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Abstract

Canetti and Herzog have proposed a universally composable symbolic anal-
ysis (UCSA) of mutual authentication and key exchange protocols within
universally composable security framework. It is fully automated and com-
putationally sound symbolic analysis. Furthermore, Canetti and Gajek have
analyzed Diffie-Hellman based key exchange protocols as an extension of
their work. It deals with forward secrecy in case of fully adaptive party cor-
ruptions. However, their work only addresses two-party protocols that use
public key encryptions, digital signatures and Diffie-Hellman exchange.

We make the following contributions. First, we extend UCSA approach
to analyze group key exchange protocols that use bilinear pairings exchange
and digital signatures to resist insider attack under fully adaptive party cor-
ruptions with respect to forward secrecy. Specifically, we propose an for-
mal algebra, and property of bilinear pairings in the execution of group key
exchange protocol among arbitrary number of participants. This provides
computationally sound and fully automated analysis. Second, we reduce the
security of multiple group key exchange sessions among arbitrary number of
participants to the security of a single group key exchange session among
three participants. This improves the efficiency of security analysis.
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1. Introduction

Computational and symbolic approaches are two major directions to an-
alyze cryptographic protocols in last two decades. Each approach has its
advantage and disadvantage. Computational approach [13, 14] is sound, be-
cause it applies computational complexity and probability theory to reduce
the security of protocol to some cryptographic hardness assumptions, such as
discrete logarithm and decision Diffie-Hellman problems, but its proof is hard
to mechanize by computer program [11]. Therefore, it is tedious and high-
ly error prone for even moderately complex protocols [15]. In comparison,
symbolic approach [16] is amenable to automation because of its explicitly
algebraic structure. There are many automated tools for symbolic model.
For example, ProVerif is a tool of spi calculus [7], and SMV is a tool of mod-
el checking [20]. However, none of the existing tools always terminates in
tolerant time when analyzing a moderately complex protocol with multiple
sessions directly [12]. Moreover, it is often criticized since its soundness is
unclear.

Recently, Canetti et al. [11, 12] propose a universally composable symbolic
analysis (UCSA) approach, which realizes a computationally sound and fully
automated analysis to prove composable security properties of composable
properties preserve security of individual sessions, when the analyzed proto-
col session is composed with the other sessions [11]. This allows researchers
only to deal with a single session, when analyzing an overall system that con-
sists of an unbounded number of sessions [11]. As a result, the time complex
of algorithm that is used to analyze protocols via symbolic tools is optimized,
compared with analyzing the overall system with multiple sessions directly.
However, so far as we know, the UCSA approach only deals with two-party
cryptographic protocols. Moreover, cryptographic protocols are currently re-
stricted to use public key encryptions, digital signatures and Diffie-Hellman
exchange.

As far as we know, many bilinear pairings such as Weil pairing or Tate
pairing on elliptic and hyperelliptic curves have been proposed to build group
key exchange protocols. It is necessary to analyze group key exchange pro-
tocols that use bilinear pairings exchange. Therefore, we extend the UCSA
approach to deal with group key exchange protocols that use bilinear pairings
exchange and digital signatures to resist insider attack. To the best of our
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knowledge, this is the first time to provide computationally sound and fully
automated analysis of a group key exchange protocol to prove composable
security properties.

1.1. Our Contributions

It is tricky to extend the UCSA of protocols from two participants to
arbitrary number of participants in symbolic model, because the formal def-
inition of the appropriate algebra in protocol execution, and the appropriate
rules for adversary to derive messages are not explicit, considering that the
number of participants in the group key exchange protocol is variable. Fur-
thermore, the construction of the mapping algorithm from computational
model to symbolic model is complicated for bilinear pairings, because it is
difficult to define the property of bilinear pairings used in group key exchange
protocol among arbitrary number of participants. In addition, ProVerif can-
not terminate in tolerant time, when the number of participants is scalable.
We make the following contributions to solve the problems above:

First, we extend the UCSA approach to analyze group key exchange pro-
tocol that use bilinear pairings exchange and digital signatures. This allows
researchers only to deal with a single group key exchange session, when ana-
lyzing the group key exchange protocol that consists of an unbounded number
of sessions. Furthermore, the secure protocol satisfies composable security
property.

Second, we reduce the security of a single group key exchange session
among arbitrary number of participants to the security of a single session
among three participants by mathematical induction. This allows researchers
only to deal with a single group key exchange session with three participants,
when analyzing a single group key exchange session with arbitrary number
of participants.

Third, we illustrate how to apply our approach to design and analyze
group key exchange protocols to resist insider attack. Specifically, we first
apply the compiler in the work of [22] to design a group key exchange protocol
based on a family of Bilinear Burmester-Desmedt protocols parameterized by
three integers α, β, γ, each of which is denoted by (α, β, γ)-BBD protocol [23],
and prove that the compiled protocol is not secure. Then we revise it to be
another protocol, and prove that the revised protocol is secure. According
to our approach, it is also secure in universally composable (UC) security
framework [10].

3



In addition, since Katz and Shin [21] have proposed a compiler to translate
a secure group key exchange protocol to resist outsider attack into a secure
protocol to resist insider attack, we only need to design group key exchange
protocols to resist outsider attack in symbolic model.

In summary, compared with the UCSA in the work of [11, 12], our contri-
butions provide a computationally sound and efficient automated analysis of
group key exchange protocols based on bilinear pairings to prove composable
security properties with respect to forward secrecy.

1.2. Related work

There have already been numerous research efforts to bridge the gap
between symbolic and computational views of cryptography. Many crypto-
graphic primitives and protocols have been studied. Abadi and Rogaway [1]
first prove the computational soundness of formal encryption without key
cycles in the case of type-0 symmetric encryption schemes.

Further work focuses on extending the work of [1]. In the passive settings,
Micciancio and Warinschi [25] propose a confusion free encryption scheme,
and show that their result is completeness for [1]. Laud and Corin [24] consid-
er composed keys. Adão et al. [3] capture a key dependent message security
notion that is secure, even if there are key cycles. Herzog [19] proves compu-
tational soundness of public key encryption in the case of IND-CCA2 security.
Boneh et al. [8] demonstrate a public key encryption scheme that is secure
under key dependent message attacks. Gracia and van Rossum [18] prove
computational soundness of hash functions. Bresson et al. [9] show com-
putationally sound expressions of modular exponentiation. However their
model just secures against passive adversary. Furthermore, bilinear pairings
are not considered in their work. Kremer and Mazaré [23] present a bilin-
ear pairing operation, and analyze Joux tripartite Diffie-Hellman protocol,
(α, β, γ)-BBD protocol, TAK-2 and TAK-3 protocols. However, their model
is only secure in passive settings as well. Moreover, it provides no compos-
able security guarantees. Abadi and Warinschi [2] define formal expressions
that is computationally sound against offline guessing attacks. Adão et al. [4]
consider computationally sound formal expression of the encryption function
from the point of information theoretic security.

In the active settings, Canetti and Gajek [12] propose universally com-
posable symbolic analysis of Diffie-Hellman based key exchange protocols by
extending the work of [11]. They deal with key exchange protocols that use
Diffie-Hellman exchange and digital signatures. However, their work only
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handles two-party cryptographic protocols. Moreover, their work does not
consider bilinear pairings. Micciancio and Warinschi [26] propose a compu-
tationally sound encryption scheme via trace mapping lemma. Galindo et
al. [17] extend the mapping lemma to commitment schemes. Backes and Un-
ruh [6] introduce a symbolically sound zero knowledge proof system. Backes
et al. [5] present the idealized cryptographic library Libideal for automat-
ed proofs of cryptographic protocols. The real protocol is computationally
sound, if it simulates Libideal. However, their approach needs to analyze pro-
tocol with multiple sessions. Moreover, the composition theorem with joint
state has not been considered.

1.3. Organization

Section 2 recalls the preliminaries about the UCSA approach, the func-
tionality of digital signature, bilinear decision Diffie-Hellman assumption,
and (α, β, γ)-BBD protocol. Section 3 introduces the symbolic model. We
define symbolic protocol and symbolic traces, model symbolic adversary, and
provide symbolic security criterion of group key exchange. Section 4 discusses
the computational model. We define computational traces and functionali-
ty of bilinear pairings, prove the security of bilinear pairings, and define the
functionality of group key exchange. Section 5 describes simple protocols. We
define the syntax and semantic of simple protocols that use bilinear pairings
exchange and digital signatures. Section 6 proves the computational sound-
ness of symbolic security criterion. We discuss the mapping algorithm from
computational traces to symbolic traces, prove the mapping lemma and the
computational soundness theorem. Section 7 reduces the number of partici-
pants. Section 8 designs and analyze two variants of (α, β, γ)-BBD protocol
as the examples to apply our approach. Section 9 draws the conclusion.

2. Preliminaries

2.1. Universally Composable Symbolic Analysis Approach

The specific steps of the UCSA approach to analyzing a complex system
are as follow [11]:

(1) Divide the complex system that consists of cryptographic protocols
into individual sessions, where each session is an execution of a relatively
simple protocol.

(2)Translate each resulting protocol into a symbolic protocol via a speci-
fication language for a class of protocols that have clear symbolic form, called
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simple protocol. It serves as a dummy language whose syntax is parsed into
computational semantic and symbolic semantic [12].

(3) Analyze a single session of each symbolic protocol to check if it fulfills
some symbolic security criterions by some automated tools. If not, an execu-
tion of the analyzed session can be found to break some rules of the criterions.
Then compose all the initialize, symbolic adversary and honest participant
actions occurred in the execution orderly to form a symbolic trace, and out-
put the symbolic trace as the evidence to prove the symbolic protocol does
not satisfy the criterions.

(4) Prove each original protocol satisfies composable security property in
the computational model, if symbolic protocol fulfills the symbolic security
criterions. This is done by proving its inverse negative proposition. More
specially, if the original protocol does not achieve the composable security
property, a corresponding execution can be found. Then compose all the en-
vironment, computational adversary and honest participant actions occurred
in the execution orderly to form a computational trace. After that, the UCSA
approach introduces a mapping algorithm that can map the computational
trace to a symbolic trace except with a negligible probability, which makes
the corresponding symbolic protocol does not satisfy the criterions.

(5) Prove each protocol keeps the same security properties in the complex
system. This is done by using the composition theorem with joint state in
UC security framework.

