say the value of the result Z. Given
that A 6= B if we further assume B = 1 and B′ = 1 then we know that Z = 1
Since in our differential analysis we can’t know the exact value of B but only the
difference between B and B′, we can only calculate the probability that Z = 1.

This probability can be broken into two cases:

1. If A = A′ and B = B′ then the prob(Z = 0) is 1.

2. If A 6= A′ or B 6= B′ then the prob(Z = 0) = 0.5 and prob(Z = 1) is 0.5.

The probability that any AND gate will pass on a difference is given by the
probability that Z will be 1. We say that an AND gate within MD6 is active
when it is computing a difference.
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Differential Weight Patterns are patterns of difference in the array A in
the MD6 compression function. The difference measured in a differential weight
pattern is the Hamming weight difference. For example the differential weight
pattern [3.1, 5.32] corresponds to a Hamming weight of 1 at position A[3] and
Hamming weight of 32 at position A[5]. For a more in depth discussion of dif-
ferential weight patterns see the MD6 NIST Proposal[1].

Differential Positions are positions in a differential weight pattern for which
the exact magnitude of that difference is indeterminate but non-zero. If we have
two difference weight patterns such as [17.2, 23.5, 50.1] and [17.1, 18.1, 50.4], we
can say that both patterns share a differential position at 17 and 50. The main
difference between differential position patterns and differential weight patterns
is that position patterns don’t specify a magnitude. For example we write a
differential position pattern like [2, 5, 7, 14].

3 Prior Work on MD6 Differential Resistance

We will briefly summarize the prior differential resistance work presented in the
MD6 NIST Proposal. For full details and assumptions underlying this proof
read the MD6 NIST Proposal[1].

To prove the resistance of MD6 to differential attacks, one must show that
the lower bound on the workload of a differential attack exceeds the workload
of the birthday attack. This workload lower bound can be found by computing
a lower bound on the minimum number of AND gates activated by all valid
differential weight patterns given the randomness and independence assumption
made and justified in Section 6.9.1 of the MD6 NIST Proposal[1]. Under this
assumption each Active AND Gate (AAG) increases the workload to find a
collision for a particular path by a factor of 2 (the workload for n AAGs is 2n).
The birthday attack for an n-bit hash function requires 2n/2 computations, thus
if a differential path contains at least n/2 AAGs, the workload of a differential
attack must be at least as large as the birthday attack. The proof presented in
the MD6 NIST Proposal succeeds if it can show that the number of AAGs is
256 (512 bit hash input) or higher for r rounds, where r = (168− 15) = 153. 1

3.1 Lower Bounding Segments

As the number of all possible differential paths is quite high a computer is
necessary to search through all the possibilities. Even with a computer the
number of possible differential paths is so large as to be impractical to check.

AAGr ≥ AAGs × br/sc (6.8)

Rather than checking all r rounds we can find the AAG lower bound in
s rounds (for a small s) and using this lower bound and eq. 6.8[1], extend
the smaller s round AAG lower bound (AAGs) to a full r round lower bound
(AAGr). As shown in Algorithm 2, we find the AAG lower bound on progres-
sively larger segments until the computation becomes infeasible.

1While the recommended number of rounds for MD6 is 168 rounds, the NIST MD6 proposal
assumes a security margin of 15. Leaving the proof 153 rounds to work with.
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Algorithm 2 LowerBound Segments()

while s ≤ 153 do
while maxAAG ≤ 256 do

pathFound← search(s,maxAAG)
if pathFound then

s← s + 1
else

maxAAG← maxAAG + 1
print s, maxAAG

end if
end while

end while

To lower bound s rounds we search through all valid paths of length s which
activate no more than maxAAG AND gates (searching all the paths that do
no exceed the upper bound of maxAAG). If no such paths exist then we have
proved a lower bound maxAAG of AND gates activated for all possible differ-
ential paths of s rounds or less.

3.2 Counting AAGs

As the exact rules we use for counting AAGs will be will be important to our
improved results we introduce them here. For reasons of efficiency we are not
dealing with exact differences but rather with differential weight patterns. Thus
the question becomes given four hamming differences HI1 , HI2 , HI3 , and HI4 ,
corresponding to four of the six inputs to the feedback function, how many AND
gates are activated. The number of AND gates activated is equivalent to the
difference weight of the four hamming differences with three exceptions:

Three Exceptions of Counting Active AND gates:

1. Any differences that share the same AND gate only count once.

As we are computing a lower bound on the number of AND gates activated
we must assume that the differences align to optimally reduce the number
of AAGs counted. Thus the lower bound on the number of AND gates
activated by either HI1 and HI2 or HI3 and HI4 is:

AAGI1I2 = max(HI1 , HI2)

AAGI3I4 = max(HI3 , HI4)

2. Any differences that share the same step only count once.

Two sets of AND gates can be activated in one step because the MD6
feedback function (see Section 2.1) contains two sets of AND gates (I1 ∧
I2) ⊕ (I3 ∧ I4). Only one output word is generated therefore allowing
for the possibility that two activated AND gates will align to the same
output bit. The lower bound on the number of AND gates activated for
the output word of a step is the max of the two sets.

