Collusion-Preserving Computation

JOEL ALWEN JONATHAN KATZ UELI MAURER
New York University University of Maryland ETH Zurich
jalwen@cs.nyu.edu jkatzQcs.umd.edu maurer@inf.ethz.ch

VASSILIS ZIKAS
University of Maryland
vzikas@Qcs.umd.edu

Abstract

In collusion-free protocols, subliminal communication is impossible and parties are thus
unable to communicate “any information beyond what the protocol allows”. Collusion-free
protocols are interesting for several reasons, but have specifically attracted attention because
they can be used to reduce trust in game-theoretic mechanisms. Collusion-free protocols are
impossible to achieve (in general) when all parties are connected by point-to-point channels, but
exist under certain physical assumptions (Lepinksi et al., STOC 2005) or in specific network
topologies (Alwen et al., Crypto 2008).

We provide a “clean-slate” definition of the stronger notion of collusion preservation. Our
goals in revisiting the definition are:

e To give a definition with respect to arbitrary communication resources (that includes as
special cases the communication models from prior work). We can then, in particular,
better understand what types of resources enable collusion-preserving protocols.

e To construct protocols that allow no additional subliminal communication in the case
when parties can communicate (a bounded amount of information) via other means. (This
property is not implied by collusion-freeness.)

e To provide a definition supporting composition, so that protocols can be designed in a
modular fashion using sub-protocols run among subsets of the parties.

In addition to proposing the definition, we explore implications of our model and show a general
feasibility result for collusion-preserving computation of arbitrary functionalities.

Contents

(1 _Introduction|

[2 Collusion-Preserving Computation|
2.1 Preliminaries and Notationl
2.2 An Intuitive Description.|.o L
2.3 Composition Theorem and Other Tools|
[2.3.1 Smmpliied CP|. o
[2.3.2 A Composition Theorem|. oo
2.4 Relations to Existing Security Notions.|. L.
2.4.1 CP Implies GUC. o
[2.4.2 Translating GUC Statements to CP Statements|.

[3 Necessary Assumptions for CP|

[3.2 Independent Randommness|
3.3 Programmability.|o

[4 GUC Fallback Security|

[6 A General Feasibility Result|
5.1 Bootstrapping from GUC| o o
5.2 Adding Fallback Security|
[5.2.1 A Detailed Description of Mz and CP(7).|
[5.2.2 Completing the Proof of [Lemma 5.3

[6 Implications for Mechanism Design|
6.1 Viewing Protocols as Games|.o
6.2 CP Realizing Mechanisms| oL o
6.3 Reducing Trust in Mechanisms|
6.3.1 Equivalent Games|
16.3.2 On Output Synchronization in a Stand-Alone Game|
[6.3.3 Implications of CP Compiler to Game Theory|.

[A° Common Elements of (G)UC Models.|

(B Relations to Abstract Cryptography|

13
15
15
16

17

19
21
21
23
27
31

32
32
33
34
34
35
36
38

42

43

1 Introduction

Subliminal channels in protocols [38] 39, 40] allow parties to embed “disallowed” communication
into the messages of the protocol itself, without being detected. (For example, a party might
communicate a bit b by sending a valid protocol-message with first bit equal to b.) The existence
of subliminal channels is often problematic. In a large-scale distributed computation, for instance,
subliminal channels could allow two parties to coordinate their actions (i.e., to collude) even if they
may not have been aware of each other in advance. In other settings, parties may be disallowed
or otherwise unable to communicate directly, and it would be undesirable if they could use the
protocol itself to convey information.

More recently, subliminal channels have arisen as a concern in the context of cryptographic
implementations of game-theoretic mechanisms. Here, informally, there is a game in which parties
send their types/inputs to a trusted party which then computes an outcome/result. One might
naturally want to replace the trusted party with a cryptographic protocol executed by the par-
ties [15] 19, 6] [32] 33| B4, 28, 1], 2 26, 24]. Using protocols for secure multi-party computation (e.g.,
[21]) preserves Nash equilibria; however, such protocols do not suffice for implementing general
equilibria precisely because they have subliminal channels and thus enable collusion in the real
world even if such collusion is impossible in the original game. This realization has motivated
substantial effort toward constructing collusion-free protocols that do not allow any subliminal
communication [32, 33, B4, 28| 26, 4, 3, 24]. Collusion-free protocols are impossible when parties
are connected by pairwise communication channels, and so researchers have turned to other commu-
nication models. It is known that collusion-free computation of arbitrary functionalities is possible
if parties have access to a semi-trusted “ballot box” and can communicate publicly via (physical)
envelopes [33] 28, 26] 24], or if parties are connected (via standard communication channels) to a
semi-trusted entity in a “star network” topology [4, 3].

1.1 A New Definition: Collusion Preservation

The works of Izmalkov et al. [33] 28], 26, 24] and Alwen et al. |4 [3] give incomparable definitions of
collusion freeness, each tailored (to some extent) to the specific communication models under con-
sideration. We revisit these definitions, and propose a stronger notion called collusion preservatz’on[]
Our aim here is to provide a clean, general-purpose definition that better handles composition, both
when collusion-preserving protocols are run as sub-routines within some larger protocol, as well as
when collusion-preserving protocols are run concurrently with arbitrary other protocols (whether
collusion-preserving or not). In what follows, we give an overview of our definition and expound
further on the above points.

Overview of our definition. We follow the definitional paradigm used by Alwen et al. [4, 3], and
review their model here. In the real-world execution of a protocol, different adversaries can corrupt
different parties. Importantly, these adversaries cannot communicate directly; instead, all parties
are connected in a “star network” topology with a semi-trusted mediator. (This is in contrast to
usual cryptographic definitions, which assume a “monolithic” adversary who controls all corrupted
parties and can coordinate their actions.) Two notions of security are then defined, depending on
whether or not the mediator is honest:

!Collusion-free protocols ensure that if parties can communicate nothing without the protocol, then they can
communicate nothing with the protocol. Collusion-preserving protocols provide a stronger guarantee: that whatever
parties can communicate without the protocol, they can communicate no more with the protocol. See further
discussion below.