Since the syntax of simple protocol defines a pair of programs Π =
(Π0,Π1), the UCSA approach has hitherto only dealt with two-party cryp-
tographic protocols. Moreover, since the syntax of simple protocol only con-
tains public key encryption schemes encrypt and decrypt, digital signature
schemes sign and verify, and key encapsulation mechanism encaps and
decaps, cryptographic protocols are currently restricted to use public key
encryptions, digital signatures and Diffie-Hellman exchange.

2.2. The Functionality of Digital Signatures

The functionality of digital signatures has been proposed in [12]. It pro-
vides an ideal digital signature. Formal definition of this functionality is
described in Fig 1.
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Functionality FCERT
FCERT proceeds as follows, running with security parameter k.

1. Signature Generation: Upon receiving a value (Sign, sid,m) from
some party S, check that sid = (s, sid′) for some sid′. If not, then
abort. Else hand (Setup, sid) to the adversary. Upon receiving
(Algorithms, sid, s, v) from the adversary, where s, v are descriptions
of probabilistic polynomial time (PPT) interactive Turning machines
(ITMs), output (Sign Alg, sid, s) to S. Set σ = s(m), record the tu-
ple (m,σ, 1) and output (Signature, sid,m, σ) to S.

2. Signature Verification: Upon receiving a value (V erify, sid,m, σ)
from some party P , do: If there is an entry (m,σ, b′), send
(V erified, sid,m, b′) to P . Else if the signer is not marked cor-
rupted, record the entry (m,σ, 0) and return (V erified, sid,m, 0)
to P . Otherwise, record the entry (m,σ, v(m,σ)) and return
(V erified, sid,m, v(m,σ)) to P .

3. Corruption: Upon receiving a value (Corrupt, sid, P ) from the ad-
versary, where P is a signer or verifier, mark P as corrupted.

Fig 1. The Ideal Functionality of Digital Signatures

2.3. Bilinear Pairing

Here we briefly recall the basic definitions of bilinear pairings [23], includ-
ing the definition of bilinear map and BDDH security. We start with formal
definition of bilinear mapping and bilinear pairings as follow:

Definition 1 (Bilinear Mapping). Assume that G1 and G2 are two cyclic
groups of the same prime order q, g1 is a generator of G1. e is defined as
a bilinear mapping from G1 × G1 to G2, if it satisfies three prosperities as
follow:
(1) Bilinear: e(gx1 , g

y
1) = e(g1, g1)xy for any x, y ∈ Zq.

(2) Non-degeneracy: g2 = e(g1, g1) is a generator of G2.
(3) Computable: there exists an efficient algorithm to compute e(u, v) for
any u, v ∈ G1.

Definition 2 (Bilinear Pairings). Given a security parameter k, a bilinear
pairing instance generator IG is defined as a PPT algorithm that outputs a 5-
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tuple (q,G1,G2, g1, e), where G1 and G2 are two cyclic groups of same prime
order q, g1 is a generator of G1, e is a bilinear mapping from G1×G1 to G2.

Next we recall BDDH security [23]. It is used to analyze group key ex-
change protocols, such as Joux tripartite Diffie-Hellman, (α, β, γ)-BBD pro-
tocol, TAK-2 and TAK-3 protocols. The formal definition of BDDH security
is as follow:

Definition 3 (BDDH Security). An instance generator IG satisfies BD-
DH assumption, if for any PPT adversary A against BDDH , the advan-
tage of A is negligible in the security parameter. That is, AdvBDDHA,IG (k) =∣∣∣∣ Pr[A(q, gx1 , g

y
1 , g

z
1, g

xyz
2 ) = 1 : (q,G1,G2, g1, e)← IG(k);x, y, z ← Zq]

−Pr[A(q, gx1 , g
y
1 , g

z
1, g

r
2) = 1 : (q,G1,G2, g1, e)← IG(k);x, y, z, r ← Zq]

∣∣∣∣
Note that BDDH security shows that the probability to distinguish gxyz2

from gr2 is negligible.

2.4. Bilinear Burmester-Desmedt Protocol

Here we briefly recall a family of Bilinear Burmester-Desmedt (BBD)
Protocols parameterized by three integers α, β, γ, such that α + β + γ = 0
and either α, β or γ is different from 0 [23]. The instance of the protocol
corresponding to α, β, γ is as follow:

Protocol Description of BBD Protocol. Assume that G1 and G2 be
two cyclic group of the same prime order q with respective generators g1 and
g2. Let e : G1 × G1 → G2 such that e(g1, g1) = g2. Assume that all the
participants have known each other before executing the protocol, and all the
indexes are taken modulo n. The protocol proceeds among all the participants
{pi|i ∈ [0, n− 1]} as follow:
(1) Each pi chooses a random number ri ∈ Z∗q, keeps ri secret, and broadcasts
Zi = gri1 .
(2) Each pi broadcasts: Xi = e((Zi−2, Zi−1)αri) · e((Zi−1, Zi+1)βri) · e((Zi+1,

Zi+2)γri) = g
αri−2ri−1ri+βri−1riri+1+γriri+1ri+2

2 .

(3) Each pi computes the session key: K = g
∑n−1

i=0 riri+1ri+2

2 .
In particular, we compare time complexity to analyze the BBD protocols

via ProVerif. The experiment is performed on two 2.4 Ghz Intel(R) Xeon(R)
processors, with 12 GB of main memory, running Windows 7 Professional
sever pack 1. ProVerif spends 5.2 minutes to analyze a BBD protocol with
a single session among three participants, while it spends 5.8 minutes to
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analyze the same protocol with multiple sessions among three participants.
Furthermore, ProVerif cannot terminate to analyze the same protocol with
a single session among four participants in 12 hours. The last three results
of ProVerif after running 12 hours are as follow:

2200 rules inserted. The rule base contains 2076 rules. 2965 rules in the queue.
2400 rules inserted. The rule base contains 2276 rules. 3401 rules in the queue.
2600 rules inserted. The rule base contains 2476 rules. 3545 rules in the queue.

Note that the rules in the queue still increase in the last three results, this
indicates that ProVerif cannot terminate in another few hours. As a result,
this experiment shows that ProVerif cannot terminate in tolerant time, even
it analyzes a BDD protocol with a single session among four participants.

Since only a single BBD session among three participants need to be
analyzed, if our approach is used to analyze a BBD protocol with multiple
sessions among arbitrary number of participants, our work is necessary to
analyze group key exchange protocols using bilinear pairings.

3. The Symbolic Model

In this section, we introduce the symbolic model of cryptographic pro-
tocols based on bilinear pairings and digital signatures, symbolic adversary,
and security criterion of group key exchange.

3.1. Symbolic Protocol

We start to define a protocol algebra that use bilinear pairings exchange
and digital signatures. The algebra defines the space of atomic messages and
operations to compose the input, outgoing messages, incoming messages and
local outputs of the protocol. Here we assume that there exists a trustworthy
third party that certifies the signature keys, and all participants and adver-
sary have known all the verification keys before protocol execution. Messages
are authenticated by participants via their valid signatures respectively. For-
mal definition of protocol algebra is as follow:

Definition 4 (Protocol Algebra). All the messages of a group key ex-
change protocol use bilinear pairings and digital signatures are assumed to be
elements of an algebra A. There are nine types of atomic messages:

(1) Session Identity Symbols: Session identities SID are used to identify the
sessions of the same participants. They are denoted as {si|i ∈ N}. We
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assume that SID are publicly known, and their number is unbounded in
the algebra that may change from run to run.

(2) Participant Identity Symbols: Participant identities PID are used to
identify the participants. They are denoted as p1, p2, . . . , pn. We assume
that PID are publicly known, and their number is finite in the algebra.

(3) Private and Public Key Symbols: Private keys Pri and public keys Pub
are generated temporarily to compute session key in different sessions.
The former are denoted as {prii|i ∈ N}, while the latter are denoted as
{pubi|i ∈ N}. We assume that the number of Pri and Pub is unbounded
in the algebra.

(4) Assistant Key Symbols: Assistant keys AK are generated temporarily to
compute session key in different sessions. They are denoted as {aki|i ∈
N}. We assume that the number of AK is unbounded in the algebra.

(5) Signature and Verification Key Symbols: Signature keys SK are used
to sign messages. They are denoted as sk1, sk2, . . . , skn. Verification
keys V K are used to verify signature of messages. They are denoted as
vk1, vk2, . . . , vkn. We assume that the number of signature and verifica-
tion keys is finite in the algebra.

(6) Random Number Symbols: Random Numbers R are used to generate
session identity, private key, and keep the freshness of messages. They
are denoted as {ri|i ∈ N}. We assume that the number of R is unbounded
in the algebra.

(7) Output Symbols: Outputs {Establish, Key} are used to indicate the s-
tart and end of protocol execution. The former indicates the start of an
execution, while the latter indicates the end of an execution.

(8) Evaluation Symbols: A true evaluation is denoted as >, while a false
evaluation is denoted as ⊥ that leads to the termination of protocol exe-
cution.

(9) Garbage and Empty Symbols: Garbage message is denoted as %, and
empty message is denoted as ξ.

Furthermore, There are seven types of functions to compose atomic messages:

(1) Pair Function. Pair(m1,m2) : A × A → A. This function is used to
generate a 2-tuple of two messages in A.

(2) Setup Function. Setup() : {} → Pri × Pub. This function is used to
generate a private key and the corresponding public key.
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(3) Assistant Key Generate Functions. AK Gen1(pri,m), AK Gen2(pri,m),
. . . , AK Genn(pri,m) : PRI × A → AK. These function are used to
compute the assistant recovery keys via private key and bilinear mapping
recursively. We assume that the number of these functions is finite in
the algebra.

(4) Bilinear Pairing Key Generate Function. BP Gen(pri,m) : Pri×A→
A. This function is used to compute a bilinear pairing key.

(5) Separate Function. Sep(m) : A → A × A. This function is used to
separate a message in A.

(6) Signature Function. Sign(sk,m) : SK × A → A. This function is used
to sign messages in A.

(7) Verify Function. V erify(vk,m, σ) : V K × A × A → {>,⊥}. This
function is used to verify the signature of messages are valid or not.

Note that each element of the algebraA has a unique representation. That
is, each compound message is constructed in a unique way. In addition, the
entire session identity of each participant is denoted as (s, pi, {p1, . . . , pn}\pi).
Example: Given a 6-tuple (q,G1,G2, E, e1, e2), we take (α, β, γ)-BBD pro-
tocol as an example to illustrate the protocol algebra A:

(1) Each participant pi first uses Setup to generate a private key and the
corresponding public key. More specially, first, a random number ri is
chosen as the private key. Then compute gri1 as the corresponding public
key. That is, (ri, g

ri
1 ) = Setup(). Finally, broadcast Zi = gri1 .