AAGnew = max(AAGI1I2 , AAGI3I4)
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3. AND gates activated when one of the inputs to an AND gate
falls off the beginning of a segment are ignored To avoid double
counting we ignore AND gates that are activated when one of the inputs
(tap positions) to an AND gate falls off the beginning of a segment.2 As
we do not count AND gates activated by inputs that fall off the beginning
of a segment, we are free to count AND gates activated by inputs that fall
off the end of a segment without fear of double counting.

Using these these rules we develop an algorithm for counting AAGs, shown
as Algorithm 3. Note that the parameters to the Count AAGS function are the
Differential Weight Pattern we are counting denoted as DWP, and four integers,
t1, t2, t3 and t4, that store the tap positions (see Section 2.1). We start counting
AAGs at position t4 since all differences where i < t4 would not count due to
exception 3.

Algorithm 3 Count AAGS( DWP[ ], t1, t2, t3, t4 )

AAG = 0
for i = t4 to (len(DWP ) + t4) do

AAGt1 ← 0, AAGt2 ← 0, AAGt3 ← 0, AAGt4 ← 0
if (i− t1) < len(DWP ) then

AAGt1 ← DWP [i− t1]
end if
if (i− t2) < len(DWP ) then

AAGt2 ← DWP [i− t2]
end if
if (i− t3) < len(DWP ) then

AAGt3 ← DWP [i− t3]
end if
AAGt4 ← DWP [i− t4]
AAG = AAG + max(AAGt1 , AAGt2 , AAGt3 , AAGt4)

end for
return AAG

As noted in an Official Comment on MD6 posted to the NIST list, a gap
was discovered in the differential resistance proof[2]. The gap consisted of a
bug in the program that searched through all valid paths to establish the AAG
lower bound for s rounds. When this bug was corrected by members of the
MD6 team, the lower bounds generated (see Table 1) were such that 153 rounds
were no longer sufficient to prove that at least 256 AND gates are activated and
therefore no longer sufficient to prove differential resistance for 512-bit MD6.
The limiting factor in the proof was not the proof method per se, but rather
the performance characteristics of the program that was searching these paths.
The number of possible paths increases dramatically with higher values of s and
this increase makes finding a sufficient lower bound computationally infeasible.

We will now, in detail, examine the results and implications from the cor-
rected prover. According to the results from the corrected prover, as presented

2For example consider the case in which the variable i from Algorithm 1 is small enough
that i− t4 < 0. Under these circumstances the tap position t4 actually exists on the previous
segment and is therefore undetermined.
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in Table 1, a lower bound of 256 AAGs requires at least 244 rounds (not includ-
ing the security margin of 15 rounds).

We will now walk through the steps we took to extend the results in Table
1 to the result for 244 rounds. First, given the lower bound for 14 rounds of 15
AAGs we use eq 6.8 to extend this lower bound to 244 rounds. Then, repeating
the lower bound for 14 rounds 17 times, we get a lower bound of 255 AAGs for
238 rounds.

17× 14 = 238 rounds

255 AAGs = 15× b238/14c

255 AAGs is just shy of the 256 AAGs we require, so we increase the number
of rounds by 6, and use the lower bound for 6 rounds to get add an additional
2 AAGs.

17× 14 + 6 = 244 rounds

257 AAGs = (15× b238/14c) + (2× b6/6c)

The MD6 NIST Proposal assumed an additional security margin of 15 rounds,
raising the number of rounds to 259. As the recommended number of rounds
for 512 bit MD6 only is 168 rounds, the corrected program is unable to show
that 512 bit MD6 is secure against differential attacks within the recommended
number of rounds.

s 6−8 9−10 11 12 13 14
LB on AAGs 2 4 5 11 13 ≥15

Table 1: Computer-generated AAG lower bounds for s-round differential weight
patterns, using the corrected initial program.

4 Computing an Improved Lower Bound

In Section 3, we discussed a method for lower bounding the workload of a
standard differential attack on MD6. Unfortunately the computer generated
element of the proof was too computationally intensive to prove a satisfactory
lower bound. In this section we build on this prior method to show an improved
method which provides a satisfying lower bound.