CONDITIONAL COLLUSION FREENESS: When the mediator is honest, collusion freeness is required.
This is formalized by considering an ideal world where there are similarly adversaries who
cannot communicate directly, but can only send inputs to (and receive outputs from) an ideal
functionality. A protocol is collusion-free if for any PPT real-world adversaries interacting
with the (honest) mediator, there are PPT ideal-world adversaries such that the real and
ideal worlds are indistinguishable. Indistinguishability here is formulated in a “stand-alone”
manner [20].

FALLBACK SECURITY: When the mediator is dishonest, we clearly cannot hope for collusion
freeness any more. Nevertheless a strong and meaningful notion of security can be achieved.
Namely, adversaries are now allowed to communicate arbitrarily (in both the real and ideal
worlds), and the protocol is required to satisfy the standard notion of stand-alone security [20].

We strengthen and extend the definition of collusion freeness in several ways. First, rather than
considering a specific “star network” topology, or the specific physical assumptions of [33] 28, 26, 24],
we consider a general resource to which the parties have access in the real world. (This resource is
the only means of “legal” communication in the real world, though as we will see in a moment there
may be other “illicit” means of communication available.) In addition to the inherent advantages
of a more general definition, formulating a generic definition allows us to characterize the minimal
properties that resources need in order to achieve collusion-preserving computation.

An additional difference is that we formulate our definitions in a universally composable (UC) [8]
fashion, where there is an environment controlling the entire execution. (Actually, we use the gen-
eralized UC framework [I0] as our starting point.) This has significant ramifications, since the
environment itself can now act as a communication channel for the adversaries. If the environment
chooses to allow no communication between the adversaries, then our definitions essentially “de-
fault” to the previous setting of collusion freeness. Crucially, however, if the environment allows
the adversaries to communicate ¢ bits of information “for free”, then a collusion-preserving protocol
ensures that the adversaries cannot communicate more than ¢ bits (on top of the communication
allowed by the ideal functionality) by running the protocol in the presence of the stated resource.
(We show below a simple counter-example demonstrating that collusion freeness does not imply
collusion preservation.) Moreover, we obtain composition “for free” due to the power of the UC
framework. In this way we improve upon the results of [4] [3], which do not claim nor realize any
form of composition, as well as the results of [33] 28, 26], 24] which obtain only a limited sort of
composition; see below.

Collusion preservation is stronger than collusion freeness. We give a simple counter-
example showing that collusion preservation is stronger than collusion freeness. Consider a protocol
7 that is collusion-free in the communication model of [4, B3] where, in short, there is a central
mediator to whom all parties are connected (and no other channels are available). We obtain a new
protocol 7', identical to m except for the following two modifications to the mediator’s behavior
(where, \ is the security parameter):

1. The mediator takes a special message m € {0, 1}2)‘ from Py. In response, the mediator chooses
a random r € {0,1}*, sends it to Py, and stores (r,m).

2. The mediator takes a special message r’ € {0,1}* from Py. If the mediator has a stored tuple
of the form (r',m), it sends m to P2 (and otherwise simply ignore r).

It is not hard to see that 7’ remains collusion-free: intuitively, this is because Py can guess 7’ = r
with only negligible probabilityE] However, 7 is not collusion preserving. Specifically, if P; and Pg
have access to a A-bit channel then they can use 7’ to communicate 2\ bits!

One can interpret this counter-example in several ways. One could imagine that 7’ is run in a
setting in which P; and P2 have access to a physical channel that only allows communication of A
bits. Alternately, the parties might be running 7’ while they are concurrently running some other
protocol that is not collusion-free and enables the parties to (subliminally) communicate A bits.
Either way, the implication is the same: a collusion-free protocol may potentially allow additional
communication once parties have the ability to communicate at all.

Protocol composition. A critical feature of the protocols of Izmalkov et al. [33, 28| 26, [24]
is that they are only collusion-free when at least one party running the protocol is honest. The
underlying reason is that in their communication model parties have the ability to communicate
arbitrary information; the guarantee provided by their protocols is that any such communication
will be detected. Collusion freeness thus requires an honest party to perform the detection.

This limitation may not appear to be a problem, since one typically does not care to provide
any guarantees once all parties are malicious. It becomes a problem, however, when collusion-free
protocols are used as sub-routines within some larger protocol. Consider, for example, a collusion-
free protocol II for three parties Py, Py, P3 in which each pair of parties runs some collusion-free
sub-protocol 7 between themselves. If P; and Py are malicious, then m may provide no guarantees
which means that they may now be able to communicate an unlimited amount of information; this
could clearly be problematic with regard to the “outer protocol” II. (Izmalkov et al. implicitly
avoid this issue by having all parties take part in any sub-protocols that are run. While this solves
the issue, it is not an efficient approach.)

General feasibility with GUC fallback. Complementing and motivating our definitional work,
we provide a completeness result for strong realization of a large class of functionalities. More
concretely, for any functionality in this class we provide a protocol compiler and a particular
resource which satisfies a universally composable version of the security definition from [3]: the
compiled protocol provides Collusion Preserving (CP) security when executed with this particular
resource, and, as a strong fallback, when executed with an arbitrary resource, it achieves GUC-type
security, i.e., emulation by “monolithic” simulators.

Implications for computational game theory. The CP framework is defined in terms of
computationally bounded parties. As such the implications for game theory concern games with
similar limitations as in the field of algorithmic game theory [37]. We consider these (extensive form)
computational games to be equivalent in some sense if they contain the same set of computational
Nash Equilibria (¢cNE) which also implies that stronger kinds equilibria are also preserved.
Translating the new security notion and our general feasibility result to the setting of compu-
tational mediated games we show how to replace a mechanism with a protocol running over a “less
trusted” mechanism such that the resulting game is equivalent to the original. By less trusted we
mean that the mechanism need no longer be trusted to enforce privacy, nor to compute the game
round functions correctly. (However it is still trusted to enforce both fairness and the isolation of

players.)

2In particular the simulators for =’ can behave just as for = with the only modification that the simulator for P;
responds with a random message r when it receives the special message m from it’s adversary.

