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Abstract

It is well known that the general subset sum problem is NP-complete. How-
ever, almost all subset sum problems with density less than 0.9408 . . . can be
solved in polynomial time with an oracle that can find the shortest vector in
a special lattice. In this paper, we give a similar result for the multiple sub-
set sum problem which has k subset sum problems with the same solution. A
modified lattice is involved to make the analysis much simpler than before. In
addition, some extended versions of the multiple subset sum problem are also
considered.
Keywords. Density, Lattice, Multiple Subset Sum Problem

1 Introduction

The subset sum problem refers to the question to find variables (x1, x2, · · · , xn) ∈
{0, 1}n, given positive integers a1, a2, · · · , an and s, where s is the sum of some
subset of the ai’s, such that

n∑
i=1

xiai = s.

The problem is well known to be NP-complete [2] and has many applications in
cryptography, such as the Merkle-Hellman cryptosystem [6].

The density of these ai’s is defined by

d =
n

log2(maxi ai)
.
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In terms of public-key cryptosystems, d is an approximate measure of the informa-
tion rate at which bits are transmitted, namely

d ≈ number of bits in plaintext message

average number of bits in ciphertext message
.

It was shown by Lagarias and Odlyzko [3] that almost all the subset sum problem
with density less than 0.6463 . . . would be solved in polynomial time with a single
call to an oracle that can find the shortest vector in a special lattice. The bound
was improved later to 0.9408 . . . by Coster et al. [1]. Li and Ma [4] gave a similar
result when d < 0.488 . . . for the extended versions of the subset sum problem
where the variables are in {−1, 0, 1} instead of {0, 1} and the weights are allowed
to be negative. Wang et al. [8] showed the same bound d < 0.488 . . . holds for the
extended modular subset problems.

In this paper, we discuss the density of the multiple subset sum problem and its
some extended versions when given a lattice oracle. Given k subset sum problems
with the same solution (x1, x2, · · · , xn) ∈ {0, 1}n

n∑
i=1

a1,ixi = s1

n∑
i=1

a2,ixi = s2

...
...

...
n∑

i=1
ak,ixi = sk,

the multiple subset sum problem is to find the solution. Obviously, when k = 1, it
agrees with the general subset sum problem. Similarly, we can define the density of
the multiple subset sum problem as

d =
n

k · log(maxj,i aji)
.

As we know, Liu et al. [5] transformed the multiple subset sum problem to a
new single subset sum problem, whose density is approximately equal to the density
of the multiple subset sum problem we have defined. For the new single subset sum
problem, they got the bound d < 0.9408 . . . by the known result. However, just
a heuristic explanation, but not a rigorous proof, was given for their result in [5].
Furthermore, it seems hard to apply their method for the extended versions of the
modular subset sum problem.

In this paper, we give a rigorous proof for the result and generalize it to some
extended versions of the problem, including the multiple modular subset sum prob-
lem. What’s more, a modified lattice involved in our proof makes the analysis much
simpler than before.
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2 Preliminaries

We denote by Z the integer ring. We use bold letters to denote vectors, in row
notation. If v is a vector, then we denote by vi the i-th entry of v. Let ‖ · ‖ and
〈·, ·〉 be the Euclidean norm and inner product of Rn.

2.1 Lattice

Let B = {b1,b2, . . . ,bn} ⊂ Rm be a set of n linearly independent vectors. The
lattice L generated by the basis B is defined as

L(B) = {
n∑

i=1

xibi : xi ∈ Z}.

n is called the dimension of the lattice. Finding a non-zero shortest vector of a
lattice L is called the shortest vector problem(SVP).

2.2 The Number of Integer Points in Bn(R)

We denote by Bn(R) the ball centered at the origin with radius R and by N(n,R2)
the number of integer points in Bn(R), i.e.,

N(n,R2) = |{z ∈ Zn :
n∑

i=1

z2i ≤ R2}|.

By the techniques of Mazo and Odlyzko [9], it can be shown that:

• N(n, n2 ) ≤ 2c0n, c0 = 1.54725... ([3]),

• N(n, n4 ) ≤ 2c1n, c1 = 1.0628... ([1]),

• N(n, n) ≤ 2c2n, c2 = 2.047... ([4]).