(2) After receiving Zi−2, Zi−1, Zi+1 and Zi+2, the assistant key is computed
and broadcasted:
Xi = AK Gen1(ri, Pair(Pair(Pair(Zi−2, Zi−1), Zi+1), Zi+2))

= g
αri−2ri−1ri+βri−1riri+1+γriri+1ri+2

2

(3) After receiving {X1, . . . , Xn}\Xi, the bilinear paring key is computed as
follow:
K = BP Gen(ri, Pair(Pair(. . . Pair(Pair(X1, X2), X3) . . . ), Xn))

= g
∑n

i=1 riri+1ri+2

2

Since cryptographic protocols are interactive process, we use a state tran-
sition system to define the symbolic protocol. Formal definition of the sym-
bolic protocol in algebra A is as follow:

Definition 5 (Symbolic Protocol). A symbolic protocol π is a mapping
from a set S = (A)∗ of states, a set SID of session identities, a set PID
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of participant identities, a set {PID} of the partners, and an element in A
which represents possible incoming messages, to a set {>,⊥} of evaluation,
or a tuple (“message”×MESSAGE) , or a tuple of (“erase”×ERASE),
or a tuple of (“output” × OUTPUT ), and a new state S. That is: π :
S × SID × PID × {PID} × A → {>,⊥} ∪ (“message” ×MESSAGE) ∪
(“erase”× ERASE) ∪ (“output”×OUTPUT )× S

Here MESSAGE = A× SID × PID × {PID} represents possible out-
going messages. ERASE = SID × PID × {PID} represents the erasure
of the private key for the specific session. OUTPUT = {Establish,Key} ×
{ξ ∪ A} × SID × PID × {PID}) represents possible outputs.

3.2. Symbolic Adversary

We first discuss what knowledge symbolic adversary can derive from mes-
sages obtained in the execution of a symbolic protocol. Since symbolic ad-
versary can read, fake, modify, delete messages or corrupt some honest par-
ticipants, symbolic adversary is possible to derive messages from long term
keys and internal state [13], besides the outgoing messages when a symbolic
protocol is executed.

We consider the set of adversarial knowledge as a closure that can be
defined recursively. Formal definition of adversarial closure is as follow:

Definition 6 (Adversarial Closure). Given mAdv, (mAdv ∈ A), adversary
closure CAdv[mAdv] is the smallest set of protocol algebra A that consists of
the initial and derivative knowledge sets:

(1) Initial Knowledge Set
All the session identities.
All the participant identities.
All the public keys.
The private keys of corrupted participants.
The signature keys of corrupted participants.
All the verification keys.
Random numbers generated by adversary itself.

(2) Derivative Knowledge Set
mAdv ∈ CAdv[mAdv].
Pair(m1,m2) ∈ CAdv[mAdv], if m1,m2 ∈ CAdv[mAdv].
AK Geni(mpri,m) ∈ CAdv[mAdv], if mpri,m ∈ CAdv[mAdv].
BP Gen(mpri,m) ∈ CAdv[mAdv], if mpri,m ∈ CAdv[mAdv].
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Sep(m) ∈ CAdv[mAdv], if m ∈ CAdv[mAdv].
Sign(sk,m) ∈ CAdv[mAdv], if sk,m ∈ CAdv[mAdv].
V erify(vk,m, σ) ∈ CAdv[mAdv], if vk,m, σ ∈ CAdv[mAdv].

Second, we define how symbolic adversary interacts with symbolic pro-
tocols to obtain messages. We define it by the notion of symbolic trace.
Informally, symbolic trace indicates the sequence of adversarial actions in
the execution of symbolic protocols. Formal definition of symbolic trace is
as follow:

Definition 7 (Symbolic Trace). The symbolic trace t of symbolic protocol
π is a sequence of events H1, . . . , Hn, each of which is one of the triple:

(1) Initial Event
[“input”, si, pi, {p1, p2, . . . , pn}\pi, Si,init] describes the input of partici-
pant pi who interacts with participants in {p1, p2, . . . , pn}\pi, and initial
state is Si,init, (Si,init ∈ S) at the start of session si.

(2) Adversary Event
[“sid”,ms] represents a session identity ms, (ms ∈ SID).
[“pid”,mp] represents a participant identity mp, (mp ∈ PID).
[“pub”,mpub] represents a public key mpub, (mpub ∈ Pub).
[“pri”,mpri] represents a private key mpri, (mpri ∈ Pri).
[“ak”,mak] represents an assistant key mak, (mak ∈ AK).
[“sk”,msk] represents a signature key msk, (msk ∈ SK).
[“vk”,mvk] represents a verification key mvk, (mvk ∈ V K).
[“random”,mr] represents a random number mr, (mr ∈ R).
[“pair”,m1,m2,m3] represents a message m3 is a pair of (m1,m2), where
m1,m2,m3 ∈ A.
[“ak geni”,mpri,m,mak] represents an assistant key mak is generated by
mpri and m, where mpri ∈ Pri,m ∈ A,mak ∈ AK.
[“bp gen”,mpri,m,mbp] represents a bilinear pairing key mbp is generated
by mpri and m, where mpri ∈ Pri,m ∈ A,mbp ∈ A.
[“sep”,m1,m2,m3] represents a message m1 is separated to m2 and m3,
where m1,m2,m3 ∈ A.
[“sign”,msk,m1,m2] represents a signature m2 is generated by msk and
m1, where msk ∈ SK,m1 ∈ A,m2 ∈ A.
[“verify”,mvk,m1,m2,m3] represents a signature m2 of message m1 is
verified by mvk, and the result is m3, where mvk ∈ V K,m1 ∈ A,m2 ∈
A,m3 ∈ {>,⊥}.
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[“expire”,ms,mp, {mp′}] represents a session ms, (ms ∈ SID) of a par-
ticipant mp, (mp ∈ PID) with the partners {mp′} is expired. Then the
adversary receives the private key of the session ms, if it is not empty.
[“corrupt”,mp] represents a participant mp, (mp ∈ PID) is corrupted.
Then the adversary receives all the states of the corrupted participant
mp.
[“deliver”,m, pi] represents a message m, (m ∈ A) is delivered to the
participant pi.

(3) Honest Participant Event
[“erase”, er] represents a participant erases the private key of session
er, (er ∈ A).
[“message”,m], or [“output”, o] represents a participant sends a message
m or generates a local output o.

Third, we define t as a valid trace of symbolic protocol π, if each adversary
event is a valid action of an active adversary, and each honest participant
event is consistent with the Definition 5. Formal definition of a valid symbolic
trace is as follow:

Definition 8 (Valid Symbolic Trace). Let t consist of a sequence events
H1, . . . , Hn. Assume that C l

Adv is an adversarial closure, given all the mes-
sages in the first lth events of t. t is a valid symbolic trace, if each Hi satisfies
all the conditions below:

(1) Initial Event
If Hi = [“input”, si, pi, {p1, p2, . . . , pn}\pi, Si,init], then no previous event
of it has occurred for pi.

(2) Adversary Event
If Hi = [“pair”,m1,m2,m3], then m1,m2 ∈ Ci−1

Adv and m3 = Pair(m1,m2).
If Hi = [“ak genj”,mpri,m,mak], then mpri,m ∈ Ci−1

Adv and mak =
AK Genj(mpri,m).
If Hi = [“bp gen”,mpri,m1,m2], then mpri,m1 ∈ Ci−1

Adv and m2 = BP Gen
(mpri,m1).
If Hi = [“sep”,m1,m2,m3], then m1 ∈ Ci−1

Adv and (m2,m3) = Sep(m1).
If Hi = [“sign”,msk,m1,m2], then msk,m1 ∈ Ci−1

Adv, and m2 = Sign(msk,
m1).
If Hi = [“verify”,mvk,m1,m2,m3], then mvk,m1,m2 ∈ Ci−1

Adv, and m3 =
V erify(mvk,m1,m2).
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(3) Honest Participant Event
If Hi = [“message”,m], [“erase”, er], or [“output”, o], then [“input”, si,
pi, {p1, p2, . . . , pn}\pi, Si,init] occurred in the trace t before Hi.

At last, we define how a symbolic adversary simulates the execution of a
protocol to derive knowledge. we regard it as adversarial strategy. Formal
notion of adversarial strategy is as follow:

Definition 9 (Adversarial Strategy). Adversarial strategy Ψ is a se-
quence of instructions I0, I1, . . . , In, each of which is as follow:
[“receive”,m] [“deliver”,m, pi]; [“sid”,ms]; [“pid”,mp]; [“pri”,mpri]; [“pub”,
mpub]; [“ak”,mak]; [“sk”,msk]; [“vk”,mvk]; [“random”, r]; [“pair”,m1,m2,
m3]; [“ak genj”,mpri,m,mak]; [“bp gen”,mpri,mak,mbp]; [“sep”,m1,m2,m3];
[“sign”, sk,m1,m2]; [“verify”, vk,m1,m2,m3]; [“expire”, si, pi, {p1, p2, . . . ,
pn}\pi]; [“corrupt”, pi].

With the execution of a symbolic protocol π, Ψ produces the following
symbolic trace Ψ(π). Pass through each instruction in Ψ: (1) For each form
of [“receive”,m] instruction, if pi is the first to be activated, or pi was just
activated with a delivered message m, m is added to Ψ(π). Else,output the
trace ⊥ for failure. (2) For any other instruction, add the corresponding
events to the adversarial trace. If there is an event which results in an invalid
symbolic trace, then output ⊥.