In comparison to results of [25] 27 [24] which provide information theoretic-equivalence between
games using an unconventional model of computation, the results in this paper provide only compu-
tational equivalence but use a standard computational model. However their notion of composition
is weaker in two ways. Conceptually it is not scalable but more concretely it seems to allow for
only rather limited notion of concurrency. In particular protocols that implement a mechanism
must be run atomically with respect to actions in any concurrent games. In the notion obtained
in this paper is fully UC composable in the more traditional sense. On the other hand while our
protocols prevent signaling via aborts as in [25], they do not provide the full robustness to aborts
of [27, 24]. Finally the amount of randomness in the public view of our protocols is limited to a
single pre-computation round which can be run before types are distributed. From that point on
there is no further “randomness pollution”. This is similar to [31], better then [25] (where even
executions of a protocol produce randomness pollution) but weaker then [27, 24] which do not
produce any randomness pollution at all.

Relations to Abstract Cryptography. Maurer and Renner introduced the Abstract Cryptog-
raphy (AC) framework [35]. In we describe how our model can be specified using
the language of the Abstract Cryptography framework. Besides elucidating parallels between these
two frameworks, to the best of our knowledge the following discussion represents the first concrete
instantiation of AC.

Outline of this paper. In we define a Universally Composable version of Collusion
Freeness, called Collusion Preservation; we prove its composability and show how it relates to exist-
ing universally composable security notions. In[Section 3|we characterize three minimal assumptions
any resource must have if it is to be used for realizing some important classes of functionalities;
our characterization rules out the use of standard communications models to implement almost
any interesting functionality. Next, in we prove our general feasibility result by provid-
ing a protocol compiler and a particular resource with which a large class of functionalities can
be CP implemented in a strong way that guarantees a GUC-type fallback. In we show
how to use the protocol compiler to significantly reduce the trust in a mechanism for games with
computationally bounded players.

2 Collusion-Preserving Computation

In this section we define our framework for investigating universally composable collusion freeness,
namely collusion-preserving computation. On the highest level the idea is to combine the strong
composability properties of the GUC framework of [11] with the model of split simulators along
the lines of [3].

2.1 Preliminaries and Notation

We denote by [n] the set {1,...,n} (by convention [0] = @) and for a set Z C [n] we write Z to
denote the set [n]\ Z. Similarly, for element i € [n] we write i to denote the set [n]\ {i}. Using this
notation we denote by Az a set of ITMs {A;};cz. For input tuple 27 = {z; }icz we write Az(x7) to
denote that for all i € Z the ITM A; is run with input z; (and a fresh uniform independent random
tape).

Additionally we will make heavy use of elements from the GUC framework such GUC protocols
and GUC setup functionalities. For reasons of space we assume passing familiarity with the model

used their in. For a more detailed description of the main features of GUC used to describe our

framework we refer to

2.2 An Intuitive Description.

Starting from the GUC model we make the following modifications:

SPLIT ADVERSARIES/SIMULATORS: Instead of a monolithic adversary/simulator we consider a
set of n (independent) PPT adversaries A, = {A; : i € [n]}, where A; correspond to the
adversary associated with the player i (and can corrupt at most this party). Moreover, we
ask that for each A; € A, there exists an (independent) simulator Sim;.

CORRUPTED-SET INDEPENDENCE: We also require that the simulators do not depend on each
other. In other words the code of simulator Sim; is the same for any set of adversaries A,
and By, as long as A; = B;.

Modeling Split Adversaries. To incorporate the notion of a split adversary in the GUC
model, we make the following modifications to the model of execution: Let P = [n] be the
player set; instead of a single adversary, we introduce to the model n independent adversaries
A1,..., Ay, such that for each P; € P, A; might corrupt at most party pZ-E| For this purpose, each
adversary is associated with a unique

adversary-ID, which includes the party-ID GuUC CP
of the corresponding party. Each of the
adversaries A; has a dedicated interface to R BRRLIEY R L L
communicate with Z E| Note that, unlike . No T T

urruptions I] I [n]
the standard (G)UC models, the adver- ! Lo
saries do not serve as an underlying inse- A——2Z A.A—z

|

cure network, as they do not share com-
munication tapes with the honest parties

or with each other. In order to make state-

ments about computation of non-trivially Set T 7?’ . T ~ IR\ T
computable, i.e., non-locally computable, Corrupt | z [n] je€ I/l \\i ez |
functionalities one needs to consider hybrid A = A.A—z
worlds, where the hybrid serves a the com- S

munication resource for the parties and/or
as the “co-ordination” mechanism for the Figure 1: UC corruptions compared to CP corrup-
adversaries. In the following we give a tions.(Setup functionalities are left implicit.)

generic specification of the mode of oper-

ation of functionalities in our split adversaries setting and sketch the model of execution of proto-
col in the corresponding hybrid-model. The difference between the multi-adversary hybrid world
execution and the standard (G)UC execution is graphically represented in

Resources, Shared Functionalities, and Exclusive Protocols. The main difference between
a CP functionality F and GUC one is that besides the n interfaces to the (honest) parties it also
has interfaces to each of the n adversaries A1,...,A,. In other words rather then n interfaces a CP
functionality has 2n interfaces.

3The corruption mechanism is similar to the (G)UC setting, i.e., the environment Z requests A; corrupt P;.
4Technically, as in the UC setting, each such interface corresponds to A; and Z sharing a communication tape.

