
Certificate-Based Signcryption: Security Model and Efficient
Construction

Yang Lu, Jiguo Li

College of Computer and Information Engineering, Hohai University, Nanjing, China

Email: luyangnsd@163.com, lijiguo@hhu.edu.cn

Abstract: Signcryption is an important cryptographic primitive that simultaneously achieves
confidentiality and authentication in an efficient manner. In 2008, Luo et al. introduced the notion
of certificate-based signcryption and proposed the first construction of certificate-based
signcryption. However, their scheme is insecure under the key replacement attack and also does
not provide insider security. To overcome these disadvantages, we introduce a strengthened
security model of certificate-based signcryption in this paper. The new security model accurately
models insider security and the key replacement attacks that might be attempted by an adversary
in a real certificate-based signcryption system. We also propose a new certificate-based
signcryption scheme that reaches insider security and resists key replacement attacks. We show
that this scheme is both chosen-ciphertext secure and existentially unforgeable in the random
oracle model. Furthermore, performance analysis shows that the proposed scheme is efficient and
practical.

Keywords: Certificate-based signcryption, Key replacement attack, Insider security, Strengthened
security model, Chosen-ciphertext security, Existential unforgeability.

1. Introduction

Public key cryptography (PKC) is an important technique to realize network and information

security. In traditional PKC, a Public Key Infrastructure (PKI) is used to provide an assurance to
the users about the relationship between a public key and the holder of the corresponding private
key by certificates. However, the need for PKI-supported certificates is considered the main
difficulty in the deployment and management of traditional PKC. To simplify the management of
the certificates, Shamir [24] introduced the concept of identity-based cryptography (IBC) in which
the public key of each user is derived directly from his identity, such as an IP address or an e-mail
address, and the corresponding private key is generated by a trusted third party called Private Key
Generator (PKG). The main practical benefit of IBC lies in the reduction of need for public key
certificates. However, if the KGC becomes dishonest, it can impersonate any user using its
knowledge of the user’s private key. This is due to the key escrow problem inherent in IBC. In
addition, private keys must be sent to the users over secure channels, so private key distribution in
IBC becomes a very daunting task.

In Eurocrypt 2003, Gentry [10] introduced the notion of certificate-based encryption (CBE),
which represents an interesting and potentially useful balance between IBC and traditional PKC.
As in traditional PKC, each user in CBE generates his own public/private key pair and requests a
certificate from a CA. The difference is that a certificate in CBE acts not only as a certificate (as in
the traditional PKI) but also as a decryption key (as in IBC). This additional functionality provides
an efficient implicit certificate mechanism so that a receiver needs both his private key and an
up-to-date certificate from the CA to decrypt a ciphertext sent to him, while senders need not be
concerned about the certificate revocation problem. The feature of implicit certificate allows us to
eliminate third-party queries for the certificate status and simplify the certificate revocation in the
traditional PKI. As a result, CBE does not need infrastructures like Certificate Revocation List
(CRL) and Online Certificate Status Protocol (OCSP). Furthermore, CBE overcomes the key
escrow problem (since the CA does not know the private keys of users) and key distribution
problem (since the certificates need not be kept secret) inherent in IBC. In parallel to CBE, Kang
et al. [11] proposed the notion of certificate-based signature (CBS) that follows the idea of CBE
presented by Gentry [10].

The topic of certificated-based cryptography has undergone quite rapid development in the
recent years, with many schemes being proposed for encryption [1, 10, 16, 18, 19, 22, 26, 27, 29]

and signature [3, 11, 12, 13, 15, 17, 28]. As an extension of the signcryption [30] in the
certificate-based setting, Luo et al. [20] introduced the concept of certificate-based signcryption
(CBSC) that simultaneously provides the functionalities of CBE and CBS. They also proposed the
first construction of CBSC and partly proved its security in the random oracle model [6, 8].
However, the security model of CBSC defined in [20] does not consider the key replacement
attack which refers to the attack that an adversary replaces a user’s public key with a false public
key of its choice and dupes any other third party to encrypt messages or verify signatures using
this false public key. At the first glance, one may think that this kind of attack does not exist in
certificate-based cryptosystems due to the use of certificates. However, as introduced by Li et al.
in [12], it does exist. In a certificate-based cryptosystem, the CA does issue the certificates. But,
only the holder of a certificate needs to check the validity of its certificate and other users do not
need. Therefore, certificate-based cryptosystems are susceptible to the key replacement attack.
Unfortunately, Luo et al.’s CBSC scheme is insecure under this kind of attack. We will give the
concrete attack on their scheme in Section 3 of this paper. Furthermore, Luo et al.’s security
model does not consider insider security [2] too. Insider security is a necessary security
requirement for a signcryption scheme to achieve. It requires that even if the sender’s private key
is compromised, an adversary should not be able to unsigncrypt the message and even with the
receiver’s private key, a forger should not be able to generate a valid signcryption as if generated
by the sender. Our key replacement attack also shows that Luo et al.’s scheme fails in providing
insider security. Besides Luo et al.’s scheme, Li et al. [14] proposed another CBSC scheme. They
claimed that their scheme was both chosen-ciphertext secure and existentially unforgeable in the
random oracle model. However, no strict proof was given in [14]. As far as the authors know,
there exist only these two CBSC schemes in the literature.

1.1 Our Results

In this paper, we first introduce a strengthened security model of CBSC that accurately models
the key replacement attack and insider security. We show that Luo et al.’s CBSC scheme [20] is
insecure in our strengthened security model. We then develop a new CBSC scheme based on the
CBE scheme proposed by Lu et al. [19] and prove it to be both chosen-ciphertext secure and
existentially unforgeable in the random oracle model. The proposed CBSC scheme not only
reaches insider security, but also resists key replacement attacks. Compared with the previous
CBSC schemes in the literature, our scheme enjoys better performance, especially in the
computation efficiency.

1.2 Paper Organization

The rest of this paper is organized as follows. In the next section, we briefly review some
preliminaries required in this paper. In Section 3, we present our strengthened security model of
CBSC. In Section 4, we show that Luo et al.’s CBSC scheme is insecure under the key
replacement attack. In Section 5, we propose a new CBSC scheme and prove its security in the
proposed security model. We also compare our scheme with other existing CBSC schemes in
terms of security and performance. Finally, we draw our conclusions in Section 6.

2. Preliminaries

Let k be a security parameter and p be a k-bit prime number. Let G be an additive cyclic group
of prime order p and GT be a multiplicative cyclic group of the same order, and P be a generator of
G. A bilinear paring is a map e: G × G → GT satisfying the following properties:

(1) Bilinearity: For all P1, P2 ∈ G, and all a, b ∈ Zp

*, we have e(aP1, bP2) = e(P1, P2)ab.
(2) Non-degeneracy: e(P, P) ≠ 1.
(3) Computability: For all P1, P2 ∈ G, e(P1, P2) can be efficiently computed.

A bilinear map satisfying the above properties is said to be an admissible bilinear map.

Typically, the map e can be derived from either the Weil or Tate paring on an elliptic curve over a
finite field [7]. Now we recall the following computational assumptions that are relevant to the

security of our CBSC scheme.

Definition 1. The computational Diffie-Hellman (CDH) problem in G is, given a tuple (P, aP, bP)
∈ G3 for unknown a, b ∈ Zp

*, to compute abP ∈ G. The advantage of a probabilistic polynomial
time (PPT) algorithm A in solving the CDH problem in G is defined as

()CDHAdv kA = Pr[A(P, aP, bP) = abP].

We say that CDH problem in G is hard if ()CDHAdv kA is negligible for all PPT algorithms A.

Definition 2 [7]. The bilinear Diffie-Hellman (BDH) problem in (G, GT) is, given a tuple (P, aP,
bP, cP) ∈ G4 for unknown a, b, c ∈ Zp

*, to compute e(P, P)abc ∈ GT. The advantage of a PPT
algorithm A in solving the BDH problem in (G, GT) is defined as

()BDHAdv kA = Pr[A(P, aP, bP, cP) = e(P, P)abc].

We say that BDH problem in (G, GT) is hard if ()BDHAdv kA is negligible for all PPT algorithms A.