2.3 The Density of the Subset Sum Problem

We present some results on the subset sum problem below.
Let

A be a positive integer,
a1, a2, . . . , an be random integers with 0 < ai ≤ A for 1 ≤ i ≤ n,
e = (e1, e2, · · · , en) be any non-zero vector in {0, 1}n,
s =

∑n
i=1 eiai.
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Coster et al. [1] showed that if the density d < 0.9408 . . ., then the subset sum
problem defined by a1, a2, . . . , an and s may ”almost always” be solved in polynomial
time with a single call to a lattice oracle which can solve the SVP. We sketch their
proof here. Consider the lattice L generated by the basis

b1 = (1, 0, · · · , 0, Na1)
b2 = (0, 1, · · · , 0, Na2)

...
bn = (0, 0, · · · , 1, Nan)
bn+1 = (12 ,

1
2 , · · · ,

1
2 , Ns),

where N is an integer greater than
√

n
4 . Notice that there is a vector ē = (e1 −

1
2 , e2−

1
2 , · · · , en−

1
2 , 0) in L. If L contains no other non-zero vectors shorter than ē

or −ē, then we immediately obtain the vector ē, hence the solution e, with a single
call to a lattice oracle. What’s more, Coster et al. [1] showed the probability that
L contains no other non-zero vectors shorter than ē or −ē is 1− P , where

P ≤ n(4n
√
n + 1)

2c1n

A
.

Hence, when n is large enough, if the density d is less than 1
c1

(≈ 0.9408...), P can
be as small as possible, and with probability very near one, ē and −ē are the only
shortest vectors in L.

Li and Ma [4] extended the variables range from {0, 1} to {−1, 0, 1}, allowed the
weight to be negative. They also estimated the upper bound of the corresponding
probability P and got

P ≤ n(n +
1

2At
)

2c2n

A1−t +
2

At

where 0 < t < 1. Similarly, they showed for large enough n and d < 0.488..., P
would be small enough.

The extended modular subset sum problem refers to the question to find variables
(x1, x2, · · · , xn) ∈ {−1, 0, 1}n, given positive integers a1, a2, . . . , an, q and s, such
that

n∑
i=1

aixi ≡ s(mod q).

Wang et al. showed the corresponding P satisfied

P ≤ 2c2(n+1)

q
n(2n + 3)2,

and d < 0.488.
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2.4 The Multiple Subset Sum Problem

In this paper, we consider the multiple subset sum problem(Multiple SSP) and the
corresponding multiple modular subset sum problem (Multiple Modular SSP).

Given a positive integer A, the multiple subset sum problem refers the question
to recover (x1, x2, · · · , xn) ∈ {0, 1}n from aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) and s1, s2, . . . , sk
where aij ’s are uniformly independently and randomly chosen from the set of integers
between 1 and A and s1, s2, . . . , sk satisfy

n∑
i=1

a1,ixi = s1

n∑
i=1

a2,ixi = s2

...
...

...
n∑

i=1
ak,ixi = sk.

The density of the multiple subset sum is defined by

d =
n

k log2(maxj,i aji)
.

Similarly, given a positive integer q, the multiple modular subset sum problem is
to find (x1, x2, · · · , xn) ∈ {0, 1}n from aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) and s1, s2, . . . , sk,
where aij ’s are uniformly independently and randomly chosen from the set of integers
between 1 and q − 1 and s1, s2, . . . , sk satisfy

n∑
i=1

a1,ixi ≡ s1 (mod q)

n∑
i=1

a2,ixi ≡ s2 (mod q)

...
...

...
n∑

i=1
ak,ixi ≡ sk (mod q).

The density of the multiple modular subset sum is defined by

d =
n

k log2 q
.
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3 A Note on the Density of the Multiple Subset Sum
Problem

3.1 Multiple Subset Sum Problem

We give the main result for the general multiple subset sum problem first.

Theorem 1. Let A be a positive integer, and let aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) be inde-
pendently uniformly random integers between 1 and A. Let e = (e1, e2, · · · , en) be ar-
bitrary non-zero vector in {0, 1}n, and let s1 =

∑n
i=1 a1iei, s2 =

∑n
i=1 a2iei, . . . , sk =∑n

i=1 akiei. If the density d < 0.9408 . . ., then the multiple subset sum problem de-
fined by aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) and s1, s2, . . . , sk may ”almost always” be solved
in polynomial time with a single call to a lattice oracle.

Proof. Define vectors b1,b2, . . . ,bn,bn+1 as follows:

b1 = (1, 0, · · · , 0, 0, Na1,1, Na2,1, · · · , Nak,1)
b2 = (0, 1, · · · , 0, 0, Na1,2, Na2,2, · · · , Nak,2)

...
bn = (0, 0, · · · , 1, 0, Na1,n, Na2,n, · · · , Nak,n)
bn+1 = (12 ,

1
2 , · · · ,

1
2 ,

1
2 , Ns1, Ns2, · · · , Nsk)

where N is an integer greater than
√

n+1
4 .