Moreover, similar to the GUC framework (but in contrast to plain UC) we distinguish between
two types of functionalities: resources which we denote with capital calligraphic font as in “R” and
shared functionalities which we denote with an additional over-line as in “G”. Formally a resource
‘R maintains state only with respect to a single instance of a protocol, while a shared functionality
G can maintain state across protocol instancesﬂ For example concurrent executions can maintain
shared state via say a global CRS (like the ACRS of the GUC framework) or via a global PKI
(such as the KRK setup for GUC) as long as these are modeled as shared functionalities. However,
although concurrent instances of a protocol m may use the same resource R, the behavior of R in
one execution of m must be independent of all other executions of 7 (and more generally of all other
concurrent protocols instantiated by the environment). For clarity, in the remainder of this work
we will usually refer to shared functionalities simply as setup and protocols which only share state
across executions through some setup G as G-subroutine respecting. As observed already in previous
works, e.g., see [11], in practice most protocols are in fact subroutine respecting with respect to the
shared functionality which they use as setupﬁ

The R-Hybrid World. A CP execution in the R-hybrid world is defined via a straightforward
generalization to the analogous GUC execution. In particular when the environment Z requests
corruption of a player P; the adversary A; is given control of P;’s interface to R (c.f. . On a
technical level the execution of an R-hybrid pro-

tocol is almost identical to an execution in the _R-Hybrid J-Ideal

GUC framework. In particular, environments 7 7

can instead invoke an arbitrary number of ITI R T F D
of any kind; even those running other protocols jeT , | ieT |w lie f,' | €T |
and sharing state via some setup. We denote R R

the output of the environment Z when witness- A.A—2=z Simj... Sim, — Z
ing an execution of protocol 7 := 7, attacked by i L

dversaries A = Ay, in the R-hybrid model
adversaries (n] 0 the R-hybrid model as Figure 2: R-hybrid vs. F-ideal CP executions

where playerset Z C [n] has been corrupted.
(Setup functionalities are left implicit.)

CP‘EXECZS,A,Z Finally, we say a protocol 7 is
R-exclusive if it makes use of no other resources
(shared or otherwise) then R.

On Bounding the Number of Calls to Re-

sources. A primary difference between how executions in a R-hybrid world are modeled in the
GUC and CP frameworks is that in the CP case parties can communicate with at most a single
instance of R. This is in contrast to all other UC like models where say an OT-hybrid world is
understood to mean that parties can make as many calls as they wish to the OT functionality
instantiating a new copy for each new OT transaction they wish to perform.

At first glance this may seem like a rather minor modeling issue since anyway environments
are not always aware of the presence of ideal functionalities (otherwise distinguishing hybrid world
would be trivial). However we argue that, in contrast to a setting with a monolithic adversary
where no such restriction is made, for a composable notion with split adversaries fixing the number
of instances of functionalities (i.e. resources) available to adversaries is in fact crucial for capturing
the desired intuition of collusion freeness.

For example a primary motivation of this work is to provide a way for reducing trust in the

5Technically this is modeled by restricting an instance of a resource to only accept inputs from ITI with a fixed
session ID value while a shared functionality is can accept inputs from an ITI with any session ID.
5This notion is completely analogous to that of “subroutine respecting” as defined for the (G)UC frameworks.

mediators used in mechanism design by providing protocols which can be used to replace the inter-
action with the mediator. However if we do not restrict the number of instances of the mechanism
with which parties can interact then there is no meaningful way to capture a game which calls for
only a single instance.

From a cryptographic point of view, suppose we prove that some protocol 7 “realizes” a func-
tionality F without fixing the number of instances of F simulators can interact with. Intuitively,
this would mean 7 allows as much collusion as can be obtained by an unlimited number of calls to
F. If F is a one-bit bi-directional channel for example the meaning of the statement changes com-
pletely if simulators use only a single instance of F to simulate versus when they can use unlimited
calls to F.

We contrast this with the case of a monolithic adversary where no such issue arises (and indeed,
the definition of (G)UC seem to allow for such simulations). The underlying reason is that even in
the ideal world there is only a single simulator. Thus any correlation obtained by the simulators in
the previous example for say player i and player j from the first execution of 7 is now irrelevant as
the same correlation can be simulated trivially internally by the monolithic simulator controlling
both parties. Thus no intuition is lost by not fixing how many calls to the ideal functionality are
made for simulation purposes.

Definition 2.1 (Collusion-Preserving Computation). Let G be a setup, R and F be n-party re-
sources, © be a {G, R}-exclusive protocol and ¢ be a {G, F}-exclusive protocol (both n-party proto-
cols). Then we say that 7 collusion-preservingly (CP) emulates ¢ in the {G, R}-hybrid world, if
there exists a collection of efficiently computable transformations Sim = Simp,; mapping ITMs to
ITMs such that for every set of adversaries A = A, and every PPT environment Z the following
holds: ~ ~
CP-EXEC]Y ; ~ CP-EXECJL -

Realization, Reductions and the “C” Notation. As in the (G)UC frameworks, we distin-
guish between the more general notion of “emulation” and the special case of “realization”. For an
(implicit) functionality F we denote by Df the " dummy F-hybrid protocol which simply acts as
a transparent conduit between the i"* honest and adversarial interfaces of F and Z. In particular
DZ-]: forwards all messages it receives from Z to the functionality F (where the choice of adversarial
or honest interface is specified by Z) and vise-versa. If for functionality F, an R-hybrid protocol 7
CP-emulates D7 then we say that 7 realizes F (in the R-hybrid world). In symbols we denote this
by F CS* R, which can intuitively be read as “F CP-reduces to R via protocol ﬂ”[] By omitting
7 in this notation we denote simply the existence of some protocol for which the relation holds.
We also use “CGUC” to denote the analogous relation but for GUC-realization.

By convention for any functionality R we consider a pair of protocols equivalent m = ¢ in the
R-hybrid world if for all functionalities F we have:

FLSPR <~ FLCJPR

In particular let D® be the dummy protocol for R. Then by convention, for any protocol 7 we
have 72" = 7 in the R-hybrid world where 7™ is the protocol behaving as m but with calls to R
being forwarded through D® as if they came form Z.

To simplify notation and maintain consistency with previous UC-type works, whenever an
explicit protocol for the honest players is missing in the CP-EXEC notation then it is implicitly
assumed that they are running D7 . For example we might write CP—EXEC{M, = when the honest

" Alternatively it can also be read as “Protocol w CP-realizes F in the R hybrid model.”

players are running D[}T; - For clarity, we include a graphical representation of the multi-adversary
hybrid-world /ideal-world definitions in

2.3 Composition Theorem and Other Tools

We formalize a strong (universally) composable property of CP security and, along the way, provide
a useful tool for proving CP security of protocols.