Definition 3 [21]. The collusion attack algorithm with q-traitors (q-CAA) problem in G is, given a
tuple (P, αP, (ω1 + α)-1P,…, (ωq + α)-1P, ω1,…, ωq) ∈ Gq+2 × (Zp

*)q for unknown α ∈ Zp
*, to

compute (ω* + α)-1P for some value ω* ∉ {ω1,…, ωq}. The advantage of a PPT algorithm A in
solving the q-CAA problem in G is defined as

()q-CAAAdv kA = Pr[A(P, αP, (ω1 + α)-1P,…, (ωq + α)-1P, ω1,…, ωq)
= (ω* + α)-1P|α, ω* ∈ Zp

, ω ∉ {ω1,…, ωq}].
We say that q-CAA problem in G is hard if ()q-CAAAdv kA is negligible for all PPT algorithms A.

Definition 4 [25]. The modified bilinear Diffie-Hellman inversion for q-values (q-mBDHI)
problem in G is, given a tuple (P, αP, (ω1 + α)-1P,…, (ωq + α)-1P, ω1,…, ωq) ∈ Gq+2 × (Zp

*)q for
unknown α ∈ Zp

*, to compute
()(,)e P P ω α 1−+ for some value ω ∈ Zp

* - {ω1,…, ωq}. The advantage
of a PPT algorithm A in solving the q-mBDHI problem in (G, GT) is defined as

()q-mBDHIAdv kA = Pr[A(P, αP, (ω1 + α)-1P,…, (ωq + α)-1P, ω1,…, ωq)

=
()(,)e P P ω α 1−+ |α, ω ∈ Zp

, ω ∉ {ω1,…, ωq}].
We say that q-mBDHI problem in G is hard if ()q-mBDHIAdv kA is negligible for all PPT algorithms A.

3. Certificate-Based Signcryption

In this section, we first introduce the definition of CBSC. Then, we present a strengthened
security model of CBSC.

3.1 Definition of Certificate-Based Signcryption

In a CBCS system, a CA will first generate the system parameter including a master key and a
list of public parameters. The CA will use its master key to issue certificates for users in the
system. Users will generate their own public/private key pairs and then contact the CA to obtain
the corresponding certificates. A user should use his private key and certificate to decrypt the
ciphertext sent to him or generate a signature on a message.

Formally, a CBSC scheme is specified by the following five algorithms:

Setup: This algorithm takes as input a security parameter 1k and outputs a master key msk and
a list of public parameters params that include the descriptions of a finite message space M
and a finite ciphertext space C. After the algorithm is performed, the CA publishes the public
parameters params and keeps the master key msk secret.
UserKeyGen: This algorithm takes as input params and outputs a public/private key pair.

This algorithm is run once by every user independently. Specifically, when a user with identity
id runs the algorithm, the key pair generated is denoted as (PKid, SKid).
CertGen: This algorithm takes as input params, msk, an identity id and a public key PKid, and
outputs a certificate Certid which is sent to the user id through an open channel. This algorithm
is performed by a CA.
Signcrypt: This algorithm takes params, a message M ∈ M, a sender’s identity idS, public
key

SidPK , private key and certificate , and a receiver’s identity id
SidSK

SidCert R and public

key
RidPK as input, and outputs a ciphertext σ ∈ C.

Designcrypt: This algorithm takes params, a ciphertext σ ∈ C, the receiver’s identity idR,
public key

RidPK , private key
RidSK and certificate

RidCert , and the sender’s identity idS and

public key
SidPK as input, and outputs either a message M ∈ M or an error symbol ⊥ if σ is

not a valid ciphertext.

For correctness, we require that if σ = Signcrypt(params, M, idS, SidPK , , ,

id
SidSK

SidCert

R,
RidPK), then M = Designcrypt(params, σ, idR,

RidPK ,
RidSK ,

RidCert , idS, SidPK).
Note that there are six algorithms defined in Luo et al.’s definition of CBSC [20]. In their

definition, a signcryption of a message should be first decrypted by a Receiver Decrypt
algorithm and then be verified by another Receiver Verify algorithm. For simplicity, we replace
these two algorithms with a single Designcrypt algorithm. It is easy to see that a CBSC scheme
presented in Luo et al.’s six-algorithm form can also be presented in our new form.

3.2 Strengthened Security Model of Certificate-Based Signcryption

As introduced in [20], a CBSC scheme should satisfy both confidentiality (indistinguishability
against adaptive chosen-ciphertext attacks (IND-CBSC-CCA2)) and unforgeability (existential
unforgeability against adaptive chosen-messages attacks (EUF-CBSC-CMA)). To define these
security notions, our security model distinguishes two different types of adversaries:

− Type-I adversary (denoted by AI) simulates an uncertified user who can replace public keys

of any users but is not allowed to access the master key. In Luo et al.’s security model [20],
such an adversary is not given the ability to make key replacement attacks. However, as
discussed in Section 1, their definition does not reflect the ability of a Type-I adversary in a
real CBSC system.

− Type-II adversary (denoted by AII) models an honest-but-curious CA who is equipped with
the master key but is not allowed to replace any user’s public key. It is clear that if a Type-II
adversary can replace any user’s public key, then it may trivially break the security of a CBCS
system using a man-in-the-middle attack.

Below, we give our definitions. Note that we do not consider attacks targeting ciphertexts where

the identities of the sender and receiver are the same. That is, we disallow such queries to relevant
oracles and do not accept this type of ciphertext as a valid forgery.

3.2.1 Confidentiality

For the confidentiality, we consider two different games “IND-CBSC-CCA2-I” and

“IND-CBSC-CCA2-II”, in which a Type-I adversary AI and a Type-II adversary AII interact with
the game challenger respectively.

IND-CBSC-CCA2-I: This is the game in which AI interacts with the challenger.
− Setup. The challenger runs the algorithm Setup(1k) to generate msk and params. It then

returns params to AI and keeps msk to itself.

− Phase 1. In this phase, AI adaptively makes requests to the following six oracles.
 CreateUser: On input an identity id, if id has already been created, the challenger outputs

the current public key PKid associated with the identity id. Otherwise, the challenger runs
the algorithm UserKeyGen to generate a private/public key pair (SKid, PKid). It then
outputs PKid and inserts (id, SKid, PKid) into a list which records the information about a
created user’s private key and public key. In this case, id is said to be created. We assume
that other oracles defined below only respond to an identity which has been created.

 ReplacePublicKey: On input an identity id and a value PK’
id, the challenger replaces the

current public key of the identity id with PK’
id. Note that the current value of an entity’s

public key is used by the challenger in any computations or responses to AI’s requests.
Such an oracle models the ability of a Type-I adversary to convince a legitimate user to use
a false public key and enables our security model to capture the key replacement attacks
attempted by the Type-I adversary.

 GenerateCertificate: On input an identity id, the challenger responds with the
corresponding certificate Certid. If the identity id has no associated certificate, then the
challenger generates a certificate Certid for id by running the algorithm CertGen.

 ExtractPrivateKey: On input an identity id, the challenger responds with the
corresponding private key SKid. Here, AI is disallowed to query this oracle on any identity
for which the corresponding public key has been replaced. This restriction is imposed due
to the fact that it is unreasonable to expect the challenger to be able to provide a private key
of a user for which it does not know the private key.

 Signcryption: On input a message M, a sender’s identity idS and a receiver’s identity idR,
the challenger responds with σ = Signcrypt(params, M, idS, SidPK , , ,

id
SidSK

SidCert

R,
RidPK). Note that it is possible that the challenger is not aware of the sender’s private

key if the associated public key has been replaced. In this case, we require AI to provide it.
We disallow queries where idS = idR.

 Designcryption: On input a ciphertext σ, a sender’s identity idS and a receiver’s identity
idR, the challenger responds with the result of Designcrypt(params, σ,
idR,

RidPK ,
RidSK ,

RidCert , idS, SidPK). Note that it is possible that the challenger is not
aware of the receiver’s private key if the associated public key has been replaced. In this
case, we require the adversary to provide it. Again, we disallow queries where idS = idR.

− Challenge. Once AI decides that Phase 1 is over, it outputs two equal-length messages (M0,

M1) and two distinct identities (,*
Sid *

Rid). The challenger picks a random bit b and computes
the challenge ciphertext as σ* = Signcrypt(params, Mb, ,*

Sid *
Sid

PK , , ,*
Sid

SK *
Sid

Cert *
Rid , *

Rid
PK).

It then returns σ* to AI.
− Phase 2. In this phase, AI continues to issues queries as in Phase 1.
− Guess. Finally, AI outputs a guess b’ ∈ {0, 1}. We say that AI wins the game if b = b’ and the

following conditions are simultaneously satisfied: (1) AI cannot query GenerateCertificate

on the identity *
Rid at any point; (2) AI cannot query ExtractPrivateKey on an identity if the

corresponding public key has been replaced; (3) In phase 2, AI cannot query Designcryption

on (σ*, ,*
Sid *

Rid) unless the public key of the sender or that of the receiver*
Sid *

Rid has been
replaced after the challenge was issued. We define AI’s advantage in this game to be

()
I

IND-CBSC-CCA2-IAdv kA = 2|Pr[b = b’] - 1/2|.