We do this in three steps. First in Section 4.1 we classify differential weight
patterns into two classes, trivial and non-trivial patterns. We use the simple
nature of trivial patterns to quickly compute a trivial patterns lower bound.
Second in Section 4.2 we reason about the properties of non-trivial patterns to
develop a more cost effective strategy for lower bounding non-trivial patterns
which we use to lower bound non-trivial patterns. Third and finally in Section
4.3 we assemble the trivial and non-trivial lower bound into a general lower
bound.
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4.1 Types of Differential Weight Patterns

We classify differential weight patterns into two classes: trivial and non-trivial.
In essence we are attempting to classify patterns that are cheap to lower bound
and patterns that are expensive to lower bound, allowing us to focus a cost-
benefit analysis on the expensive patterns (non-trivial patterns). Our main
intuition in lower bounding non-trivial patterns is that the computational cost
of finding AAGs varies depending on what part of the pattern we are searching.
We save computational resources by not searching for AAGs on the expensive
parts of a pattern, which allows us to spend these resources with far greater
effect on the more affordable sections of a pattern.

A Trivial pattern is any differential weight pattern which has three or less
differential positions in its first rotation.

A Non-trivial pattern is any differential weight pattern that contains at
least four differential positions in its first rotation, and at least four differential
positions in each subsequent rotation.

Here we give some examples of trivial and non-trivial patterns :

Trivial [71.4]
[16.2, 54.1, 88.2]

[14.2, 35.1, 86.2, 124.2, 141.2, 158.2, 213.2, 230.2, 302.2]
Non-Trivial [1.1, 2.1, 3.1, 4.1]

[32.1, 35.1, 45.1, 81.1, 91.2]
[17.1, 35.1, 45.1, 81.1, 147.2, 150.2, 157.2, 160.2]

Note that any rotation in MD6 must either start a trivial pattern or a non-
trivial pattern, as any pattern within a rotation must either have less than 3
differential positions or greater than 3 positions. Which is to say that for the first
rotation trivial and non-trivial patterns are mutually exclusive. Also note that
a trivial pattern can contain a non-trivial pattern in its second or subsequent
rotation, just not in its first rotation.

Trivial patterns are patterns that are computationally cheap to compute as
the restriction on the number of possible positions in the first rotation greatly
reduces the number of possible valid positions for the first rotation and sub-
sequent rotations. Consider searching all the valid differential weight patterns
under a AAGs. There are at most

a∑
k=1

(
89

k

)
differential positions in the first rotation. But for a trivial pattern we are re-
stricted to three or less differential positions and thus there are at most

3∑
k=1

(
89

k

)
=

(
89

3

)
+

(
89

2

)
+ 89 = 117, 569

possible patterns for the first round.
Just as our AAG lower bound on trivial patterns is inexpensive to compute,

the lower bound on non-trivial patterns is expensive to compute (we chose the
definitions that we did for trivial and non-trivial patterns precisely because it
was a definition that broke lower bounding the differential weight patterns into
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an easy and a hard category). Non-trivial patterns have at least four differential
positions in each rotation, thus a non-trivial pattern costs at least(

89

4

)
= 2, 441, 626

Since we need to search well beyond the first rotation, the above analysis
is not complete but it serves as a point of reference for our intuition. The
more differential positions in the first rotation, the more possible differential
positions in subsequent rotations. Thus, not only will trivial patterns have a
smaller number of possible patterns in the first rotation, they are also likely to
have fewer possible patterns to search in each subsequent rotation. Practically
this means that the number of possible trivial patterns is small enough that
we can compute the lower bound for trivial patterns using only the original
approach from the MD6 report.

4.2 Computing Non-Trivial Patterns

Our technique for finding the AAG lower bound for non-trivial patterns is to
trade off the opportunity to count some AAGs for the ability to search more
rounds. This trade-off rests on the following observation; differences in the first
48 steps of the first rotation have a lower limit on the number of AND gates
they can activate.

As explained in exception 3 in Section 3.2, we avoid potential over counting
of AAGs by ignoring AAGs that might have been counted on a previous seg-
ment. A differential weight pattern which occurs in the first rotation can result
in significantly less AAGs than if that very same pattern had occurred in a
subsequent rotation. For example a difference occurring in word 2 of a segment
can only activate a maximum of AND gates equal to 1 times the weight of the
difference whereas a difference occurring in word 71 can activate a maximum of
AND gates 4 times the weight of its difference3. This fundamental inequality of
locations is the heart of our plan to improve the computational cost per AAG
for non-trivial patterns.