2.3.1 Simplified CP

Following the approach of [11] we make two simplifications to the definition of CP security obtaining
what we call Simplified CP (SCP)EI SCP has two desirable properties:

1. It significantly easier to prove a protocol SCP secure then CP secure.
2. Yet SCP security is equivalent to CP security under certain reasonable conditions.

Combining these two property also results in a simpler proof of the main UC-type composition
theorem then if we try and prove it directly for CP security.

To simplify the task of proving protocols SCP secure we restrict the class of environments being
considered (much like "Externalized UC” of [I1]). Let G be a setup, R be a resource and 7 be an
(G, R)-exclusive protocol. ﬂ Then for SCP security we quantify only over restricted environments
which are PPT environments which do not invoke any other ITMs besides a single instance of
protocol 7 as well as one instance of the dummy protocol DY. The second modification we make
to CP is that we quantify only over dummy adversaries. That is for all i € [n] we consider only the
adversary A; which acts as a conduit between Z and the resource R.

Proving SCP security is significantly easier than proving CP security, because only a single kind
of simulator need be considered (namely for the dummy adversaries). Moreover when verifying
the correctness of these simulators it is easier (tractable) to reason about the entire view of an
environment if it’s view consists of only a single execution of the protocol and the interaction with
the shared functionality.

Definition 2.2 (Simplified Collusion-Preserving Computation). Let G be a setup, R and F be
n-party resources, m be a {G,R}-exclusive protocols and ¢ be a {G,F}-exclusive protocols (both
n-party protocols). Let B = B’[Tn} be the set of n dummy adversaries interacting with w. Then we
say that m Simplified CP (SCP) emulates ¢ in the {G, R}-hybrid world, if there exists a collection
of efficiently computable transformations Sim = Sim(,,) mapping ITMs to ITMs such that for every
restricted environment Z it holds that:

CP-EXEC] T, ~ CP-EXEC[L o -
Equivalence Theorem. We first show that although SCP security may at first glance seem
weaker then CP security, in fact they are equivalent. As in the GUC framework, results relating
SCP to CP are conditioned on protocols being subroutine respecting. Intuitively this is because
only if a protocol is G-subroutine respecting can it be guaranteed that giving the environment access
to G is sufficient to faithfully internally emulate multiple concurrent executions of the protocol.

Theorem 2.3 (Equivalence). Let G be a setup, R and F be resources, © be a (G, R)-exclusive
protocol and ¢ be a (G, F)-exclusive protocol. Then m CP emulates ¢ if and only if 1 SCP emulates
@.

8This can be thought of as being analogous to Externalized-UC combined with the Dummy Lemma.
9Note that this implies that 7 is also G-subroutine respecting protocol.

Proof. As the set of environments and adversaries for SCP are a subset of those for CP so the
forwards direction (“=") is trivially true.

The backwards direction (“<=") requires more work. It combines in a straight forward manner
the ideas of the proof of the so called “dummy lemma” of [9] with those from the proof of Theorem
21[1 1]@ Indeed the original proofs translate almost one-to-one and all that is needed is to verify
that splitting the adversaries does not cause a break down in the logical arguments.

For completeness we sketch the entire proof highlighting the changes required to accommodate
split adversaries. We first argue that quantifying over fewer environments does not change the
quality of the security notion. Then we argue that considering only dummy adversaries also has
no effect on the quality of the security notion which concludes the proof.

We show that for any Z in the CP framework there exists a restricted environment Z with at
most polynomial loss in advantage at distinguishing executions of ¢ from 7. This breaks down into
two arguments:

1. Instantiating polynomially many arbitrary concurrent protocols communicating with G does
not help Z as Z has a direct link to G (via the dummy protocol for G) and so can perfectly
emulate all concurrent protocols internally.

2. Interacting with polynomially many instances of m does not help Z significantly via a
standard hybrid argument. The core of the hybrid argument is that there must be an [
concurrent execution of 7 that helps Z distinguish significantly and so Z can simulate the
previous [— 1 execution and use the [as the real one. Therefore there is at most a polynomial
loss in the advantage of Z when compared to the advantage of Z.

Roughly speaking, we have shown that a protocol looks the same to all efficient environments
only if it looks the same to all restricted environments. It remains to show that for any distinguishing
restricted environment interacting with arbitrary adversaries there exists a distinguishing restricted
environment interacting only with dummy adversaries. The proof remains essentially unchanged
from that of the dummy lemma in [9] so we only briefly mention how to extended it to the SCP
setting. In particular it relies on the idea that the simulator for dummy adversaries can be used as
“on-line translators” turning views of ¢ into views of .

The original lemma (Claim 10 in [9]) concerns a single dummy adversary B™ attacking 7 (poten-
tially controlling multiple players Z € [n] rather then a set of individual dummies each controlling
only a single player). By assumption there exists a simulator Si~m(B7r) attacking execution(s) of
¢ that is able to create an indistinguishable view of execution(s) of 7 for all players it controls
which it feeds to the environment (just as B™ would when attack 7). The proof uses this fact to
construct, for any adversary A attacking 7, a simulator Sim(A) attacking ¢ with similar capabilities
as Sim(B™). More precisely, for an arbitrary adversary A the proof describes a simulator Sim(A)
which internally emulates A and let’s it interact with an internal emulation of Sim which is used
to translate the view of ¢ into a matching view of 7 for A to attack. To see that Sim(A) is a good

simulator it is observed that an environment Z which can distinguish between EXEC% A;.z and
))

EXECi Simz(a),z €31 be used to break the correctness of Sim(B™). All that is needed is for an
=,Simz(A),

environment 2’ to run Z and A internally and let them interact directly with Sim(B™) or BT.
The same argument caries through to our setting. In the SCP framework, given a set of n
simulators which work for any subset of dummy adversaries, the same construction of simulators
for sets of arbitrarily corrupt players will work. Let A, be a set of arbitrary adversaries attacking 7.
The goal is to describe an (efficient) transformation Sim; mapping A; to a corresponding simulator

"Theorem 2.1 in [I1] states that GUC and EUC are equivalent.