IND-CBSC-CCA2-II: This is the game in which AII interacts with the challenger.
− Setup. The challenger runs the algorithm Setup(1k) to generate msk and params. It then

returns params and msk to AII.

− Phase 1. In this phase, AII adaptively asks a polynomial bounded number of queries as in the
game IND-CBSC-CCA2-I. The only restriction is that AII can not replace public keys of any
users. In addition, AII need not make any GenerateCertificate queries since it can computes
certificates of any identities by itself with the master key msk.

− Challenge. Once AII decides that Phase 1 is over, it outputs two equal-length messages (M0,

M1) and two distinct identities (,*
Sid *

Rid). The challenger picks a random bit b and computes
the challenge ciphertext as σ* = Signcrypt(params, Mb, ,*

Sid *
Sid

PK , , ,*
Sid

SK *
Sid

Cert *
Rid , *

Rid
PK).

It then returns σ* to AII.
− Phase 2. In this phase, AII continues to issues queries as in Phase 1.
− Guess. Finally, AII outputs a guess b’ ∈ {0, 1}. We say that AII wins the game if b = b’ and the

following conditions are simultaneously satisfied: (1) AII cannot query ExtractPrivateKey on

the identity *
Rid at any point; (2) AII cannot query Designcryption on (σ*, ,*

Sid *
Rid) in phase 2.

We define AII’s advantage in this game to be

()
II

IND-CBSC-CCA2-IIAdv kA = 2|Pr[b = b’] - 1/2|.

Definition 5. A CBSC scheme is said to be indistinguishable against adaptive chosen-ciphertext
attacks (or IND-CBSC-CCA2 secure) if no PPT adversary has non-negligible advantage in the
above two games.

Note that the adversary in the definition of message confidentiality is allowed to be challenged
on a ciphertext generated using a corrupted sender’s private key and certificate. This condition
corresponds to the stringent requirement of insider security for confidentiality of signcryption.
This means that our security model ensures that the confidentiality of signcryption is preserved
even if a sender’s private key is compromised.

3.2.2 Unforgeability

For the unforgeability, we consider two different games “EUF-CBSC-CMA-I” and
“EUF-CBSC-CMA-II”, in which a Type-I adversary AI and a Type-II adversary AII interact with
the challenger respectively.

EUF-CBSC-CMA-I: This is the game in which AI interacts with the challenger.
− Setup. The challenger runs the algorithm Setup(1k) to generate msk and params. It then

returns params to AI and keeps msk to itself.
− Query. In this phase, AI adaptively asks a polynomial bounded number of queries as in the

game IND-CBSC-CCA2-I.
− Forge. Finally, AI outputs a forgery (σ*, ,*

Sid *
Rid). We say that AI wins the game if the result

of Designcrypt(params, σ*, *
Rid , *

Rid
PK , *

Rid
SK , *

Rid
Cert , ,*

Sid *
Sid

PK) is not the ⊥ symbol and the

following conditions are simultaneously satisfied: (1) AI cannot query GenerateCertificate

on the identity at any point; (2) A*
Sid I cannot query ExtractPrivateKey on an identity if the

corresponding public key has been replaced; (3) σ* is not the output of any Signcryption
query on (M*, ,*

Sid *
Rid). We define AI’s advantage ()

I

EUF -CBSC-CMA-IAdv kA to be the probability

that it wins the game.
EUF-CBSC-CMA-II: This is the game in which AII interacts with the challenger.
− Setup. The challenger runs the algorithm Setup(1k) to generate msk and params. It then

returns params and msk to AII.

− Query. In this phase, AII can adaptively ask a polynomial bounded number of queries as in the
game IND-CBSC-CCA2-II.

− Forge. Finally, AII outputs a forgery (σ*, ,*
Sid *

Rid). We say that AII wins the game if the result

of Designcrypt(params, σ*, *
Rid , *

Rid
PK , *

Rid
SK , *

Rid
Cert , ,*

Sid *
Sid

PK) is not the ⊥ symbol and the

following conditions are simultaneously satisfied: (1) AII cannot query ExtractPrivateKey on

the identity ; (2) σ*
Sid * is not the output of any Signcryption query on (M*, ,*

Sid *
Rid). We

define AII’s advantage ()
II

EUF -CBSC-CMA-IIAdv kA to be the probability that it wins the game.

Definition 6. A CBSC scheme is said to be existential unforgeable against adaptive
chosen-messages attacks (or EUF-CBSC-CMA secure) if no PPT adversary has non-negligible
advantage in the above two games.

Note that the adversary in the definition of signature unforgeability may output a ciphertext
generated using a corrupted receiver’s private key and certificate. Again, this condition
corresponds to the stringent requirement of insider security for unforgeability of signcryption.
Hence, our security model also ensures that the unforgeability of signcryption is preserved even if
a receiver’s private key is compromised.

4. Certificate-Based Signcryption Scheme of Luo et al.

In this section, we give the review and attack of the CBSC scheme by Luo et al. [20].

4.1 Overview of the Scheme

Luo et al.’s CBSC scheme consists of the following six algorithms:
Setup: Given a security parameter k, the CA performs as follows:

(1) Generate two cyclic groups G and GT of prime order p such that there exists a bilinear
paring map e: G × G → GT.

(2) Select a random element s ∈ Zp
* as the master key, choose a random generator P ∈ G

and set Ppub = sP.
(3) Select four hash functions H1: {0,1}n × G → G, H2: {0,1}n × G × G → G, H3: G × G ×

{0,1}n → Zp
* and H4: GT → {0,1}n.

(4) The public parameters are params = {p, G, GT, e, n, P, Ppub, H1, H2, H3, H4} and the
certifier’s master key is msk = s.

UserKeyGen: Given params, a user with identity id chooses a random xid ∈ Zp
* as his

private key SKid, and then computes the corresponding public key as PKid = xidP.
CertGen: To generate a certificate for the user with identity id ∈ {0, 1}n and public key PKid,
the CA computes Qid = H1(id, PKid) and outputs Certid = sQid as the certificate.
Sender Signcrypt: To send a message M ∈ {0, 1}n to the receiver idR, the sender idS does
the following:

(1) Randomly choose x ∈ Zp
* and compute R = xP and S = H2(idS, SidPK , R).

(2) Compute h = H3(R, S, M) and . 1()
S Sid id pubV x Cert SK S hP−= + +

(3) Compute (,
S R

)x
id idW e PK PK= and then C = M ⊕ H4(W).

(4) Output σ = (C, R, V) as the ciphertext.
Receiver Decrypt: When receiving a ciphertext σ = (C, R, V) from the sender idS, the
receiver idR does the following:

(1) Compute and then M = C ⊕ H(,)
R Sid idW e R SK PK= 4(W).

(2) Forward the message M and signature (R, V) to the Receiver Verifry algorithm.
Receiver Verifry: To verify the sender idS’s signature (R, V) on the message M, the receiver
idR does the following:

(1) Compute S = H2(idS, SidPK , R) and h = H3(R, S, M).

(2) Check whether . If the check holds, output

M, otherwise output ⊥.

(,) (,) (,) (,)
S S

h
pub id id pube R V e P Q e PK S e P P=

4.2 Key Replacement Attack on the Scheme

The Type-I adversary AI who is capable of replacing any user’s public key and is not allowed
to know the master key can forge a valid signcryption on any message M from idS to idR by
performing the following steps:

(1) Randomly choose x’ ∈ Zp
* and compute R’ = x’Ppub.

(2) Randomly choose y ∈ Zp
* and then replace the public key of the user idS

with '
Sid pubPK yP= .

(3) Compute S’ = H2(idS, '
SidPK , R’).

(4) Choose a message M and compute h’ = H3(R’, S’, M).
(5) Compute and then . '

1(,)
S Sid S idQ H id PK= ' ' 1 ' '()

SidV x Q yS h P−= + +

(6) Randomly choose C’ ∈ {0, 1}n and outputs the signcryption on message M as σ’ = (C’,
R’, V’). If the adversary has corrupted the private key

RidSK of the receiver idR, then it

can set C’ = M ⊕ H4(W’), where . ' ' '(,)
R Sid idW e R SK PK=

The ciphertext σ’ = (C’, R’, V’) passes the verification test as shown blow.
'' '(,) (,) (,)

S S

h
pub id id pube P Q e PK S e P P

''(,) (,) (,)
S

h
pub id pub pube P Q e yP S e P P=

' '(,
Spub ide P Q yS h P= + +)

))+

' ' 1 ' '(, (

Spub ide x P x Q yS h P−= +
' '(,)e R V= .