Let L be the lattice generated by b1,b2, . . . ,bn,bn+1. Then we can easily know

that ē = (e1 − 1
2 , e2 −

1
2 , · · · , en −

1
2 ,−

1
2 , 0, · · · , 0) is in L. Notice that ‖ē‖ =

√
n+1
4 .

Let X = {v ∈ L|0 < ‖v‖ ≤ ‖ē‖,v 6∈ {0, ē,−ē}}. If X = ∅, Then ē,−ē
are the only two non-zero shortest lattice vectors of L. So we are interested in
the probability that X = ∅. We first estimate the value of Pr[X 6= ∅]. Setting

N >
√

n+1
4 implies that vn+2 = vn+3 = . . . = vn+1+k = 0 for any v ∈ X. Suppose

that v =
∑n+1

i=1 xibi ∈ X, then we can express vi in term of xi in the following way

vi = xi + 1
2xn+1 i = 1, . . . , n,

vn+1 = 1
2xn+1,

vn+1+j = N · {
∑n

i=1 ajixi + xn+1sj} = 0 j = 1, . . . , k.

This implies that

n∑
i=1

aji(vi − vn+1) + 2vn+1sj = 0, j = 1, . . . , k.

Let v̄ = (v1, v2, . . . , vn+1). Then
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Pr[X 6= ∅] ≤ Pr[∃v̄, s.t.0 < ‖v̄‖ ≤ ‖ē‖,v 6∈ {0, ē,−ē},
n∑

i=1

aji(vi − vn+1) + 2vn+1sj = 0, j = 1, . . . , k]

≤ Pr[

n∑
i=1

aji(vi − vn+1) + 2vn+1sj = 0, j = 1, . . . , k,v 6∈ {0, ē,−ē}]·

|{v̄|‖v̄‖ ≤ ‖ē‖ =

√
n + 1

4
}|.

For the second factor of the above expression, using the technique in [1] we know
that, for large n,

|{v̄|‖v̄‖ ≤ ‖ē‖ =

√
n + 1

4
}| = N(n + 1,

n + 1

4
) + 2n+1 ≤ 2c1(n+1).

Now we consider the first factor of the above equation. For j = 1, . . . , k, since
sj =

∑n
i=1 ajiei, we rewrite

∑n
i=1 aji(vi − vn+1) + 2vn+1sj = 0 as

n∑
i=1

ajizi = 0, where zi = vi − vn+1 + 2vn+1ei = xi + xn+1ei.

We claim that there must exist t, 1 ≤ t ≤ n, such that zt 6= 0. Otherwise, vi =
vn+1(1−2ei) = ±vn+1, since ei ∈ {0, 1}, for i = 1, . . . , n. Thus ‖v̄‖ =

√
n + 1|vn+1| =√

n+1
2 |xn+1| since vn+1 = 1

2xn+1. By the fact v̄ ∈ X, we know that

‖v̄‖ =

√
n + 1

2
|xn+1| ≤

√
n + 1

2
,

which implies that |xn+1| ≤ 1. Since xn+1 ∈ Z, xn+1 takes value only−1, 0, 1, corre-
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sponding to v̄ = ē,0,−ē, which contradicts to the definition of X. Thus,

Pr[
n∑

i=1

aji(vi − vn+1) + 2vn+1sj = 0, j = 1, . . . , k,v 6∈ {0, ē,−ē}]

≤ Pr[
n∑

i=1

ajizi = 0, j = 1, . . . , k]

= Pr[ajt = −
∑n

i=1,i 6=t ajizi

zt
, j = 1, . . . , k]

=
k∏

j=1

Pr[ajt = −
∑n

i=1,i 6=t ajizi

zt
]

≤ 1

Ak
.

Thus,

Pr[X 6= ∅] ≤ 2c1n

Ak
2c1 .

For large enough n, if d < 1
c1

, it can be easily concluded that the probability of the
event X is not empty can be very small, exponentially close to zero.

Thus, for large enough n, almost all multiple SSP with density d < 1
c1

=
0.9408 . . . can be solved in polynomial time with a single call to a lattice oracle.

Remark 1. Notice that for k = 1, it is the general subset sum problem. The analysis
is much simpler than before and the upper bound for Pr[X 6= ∅] is also better and
simpler than the previous results.