10

Sim;(A;) for all i € [n]. By assumption, for dummy adversaries BE;Z] interacting with protocol # SCP

security already provides for a set of transformations Si~m[n] such that the simulators SiNm[n](B’[Tn])
interact with an execution of ¢ and can simulate all dummy adversaries’ views of 7 faithfully to
any (restricted) environment. For each i € [n] we construct Sim;(BT) from Sim;(BT) just as in the
original proof.

It remains to show that these are good constructions. Formally we must show that no environ-

ment Z has significantly different output for CP—EXEC%E{R]’ ~ and for CP_EXEngm[n](Bf; D
Suppose for sake of contradiction that Z can distinguish between these two executions. In this
case we can build restricted environment Z’ which breaks the SCP security of m by absorbing An]
and Z just as in the original proof. Each A; interacts directly with the " adversary (be it B] or
Sfm,(Bf)) Then by outputting the same bit as Z environment Z’ has an identical advantage at
breaking the SCP security of m as Z has at breaking the simulation of Sim[n}(B%). The fact that
there are n different absorbed A; each interacting with a single external adversary (rather then
one A interacting with all corrupt players) has no effect on the strategy of Z’ as it can directly
communicate with all external adversaries and so does not rely on their implicit coordination via

a monolithic modeling. O

2.3.2 A Composition Theorem

As a main motivation for the CP model we put forth the goal of providing a formal and rigorous
notion of composability for collusion-free security. We capture this in the following central theorem.

Theorem 2.4 (Composition). Let R be an arbitrary resource and G be a global setup (i.e. shared)
functionality. Let p, ™ and ¢ be n-party protocols in the {G, R}-hybrid world such that 7 and ¢ are
G-subroutine respecting. If # SCP-emulates ¢ and p uses ¢ as a subroutine then p™'® CP-emulates

p in {G, R}-hybrid world.

Proof. The ideas behind the proof of GUC composition carry over directly to the setting with split
simulators but for completeness we give a full proof. For further details we refer to the proof of
Theorem 2.1 in [11] which can be applied almost directly to this setting.

Let B := By, be the set of dummy adversaries for the {G, R}-hybrid world. Following the same
logic as in the proof of it suffices to prove that for any efficient environment Z:

gyR ~ QvR
CP'EXEpr/é,B,z ~ CP-EXECMA’Z. (1)

Since m and ¢ are subroutine respecting it follows by that m CP-emulates ¢. Thus

there exist simulators Sim = Sim,,;(B) such that

CP-EXECYF . ~ CP-EXECIE (2)

for any environment Z;. We use Sim to construct A satisfying Equation [Adversary A; inter-
nally runs Sim;(B;) forwarding messages from Z intended for instances of m; to Sim;(B;) instead.
Moreover, any messages from Sim;(B;) destined for either Z or ¢; are forwarded faithfully.

We note that the transformation from B; to A; is efficiently computable and moreover it depends
only on the code of B;. Thus it remains to show that Equation [I] is satisfied. We do this by
constructing an environment Z, for which Equation [2| holds if and only if Equation [If holds. The
fact that m SCP-emulates ¢ then concludes the proof.

Intuitively Z; absorbs Z, p and all of A except Sim;(B;) internally. However for all messages

A; would forward to it’s internal copy of Sim;(B;) are instead routed by Z, to the i (external)

11

adversary. This will either be B; or Sim;(B;). All responses are similarly forwarded back to A;.
Finally when Z produces output Z; outputs the same value and terminates.

Observe that CP—EXEC?JB%&r = CP—EXEC?};5 g z- Indeed the only difference in the view
of Z for both executions is where any given megsagye&s sampled (but not from which distribu-

tion). Similarly CP—EXEnggm z, = CP—EXECZ’?Z Thus Equation (1| holds for Z if and only if

Equation [2] hold for Z. O

2.4 Relations to Existing Security Notions.

We prove a pair of lemmas relating CP results to matching GUC results. In[Lemma 2.5 we show to
translate a statement about CP realization into a related statement about GUC realization. Then
in we show how to convert statements in the opposite direction. Together these results
capture the intuitive claim that the CP model is at least as expressive as the GUC (and so also
UC) models.

2.4.1 CP Implies GUC.

We first formalize the intuitive claim that CP security is at least as strong as GUC security with

the lemma which states that CP realization essentially implies the GUC realization. We describe
a natural mapping of CP functionalities to analogous GUC functionalities F —— [F]. Then we
show that if a protocol CP realizes F in the R-hybrid world, then the same protocol executed in
the analogous GUC [R]-hybrid world GUC realizes the analogous GUC functionality [F].

Recall that the only difference between (possibly shared) GUC and CP functionalities is that
the former has a single adversarial interface while the latter has n such interfaces. The mapping
[-] is obtained as follows. For a CP functionality F, let [F] denote the GUC functionality which
behaves as F except that the adversaries interface has the following modification:

e Whenever F would output a message Msg to the i adversarial interface, [F] instead outputs

(7,Msg) on it’s (single) adversarial interface.
e Whenever [F] receives a message of the form (i, Msg) on it’s adversarial interface, it simulates
the behavior of F upon receiving message Msg on the i adversarial interface.

Lemma 2.5. Let G be a setup and F and R be functionalities all in the CP model. If a protocol T
CP-realizes F in the {G, R}-hybrid model, then m GUC-securely realizes [F) in the {[G], [R]}-hybrid
model. In symbols:

{6, 7 E€7 {G, R} = {[0] 171} £2U {[9], [R]}

2.4.2 Translating GUC Statements to CP Statements

As a primary building block for feasibility results we will use GUC protocols. To show how to
translate GUC results into analogous statements in the CP framework we first need to formalize
the CP analogue of the insecure channels functionality.

The Rins Functionality. Intuitively, the main differences between the two models are that in
the CP model:

1. In the plain CP model is not equipped with insecure channels (as is the case for GUC).
2. CP adversaries are split and so cannot, a priori, coordinated their attacks arbitrarily.
3. The GUC model explicitly assumes authenticated communication.

12

To address the first difference we explicitly equip the CP world with insecure channels. When
modeled appropriately, a nice side effect is that the CP adversaries can also use the insecure channels
to coordinate their attacks arbitrarily taking care of the second difference.