This proves that the forgery generated is valid. In addition, we can see that Luo et al.’s CBSC
scheme doses not achieve insider security under the key replacement attack, since the adversary
can forge a valid signcryption using the corrupted receiver’s private key.

5. The Proposed Certificate-Based Signcryption Scheme

In this section, we propose a new CBSC scheme and prove its security in our strengthened
security model. We also compare it with other existing CBSC schemes in the literature.

5.1 Concrete Construction

Our scheme is constructed from the CBE scheme proposed by Lu et al. [19]. It consists of the
following algorithms:

Setup: Given a security parameter k, the CA performs the following to set up the system:
(1) Generate two cyclic groups G and GT of prime order p such that there exists a bilinear

paring map e: G × G → GT.
(2) Choose two random generators P, Q ∈ G and set g = e(P, Q).
(3) Choose a random element α ∈ Zp

* and set Ppub = αP.
(4) Select three hash functions H1: {0,1}* × GT → Zp

*, H2: GT × GT → {0,1}n and H3:
{0,1}* → Zp

*, where n is the bit-length of the message to be signcrypted.
(5) The public parameters are params = {p, G, GT, e, n, P, Q, Ppub, g, H1, H2, H3} and the

certifier’s master key is msk = α.
UserKeyGen: Given params, a user with identity id chooses a random xid ∈ Zp

* as his
private key SKid, and then computes the corresponding public key as idx

id TPK g G= ∈ .
CertGen: To generate a certificate for a user with identity id and public key PKid, the CA

computes Certid = (H1(id, PKid) + α)-1Q as the certificate for the user id. The user id can check
the validness of Certid by verifying whether e(H1(id, PKid)P + Ppub, Certid) = g.
Signcrypt: To send a message m ∈ {0, 1}n to the receiver idR, the sender idS does the
following:

(1) Randomly choose r ∈ Zp
* and compute R1 = gr and R2 = () .

R

r
idPK

(2) Compute and C = M ⊕ H1((,))
R Rid id pubU r H id PK P P= + 2(R1, R2).

(3) Compute and . 3 1 2(, , , , , , ,)
S RS id R idh H M U R R id PK id PK= ()

S Sid idV hSK r Cert= + ⋅

(4) Set σ = (C, U, V) as the ciphertext.
Designcrypt: To designcrypt a ciphertext σ = (C, U, V) from the sender idS, the receiver idR
does the following:

(1) Compute and1 (,)
RidR e U Cert= 2 (,) idR

R

SK
idR e U Cert= .

(2) Compute M = C ⊕ H2(R1, R2).
(3) Compute . 3 1 2(, , , , , , ,)

S RS id R idh H M U R R id PK id PK=

(4) Check whether 1 1((,) ,)()
S S

h
S id pub ide H id PK P P V PK R−+ = . If the check holds, output

M, otherwise output ⊥.

The consistency of the above scheme can be easily verified by the following equalities
(,)

Ride U Cert 1
1 1(((,)), ((,)))

R RR id pub R ide r H id PK P P H id PK Qα −= + + (,)re P Q= rg= .

(,) idR

R

SK
ide U Cert (,) idRSK re P Q ⋅= ()

R

r
idPK= .

1((,) ,) ()
S S

h
S id pub ide H id PK P P V PK −+ ⋅

1
1 1(((,)) , ()((,))) (,) idS

S S R

hSK
S id id R ide H id PK P hSK r H id PK Q e P Qα α −−= + + + ⋅

(,)re P Q= 1R= .

5.2 Security Proof

Theorem 1. The CBSC scheme above is IND-CBSC-CCA2 secure under the hardness of the
q-mBDHI and BDH problems in the random oracle model.

This theorem can be proved by combining the following two lemmas.

Lemma 1. If an IND-CBSC-CCA2-I adversary AI has advantage ε against our CBSC scheme
when running in time τ, asking at most qcu CreateUser queries, qsc Signcryption queries, qdsc
Designcryption queries and qi queries to random oracles Hi (i = 1, 2, 3), then there exists an
algorithm B to solve the q-mBDHI problem for q = q1 - 1, with advantage

' 2 3

1 2 3

2 2
(1)(1)

(2 2) 2 2
sc ds

sc k k
sc

q q q q
q

q q q q
cεε

+ +
≥ −

+ +
−

and with time τ’ ≤ τ + O(q1 + qsc + qdsc)⋅τm +O(qcu + qsc + qdsc)⋅τe + O(qsc + qdsc)⋅τp where τm, τe,
τp denote the time for computing a scalar multiplication in G, an exponentiation in GT, and a
pairing respectively.

Proof. We show how to construct an algorithm B to solve the q-mBDHI problem from AI.
Assume that B is given a random q-mBDHI instance (P, αP, (ω1 + α)-1P,…, (ωq + α)-1P, ω1,…,
ωq) where α is a random element from Zp

*. B interacts with AI as follows:
In the setup phase, B randomly chooses t ∈ Zp

*, and sets Ppub = αP, Q = tP and g = e(P, Q).
Furthermore, it randomly chooses a value ω* ∈ Zp

* such that ω* ∉ {ω1,…, ωq} and an index θ ∈
[1, q1]. Then, B starts the game IND-CBSC-CCA2-I by supplying AI with the public parameters
params = {p, G, GT, e, n, P, Q, Ppub, g, H1, H2, H3} where H1~H3 are random oracles controlled by

B. AI can make queries on these random oracles at any time during the game. Note that the
corresponding master key is msk = α which is unknown to B.

Now, B starts to respond various queries as follows:
H1 Queries: We assume that q1 queries to H1 are distinct. B maintains a list H1List of
tuples which is initially empty. On receiving such a query

on (, B does the following:
1,, , ,

ii id i idid PK h Cert<
i
>

i

,)
ii idid PK

− If already appears on H(,)
ii idid PK 1List in a tuple 1,, , ,

ii id i idid PK h Cert< > , then B

returns h1,i to AI.
− Else if the query is on the θ-th distinct , then B

inserts into H

(,)idid PK
θθ

*, , ,idid PK
θθ ω< ⊥>

i

1List and returns h1,θ = ω* to AI. Note that the

certificate for the identity idθ is which is unknown to B. * 1()idCert t P
θ

ω α −= +

− Else B sets h1,i to be ωj (j ∈ [1, q]) which has not been used and

computes . It then inserts1()
iid jCert t Pω α −= + 1,, , ,

ii id i idid PK h Cert< > into H1List and

returns h1,i to AI.
H2 Queries: B maintains a list H2List of tuples <R1, R2, h2> which is initially empty. On
receiving such a query on (R1, R2), B does the following:
− If (R1, R2) already appears on H2List in a tuple <R1, R2, h2>, then B returns h2 to AI.
− Otherwise, it returns a random h2 ∈ {0, 1}n to AI and inserts <R1, R2, h2> into H2List.

H3 Queries: B maintains a list H3List of tuples <M, U, R1, R2, R3, idS, SidPK , idR,
RidPK , h3,

C> which is initially empty. On receiving such a query on (M, U, R1, R2, R3, idS, SidPK ,

idR,
RidPK), B does the following:

− If (M, U, R1, R2, R3, idS, SidPK , idR,
RidPK) already appears on H3List in a tuple <M, U,

R1, R2, R3, idS, SidPK , idR,
RidPK , h3, C>, B returns h3 to AI.

− Otherwise, it returns a random h3 ∈ Zp
* to AI. To anticipate possible subsequent

Designcryption queries, it additionally simulates random oracle H2 on its own to obtain
h2 = H2(R1, R2) and then inserts <M, U, R1, R2, R3, idS, SidPK , idR,

RidPK , h3, C = M ⊕
h2> into H3List.

CreateUser: B maintains a list KeyList of tuples <id, PKid, SKid, flag> which is initially
empty. On receiving such a query on id, B does the following:
− If id already appears on KeyList in a tuple <id, PKid, SKid, flag>, B returns PKid to AI.
− Otherwise, B randomly chooses xid ∈ Zp

* as the private key SKid for the identity id and

computes the corresponding public key as idx
idPK g= . It then inserts <id, PKid, SKid, 0>

into KeyList and returns PKid to AI.