If we also extend the extended the variables range from {0, 1} to {−1, 0, 1}, al-
lowed the weight to be negative, a similar result holds when d < 1

c2
= 0.488 . . . by

considering the lattice generated by

b1 = (1, 0, · · · , 0, 0, Na1,1, Na2,1, · · · , Nak,1)
b2 = (0, 1, · · · , 0, 0, Na1,2, Na2,2, · · · , Nak,2)

...
bn = (0, 0, · · · , 1, 0, Na1,n, Na2,n, · · · , Nak,n)
bn+1 = (0, 0, · · · , 0, 1, Ns1, Ns2, · · · , Nsk)

where N is an integer greater than
√

n+1
4 .
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3.2 Multiple Modular Subset Sum Problems

Theorem 2. Let q be a positive integer greater than
√

n+1
4 , and let aji(1 ≤ j ≤

k, 1 ≤ i ≤ n) be independently uniformly random integers between 1 and q − 1.
Let e = (e1, e2, · · · en) be arbitrary non-zero vector in {0, 1}n, and let

∑n
i=1 a1iei ≡

s1(mod q),
∑n

i=1 a2iei ≡ s2(mod q), . . .
∑n

i=1 akiei ≡ sk(mod q), then with probabil-
ity greater than 1- 2c1n

qk
2c1((n+1)

√
n+1)k, the multiple modular subset sum problem

defined by aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) and s1, s2, . . . , sk can be solved in polynomial
time with a single call to a lattice oracle.

Before giving the proof of Theorem 2, we first give two obvious corollaries.

Corollary 1. For fixed k, If n is large enough and the density d < 0.9408 . . ., almost
all the multiple modular subset sum problem defined by aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) and
s1, s2, . . . , sk can be solved in polynomial time with a single call to a lattice oracle.

Corollary 2. If q > (n + 1)
√
n + 1, the probability can be increased by increasing

k, furthermore, if n is large enough and the density d < 0.9408 . . ., almost all the
multiple modular subset sum problem defined by aji(1 ≤ j ≤ k, 1 ≤ i ≤ n) and
s1, s2, . . . , sk can be solved in polynomial time with a single call to a lattice oracle.

Proof. The method is similar to the proof of Theorem 1. Define the vectors as
follows:

b′1 = (1, 0, · · · , 0, 0, Na1,1, Na2,1, · · · , Nak,1)
b′2 = (0, 1, · · · , 0, 0, Na1,2, Na2,2, · · · , Nak,2)

...
b′n = (0, 0, · · · , 1, 0, Na1,n, Na2,n, · · · , Nak,n)
b′n+1 = (0, 0, · · · , 0, 0, Nq, 0, · · · , 0 )
b′n+2 = (0, 0, · · · , 0, 0, 0, Nq, · · · , 0 )

...
b′n+k = (0, 0, · · · , 0, 0, 0, 0, · · · , Nq )

b′n+k+1 = (12 ,
1
2 , · · · ,

1
2 ,

1
2 , Ns1, Ns2, · · · , Nsk),
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where N >
√

n+1
4 , and consider the lattice L′generated by the basis b′1,b

′
2, . . . ,b

′
n+k+1.

Pr[X 6= ∅] ≤ Pr[∃v̄, s.t.0 < ‖v̄‖ ≤ ‖ē‖,v 6∈ {0, ē,−ē},
n∑

i=1

aji(vi − vn+1) + 2vn+1sj ≡ 0(mod q), j = 1, . . . , k]

= Pr[∃v̄, y1, y2, . . . , yk ∈ Z, s.t.0 < ‖v̄‖ ≤ ‖ē‖,v 6∈ {0, ē,−ē},
n∑

i=1

aji(xi + eixn+1) = qyj , j = 1, . . . , k]

≤ |{v̄|‖v̄‖ ≤ ‖ē‖ =

√
n + 1

4
}| ·

k∏
j=1

|{yj}| ·
k∏

j=1

Pr[
n∑

i=1

ajizi = qyj ]

For the first factor, it is clear that |{v̄|‖v̄‖ ≤ ‖ē‖ =
√

n+1
4 }| ≤ 2c1(n+1) for large

n. Now we consider the second factor. Let gj =
aji
q , j = 1, . . . k, then |gj | ≤ 1, j =

1, . . . k.

|yj | = |
n∑

i=1

gi(vi − vn+1 + 2vn+1ei)|

= |
n∑

i=1

givi +
n∑

i=1

(2ei − 1)vn+1gi|

≤
n∑

i=1

|gi||vi|+
n∑

i=1

|gi||vn+1|

= (|v1|, . . . , |vn+1|)


|g1|

...
|gn|
n∑

i=1
|gi|


≤ ‖v‖ ·

√
n + n2

=

√
n + 1

4

√
n(n + 1)

=
n + 1

2

√
n.

Thus,we have
∏k

j=1 |{yj}| ≤ ((n + 1)
√
n + 1)k.