3.3. Symbolic Security Criterion

We first define Pat function that is used to formally specify what knowl-
edge a symbolic adversary can obtain from a symbolic trace. Intuitively, a
symbolic adversary can obtain the result of BP Gen function, if the private
key is in adversarial closure. Furthermore, a symbolic adversary can obtain
the result of Sign function, if the signature key is in adversarial closure.
Formal definition of the Pat function is as follow:

Definition 10 (Pat Function). Let t consist of H0, H1, . . . , Hn, Tpri =
{Pri} ∩ Cn

Adv and Tsk = {SK} ∩ Cn
Adv. Pat(t, T ) is defined the same as t,

except that for each message m, (m ∈ A) in Hi, m is replaced by Pat(m,T )
as follow:

(1) Pat(ms, T ) = ms, if ms ∈ SID
(2) Pat(mp, T ) = mp, if mp ∈ PID
(3) Pat(mpri, T ) = mpri, if mpri ∈ Pri
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(4) Pat(mpub, T ) = mpub, if mpub ∈ Pub
(5) Pat(mak, T ) = mak, if mak ∈ AK
(6) Pat(msk, T ) = msk, if msk ∈ SK
(7) Pat(mvk, T ) = mvk, if mvk ∈ V K
(8) Pat(mr, T ) = mr, if mr ∈ R
(9) Pat(mo, T ) = mo, if mo ∈ {Establish,Key}

(10) Pat(meva, T ) = meva, if meva ∈ {>,⊥}
(11) Pat(mge, T ) = mge, if mge ∈ {%, ξ}
(12) Pat(Pair(m1,m2), T ) = Pair(Pat(m1, T ), Pat(m2, T ))
(13) Pat(AK Geni(mpri,m), T ) = AK Geni(Pat(mpri, T ), Pat(m,T ))
(14) Pat(BP Gen(mpri,m), T ) = BP Gen(Pat(mpri, T ), Pat(m,T )),

if mpri ∈ Tpri
(15) Pat(BP Gen(mpri,m), T ) = BP Gen(Tpri, Pat(m,T )), if mpri 6= Tpri
(16) Pat(Sep(m), T ) = Sep(Pat(m,T ))
(17) Pat(Sign(msk,m), T ) = Sign(Pat(msk, T ), Pat(m,T )), if msk ∈ Tsk
(18) Pat(Sign(msk,m), T ) = Sign(Tsk, Pat(m,T )), if msk 6∈ Tsk
(19) Pat(V erify(mvk,m, σ), T ) = V erify(Pat(mvk, T ), Pat(m,T ), Pat(σ, T ))

Note that Tpri represents the type tree of mpri, while Tsk represents
the type tree of msk. We do not use symbol � for BP Gen(mpri,m) or
Sign(msk), when mpri 6∈ Tak or msk 6∈ Tsk, because m or msk is publicly
known respectively.

Next, we define symbolic criterion of group key exchange as follow:

Definition 11 (Symbolic Security Criterion of Group Key Exchange).
A symbolic protocol π provides secure group key exchange (SGKE), if

(1) Agreement
After [“output”, Establish, ξ, si, pi, {p1, p2, . . . , pn}\pi] and [“output”,
Key, κi, si, pi, {p1, p2, . . . , pn}\pi] occurred in a symbolic trace for each
honest participant pi that is not corrupted, the value of each κi must be
the same.

(2) Confidentiality
Let a random symbolic protocol πrandom be the same as the real symbol-
ic protocol π, except that a fresh random key κrandom, (κrandom ∈ A) is
output as the session key, instead of the real key κreal, (κreal ∈ A). Then
for any adversary strategy Ψ: Pat(Ψ(π)) = Pat(Ψ(πrandom))[trandom→treal]
That is, the adversary cannot distinguish the real session key from a
random key.
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(3) Forward Secrecy
For each participant pi that is not corrupted, [“erase”, si, pi, {p1, p2, . . . ,
pn}\pi] must occur before [“output”, Key, κi, si, pi, {p1, p2, . . . , pn}\pi] in
the trace. That is, the adversary cannot obtain the internal state of
session si, after the session si is end.

4. Computational Protocols

In this section, we discuss computational protocols in UC security frame-
work. Since computational protocol execution has been defined via PPT
ITM, we only need to define the computational trace and computational
security criterion of group key exchange in UC model.

4.1. Computational Trace

Intuitively, computational trace is used to describe how an environment
interacts with the honest participants running the computational protocol
via the adversary. Formal definition of computational trace is as follow:

Definition 12 (Computational Trace). Let TRACEπ,S,Z(k, z) be the com-
putational trace of computational protocol π with a dummy adversary S, and
an environment Z on security parameter k and input z. The computational
trace is the sequence of events H1, H2, . . . , Hn, each of which is one of the
triple:

(1) The initial event
[“initial”, sid, pi, {p1, p2, . . . , pn}\pi] written on the input tape of pi rep-
resents that Z activates the participant pi to establish a session sid of
protocol π with all participants that are in {p1, p2, . . . , pn}\pi.

(2) The adversary event
[“adversary”,m, pi] represents that the adversary S sends a message m
to the incoming communication tape of the participant pi.

(3) The honest participant event
[“message”,m] indicates that the participant pi sends a message m to
the incoming communication tape of the adversary S.
[“erase”, er] indicates that the participant pi erases its private key of ses-
sion er from its work tape, and send er to the incoming communication
tape the adversary S.
[“output”, o] indicates that the participant pi outputs o to its local output
tape.

Moreover, we denote {TRACEπ,S,Z(k, z)}k∈N,z∈{0,1}∗ as EXECπ,S,Z .
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4.2. Computational Security Criterion of Group Key Exchange

Here we first define the functionality of bilinear pairings. It describes an
ideal bilinear mapping operation for bilinear pairing. Formal definition of
functionality FBP is in Fig 2.

Functionality FBP
FBP proceeds as follows, running with security parameter k, instance gen-
erator IG.

1. Setup: Upon receiving (Setup, s, pi, {p1, . . . , pn}\pi) from
the participant pi for the first time, verify there is no
record (Setup, s, {p1, . . . , pn}) for the participant pi ∈
{p1, . . . , pn}. If so, Record (Setup, s, {p1, . . . , pn}), compute
(q,G1,G2, g1, AK Gen1, . . . , AK Genl) from IG(k). Then compute
(Kpri, Kpub) from (q,G1, g1). Record (Pri, s, pi, {p1, p2, . . . , pn}\pi, Kpri)
and (Pub, s, pi, {p1, . . . , pn}\pi, Kpub), and generate a public delayed
output of the latter to pi.

2. AK Generation: Upon receiving a value
(AK Geni, s, pi, {p1, . . . , pn}\pi,m) from the participant pi, com-
pute Ki

ak from (q,G1,G2, g1, AK Geni, Kpri,m), and generate a public
delayed output (AKi, s, pi, {p1, . . . , pn}\pi, Ki

ak) to pi.

3. BP Generation: Upon receiving a value
(BP Gen, s, pi, {p1, . . . , pn}\pi,m) from the participant pi, do: If pi
is corrupted, send (BP Generate, s, {p1, p2, . . . , pn}) to the adversary.
Upon receiving (BP, s, {p1, . . . , pn}, κ) from the adversary, send it to pi.
Else if there is a record (BP, s, {p1, . . . , pn}, Kbp) for pi ∈ {p1, . . . , pn},
generate a private delayed output of it to pi. Else choose Kbp from Z∗q
uniformly at a random, record (BP, s, {p1, . . . , pn}, Kbp) and generate
a private delayed output of it to pi.

4. Expiration: Upon receiving a value (Expire, s, pi, {p1, p2, . . . , pn}\pi)
from adversary, do nothing.

5. Corruption: Upon receiving a value (Corrupt, pi) from the adversary,
mark pi as corrupted. Send all the records (BP, s, {p1, p2, . . . , pn}, Kbp)
that has not been sent to pi and (Pri, s, pi, {p1, . . . , pn}\pi, Kpri) to the
adversary.

Fig 2. The Functionality of Bilinear Pairing
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Next we discuss security of bilinear pairings. Although different group
key exchange protocols use bilinear pairings in different ways, their security
is the same as Theorem 1.

Theorem 1 (Security of Group Key Exchange Protocols using Bilin-
ear Pairings). The group key exchange protocols that use bilinear pairings
securely realizes FBP , if the instance generator IG satisfies BDDH assump-
tion.

Proof. The proof is by reduction. We show if there exist a PPT distin-
guisher D that distinguishes (q, gx1 , g

y
1 , g

z
1, g

xyz
2 ) from (q, gx1 , g

y
1 , g

z
1, g

r
2), where

x, y, z, r ← Z∗q, with non-negligible probability, then there exists a PPT en-
vironment Z that can distinguish its interaction with real protocols and real
adversary A from ideal functionality FBP and ideal S. D runs Z as follow:
Distinguisher D:
D is given (gx1 , g

y
1 , g

z
1, g

c
2) and (IG, k) as the input. It chooses u, v, w from Z∗n+1

uniformly at random. Then it generates simulated participants {p1, . . . , pn},
chooses i← {1, . . . , l(k)} uniformly at random, and runs Z as follow:

(1) When Z activates the participant pj by (Setup, s, pj, {p1, . . . , pn}\pj),
D activates its simulated participant pj with the same input. Compute
(q,G1,G2, g1, e) from IG(k).

(2) When Z activates the participant pj by (AK Genj, s, pj, {p1, . . . , pn}
\pj,m), if s = i, each ri, (i ∈ {1, . . . , n}) is chosen randomly from Z∗q, except
that we choose ru, rv, rw randomly, and replace gru1 , g

rv
1 , g

rw
1 by gx1 , g

y
1 , g

z
1 re-

spectively. Otherwise, ri, (i ∈ {1, . . . , n}) is chosen randomly from Z∗q. Then
D sends (AKj, s, pj, {p1, . . . , pn}\pj, ak) to Z. Here although different pro-
tocols have different ak, ak always can be computed by ri, (i ∈ {1, . . . , n})
and gru1 , g

rv
1 , g

rw
1 .

(3) WhenZ activates the participant pi by (BP Gen, s, pi, {p1, . . . , pn}\pi,
m), if pi is corrupted and s = i, halt and output a random number from
{0, 1}. Else compute and send (BP, s, {p1, . . . , pn}, Kbp) toZ by (pri,m, q, g2).
In particular, there is only one message that D cannot know. That is, if s = i,
grurvrw2 cannot be computed, since D do not know all the ru, rv, rw. If neces-
sary, D replace it by gc2.

(4) When Z activates the adversary A by (Expire, s, pi, {p1, . . . , pn}\pi),
do nothing.

(5) When Z activates the adversary A by (Corrupt, pi), if (BP, i, {p1, p2,
. . . , pn}, Kbp) has not been sent to Z yet, halt and output a random num-
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ber from {0, 1}. Else send all the records (BP, s, {p1, p2, . . . , pn}, Kbp) and
(Pri, s, pi, {p1, . . . , pn}\pi, Kpri) to the adversary.

(6) When Z outputs a bit b, halt and output b.
Here l(k) is the upper bound of sessions that can be created in PPT. From

the view of Z that runs as a sub-routine by D, if c = xyz, it is distributed
identically to the view of Z that interacts with a real bilinear pairing and a
real adversary A. Else if c = r, it is distributed identically to the view of Z
that interacts with FBP and S. Therefore, assume that ε(k) is the advantage
that Z can distinguish its interaction with the real bilinear pairing and A
from FBP and S, we have: Advn−BDDHD,IG (k) = ε(k)/l(k)

This completes the proof.