ReplacePublicKey: On receiving such a query on (id, '
idPK), B searches id in KeyList to find

a tuple <id, PKid, SKid, flag> and updates the resulting tuple with <id, '
idPK , SKid, 1>.

ExtractPrivateKey: On receiving such a query on id, B searches id in KeyList to find a tuple
<id, PKid, SKid, flag>. If flag = 0, it returns SKid to AI; otherwise, it rejects this query.
GenerateCertificate: On receiving such a query on idi, B does the following:
− If , then B aborts. (,) (,)

ii id idid PK id PK
θθ=

− Otherwise, B searches idi in H1List to find a tuple 1,, , ,
i ii id i idid PK h Cert< > and

returns
iidCert to AI. If H1List does not contain such H a tuple, B queries

PK f

Signcryption: On r g such a query on (M, idS, idR), B does the following:
ecification of

 algorithm Signcrypt sin
−

1

on (,i iid irst.

eceivin

)
id

− If (,) (,)
SS id idid PK id PK

θθ≠ , B can answer the query according to the sp
the ce it knows the sender idS’s private key and certificate.
Otherwise, B randomly chooses r, h3 ∈ *

pZ , h2 ∈ {0, 1}n, and

)idH i Ksets 1((,)) ((,id pub id R pubU r H id PK P P h SK d P P P
θ θθ= + − + ,1 3)

R RidV rCert= , C =

M ⊕ h2 and, 1 (,)
RidR e U Cert= 2 (,) idR

R

SK
idR e U Cert= respectively. is easy to

,) () (,h
id pu idd PK P P PK e U Ce
θ θθ

−+ ⋅ =

<M, U, R1, R2, idθ

It verify

that 1((,))
Rb ide H i V rt . Then, B inserts <R3

1, R2, h2>

and , idPK
θ

, idR,
RidPK , h3, C> into H2Li

 = (C) to A

Desig S R

 algorithm Designcrypt

−

st and H3List respectively and

returns the ciphertext σ , U, V I. Note that B fails if H2List or H3List is already
defined in the corresponding value but this only happens with probability smaller than
(q2 + 2q3 + 2qsc)/2k.
ncryption: On receiving such a query on (σ = (C, U, V), id , id), B does the following:

− If (,) (,)
RR id idid PK id PK

θθ≠ , B can answer the query according to the specification of
the since it knows the receiver idR’s private key and certificate.
Otherwise, B searches in H3List for all tuples of the form <M, U, R1, R2, idS, SidPK ,

idθ, idPK
θ

, h3, C>. If no such tuple is found, then σ is rejected. Otherwise, each f

them rther examined. For a tuple <M, U, R

one o

 is fu 1, R2, idS, SidPK , idθ, idPK
θ

, h3, C>, B first

checks whether 3
1((,) ,) ()

S S

h
S id pub ide H id PK P P V PK R−

1+ ⋅ = the tu passes the

verification, then B r e is found, σ is rejected.
Note that a valid ciphertext is rejected with probability smaller than q

. If ple

eturns M in this tuple to AI. If no such tupl

In the I 0 1

dsc/2k across the
whole game.
 challenge phase, A outputs (M , M , *id , *

S Rid), on which it wants to be challenged.
If B nd*

* ,) (,)
R

R idid
id PK id PK

θθ≠ , B aborts. Otherwise, ra omly chooses C(* ∈ {0, 1}n, r* ∈ *
pZ and

V* returns σ ∈ , sets U* = r*P, and

e

*
1G * = (C*, U*, V*) to A as the challenge ciphertext. O rve

that th decryption of C
I bse

* is C* ⊕ H (*(,)ide U Cert
θ

, *(,) idSK
ide U Cert2

θ

θ
).

In the guess phase, A outputs a b gnorI it, which is i ed by B. Note that AI cannot recognize that

σ* is not a valid ciphertext unless it queries H2 on (*(,)ide U Cert
θ

, *(,) idSK
ide U Cert θ

θ
) or H3 on (Mb,

U*, *(,)ide U Cert
θ

, *(,) idSK
ide U Cert θ

θ
, *

Sid , *
Sid

PK , idθ , idPK
θ

), where b ∈ {0, 1}. Standard arguments

can show that a su ery ik on (*(,)ide U Cert
θ

, *(,) idSK
ide U Certccessful AI is v l ely to query H2 θ

θ
) or

H3 on (Mb, U*, *(,)ide U Cert
θ

, *(,) idSK
ide U Cert θ

θ
, *

Sid , *
Sid

PK , idθ , idPK
θ

) if the simulation is

indistinguishable o lt ks a random tuple <Rfrom a real attack environment. T produce a resu , B pic 1,
R2, h2> or <M, U, R1, R2, idS, SidPK , idR,

RidPK , h3, C> from H2List or H3List. With probability
1/(q2 + 2q3 + 2qsc) (as H2List, t contain at most qH3Lis 2 + q3 + qsc, q3 + qsc tuples respectively), the
chosen tuple wi l contain the value *

*
1 (,)

Rid
R e U Cert= = * * 1(,))e r P t Pω α −+ =

* * 1()(,)tre P P ω α −+ . B

then returns
* 1()

1
trT R

l (
−

= as the solution to t DH
We now he advantage of B in solving the q-mBDHI

he given q-mB I problem.
 derive t problem. From the above

construction, the simulation fails if any of the following events occurs:
− E1: *

*(,) (,)
R

R idid
id PK id PK

θθ≠ .

− E2: A GenerateCertificate query is made on

ry because of a collision on H2 or H3.

We also already observed that Pr[E3]
≤ (

(,)idid PK
θθ .

− E3: B aborts in answer AI’s Signcryption que
− E4: B rejects a valid ciphertext at some point of the game.

We clearly have that Pr[¬E1] = 1/q1 and ¬E1 implies ¬E2.
q k k

2 + 2q3 + 2qsc)/2 and Pr[E4] ≤ qdsc/2 . Thus, we have that

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 2 2 21 (1 3

1

)(1)
2 2

sc dsc
k kq sc

q q q q
q

+ +
− − .

Since B sele t or H3List with probability 1/(q2 + 2q3 + 2qsc), the
adv

cts the correct tuple from H2Lis
antage of B in solving the q-mBDHI problem is

' (1 2 3

1 2 3

2 2
)(1)

(2 2) 2 2
sc dsc

k k
sc

q q
q q q q sc

q q
qεε

+ +
−

+ +
.

The time complexity of the algorithm B is dominated by the pairings, exponentiations and
sca

≥ −

lar multiplications performed in queries. From the above simulation, it is easy to see that the
time complexity of B is bound by τ’ ≤ τ + O(q1 + qsc + qdsc)⋅τm +O(qcu + qsc + qdsc)⋅τe + O(qsc +
qdsc)⋅τp.

emma 2. If an IND-CBSC-CCA2-II adversary AII has advantage ε against our CBSC schemeL
when running in time τ, asking at most qcu CreateUser queries, qsc Signcryption queries, qdsc
Designcryption queries and qi queries to random oracles Hi (i = 1, 2, 3), then there exists an
algorithm B to solve the BDH problem with advantage

' 2 2 2
(1 3

2 3

)(1)
(2 2) 2 2

sc dsc
k k

cu scq q q q sc
q q q q

qεε
+ +

≥ − −
+ +

and with time τ’ ≤ τ + O(qsc + qdsc)⋅τm +O(qcu + qsc + qdsc)⋅τe + O(qsc + qdsc)⋅τp where τm, τe, τp

ow how to construct an algorithm B to solve the BDH problem from AII. Assume

es a random α ∈

denote the time for computing a scalar multiplication in G, an exponentiation in GT, and a pairing
respectively.

roof. We shP
that B is given a random BDH instance (P, aP, bP, cP), where a, b, c are three random elements
from Zp

*. B interacts with AII as follows:
In the setup phase, B randomly choos *

pZ as the master key, sets Q = aP, and

com ly
ts

, PKid, h1> which is initially empty. On

PKid, h1>, then B returns h1 to AII.

H

PK SK

putes Ppub = αP and g = e(P, Q). Furthermore, it random chooses an index θ with 1 ≤ θ ≤ qcu.
Then, B star the game IND-CBSC-CCA2-II by supplying AII with the master key msk = α and
the public parameters params = {p, G, GT, e, n, P, Q, Ppub, g, H1, H2, H3}, where H1~H3 are
random oracles controlled by B. AII can make queries on these random oracles at any time during
the game.