Finally, for the last factor, we can previously conclude that for
∑n

i=1 ajizi =

qyj , 1 ≤ j ≤ k, ∃t, 1 ≤ t ≤ k,such that zt 6= 0, and,
∏k

j=1 Pr[
∑n

i=1 ajizi = qyj ] ≤ 1
qk
.
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Thus,

Pr[X 6= ∅] ≤ 2c1n

qk
2c1((n + 1)

√
n + 1)k.

If q is a prime larger than
√

n+1
4 , then we can get a better result.

Theorem 3. Let q be a positive prime greater than
√

n+1
4 , and let aji(1 ≤ j ≤

k, 1 ≤ i ≤ n) be independently uniformly random integers between 1 and q − 1.
Let e = (e1, e2, . . . en) be arbitrary non-zero vector in {0, 1}n, and let

∑n
i=1 a1iei ≡

s1(mod q),
∑n

i=1 a2iei ≡ s2(mod q), . . .
∑n

i=1 akiei ≡ sk(mod q). If the density d <
0.9408 . . ., then the multiple subset sum problem defined by aji(1 ≤ j ≤ k, 1 ≤ i ≤ n)
and s1, s2, . . . , sk may ”almost always” be solved in polynomial time with a single
call to a lattice oracle.

Proof. The proof is similar to the one for Theorem 2 except that we can prove that
there must exist t, 1 ≤ t ≤ k such that (zt, q) = 1 when q is a prime. Hence,

Pr[X 6= ∅] ≤ 2c1n

qk
2c1 .

Remark 2. Similarly, If xi ∈ {−1, 0, 1}, then we can get

Pr[X 6= ∅] ≤ 2c2n

qk
2c2((n + 1)

√
n + 1)k,

when q is a prime larger than
√

1
n+1 , the probability is

Pr[X 6= ∅] ≤ 2c2n

qk
2c2 .

4 Algorithms to Solve the Lattice Problems

In this section,we give the algorithms to solve the shortest non-zero vector of the cor-
responding lattice problems of the multiple SSP and multiple modular SSP. Firstly,
it is equivalent to solve the shortest non-zero vector of the intersection of several
lattices. Furthermore, solving the multiple subset sum problem amouts to finding a
small solution of an inhomogeneous linear equation, which can be viewed as a clos-
est vector problem, by considering the corresponding homogeneous liear equation,
together with an arbinary solution of the inhomogeneous equation.
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4.1 Intersecting Lattices

For the multiple SSP, we should determine the non-zero shortest vector of the lattice
L. The row matrix is as follows:

1, 0, . . . , 0, 0, Na1,1, Na2,1, . . . , Nak,1
0, 1, . . . , 0, 0, Na1,2, Na2,2, . . . , Nak,2

...
...

0, 0, . . . , 1, 0, Na1,n, Na2,n, . . . , Nak,n
1
2 ,

1
2 , . . . ,

1
2 ,

1
2 , Ns1, Ns2, . . . , Nsk


Solving the shortest non-zero vector of the lattice L is equavilent to solving the

shortest non-zero vector of the lattice

L1 ∩ L2 ∩ · · · ∩ Lk

where Li is the lattice generated by the row matirx
1, 0, . . . , 0, 0, Nai,1
0, 1, . . . , 0, 0, Nai,2
...

. . .
...

...
0, 0, . . . , 1, 0, Nai,n
1
2 ,

1
2 , . . . ,

1
2 ,

1
2 , Nsi


i = 1, . . . , k.

4.2 Kernel-Lattice

Assume the multiple subset sum problem

n∑
i=1

a1,ixi = s1

n∑
i=1

a2,ixi = s2

...
...

...
n∑

i=1
ak,ixi = sk
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has solution e = (e1, e2, . . . , en). Let L is the set of all integer solutions to the
homogeneous equations

n∑
i=1

a1,ixi = 0

n∑
i=1

a2,ixi = 0

...
...

...
n∑

i=1
ak,ixi = 0

L is a subgroup of Zn and hence is a lattice. Let y1, . . . , yn be an arbitrary solution
of the inhomogenous equation

n∑
i=1

a1,ixi = s1

n∑
i=1

a2,ixi = s2

...
...

...
n∑

i=1
ak,ixi = sk

Then the vector v = (y1 − e1, . . . , yn − en) ∈ L. And this vector is very close to the
vector t = (y1, . . . , yn). Thus by finding the closet vector to t in the lattice L, we
may recover v and hence e. The idea was also discussed in [7].

5 Conclusion

In this paper, we give some relations between the density of the multiple subset
sum problem and the shortest vector in its corresponding lattice. Some extended
versions are also considered. In addition, a modified lattice is involved to make the
analysis much simpler than before.
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