Our strategy is to skip first rotation and instead start the search on the
second rotation. Since we know that the first rotation has at least 4 differential
positions, we add an additional 4 AAGs to our total lower bound. While this
means that we will likely undercount the first rotation, doing so opens up more
fruitful rounds that previously were computationally beyond our reach. For
a purely computational standpoint trying all possible positions in the second
rotation is as complex as trying all possible positions the first rotation, but
searching the second rotation results in more AND gates being activated earlier
in the search and therefore allows us to hit our AAG goals quicker. In practice
this means that we run the prover introduced in the NIST MD6 Report with
a simple modification such that it skips the first rotation, adds an additional 4
AAGs to the final result, and only computes patterns with at least 4 differential
patterns per rotation.

3The reader may wish to further explore and verify this observation by running some
sample differential weight patterns containing only a single difference as input to Algorithm
3 and noting how the position in which a difference occurs can alter the maximum number of
AND gates that a difference can activate.
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Rounds Trivial LB on AAGs Non-Trivial LB on AAGs

6 2 4
7 2 4
8 2 6
9 4 7
10 4 7
11 5 7
12 11 14
13 13 16
14 19 16
15 22 17
16 22 ≥ 18
17 30 ≥ 35
18 34 −
19 35 −
20 38 −
21 39 −
22 47 −
23 55 −
24 60 −

Table 2: The Trivial and Non-Trivial Differential Weight Patterns AAG Lower
Bound

4.3 Assembling Trivial and Non-Trivial Patterns

After computing an AAG lower bound for trivial and non-trivial patterns, we
need to assemble these lower bounds into a lower bound that exceeds 256 AAGs
for some number of rounds r. We do this in three steps: first we build a list of
all possible concatenations of the trivial and non-trivial lower bounds that are
at least r (where r is the number of rounds we allow ourselves for MD6), second
we compute the AAG count for each element of the list and finally we choose
the element in the list that has the minimum AAGs count. This minimum AAG
combination is our extended lower bound. As the process for assembling these
lower bounds is fairly straightforward, we will not go into it in more detail in
this paper but interested parties may wish to consult the source code published
alongside this paper (see Section 6).

5 Results

Running the improved algorithm discussed in Section 4.1 we get the results for
Trivial and Non-Trivial patterns shown in Table 2. Using the method outlined
in 4.3, we assemble the trivial and non-trivial lower bounds to find an extended
lower bound for all the recommended input sizes of MD6, shown in Table 3.

We get a lower bound of 257 AAGs for 137 rounds for 512 bit MD6. In-
cluding the 15 round security margin, we get 152 rounds which is well below
the recommended 168 rounds. Therefore, not only is the number of rounds (168
rounds) used by MD6 sufficient to prove differential security, but a reduced
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input size resistant rounds MD6 rounds security margin AAGs
40 bits 24 50 26 25
80 bits 29 60 31 41
128 bits 43 72 29 68
160 bits 52 80 28 82
224 bits 66 96 30 113
256 bits 76 104 28 128
384 bits 106 136 30 192
512 bits 137 168 31 257

Table 3: Our complete results showing: the number of rounds necessary to prove
differential resistance for each of the proposed input sizes (resistant rounds), the
number of rounds recommended by the MD6 team (MD6 rounds), and the new
security margin our results establish.

round 512-bit MD6 could make the same guarantee allowing us to more than
double the security margin from 15 to 31 rounds. As discussed in Section 3.2 the
original technique required 259 rounds to show that 512-bit MD6 was resistant;
the new method results in a round reduction of 107 rounds.

6 Source Code

As the original result of the differential resistant of MD6 was overturned due to a
bug in the computer aided prover we throughly investigated the code, analyzed
the output for errors and wrote a series of exhaustive tests to increase our
confidence in the correctness of the prover. These tests are also made available
in the source code package.

The source code including tests, outputs, and instructions for duplicating
the results in this paper can be downloaded from the MD6 website at http:

//groups.csail.mit.edu/cis/md6/diffamp and alternately from the author’s
github repo available here https://github.com/EthanHeilman/MD6_diffp.

We would like to note that much of the code remains unchanged from the
program that was initially used in the MD6 differential resistance proof pre-
sented in the MD6 report. We built on the works of others.

7 Conclusion

In this paper we discussed an improved method for proving the differential secu-
rity of MD6 by introducing the classes of differential patterns, and investigating
the properties of these classes to extend the performance envelope of the com-
puter aided proof. The results from this method reestablished MD6’s security
claims by proving MD6’s resistance to differential cryptanalysis. Additionally
we show that a reduced 152 round variant of MD6 would also be secure and
that the recommended number of rounds for MD6 (168 rounds) has a security
margin of more than twice as large as originally claimed.
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