Finally the ideal functionality of group key exchange FGKE is in Fig 3.

Functionality FGKE
FGKE proceeds as follows, running with security parameter k and an ad-
versary A, with participants p1, . . . , pn.

1. Session Establishment: Upon receiving a value
(Establish, s, pi, {p1, . . . , pn}\pi) from the participant pi for
the first time, record and send it to A.

2. Key Generation: Upon receiving (Key Gen, s, pi, {p1, . . . , pn}\pi)
from the participant pi, if there are already n − 1 recorded tuples
(Establish, s, pj, {p1, . . . , pn}\pj) for pi ∈ {p1, . . . , pn}\pj. check
if there is a record (Key, s, {p1, p2, . . . , pn}, κ). If so, generate
a private delayed output of it to pi. Else if all participants
are not corrupted, record and generate a private delayed output
(Key, s, pi, {p1, . . . , pn}\pi, κ) to pi, where κ is chosen from {0, 1}k
uniformly at random. Else send (Deliver, s, {p1, p2, . . . , pn}) to the
adversary. Upon receiving (Key, s, {p1, . . . , pn}, κ) from the adver-
sary, record and generate a private delayed output of it to pi.

3. Expiration: Upon receiving a value (Expire, s, pi, {p1, . . . , pn}\pi)
from A, do nothing.

4. Corruption: Upon receiving a value (Corrupt, pi) from A, mark pi
as corrupted, if there is any record (Key, s, {p1, . . . , pn}, κ) that has
not been sent to pi, send it to the adversary.

Fig 3. The Functionality of Group Key Exchange
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5. Simple Protocols

5.1. The Syntax of Simple Protocols

Simple protocols are used to specify operations for message communi-
cations (sending and receiving) and manipulations (bilinear mapping and
signature). They are written by a specific programming language that keeps
each operation efficiently computed and restricts to commands that reflect
the structure of symbolic model.

We define simple protocols as an extension of [11] and [12]. In comparison,
we define calculus for bilinear pairings, and we relax the presentation to group
key exchange protocols. Formal definition of simple protocols is as follow:

Definition 13 (Syntax of Simple Protocols). A simple protocol π is a
n-tuple of programs π = (π1, . . . , πn), each of which is given by the grammar
in Fig 4. , where vc, vc0, vc1, vc2 stand for constants and v, v0, v1 stand for
variables.

PROGRAM ::= initialize(sid, pidi, {pid1, . . . , pidn}\pidi);COMMAND
COMMAND ::= COMMAND;COMMAND|done|receive(v)|send(vc)|
output(vc)|newrandom(v)|pair(vc0, vc1, v)|setup(vc, v)|ak gen1(vc1, vc2, v)|
. . . |ak genn(vc1, vc2, v)|bp gen(vc0, vc1, v)|erase(vc)|sep(vc, v0, v1)|sign(vc0,
vc1, v)|verify(vc0, vc1, vc2, v)

Fig 4. Syntax of Simple Protocols

5.2. Symbolic Semantics of Simple Protocols

We show the formal definition for the symbolic semantics of simple pro-
tocols as follow:

Definition 14 (Symbolic Semantics of Simple Protocols). Let π =
(π1, . . . , πn) be a simple protocol. Let π be the symbolic protocol of π where
the set of states S consist of a program counter Γ that indicates the next
command to execute, and a store command ∆ that maps variables in π to the
corresponding symbols in A. For all (Γ,∆) ∈ S,m ∈ A, s ∈ SID, p ∈ PID,
the mapping π is defined on the commands in π = (π1, . . . , πn) as follow:
(1) If Γ points to the command of send(vc), then π(s, p, (Γ,∆),m)→
(“message”,∆(vc), (Γ′,∆)) , Γ′ points to the next command.
(2) If Γ points to the command of output(vc), then π(s, p, (Γ,∆),m) →
(“output”, vc), (Γ′,∆)), Γ′ points to the next command.

21



(3) If Γ points to one of the following commands, then π(s, p, (Γ,∆),m) →
(s, p, (Γ′,∆′),m), where Γ′ points to the next command and ∆′ is equal to ∆,
except that:
receive(v) : ∆′(v) = m.
erase(vc) : ∆′(v) = ξ
newrandom(v) : ∆′(v) is the first element of R that is not in the range of ∆.
pair(vc1, vc2, v) : ∆′(v) = Pair(∆(vc1),∆(vc1)).
setup(vc, v) : ∆′(v) = Setup(∆(vc)).
ak geni(vc1, vc2, v) : ∆′(v) = AK Geni(∆(vc1),∆(vc2)).
bp gen(vc1, vc2, v) : If ∆(vc1) ∈ Pri, ∆(vc2) ∈ A,
∆′(v) = BP Gen(∆(vc1),∆(vc2)). Otherwise, ∆′(v) = %.
sep(vc, v1, v2) : If ∆(vc) = Pair(∆(vc1),∆(vc2)),
(∆′(v1),∆′(v2)) = Sep(∆(vc)). Otherwise, ∆′(v) = %.
sign(vc1, vc2, v) : ∆′(v) = Sign(∆(vc1),∆(vc2)).
verify(vc1, vc2, vc3, v) : ∆′(v) = V erify(∆(vc1),∆(vc2),∆(vc3)).

5.3. Computational Semantics of Simple Protocols

We now define the computational semantics of simple protocols as follow:

Definition 15 (Computational Semantics of Simple Protocols). Let
a PPT ITM π = (π1, . . . , πn) be a simple protocol. The state set SM consists
of {“initial”} ∪ S1 ∪ · · · ∪ Sn , where “initial” represents the initial state of
Mπ, and each state Si = (πi,∆i,Γi),(i ∈ {1, . . . , n}) represents the protocol
of the corresponding participants πi, a store command ∆i which maps from
variable names in πi to locations on the work tape, and a program counter Γi
which indicates the current command of πi. To encode the execution of each
πi, the transition function is defined over SM as follow:

(1) If Mπ is in the initial state “initial”, it will first read the security pa-
rameter k, a session identity si, a participant identity pi, and a set of
participant identities {p1, . . . , pn}\pi. Then Mπ initializes the storage
and writes [“initial”, si, pi, {p1, . . . , pn}\pi] to indicate that pi is initial-
ized with all the participants in {p1, . . . , pn}\pi in the session si. Finally,
it sets the program counter Γi to the next command and executes it.

(2) After initialization, the transition function continues to execute the com-
mand of πi by program counter Γi:
receive(v): If the command has already been executed in this activation,
Mπ waits to be reactivated. Otherwise, it first reads the message from its
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incoming communication tape and stores it in v. Then it instructs Γi to
the next command and executes it.
send(vc): Mπ writes vc to the incoming communication tape of the ad-
versary. Then it instructs Γi to the next command and executes it.
output(vc): Mπ writes vc to its local output tape. Then it instructs Γi to
the next command and executes it.
newrandom(v): Mπ first generates a random number r ← {0, 1}k, then
it stores [“random”, r] in v, and instructs Γi to the next command and
executes it.
pair(vc1, vc2, v): Mπ first stores [“pair”, vc0, vc1] in v, then it instructs
Γi to the next command and executes it.
setup(vc, v): Mπ first sends (Setup, vc) to FBP , where vc = (s, pi, {p1, . . . ,
pn}\pi). Then it reads (Pri, s, pi, vc,Kpri) and (Pub, s, vc,Kpub) from its
subroutine output tape. After that, it stores [“setup”, vc,Kpri, Kpub] in v,
Finally, it instructs Γi to the next command and executes it.
ak geni(vc1, vc2, v): Mπ first sends (AK Generatei, vc1, vc2) to FBP ,
where vc1 = (s, pi, {p1, . . . , pn}\pi). Then it reads (AKi, vc1, Kak) from
its subroutine output tape. After that, it stores [“aki”, vc1, vc2, K

i
ak] in v.

Finally it instructs Γi to the next command and executes it.
bp gen(vc1, vc2, v): Mπ first sends (BP Generate, vc1, vc2) to FBP , where
vc1 = (s, pi, {p1, . . . , pn}\pi). Then it waits until (BP, vc1, Kbp) is writ-
ten to its subroutine output tape. After that, it stores [“bp”, vc1, vc2, Kbp]
in v. Finally, it instructs Γi to the next command and executes it.
erase(vc): Mπ deletes the value of vc from its work tape, instructs Γi to
the next command and executes it.
sep(vc, v1, v2): If the value of vc is [“pair”, a, b], Mπ stores vc1 = a and
vc2 = b, then it instructs Γi to the next command and executes it.
sign(vc1, vc2, v): Mπ first sends (Sign, vc1, vc2) to FCERT , where vc1 =
(s, pi, {p1, . . . , pn}\pi), and vc2 is the message to be signed. It waits un-
til FCERT writes the signature σ on the subroutine output tape. Then
it stores [“sign”, vc1, vc2, σ] in v. Finally, it instructs Γi to the next
command and executes it.
verify(vc1, vc2, vc3, v): Mπ first sends (V erify, vc1, vc2, vc3) to FCERT ,
where vc1 = (s, pi, {p1, . . . , pn}\pi), vc2 is the messages, and σ is the last
element of v3, where v3 = [“sign”, s,m′, σ′]. It waits until FCERT writes
the bit b on the subroutine output tape. It outputs [“verify”, vc1, vc2, vc3, b].
If b = 1, it instructs Γi to the next command and executes it. Otherwise,
it halts.
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6. Mapping Algorithm and Mapping Lemma

In this section, we discuss how to map computational trace to symbolic
trace. Furthermore, we prove that the mapping algorithm is always valid
except with negligible probability. It is used to bridge the gap between
symbolic model and computational model. We start with the definition of
mapping algorithm.