Formally we model the insecure channel resource (depicted in[Figure 3)), denoted by Rins(i, j), as
being parameterized by integers i, j € [n] which denote the indices of two parties called the sender P;
and the receiver P;. Upon receiving a message m from party:

P;: Resource Rins(7,j) forwards m to adversary A;. P—t \R'Ns(i’ ‘7), N

J
A;: Resource Rins(i, j) forwards m to adversary A;.

Aj: Resource Rins(i,j) forwards m to receiver P;. /O \\
A, A,

We denote the complete network of insecure channels by
Figure 3: The Insecure

Rins = {Rins(i,5) : (i,5) € [n]%,i # j}. Channel functionality with
split adversaries.
Resource Rins is used just as the implicit insecure channels are used

in (G)UC.

Lemma 2.6. Let G be a (CP) setup such that there exists some [G]-subroutine respecting protocol
that GUC realizes authenticated channels (over insecure channels)ﬂ Further let 7 and R be CP
functionalities.

Then if a protocol @ GUC realizes [F| in the [G]-hybrid world, then it also CP realizes
{G, Rins, F} in the {G, Rins }-hybrid model with shared functionality G. In symbols:

{[g]? [‘7:]} ESUC [G] > {G,Rinswr} EgP {gaRins}

Remark 1. Formally, in the above lemma the syntax of the protocol m also needs to be adapted
to the CP setting on the right hand side of the implication. For an arbitrary GUC protocol 7,
denote by 7 the CP protocol which works just like 7, but while 7; sends a message m to 7; via the
adversary (i.e., by writing (m, j) to its communication tape shared with the adversary), 7; instead
uses Rins(?,7) to send m to 7. However, for the sake of clarity we do not distinguish between 7
and 7 as it is clear from the context which protocol is meant[]

3 Necessary Assumptions for CP

Having defined the CP framework and verified it’s composition properties, we turn to the next
major goal of this work: to provide a resource with which we can (constructively) CP-realize as
many functionalities as possible. Ideally we would like to obtain a CP-complete resource: namely
one from which any reasonable functionality can be realized. Indeed, in the next section we describe
just such a resource which we call the mediator. However we must first justify the seemingly strong
assumptions we will make when defining the mediator by showing their necessity.

To this end, we demonstrate three necessary properties a given resource must have for it to be
CP-complete. As corollaries to these results we rule out realizing large classes interesting function-
alities using virtually all common communication resources such as fully connected networks and

"For example let [G] be the KRK setup of [IT] for which [I6] shows a protocol GUC realizing authenticated channels
in the static corruptions setting.

121 particular for the general feasibility result in the input to the protocol compiler is 7 rather then .
This is because the fallback security is defined in the CP setting rather then the GUC setting and so
the security provided by the compiled protocol is analyzed in the presence of Rins rather then in the GUC model.

13

broadcast channels. Beyond this, due to their generality, we believe that given a target ideal func-
tionality F (such as an auction mechanism or voting functionality), these results provide significant
insights into the minimal assumptions about real world communication channels which can be used
to CP realize F.

More precisely, in this section we prove statements of the form ”if 7 C¢P R and F has property
P1 then R must have property P2”. We provide some conditions under which R must be “isolat-
ing” , “probabilistic” and finally “programmable” . Taken
together we see that a CP-complete resource (such as our mediator) must simultaneously have all
three properties.

The proofs extract these properties by reason about the necessary properties the behavior of R
must have in the setting where all players are corruptE

To this end we use the following reduction notion between functionalities.

Definition 3.1. Let R and F be n-party CP resources and let D[JZ} be the n-tuple of F-hybrid
adversaries that first corrupt their respective players and then act as the dummy adversary. We
say that F is contained in R (written F C€ R) if there exists n adversaries Ap) (corrupting all
players) such that for any efficient environment Z (and protocol 7):

CP-EXECZ,

R
b7 .z~ CP-EXECT, 5.

z

A benefit of defining the C¢ reduction to be so weak is that statements of the form F C¢ R
are often easy to verify for many interesting resources RE This makes it a good candidate for
properties of functionalities in the following results. Next we define a simple and very weak channel
which we will use in place of F in the properties.

Bounded Collaborative Channels. Let resource C{; to be the ideal n-party functionality al-
lowing up to ¢ € N bits to be sent by P; to P; (and from adversary A; to A;). Moreover Cf; requires
the cooperation of all other n — 2 players and n adversaries in order for the message to be delivered.
More precisely the message from P; is given to both A; and A; who can modify it (or even halt
delivery) at will. The message is only delivered to P; once all other n — 2 players and adversaries
have submitted a special message ok (otherwise, on any other input C{; simply halts producing no
output). We call such a channel a bounded collaborative channel.

We observe that statements of the type C¢; CC F are often easy to verify for many interesting
examples such as when F is a VCG auction mechanism [41), 14, 22] (i.e. a second price auction).
Even if the winners fee is kept secret from all other bidders the statement C¢; C¢ F still holds for
any value 4, j and dE On the other hand for a voting mechanism with say ¢ candidates, private
votes, public outcome and the possibility to abstain the statement holds for any value of ¢, j and
d < logt. Therefor when trying to realize these kinds relevant resources the following lemma
provides an easy property to verify for candidate real world communication resources that are to
be used.

13In a stand alone setting one might ask why complete corruptions are even an interesting case (for example
the stand-alone collusion-free notion of [33] explicitly rules this case out). But for a composable security notion
(for example with the application of modular protocol design in mind) it is vital to consider these executions since
sub-protocols may be run but a set of entirely corrupt parties.

14See the following discussion on bounded collaborative channels.

5For example a set of adversaries to such that the VCG mechanism contains C¢; act as follows. Each adversary
corrupts it’s player (ignoring their valuations). Then A; bids 2¢ on behalf of receiver P;, A; bids m € [0,2" — 1] on
behalf of sender P; and all other adversaries bid 0 for their players. The winner of the auction (i.e. P;) then outputs
it’s fee as the message received.