Now, B starts to respond various queries as follows:
H1 Queries: B maintains a list H1List of tuples <id
receiving such a query on (id, PKid), B does the following:
− If (id, PKid) already appears on H1List in a tuple <id,
− Otherwise, it returns a random h1 ∈ Zp

* to AII and inserts <id, PKid, h1> into H1List.

2 Queries: B responds as in the proof of Lemma 1.
H3 Queries: B responds as in the proof of Lemma 1.
CreateUser: B maintains a list KeyList of tuples id , ,

i ii id id< >which is initially empty.

ing: On receiving such a query on idi, B does the follow

− If idi already appears on KeyList in a tuple ,iid P ,
i iid idK SK s

iidPK> , B return< to AII.

id− Else if idi = idθ, B returns (,)P (,)K e bP Q
θ
= = to nd

 K e that the private key for the i ti

s unknown to B
− e

e bP aP AII a

inserts , ,idid PK
θθ< ⊥> into eyList. Not den ty idθ is b

which i .
Else B randomly choos s *

iid px Z∈ as the private key for the identity idi and

nding
iidSK

computes the correspo public key as idi

i

x
idPK g= . It then

inserts , ,
i ii id idid PK SK< > into KeyList and returns

iidPK to

ctPriva g such a query on id

 AII.

Extra teKey: On receivin oes t ing:

idi in KeyList to find the tuple

i, B d he follow
− If idi = idθ, then B aborts.

, ,
i ii id idid PK SK< >− Otherwise, B searches and

Signcryption: On g such a query on (M, idS, idR), B does the following:
 Signcrypt

−

returns idSK to A
i II.

receivin
− If idS ≠ idθ, B can answer the query according to the specification of the

algorithm since it knows the sender idS’s private key and certificate.
Otherwise, B randomly chooses r, h3 ∈ *

pZ , h2 n∈ {0,1} , and

,
Rid bα+sets 1((,)) (()id pub RU r H id PK P P h H id PK b P

θθ= + − ,1 3)P
RidV rCert= , C = M ⊕

h2 1 (,)
RidR e U Cert= and 2 (,) idR

R

SK
idR e U Cert= respectively. It is easy to verify

h
id b ide H id PK P V PK e U
θ θθ

−⋅ =

<M, U, R1, R2, idθ

tha)
Rpu idP Cert+ . It then inserts <Rt 3

1((,) ,) () (, 1, R2, h2>

and , idPK
θ

, idR,
RidPK , h3, C> into H2Li

σ = , V) t

Desig

st and H3List respectively, and

returns the ciphertext (C, U o AII. Note that B fails if H2List or H3List is
already defined in the corresponding value but this only happens with probability
smaller than (q2 + 2q3 + 2qsc)/2k.
ncryption: B responds as in the proof of Lemma 1.

In the challenge phase, AII outputs (M0, M1, *
Sid , *

Rid), on which it wants to be challenged.

If *
R idid θ≠ , then B aborts. Otherwise, B random c ses Cly hoo * ∈ {0, 1}n, V* ∈ *

1G , sets U* =
(H id1(idθ, PK

θ
) + α)cP, and returns σ* = (C*, U*, V*) to AII as the challenge ciphe xt. Observe

that the decryption of C

rte
* is C* ⊕ H2(*(,)ide U Cert

θ
, * idSKU θ).

In the guess phase, AII outputs a b gnore by it, which is i d B. Note that AII cannot recognize that

σ* is not a valid ciphertext unless it queries H2 on (*(,)ide U Cert
θ

, *(,) idSK
ide U Cert θ

θ
) or H3 on (Mβ,

U*, *(,)ide U Cert
θ

, *(,) idSK
ide U Cert θ

θ
, *

Sid , *
Sid

PK , idθ , idPK
θ

), where β ∈ {0,1}. Standard arguments

can li o q e on (*(,)ide U Cert
θ

, *(,) idSK
ide U Certshow that a successful AII is very kely t u ry H2

θ

θ
) or

H3 on (Mβ, U*, *(,)ide U Cert
θ

, *(,) idSK
ide U Cert θ

θ
, *

Sid , *idS
PK , idθ , idPK

θ
) if the simulation is

indistinguishable o lt ks a random tuple <Rfrom a real attack environment. T produce a resu , B pic 1,
R2, h2> or <M, U, R1, R2, idS, SidPK , idR,

RidPK , h3, C> from H2List or H3List. With probability
1/(q2 + 2q3 + 2qsc) (as H2List, t contain at most qH3Lis 2 + q3 + qsc, q3 + qsc tuples respectively), the
chosen tuple will contain the right element *

2 (,) idSK
idR e U Cert θ

θ
= (,)abce P P= . B then returns R2 as

the solution to the given BDH problem.
We now derive the advantage of B in solving the BDH problem using the adversary AII. From

the
− E1: The challenge receiver’s identity

above construction, the simulation fails if any of the following events occurs:
*
Rid chosen by AII does not equal to idθ.

− E2: An ExtractPrivateKey query is made on idθ.
− E3: B aborts in answer AII’s Signcryption query because of a collision on H2 or H3.

e game.
erved that

P that

− E4: B rejects a valid ciphertext at some point of th
We clearly have that Pr[¬E1] = 1/qcu and ¬E1 implies ¬E2. We also already obs

r[E3] ≤ (q2 + 2q3 + 2qsc)/2k and Pr[E4] ≤ qdsc/2k. Thus, we have

Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4] ≥ 2 32 21 (1)(1)
2 2

sc dsc
sc k k

cu

q q q q
q

q
+ +

− − .

Since B sel st or H3List with probability 1/(q2 + 2q3 + 2qsc), the
advantage of B in solving the BDH problem is

ects the correct tuple from H2Li

' 2 3

2 3

2 2
(1

(2 2)
)(1)

2 2
sc dsc

cu sc

q q q q
q q q q sc k kqεε

+ +
≥ − −

+ +
.

From the above simulation, it is easy to see that the time complexity of B s bound by τ’ ≤ τ +
O(qsc + qdsc)⋅τm +O(qcu + qsc + qdsc)⋅τe + O(qsc + qdsc)⋅τp.

S

em t most qcu CreateUser
ueries, qsc Signcryption queries, qdsc Designcryption queries and qi queries to random oracles

q-

 i

Theorem 2. The CB C scheme above is EUF-CBSC-CMA secure under the hardness of the
-CAA and CDH problems in the random oracle model. q

This theorem can be proved by combining the following two lemmas.

L ma 3. Assume that AI is an EUF-CBSC-CMA-I adversary that asks a
q
Hi (i = 1, 2, 3). Assume also that AI produces a forgery with

probability 310(1)() / 2k
sc scq q qε ≥ + + within a time τ. Then there exists an algorithm B to solve

the CAA problem for q = q1 - 1, with advantage
' 2 3

1

2 2
(1)(1)

9 2 2
sc dsc

sc k k

q q q q
q

q
εε

+ +
− −

’

≥

and with time τ ≤ 84480q1q3[τ + O(q1 + qsc + qdsc)⋅τm +O(qcu sc + qdsc)⋅τe + O(qsc +
qdsc)⋅τp]/[ε(1 - qdsc/2k)(1 - qsc(q2 + 2q3 + 2qsc)/2k)] where τm, τe, τp den te the time for computing a

I

at B is given a random q-CAA instance (P, αP, (ω1 + α) P,…, (ωq + α) P, ω1,…, ωq) where α

ω* ∉ {ω1,…, ωq} and an index θ ∈
[1,

from to

 + q
o

scalar multiplication in G, an exponentiation in GT, and a pairing respectively.

Proof. We show how to construct an algorithm B to solve the q-CAA problem from A . Assume

-1 -1th
is a random element from Zp

*. B interactsg with AI as follows:
In the setup phase, B randomly chooses t ∈ Zp

*, and sets Ppub = αP, Q = tP and g = e(P, Q).
Furthermore, it randomly chooses a value ω* ∈ Zp

* such that
q1]. Then, B starts the game EUF-CBSC-CMA-I by supplying AI with the public parameters

params = {p, G, GT, e, n, P, Q, Ppub, g, H1, H2, H3} where H1~H3 are random oracles controlled by
B. Note that the corresponding master key is msk = α which is unknown to B.

In the query phase, B responds various oracle queries as in the proof of Lemma 1.