Definition 16 (Mapping Algorithm). Let π be a simple protocol and
TRACEπ,A,Z(k, z) be the computational trace of π with security parameter
k, environment Z, adversary A and input z. Let π be the corresponding
symbolic protocol and t be the symbolic trace of π against symbolic adversary
A. We define a mapping algorithm δ from TRACEπ,A,Z(k, z) to t by two
steps as follow:
In the first step, the algorithm reads all the computational trace
TRACEπ,A,Z(k, z) character by character, and maps them from bit-strings to
the corresponding elements in the symbolic algebra A according to the cases
below:
Map [“sid”, s] to s, where s is the first element of SID in the range of δ.
Map [“pid”, p] to p, where p is the first element of PID in the range of δ.
Map [“pri”, vc] to pri, where pri is the first element of Pri in the range of
δ.
Map [“pub”, vc] to pub, where pub is the first element of Pub in the range of
δ.
Map [“sk”, vc] to sk, where sk is the first element of SK in the range of δ.
Map [“vk”, vc] to vk, where vk is the first element of V K in the range of δ.
Map [“setup”, vc,Kpri, Kpub] to (sk, pk) = Setup(), where sk is the first ele-
ment of Pri and pk is the first element of Pub in the range of δ.
Map [“random”, r] to r, where r is the first element of R in the range of δ,
if δ([“random”, r]) has not been defined yet.
Map [“pair”, a, b] to Pair(δ(a), δ(b)), if δ(a) or δ(b) has already been defined.
Else, map it to %.
Map [“aki”, vc1, vc2, K

i
ak] to AK Geni(pri, δ(vc2)), where pri = δ(“pri”, vc1).

Map [“bp”, vc1, vc2, Kbp] to BP Gen(pri, δ(vc2)), where pri = δ(“pri”, vc1).
Map [“sign”, vc1, vc2, σ] to Sig(pri, δ(vc2)), where sk = δ(“sk”, vc1).
Map [“verify”, vc1, vc2, vc3, b] to V erSig(vk, δ(m), δ(σ)), where vk = δ(“vk”,
vc1).
Map garbage string to %, empty string to ξ, continue symbol to >, termina-
tion symbol to ⊥
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Map “Establish” and “Key” to the same symbols.
Map “corrupt” and “expire” to the same symbols.
In the second step, the algorithm constructs the symbolic trace as follow:

(1) When translating [“initial”, s, pi, {p1, . . . , pn}\pi] to the symbolic even-
t, map it to [“input”, s, pi, {p1, . . . , pn}\pi, Si,init], where s = δ(“sid”, s),
pi = δ(“pid”, pi), pj = δ(“pid”, pj), (j ∈ [1, n]\i).

(2) When translating [“adversary”,m, pi] to the symbolic event, if m can
be generated by the adversary from previous messages of the trace, map it to
[“deliver”,m, pi]. Otherwise, map it to [“fail”,m].

(3) When translating [“message”,m], [“erase”, er], or [“output”, o] to the
symbolic event, map them to the same symbols.

Next we show that the mapping algorithm is valid. This is done by
proving mapping lemma as follow:

Lemma 1 (Mapping Lemma). Assume that δ is the mapping algorithm
that maps from computational trace TRACEπ,A,Z(k, z) to symbolic trace t
as in Definition 16. For all simple protocols π, environment Z, adversary
A, input z and security parameter k: Pr[t ← EXECπ,A,Z : t is not a valid
symbolic trace for π] ≤ neg(k).

Proof. We first construct a parse tree of messages, Next we show that t
contains [“fail”,m] with negligible probability. Finally, we show that t is
always valid if it does not contain [“fail”,m].

The parse tree of a message m is the tree whose root node is m, leaf nodes
are atomic messages in A, and edges from node m1 to node m2 indicates that
m1 can be derived from m2 by adversary.

Let Cj
Adv, (j < i) be an adversarial closure that can be generated in the

trace prior to mi. If all children nodes are in Cj
Adv, the parent node is in Ci−1

Adv.
As a result, if t contains [“fail”,mi], it represents that mi 6∈ Ci−1

Adv, where
mi ∈ Hi. That is, the symbolic adversary cannot derive mi from previous
messages of the symbolic trace, while the computational adversary can derive
it. Therefore, there must be a leaf node ml and a node m∗ in the path from
mi to ml, such that all the nodes from m∗ to ml are not in Cj

Adv.
The environment Z can instruct an adversary A1 to generate a bit-string

mi, such that δ(mi) = mi. Then it instructs another adversary A2 to gener-
ate a bit-string m*, such that δ(m*) = m∗. where m* is the message on the
path from mi to ml. Finally, it maps the bit-strings mi to symbols using δ
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recursively. That is, it parses from mi to ml recursively. There are three
possibilities:

(1) m∗ is in the form of BP Gen(pri, ak). Since the participants use FBP
to generate the secret key mbp, if m∗ is not in the closure Cj

Adv, then A2 has
to use FBP to generate it. Since FBP generates it from {0, 1}k uniformly at
random, the probability that FBP generates two same bilinear paring keys is
negligible. Otherwise, m∗ is in the form of [“corrupt”, pi] which must be in
Cj
Adv.

(2) m∗ is in the form of r. Since r is chosen from {0, 1}k uniformly at
random, the probability that A2 guesses right is negligible.

(3) m∗ is in the form of Sign(sk,m). The participant uses FCERT to
generate signatures. Since m∗ is not in the closure Cj

Adv, A2 must create a
valid signature for the message, which is not generated by the honest partic-
ipant. Since FCERT provides an ideal functionality of digital signature, the
probability that A2 succeeds is negligible.

Therefore, the probability of which the event [“fail”,m] occurs is negli-
gible. Furthermore, If t does not contain the event of the form [“fail”,m], it
is valid by the Definition 8. In addition, the mapping algorithm is valid for
both the initial event and honest participant event based on the Definition
14.

This completes the proof.

After that, we prove the computational soundness of the symbolic security
criterion as follow:

Theorem 2 (Computational Soundness of Symbolic Security Crite-
rion). For any adversary strategy Ψ, Let a simple protocol π that use bilinear
pairings exchange and secure digital signatures securely realize FBP . If π has
a mapping δ from computational trace TRACEπ,A,Z(k, z) to symbolic trace,
and π is a SGKE protocol, then π securely realizes FGKE.

Proof. We need to prove that π is not a SGKE protocol, if the environment
Z can distinguish its interaction with the real protocol π and the real adver-
sary A, from its interaction with the ideal functionality FGKE and the ideal
adversary S.

First of all, we need to construct a simulator (i.e., an adversary) to show
how FGKE and S simulate π and A. The simulator proceeds as follow:

(1) The simulator simulates each participant pi, but none of these simu-
lated participants are running.
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(2) When the simulator receives a message (Establish, s, pi, {p1, . . . , pn}
\pi) from FGKE, which indicates that the participant pi has already been
initialized by the environment, pass it to FGKE. The simulator activates the
simulated participant p′i by the same input.

(3) When the simulator receives a message from the environment to the
participant pi, forward it on the incoming communication tape of the simu-
lated participant p′i.

(4) When p′i sends a message on its incoming communication tape, it
sends the message to the environment.

(5) When p′i generate an output (Key, κ, s, pi, {p1, . . . , pn}\pi), forward it
to FGKE.

(6) When the simulator receives a message (Expire, s, pi, {p1, . . . , pn}\pi)
from the environment, forward it to FGKE.

(7) When the simulator receives a message (Corrupt, pi) from the envi-
ronment, forward it to FGKE.

If all honest participants are not marked “corrupted”, and the environ-
ment interacts with S and FGKE, the session key is a random number. There-
fore, if the environment can distinguish whether it interacts with the real
protocol π and the real adversary A from the ideal functionality FGKE and
the dummy adversary S, then A must distinguish the real session key from a
random key, since π securely realizes FGKE and digital signatures are secure.
That is, π is not a SGKE protocol.

This completes the proof.

Note that Theorem 2 implies the group key exchange protocol using bilin-
ear pairings securely realizes FBP , and the digital signature securely realizes
FCERT , according to the definition 15. In addition, the universally compos-
able theorem with joint state in [10] makes us only need to analyze a single
session of π. Therefore, we only need to analyze a single session of π in
symbolic model.

7. Security Reduction

In this section, we reduce the security of a group key exchange session
that use bilinear pairings exchange with arbitrary number of participants to
the same session with three participants in symbolic model.

Theorem 3. Let π be a symbolic simple session that uses bilinear pairings
exchange with n participants, where (n ∈ N, n > 3), and π3 be the same
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session with three participants. For any adversary strategy Ψ, if π3 is a
SGKE session, then π is a SGKE session.

Proof. First, we limit the adversary is passive. Assume that πi is the session
with i participants, (q,G1,G2, g1, e)← IG(k) be the parameters of the bilin-
ear pairings used in πi. We prove this theorem by mathematical induction.
Since π3 is a SGKE session, we only need to prove that if πk is a SGKE
session, then πk+1 is also a SGKE session. Therefore, for πk, we construct a
simulation for πk+1 as follow:

(1) Ak executes πk and obtains all the messages include all the public
keys gr11 , . . . , g

rk
1 , AKk

1 , . . . , AK
k
n and an output Kk

c .
(2) Ak simulates all the honest participants p1, . . . , pk, pk+1 in πk+1. In

particular, it generates the private key, public key of the participant pk+1

by itself. Therefore, it can compute all the messages AKk+1
1 , . . . , AKk+1

k+1 by
the method of undetermined coefficients based on the private key of pk+1,
AKk

1 , . . . , AK
k
k and Kk

c .
(3) IfAk+1 activates a participant pi, it chooses the corresponding message

from the public key gri1 and AKk+1
1 , . . . , AKk+1

n+1.
Note that from the point of Ak+1, if Kk

c is the real session key, the in-
teraction with this simulation is the same as the interaction with the real
symbolic session. The probability that Ak considers Kk

c as the real session
key of πk, equals the probability that Ak+1 considers Kk+1

c as the real session
key of πk+1. Otherwise, if Kk

c is a random element of key space, the inter-
action with this simulation is the same as the interaction with the random
symbolic session, except that part of the assistant keys are random num-
bers. If Ak+1 can distinguish those assistant keys are random numbers, the
probability that Ak considers Kk

c as a random number in the execution of
(πk)random, equals 1. Otherwise, the probability that Ak considers Kk

c as a
random number in the execution of (πk)random, equals the probability that
Ak+1 considers Kk+1

c as a random number in the execution of (πk+1)random.
Therefore, the probability that Ak considers Kk

c as a random number in the
execution of (πk)random is not less than the probability that Ak+1 considers
Kk+1
c as a random number in the execution of (πk+1)random.

Above all, if there is a symbolic trace tk+1, such that Ak+1 is not a SGKE
session, then Ak can compute the corresponding symbolic trace tk by tk+1,
such that Ak is not a SGKE session, since it knows the private key and
signature key of pk+1.

Furthermore, it can be used for sessions in the active settings. More
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specifically, it works even if the session uses digital signatures. In that case,
we assume that each participant pi, (i ∈ [1, k]) has a sign oracle to return the
signature of all the messages input by Ak. Therefore, it can send arbitrary
messages it needs to pi. The proof is still valid then. As a result, if the digital
signatures is secure, the conclusion of Theorem 3 is still valid.