14

3.1 Isolation

Consider a statement of the type F L¢P R. Intuitively this holds only if R can “isolate” corrupt
players as much as F. Somewhat more formally suppose we wish to CP-realize functionality F
which allows for at most d bits of communication between players P; and P;. The following
lemma rules out using any resource R (with arbitrary protocol) which can be used (formally:
contains) a c-bit bounded collaborative channel between these players whenever ¢ > d. In fact,
the requirements for obtaining such a channel are so weak that the lemma rules out using almost
all standard communication channels as CP-complete resources as they all allow for unbounded
amounts insecure communication between at least one pair of players.

Lemma 3.2. Let R and F be n-player resources with C¢; C¢ R and Cd; CTCP F then:
FLPR = c<d.

Proof. We use the transitivity of the CP relation to obtain C¢, C¢P R. Let Apn) be the adversaries
such that Cf; C¢ R and suppose for the sake of contradiction that ¢ > d. We briefly describe
an environment Z and R-hybrid adversaries By, for which no simulators exist fooling Z in the
C&.-hybrid world. The environment samples a uniform random string r < {0,1}¢ and gives it to
Bi. Then it waits for the output of 7’ of B; and outputs 1 if and only if 7’ = r. Meanwhile, for each
s € [n] adversary By acts as Ag intuitively turning R into C¢;. For s & {i,j} the adversary B uses
ok as input to C{; and terminates. Adversary B; reads it’s input r from Z and uses it as input for
C¢; (on behalf of players P;) to be sent to P;. Finally adversary B; waits till it receives 7’ from C¢,
(intended for delivery to P;) and outputs 7’ to Z before terminating. It is easy to verify that Z
will always output 1 during such an execution.

Clearly there are no good simulators for By, in the Cffj—hybrid world as by definition of a
bounded collaborative channel there isn’t enough bandwidth between the " and j™ honest (and
adversarial) interfaces in C¢;. Thus with probability at least 1/2 the output of the j* simulator

will not equal the input to the " simulator in which case Z will output 0. O

As an immediate application of we obtain the following (informal) result ruling out
most, if not all, the usual communication channels from being CP-complete. In particular, we view
the following corollary provides significant justification for seaming strength of the assumptions
made later on about the mediator resource. Also, the following implications for broadcast channels
can be seen as extending the related impossibility result for broadcast channels from [32].

Corollary 3.3. Let resource R TC€P H then if H is a broadcast channel then R is not CP-complete.
Further if H is a fully connected network of insecure, authenticated or secure channels then R is
not CP-complete.

Remark On the Models of [33),128]. When all players are corrupt their communication model
contains Cf; for any value of ¢ > 0. Thus their notion of composition requires all parties in a
protocol 7 to take part in all sub-protocols of a given protocol 7 (via observation of publicly
verifiable events) in order to guarantee security of 7. On the one hand this approach requires no
honest party to trust another since each can verify the computation but on the other hand this
type of composition scales badly in the presence of many users. Especially in a real world setting.

3.2 Independent Randomness

Besides the capability of enforcing bounded isolation another requirement for realizing several
interesting functionalities is that the resource being used must be a probabilistic I'TM. This stands

15

in contrast with necessary assumptions on (even complete) resources in a setting with monolithic
adversaries. On the other hand, in [28] for example, protocols make use of a ballot-box which
contains inherent fresh randomness and the verifiable devices of [26] also have similar capabilities.
For positive integer ¢ we denote by F¢ . the 2-party coin flipping functionality which takes no
input and outputs ¢ uniform random coins to P; and PQE

Lemma 3.4 (Randomness is Necessary). For any integer ¢ > 0 and resource R if FS,, TP R
then R is a probabilistic ITM.

The proof relies on the intuition that if R is deterministic and all players are corrupt, the
adversaries can completely determine the behavior of R which they can use to transmit at least a
bit between each other.

Proof. Suppose R is a deterministic resource. We construct an environment Z and pair of adver-
saries Ay for which there are no simulators in the F¢; -hybrid world.

Suppose protocol 7 is such that 7., CF” R and for an execution of 7 we denote by Y the
random variable describing it’s (common) output. Fix a random tape r; for 7. Then it must
be that Y still has noticeable entropy even conditioned on the choice of ri. If this were not the
case then an adversary corrupting only P; and running 7 with tape 1 on his behalf could not be
simulated since the output of the honest P> would always be fixed unlike an execution with F¢ ;.
in the ideal world. More generally the number of random tapes ry for w2 which cause Y to take on
a fixed value is at most negligibly less then a 1/2¢ fraction of all possible values. Thus for any r;
it is easy to compute two tapes 75 and r4 which cause Y to take on two distinct values y° and y!
respectively.

The adversaries each corrupt their respective player and run 7 on their behalf. Adversary Ay
uses random tape r; and if 7 outputs 3° it outputs 0 otherwise it outputs 1. The environment
provides Ao with input a uniform random bit b and Ay uses the random tape 7«127 for it’s copy of mo.
Thus by comparing the output of A; with the value of b over many executions the environment
can distinguish the R-hybrid world from any execution in a F¢, -hybrid world. This is because

the F¢ . functionality allows now communication between players and so a simulator for Ay has

no way to signal b to A;. O

3.3 Programmability.

We stated the goal of finding a CP-complete resource. Unfortunately, (unlike in models with
monolithic adversaries) in the CP setting no single resource can be CP-complete. Instead we
consider parameterized sets of resources. More formally we say that a set R = {Ry, }rex of resources
is CP-complete if for any functionality F, there exists a resource Ry € R such that F TP Ry.
Indeed later on, the mediator which we define is really a (CP-complete) class of resources. In
our main theorem we only guarantee full security for the protocols we construct when the correct
element of the mediator class is used. We argue that any completeness in the CP framework will
require such a formatm

For index set K let R := {Ry | k € K} denote a set of resources parameterized by elements of
K. We call Ri a programmable resource if there exist ki, ko € K such that Ry, P Ry,.

Lemma 3.5. A class of resources is CP-complete only if it is programmable.

163We opt for this unusually general formulation as the result does not require ¢ = 1 and so we can also capture
ideal