Finally, AI outputs a valid ciphertext σ* = (C*, U*, V*) *
Sid *

Rid .
If *

* ,) (,)id PK id PK≠ , then B aborts. Otherwise, having the knowledge of *(
S

S idid θθ
Rid

SK d *
Rid

Cert , an

B queries the oracle Designcryption on (σ*, idθ , idPK
θ

, *
Rid , *

Rid
SK , *

Rid
Cer to obtai n

queries H

t) n M*, and the

* *
3 on (M , U , *

Rid
e U Cert , *

*
*(,) *(,) idR

R

SK

id
e U C ,ert idθ , idPK

θ
, *

Rid , *
Rid

PK) to obtain 3h . Using

 te

hash value *'h (≠ *h) to rt t (C U

*

the oracle replay chnique [23], B replays AI with th tape but with the different

generates one more valid ciphe ex σ*’ = *, *, V*’ V

e same random

3 3) such that *’ ≠ V*.

Since σ* = (C*, U*, V*) and σ*’ = (C*, U*, V*’) are both valid ciphertexts for the same message M*
and random ss *ne r

* *’
, we obtain the following relations

V - V = * *
3()id idh SK r Cert

θ θ
+ - *' *

3()id idh SK r Cert
θ θ
+ = * *'

3 3() id idh h SK Cert
θ θ

− .

Because * 1()idCert t P
θ

ω α −= + , B can compute * 1() Pω α −+ = − − as the
solution to -CAA problem.

ow derive the adv olving the q-CAA problem. From the
 of the following events occurs:

B aborts in answer AI’s Signcryption query because of a collision on H2 or H3.
he game

We also already observed that Pr[E3]
≤ r[¬E5] ≥
1

* *' 1 * *'−
3 3[()] ()idh h SK t V V

θ

the given q
We n antage of B in s above

construction, the simulation fails if any
− *E1: *(,) (,)

S
S idid

id PK id PK
θθ≠ .

− E2: A GenerateCertificate query is made on (,)idid PK
θθ .

− E3:
− E4: B rejects a valid ciphertext at some point of t .
− E5: B fails in using the oracle replay technique to generate one more valid ciphertext.

We clearly have that Pr[¬E1] = 1/q1 and ¬E1 implies ¬E2.
k k (q2 + 2q3 + 2qsc)/2 and Pr[E4] ≤ qdsc/2 . From the forking lemma [23], we know that P

/9. Thus, we have that

ε’ = εPr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4∧ ¬E5] ≥ 2 32 2
(1)(1)

9 2 21

sc dsc
sc k k

q q q q
q

q
ε + +

− − .

Also from the forking lemma [23], if 310(1)() / 2k
scq q qε ≥ + + , then the time complexity of

B in solvi τ’ ≤ 84480q1q3[τ + O(q1 + qsc qdsc)⋅τm
+O ε(1 - qdsc/2k)(1 - qsc(q2 + 2q

c

C

sc

ng the given q-CAA problem is bound by +
(qcu + qsc + qdsc)⋅τe + O(qsc + qdsc)⋅τp]/[3 + 2qsc)/2k)].

Lemma 4. Assume that AII is an EUF-CBSC-CMA-II adversary that asks at most qcu CreateUser

ueries, qsc Signcryption queries, qds Designcryption queries and qi queries to random oraclesq
Hi (i = 1, 2, 3). Assume also that AII produces a forgery with

probability 310(1)() / 2k
sc scq q qε ≥ + + within a time τ. Then there exists an algorithm B to solve

the DH problem with advantage
' 2 32 2

(1)(1)
9 2 2

sc dsc
sc k k

q q q q
qε

cuq
ε

+ +
− −

τ’ ≤ τ

≥

and with time 84480qcuq3[+ O(qsc + qdsc)⋅τm +O(qcu +qsc + qdsc)⋅τe + O(qsc + qdsc)⋅τp]/[ε(1 -
qdsc/2k)(1 - qsc(q2 + 2q3 + 2qsc)/2k)] where τm, τe, τp denote the ti e for computing a scalar

p e
o o

ndom elements from Zp .

m
multiplication in G, an exponentiation in GT, and a pairing res ectiv ly.
Pr of. We sh w how to construct an algorithm B to solve the BDH problem from AII. Assume
that B is given a random CDH instance (P, aP, bP) where a, b are two ra *

B interacts with AII as follows:
In the setup phase, B randomly chooses a random α ∈ *

pZ as the master key, sets Q = aP, and

computes Ppub = αP and g = e(P, Q). Furthermore, it randomly chooses an index θ with 1 ≤ θ ≤ qcu.
The A

a e

in

text σ = (C , U , V) from to

n, B starts the game EUF-CBSC-CMA-II by supplying II with the master key msk = α and
the public p rameters params = {p, G, GT, e, n, P, Q, Ppub, g, H1, H2, H3}, where H1~H3 ar
random oracles controlled by B.

In the query phase, B responds various oracle queries as the proof of Lemma 2.

Finally, AII outputs a valid cipher * * * * * * *
Sid Rid Sid idθ≠. If , then B

aborts. Otherwise, having the knowledge of *
Rid

SK and *
Rid

Cert , B queries the oracle

Designcryption on (σ*, idθ , idPK
θ

, *
Rid , *

Rid
SK , *

Rid
Cert) to obtain M*

3, and then queries H on (M*,

U*, *
*(,)e U Cert , **(,

Rid *) idR

R

SK
er

id
e U C t , idθ , idPK

θ
, *

Rid , *
Rid

PK) to obtain *
3h . Using the oracle replay

techni r he sam tape but with the d erent hash value *'
3h (≠ *

3h)
to generates one more valid ciphertext σ

que [23], B eplays AII with t e random iff
*’ * * *’ *’ * * * ,

*’ * * *’ * *

* *’

 = (C , U , V) such that V ≠ V . Since σ = (C , U* V*)
and σ = (C , U , V) are both valid ciphertext for the same message M and randomness r , we
obtain the following relations

V - V = * *
3()id idh SK r Cert

θ θ
+ - *' *()h SK r Certid id3 θ θ id idθ θθ

Th e the following rela
,) ,)idd PK P P V V

θθ α+ −

H id PK Q
θ θ θθ θα α −+ − +

Because Q = aP and

+ = * *' 1() ((,))h h SK H id PK Qα −− + . 3 3 1

en, we hav tions
* *'

1((e H i

= * *' 1
1 3 3 1((,) , () ((,)))id id ide H id PK P P h h SK

* *'
3 3(, ())ide P h h SK Q

θ
− . =

idSK b
θ
= , pute abP =

)V− − as the lu

We now derive the advantage of B in onstruction,
the

llision on H2 or H3.

one more valid ciphertext.
ved that

Pr[

 ∧ ¬E4∧ ¬E5]

B can com idSK Q
θ

= * *
3 3 1() ((,))(idh h H id PK V

θθ α− + so tion to the given CDH problem.

solving the CDH problem. From the above c

' 1 * *'

 simulation fails if any of the following events occurs:
− E1: AII does not choose idθ as the challenge sender’s identity.
− E2: An ExtractPrivateKey query is made on idθ.

: aborts ause of a co− E3 B in answer AII’s Signcryption query bec
− E4: B rejects a valid ciphertext at some point of the game.
− E5: B fails in using the oracle replay technique to generate

We clearly have that Pr[¬E1] = 1/qcu and ¬E1 implies ¬E2. We also already obser
E3] ≤ (q + 2q + 2q)/2k and Pr[E] ≤ q /2k. From the forking lemma [23], we k2 3 sc 4 dsc now that

Pr[¬E5] ≥ 1/9. Thus, we have that

ε = εPr[¬E’
1 ∧ ¬E2 ∧ ¬E3 ≥ 2 32 2

(1)(1)
9 2 2

sc dscq q q q
sc k k

cu

q
q
ε + +

− − .

Also 1)() / 2k
scq q+ + , then the time com ty of

B i und by τ’ ≤ 84480qcuq3[τ
k

e with other existing CBSC schemes in the literature. In the
omputation cost comparison, we consider four major operations: pairing, exponentiation in G ,

sca

 of our scheme can be further
opt

from the forking lemma [23], if 10(scqε ≥ plexi3

n solving the given CDH problem is bo + O(qsc + qdsc)⋅τm +O(qcu +qsc
+ qdsc)⋅τe + O(qsc + qdsc)⋅τp]/[ε(1 - qdsc/2k)(1 - qsc(q2 + 2q3 + 2qsc)/2)].

5.3 Performance Comparison

We next compare our schem
c T

lar multiplication in G and hash. For simplicity, we denote these operations by p, e, m and h
respectively. In the communication cost comparison, ciphertext overhead represents the difference
(in bits) between the ciphertext length and the message length, |id| denotes the bit-length of user’s
identity, and |G| and |GT| denote the bit length of an element in G and GT respectively. The
performances of the compared CBSC schemes are listed in Table 1.