This completes the proof.

Example: We show how Ak simulates (α, β, γ)-BBD session among k+1
participants via the same session with k participants. Each session of πk+1

is simulated by πk as follow:
(1) Ak runs (α, β, γ)-BBD session among k participants to obtain all the

public keys gr11 , . . . , g
rk
1 , assistant keys g

αrk−2rk−1r1+βrk−1r1r2+γr1r2r3
2 , . . . ,

g
αrk−2rk−1rk+βrk−1rkr1+γrkr1r2
2 , and an output Kk

c that is g
r1r2r3+···+rk−1rkr1+rkr1r2
2

or a random element of G2.
(2) Ak generates a private key rk+1 and a public key grk+1 for the (k+1)th

participant.
(3) Ak computes gr1r2r32 , . . . , g

rk−1rkr1
2 , grkr1r22 by applying undetermined

coefficient to all the assistant keys and output obtained in (1).
(4) Ak computes all the public keys gr11 , . . . , g

rk
1 , g

rk+1 , assistant keys

g
αrk−1rkr1+βrkr1r2+γr1r2r3
2 , . . . , g

αrk−1rkrk+1+βrkrk+1r1+γrk+1r1r2
2 , and an outputKk+1

c

that is g
r1r2r3+···+rkrk+1r1+rk+1r1r2
2 or a random element of G2, based on gr1r2r32 ,

. . . , g
rk−1rkr1
2 , grkr1r22 and rk+1.

(5) Ak run Ak+1 to simulates (α, β, γ)-BBD session among k + 1 partici-
pants by all the messages in (4).

Note that from the point of Ak+1, if Kk
c is the real session key, it interacts

with this simulation is the same as it interacts with the real symbolic session.
Otherwise, if Kk

c is a random number, it interacts with this simulation is the
same as it interacts with the random symbolic session, except that part of
assistant keys are random numbers.

Let Ak+1 output 0, if it considers Kk+1
c as g

r1r2r3+···+rkrk+1r1+rk+1r1r2
2 . Oth-

erwise, let Ak+1 output 1, if it considers Kk+1
c as a random element of G2.

Suppose the probability that Ak+1 can distinguish g
r1r2r3+···+rkrk+1r1+rk+1r1r2
2

from a random element of G2 is denoted as ε(k), we have:

ε(k) = Pr[Kk+1
c is the real session key] ∗ Pr[Ak+1 outputs 0]

+ Pr[Kk+1
c is a random number] ∗ Pr[Ak+1 outputs 1]

Assume that α is the probability that Ak+1 can distinguish if the assistant
keys are random numbers or not, and ε′(k) is the probability that Ak can
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distinguish g
r1r2r3+···+rk−1rkr1+rkr1r2
2 from a random element of G2, we have:

ε′(k) = Pr[Kk
c is the real session key] ∗ Pr[Ak+1 outputs 0]

+ Pr[Kk
c is a random number] ∗ (Pr[Ak+1 outputs 1] ∗ (1− α) + 1 ∗ α)

≥ Pr[Kk
c is the real session key] ∗ Pr[Ak+1 outputs 0]

+ Pr[Kk
c is a random number] ∗ Pr[Ak+1 outputs 1] ∗ ((1− α) + α)

= Pr[Kk
c is the real session key] ∗ Pr[Ak+1 outputs 0]

+ Pr[Kk
c is a random number] ∗ Pr[Ak+1 outputs 1]

= ε(k)

Therefore, if there is a symbolic trace tk+1, such that Ak+1 is not a SGKE
session, then Ak can compute the corresponding symbolic trace tk by tk+1,
such that Ak is not a SGKE session.

8. Automate Analysis Simple Protocols by ProVerif

In this section, we design two group key exchange protocols based on
(α, β, γ)-BBD protocol, and take them as examples to illustrate how to an-
alyze group key exchange protocols that use bilinear pairings exchange and
digital signatures based on our approach.

Theorem 2 proves if a simple protocol of group key exchange is a SGKE
protocol, then it securely realizes FGKE. Applying the universally compos-
able theorem with joint state in [10], we only need to analyze a single group
key exchange session to resist insider attack in symbolic model. Furthermore,
there is a compiler to translate secure group key exchange protocols to resist
outsider attack to secure protocols to resist insider attack automatically [21].
Therefore, we only need to design a group key exchange protocol to resist
outsider attack.

We start to apply the compiler in the work of [22] to design a group key
exchange protocol based on (α, β, γ)-BBD protocol as follow:
Protocol Description of Compiled (α, β, γ)-BBD Protocol. Assume
that G1 and G2 are two cyclic group of the same prime order q with respective
generators g1 and g2. Let e : G1 × G1 → G2 such that e(g1, g1) = g2.
Assume that each participant has already generated a signature key ski and
the corresponding verification key vki. In addition, each participants has
known the verification keys of others before executing the protocol, all the
indexes are taken modulo n, and i ∈ [0, n− 1]. The protocol proceeds among
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all participants {pi} as follow:
(1) Each pi chooses a random number xi ∈ Z∗q and broadcasts it to all the
others.
(2) Each pi chooses a random number ri ∈ Z∗q, keeps ri secret, computes
Zi = gri1 , and broadcasts Si = (Zi, Sigski(Zi, (p0, x0, p1, x1, p2, x2)))
(3) Each pi verifies the messages V erify(Sj, vkj) that it has received. If all
of them are valid, pi computes: Xi = e((Zi−2, Zi−1)αri) · e((Zi−1, Zi+1)βri) ·
e((Zi+1, Zi+2)γri) = g

αri−2ri−1ri+βri−1riri+1+γriri+1ri+2

2 , , and broadcasts Ti =
(Xi, Sigski(Xi, (p0, x0, p1, x1, p2, x2))).
(4) Each pi verifies the messages V erify(Tj, vkj) that it has received. If all

of them are valid, pi computes the session key: K = g
∑n−1

i=0 riri+1ri+2

2 .
Next we prove that the compiled (α, β, γ)-BBD protocol is not a SGKE

protocol.

Theorem 4. The compiled (α, β, γ)-BBD protocol is not a SGKE protocol.

We analyze compiled protocol by ProVerif. Since the instance generator
of the bilinear pairings used in the (α, β, γ)-BBD protocol has been proved to
satisfy BDDH assumption in the work of [23], it securely realizes FBP based
on Theorem 1. As a result, we only need to analyze a compiled session with
three participants based on Theorem 2 and Theorem 3.

The specific program is shown in Fig 5 of Appendix. Note that the
function Setup is implemented in two steps: (1) generate a random num-
ber as the private key; (2) generate the public key through the public key.
The function pair(m1,m2) is denoted by (m1,m2) for short. The functions
AK Gen1 is denoted by ak1. And the function BPGen is denoted by bp that
can be simplified, because the protocol using bilinear pairings satisfy BDDH
assumption.

ProVerif shows that the compiled session with three participants is not
a SGKE session. As a result, the compiled (α, β, γ)-BBD protocol is not a
SGKE protocol.

Then we revise the compiled (α, β, γ)-BBD protocol as follow:
Protocol Description of Revised (α, β, γ)-BBD Protocol. Assume that
G1 and G2 are two cyclic group of the same prime order q with respective
generators g1 and g2. Let e : G1 × G1 → G2 such that e(g1, g1) = g2.
Assume that each participant has already generated a signature key ski and
the corresponding verification key vki. In addition, each participants has
known the verification keys of others before executing the protocol, all the
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indexes are taken modulo n, and i ∈ [0, n− 1]. The protocol proceeds among
all participants {pi} as follow:
(1) Each pi chooses a random number xi ∈ Z∗q and broadcasts it to all the
others.
(2) Each pi chooses a random number ri ∈ Z∗q, keeps ri secret, computes
Zi = gri1 , and broadcasts Si = (Zi, Sigski(Zi, (p0, x0, p1, x1, p2, x2)))
(3) Each pi verifies the messages V erify(Sj, vkj) that it has received. If all
of them are valid, pi computes: Xi = e((Zi−2, Zi−1)αri) · e((Zi−1, Zi+1)βri) ·
e((Zi+1, Zi+2)γri) = g

αri−2ri−1ri+βri−1riri+1+γriri+1ri+2

2 , . Then broadcast Ti =
(Xi, Sigski(Xi, (p0, x0, p1, x1, p2, x2))).
(4) Each pi verifies the messages V erify(Tj, vkj) that it has received. If all

of them are valid, pi computes: ki = g
∑n−1

i=0 riri+1ri+2

2 Then pi erases ri, let ki
be the session key.

Finally, we prove that the revised protocol is a SGKE protocol.

Theorem 5. The revised (α, β, γ)-BBD protocol is a SGKE protocol.

We analyze the revised protocol by ProVerif. Based on Theorem 2 and
Theorem 3, we only need to analyze a revised session with three participants
as well. The specific program is shown in Fig 6 of Appendix.

ProVerif shows that the revised session with three participants is a SGKE
session. Therefore, the revised (α, β, γ)-BBD protocol is a SGKE protocol.

9. Conclusion

In this paper, we propose a fully automated approach to analyze group key
exchange protocols that use bilinear pairings exchange and digital signatures
without sacrificing the soundness of cryptography. When analyzing group
key exchange protocols based on bilinear pairings and digital signatures with
an unbounded number of sessions among arbitrary number of participants,
researchers only need to provide the symbolic analysis of a single group key
exchange session among three participants based on our work. Furthermore,
the security is preserved when protocols are used to compose a more complex
protocol by universal composition operation [10].

In addition, combined our approach with the work of [21], researchers can
only design and prove the security of a single group key exchange session to
resist outsider attack by the symbolic analysis, since it can be compiled to a
secure protocol to resist malicious insider attack automatically.
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Finally, there are two directions to extend our work:
(1) Researchers can analyze more group communication protocols that use

bilinear pairings based on our work, such as ID-based group key exchange
protocols, Joux Tripatite Diffie-Hellman protocol, etc.

(2) Note that we do not deal with key cycles. In other words, symbolic
expressions are restricted to be acyclic. However, it may occur in some
complex systems. Two possibility approaches to deal with key cycles are to
strengthen the symbolic adversary or the symbolic security criterion.
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Appendix: ProVerif Implementations

free c.
fun host/1.(* Participant identity *)
fun vk/1.(* Verication key of algebra A *)
fun pub/1.(* Public key of algebra A *)
fun ak1/2.(* Assistant key generate function of algebra A *)
fun bddh/3.(* Simplification based on BDDH assumption *)
data true/0.(* True evaluation *)
data zero/0. (* Round 1 *)
data one/0. (* Round 2 *)
data two/0. (* Round 3 *)
(* Property of bilinear pairing key *)
reduc bp(r2, (ak1(r0,(pub(r1),pub(r2))),ak1(r1,(pub(r2),pub(r0))))) = bddh(r2, pub(r0),pub(r1)).
equation bddh(r2, pub(r0),pub(r1)) = bddh(r0, pub(r1),pub(r2)).
equation bddh(r2, pub(r0),pub(r1)) = bddh(r1, pub(r2),pub(r0)).
fun sign/2. (* Signature function of algebra A *)
reduc checksign(vk(k), m, sign(k, m)) = true.(* Verify function of algebra A *)
let p0 = new r0; (* Process 0 *)
out(c,(host0, zero, r0)); (* Message 1 *)
in (c, recv0);
let (=host1, =zero, h1r) = recv0 in
in (c, recv1);
let (=host2, =zero, h2r) = recv1 in
new x0;
out(c, (host0, one, pub(x0), sign(sk0,(one,pub(x0),host0,r0,host1,h1r,host2,h2r))));(* Message 2 *)
in(c, recv2);
let (=host1, =one, d1, d1sig) = recv2 in
in(c, recv3);
let (=host2, =one, d2, d2sig) = recv3 in
if checksign(pk1,(one,d1,host0,r0,host1,h1r,host2,h2r), d1sig) = true then
if checksign(pk2,(one,d2,host0,r0,host1,h1r,host2,h2r), d2sig) = true then
out(c, (host0, two, ak1(x0,(d1,d2)), sign(sk0,(two,ak1(x0,(d1,d2)),host0,r0,host1,h1r,host2,h2r))));(* Mes-
sage 3 *)
in(c, recv4); in(c, recv5);
out(c,x0).(* Output internal state to the adversary *)
let p1 = new r1;(* Process 1 *)
out(c,(host1, zero, r1));(* Message 1 *)
in (c, recv0);
let (=host0, =zero, h0r) = recv0 in
in (c, recv1);
let (=host2, =zero, h2r) = recv1 in
new x1;
out(c, (host1, one, pub(x1), sign(sk1,(one,pub(x1),host0,h0r,host1,r1,host2,h2r))));(* Message 2 *)
in(c, recv2);
let (=host0, =one, d0, d0sig) = recv2 in
in(c, recv3);
let (=host2, =one, d2, d2sig) = recv3 in
if checksign(pk0,(one,d0,host0,h0r,host1,r1,host2,h2r), d0sig) = true then
if checksign(pk2,(one,d2,host0,h0r,host1,r1,host2,h2r), d2sig) = true then
out(c, (host1, two, ak1(x1,(d2,d0)), sign(sk1,(two,ak1(x1,(d2,d0)),host0,h0r,host1,r1,host2,h2r))));(* Mes-
sage 3 *)
in(c, recv4); in(c, recv5);
out (c, x1).(* Output internal state to the adversary *)
let p2 = new r2;(* Process 2 *)
out(c,(host2, zero, r2));(* Message 1 *)
in (c, recv0);
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let (=host0, =zero, h0r) = recv0 in
in (c, recv1);
let (=host1, =zero, h1r) = recv1 in
new x2;
out(c, (host2, one, pub(x2), sign(sk2,(one,pub(x2),host0,h0r,host1,h1r,host2,r2))));(* Message 2 *)
in(c, recv2);
let (=host0, =one, d0, d0sig) = recv2 in
in(c, recv3);
let (=host1, =one, d1, d1sig) = recv3 in
if checksign(pk0,(one,d0,host0,h0r,host1,h1r,host2,r2), d0sig) = true then
if checksign(pk1,(one,d1,host0,h0r,host1,h1r,host2,r2), d1sig) = true then
out(c, (host2, two, ak1(x2,(d0,d1)), sign(sk2,(two,ak1(x2,(d0,d1)),host0,h0r,host1,h1r,host2,r2))));(* Mes-
sage 3 *)
in(c, recv4);
let (=host0, =two, e0, e0sig) = recv4 in
in(c, recv5);
let (=host1, =two, e1, e1sig) = recv5 in
if checksign(pk0,(two,e0,host0,h0r,host1,h1r,host2,r2), e0sig) = true then
if checksign(pk1,(two,e1,host0,h0r,host1,h1r,host2,r2), e1sig) = true then
out(c, x2);(* Output internal state to the adversary *)
out(c, choice[bp(x2,(e0,e1)), bp(rc,(ak1(ra,(pub(rb),pub(rc))),ak1(rb,(pub(rc),pub(ra)))))]).(* output a
real or random key *)
process
new sk0; let pk0 = vk(sk0) in
new sk1; let pk1 = vk(sk1) in
new sk2; let pk2 = vk(sk2) in
let host0 = host(sk0) in
let host1 = host(sk1) in
let host2 = host(sk2) in
new ra; new rb; new rc;
(p0 | p1 | p2)

Fig 5. The ProVerif Specification of Compiled (α, β, γ)-BBD Protocol with respect to Forward Secrecy.

37



free c.
fun host/1.(* Participant identity *)
fun vk/1.(* Verication key of algebra A *)
fun pub/1.(* Public key of algebra A *)
fun ak1/2.(* Assistant key generate function of algebra A *)
fun bddh/3.(* Simplification based on BDDH assumption *)
fun erase/1.(* Erase the private key *)
data true/0.(* True evaluation *)
data zero/0. (* Round 1 *)
data one/0. (* Round 2 *)
data two/0. (* Round 3 *)
(* Property of bilinear pairing key *)
reduc bp(r2, (ak1(r0,(pub(r1),pub(r2))),ak1(r1,(pub(r2),pub(r0))))) = bddh(r2, pub(r0),pub(r1)).
equation bddh(r2, pub(r0),pub(r1)) = bddh(r0, pub(r1),pub(r2)).
equation bddh(r2, pub(r0),pub(r1)) = bddh(r1, pub(r2),pub(r0)).
fun sign/2. (* Signature function of algebra A *)
reduc checksign(vk(k), m, sign(k,m)) = true.(* Verify function of algebra A *)
let p0 = new r0; (* Process 0 *)
out(c,(host0, zero, r0)); (* Message 1 *)
in (c, recv0);
let (=host1, =zero, h1r) = recv0 in
in (c, recv1);
let (=host2, =zero, h2r) = recv1 in
new x0;
out(c, (host0, one, pub(x0), sign(sk0,(one,pub(x0),host0,r0,host1,h1r,host2,h2r))));(* Message 2 *)
in(c, recv2);
let (=host1, =one, d1, d1sig) = recv2 in
in(c, recv3);
let (=host2, =one, d2, d2sig) = recv3 in
if checksign(pk1,(one,d1,host0,r0,host1,h1r,host2,h2r), d1sig) = true then
if checksign(pk2,(one,d2,host0,r0,host1,h1r,host2,h2r), d2sig) = true then
out(c, (host0, two, ak1(x0,(d1,d2)), sign(sk0,(two,ak1(x0,(d1,d2)),host0,r0,host1,h1r,host2,h2r))));(* Mes-
sage 3 *)
in(c, recv4); in(c, recv5);
out(c,erase(x0)).(* Output internal state to the adversary *)
let p1 = new r1;(* Process 1 *)
out(c,(host1, zero, r1));(* Message 1 *)
in (c, recv0);
let (=host0, =zero, h0r) = recv0 in
in (c, recv1);
let (=host2, =zero, h2r) = recv1 in
new x1;
out(c, (host1, one, pub(x1), sign(sk1,(one,pub(x1),host0,h0r,host1,r1,host2,h2r))));(* Message 2 *)
in(c, recv2);
let (=host0, =one, d0, d0sig) = recv2 in
in(c, recv3);
let (=host2, =one, d2, d2sig) = recv3 in
if checksign(pk0,(one,d0,host0,h0r,host1,r1,host2,h2r), d0sig) = true then
if checksign(pk2,(one,d2,host0,h0r,host1,r1,host2,h2r), d2sig) = true then
out(c, (host1, two, ak1(x1,(d2,d0)), sign(sk1,(two,ak1(x1,(d2,d0)),host0,h0r,host1,r1,host2,h2r))));(* Mes-
sage 3 *)
in(c, recv4); in(c, recv5);
out (c, erase(x1)).(* Output internal state to the adversary *)
let p2 = new r2;(* Process 2 *)
out(c,(host2, zero, r2));(* Message 1 *)
in (c, recv0);
let (=host0, =zero, h0r) = recv0 in
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in (c, recv1);
let (=host1, =zero, h1r) = recv1 in
new x2;
out(c, (host2, one, pub(x2), sign(sk2,(one,pub(x2),host0,h0r,host1,h1r,host2,r2))));(* Message 2 *)
in(c, recv2);
let (=host0, =one, d0, d0sig) = recv2 in
in(c, recv3);
let (=host1, =one, d1, d1sig) = recv3 in
if checksign(pk0,(one,d0,host0,h0r,host1,h1r,host2,r2), d0sig) = true then
if checksign(pk1,(one,d1,host0,h0r,host1,h1r,host2,r2), d1sig) = true then
out(c, (host2, two, ak1(x2,(d0,d1)), sign(sk2,(two,ak1(x2,(d0,d1)),host0,h0r,host1,h1r,host2,r2))));(* Mes-
sage 3 *)
in(c, recv4);
let (=host0, =two, e0, e0sig) = recv4 in
in(c, recv5);
let (=host1, =two, e1, e1sig) = recv5 in
if checksign(pk0,(two,e0,host0,h0r,host1,h1r,host2,r2), e0sig) = true then
if checksign(pk1,(two,e1,host0,h0r,host1,h1r,host2,r2), e1sig) = true then
out(c, erase(x2));(* Output internal state to the adversary *)
out(c, choice[bp(x2,(e0,e1)), bp(rc,(ak1(ra,(pub(rb),pub(rc))),ak1(rb,(pub(rc),pub(ra)))))]).(* output a
real or random key *)
process
new sk0; let pk0 = vk(sk0) in
new sk1; let pk1 = vk(sk1) in
new sk2; let pk2 = vk(sk2) in
let host0 = host(sk0) in
let host1 = host(sk1) in
let host2 = host(sk2) in
new ra; new rb; new rc;
(p0 | p1 | p2)

Fig 6. The ProVerif Specification of Revised (α, β, γ)-BBD Protocol with respect to Forward Secrecy.
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