From the table, we can see that our scheme has better computation efficiency compared with
the previous CBSC schemes. Actually, the computation performance

imized when H1(id, PKid)P + Ppub can be pre-computed. Such a pre-computation enables us to
additionally reduce one scalar multiplication computation in G and one hash computation in both
the Signcrypt algorithm and the Designcrypt algorithm. Regarding the public key sizes, users’
public keys of our scheme lie in GT and thus have a long representation (typically 1024 bits
without optimizations). However, the paring compression techniques due to Barreto and Scott [4]
can be used to compress them to a third (say 342 bits) of their original length on supersingular
curves in characteristic 3 or even to 1/6 of their original length on BN cures [5]. Those paring
compression techniques also can increase the speed of exponentiation computation in GT. In
addition and most importantly, our CBCS scheme is the first signcryption scheme in the
certificate-based setting that explicitly achieves insider security and resists key replacement

attacks.

Table 1. Performance of our CBSC scheme
Computation cost Communication cost

Scheme Insider
security?

Secure against
key r

Signcryption Designcryption Ciphertext Public eplacement
attacks? overhead key size

Ours Yes 2e + 3m + 3h 2p +2e + 1m + 3h 2|G| |GT|

[20] No 1p h + 1e + 4m + 3 3p +1e + 1m + 3h 2|G| |G|

[14] Unknow Proof) 3|G | n (No 1p + 5m + 4h 4p + 2m + 3h | + |id |G|

6. Conclusions

we first introduced a strengthened security model of CBSC that accurately
odels the key replacement attack and the insider security. Our analysis showed that the CBSC

sch

iyami, K.G. Paterson, CBE from CL-PKE: A generic construction and efficient schemes, in: Public
Key Cryptography - PKC 2005, LNCS, vol. 3386, Springer-Verlag, 2005, pp. 398-415.

In this paper,

m
eme proposed by Luo et al. [20] is insecure in our strengthened security model. Furthermore,

we proposed a new CBSC scheme that resists key replacement attacks and reaches insider security.
Compared with the previous CBSC schemes in the literature, the proposed scheme enjoys better
performance, especially in the computation efficiency. However, the security of our scheme is
only proved in the random oracle model. Therefore, how to construct a secure CBSC scheme in
the standard model becomes an interesting open problem.

References

[1] S.S. Al-R

[2] J. An, Y. Dodis, T. Rabin, On the security of joint signature and encryption, in: Advances in Cryptology -
Eurocrypt 2002, LNCS, vol. 2332, Springer-Verlag, 2002, pp. 83-107.

[3] M.H. Au, J.K. Liu, W. Susilo, T.H. Yuen, Certificate based (linkable) ring signature, in: Proceedings of the
3rd Information Security Practice and Experience Conference, LNCS, vol. 4464, Springer-Verlag, 2007,
pp.79-92.

[4] P.S.L.M. Barreto, M. Scott, Compressed pairings, in: Advances in Cryptology - Crypto 2004, LNCS, vol.
3152, Springer-Verlag, 2004, pp. 140-156.

[5] P.S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in: Proceedings of Selected
Areas in Cryptography, 12th International Workshop, LNCS, vol. 3897, Springer-Verlag, 2006, pp.
319-331.

[6] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in:
Proceedings of the 1st ACM Conference on Communications and Computer Security, ACM, 1993, pp.
62-73.

[7] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing, in: Advances in Cryptology - Crypto
2001, LNCS, vol. 2139, Springer-Verlag, 2001, pp.213-229.

[8] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, Journal of ACM 51(4)
(2004) 209-218.

[9] D. Galindo, P. Morillo, C. Ràfols, Improved certificate-based encryption in the standard model, Journal of
Systems and Software, 81(7) (2008) 1218-1226.

[10] C. Gentry, Certificate-based encryption and the certificate revocation problem, in: Advances in Cryptology -
Eurocrypt 2003, LNCS, vol. 2656, Springer-Verlag, 2003, pp. 272-293.

[11] B.G. Kang, J.H. Park, S.G. Hahn, A certificate-based signature scheme, in: Topics in Cryptology - CT-RSA
2004, LNCS, vol. 2964, Springer-Verlag, 2004, pp. 99-111.

[12] J. Li, X. Huang, Y. Mu, W. Susilo, Q. Wu, Certificate-based signature: security model and efficient
construction, in: Proceedings of the 4th European PKI Workshop Theory and Practice, LNCS, vol. 4582,
Springer-Verlag, 2007, pp. 110-125.

[13] J. Li, X. Huang, Y. Mu, W. Susilo, Q. Wu, Constructions of certificate-based signature secure against key
replacement attacks, Journal of Computer Security, 18(3) (2010) 421-449.

[14] F. Li, X. Xin, Y. Hu. Efficient certificate-based signcryption scheme from bilinear pairings, International
Journal of Computers and Applications, 30(2): 129-133, 2008.

[15] J. Li, L. Xu, Y. Zhang, Provably secure certificate-based proxy signature schemes, Journal of Computers,
4(6) (2009) 444-452.

[16] J. K. Liu, J. Zhou, Efficient certificate-based encryption in the standard model, in: Proceedings of the 6th
International Conference on Security and Cryptography for Networks, LNCS, vol. 5229, Springer-Verlag,
2008, pp.144-155.

[17] J.K. Liu, J. Baek, W. Susilo, J. Zhou, Certificate based signature schemes without pairings or random oracles,

in: Proceedings of the 11th International conference on Information Security, LNCS, vol. 5222,

[18]
omputer Scientists, IEEE CS, 2008, pp.1518-1594.

puter Science and Information Technology, IEEE CS, 2008, pp. 17-23.

84, pp. 47-53.

cryption. in: Proceedings of Provable Security 2008,

[26]
 Symposium on Bio-inspired, Learning, and Intelligent

[27]
al Cryptology Conference in India, LNCS, vol. 4859,

[28]

y and Cryptology, LNCS, vol. 3506, Springer-Verlag, 2005, pp. 121-136.

Springer-Verlag, 2008, pp. 285-297.
Y. Lu, J. Li, J. Xiao, Generic construction of certificate-based encryption, in: Proceedings of the 9th
International Conference for Young C

[19] Y. Lu, J. Li, J. Xiao, Constructing efficient certificate-based encryption with paring, Journal of Computers,
4(1) (2009) 19-26.

[20] M. Luo, Y. Wen, H. Zhao, A certificate-based signcryption scheme, in: Proceedings of 2008 International
Conference on Com

[21] S. Mitsunari, R. Sakai and M. Kasahara, A new traitor tracing, IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E85-A(2) (2002) 481-484.

[22] P. Morillo, C. Ràfols, Certificate-based encryption without random oracles, Cryptology ePrint Archive,
Report 2006/12. Available at http://eprint.iacr.org/2006/012.pdf.

[23] D. Pointcheval, J. Stern, Security arguments for digital signatures and blind signatures, Journal of
Cryptology, 13(3) (2000) 361-396.

[24] A. Shamir, Identity-based cryptosystems and signature schemes, in: Advances in Cryptology - Crypto 1984,
LNCS, vol. 196, Springer-Verlag, 19

[25] S. Sharmila, D. Selvi, S. Sree Vivek, Deepanshu Shukla, Pandu Rangan Chandrasekaran, Efficient and
provably secure certificateless multi-receiver sign
LNCS Vol. 5324, Springer-Verlag, 2008, pp. 52-67.
C. Sur, C.D. Jung, and K.H. Rhee, Multi-receiver certificate-based encryption and application to public key
broadcast encryption, in: Proceedings of 2007 ECSIS
Systems for Security, IEEE CS, 2007, pp. 35-40.
L. Wang, J. Shao, Z. Cao, et al, A certificate-based proxy cryptosystem with revocable proxy decryption
power, in: Proceedings of the 8th Internation
Springer-Verlag, 2001, pp. 297-311.
W. Wu, Y. Mu, W. Susilo, X. Huang, Certificate-based signatures, revisited, Journal of Universal Computer
Science, 15(8) (2009) 1659-1684.

[29] D.H. Yum, P.J. Lee, Separable implicit certificate revocation, In: Proceedings of 2004 International
Conference on Information Securit

[30] Y. Zheng, Digital signcryption or how to achieve cost (signature & encryption) << cost (signature) + cost
(encryption). In: Advances in Cryptology - Crypto 1997, LNCS, vol. 1294, Springer-Verlag, 1997, pp.
165-179.

