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Abstract—In this paper, we first clarify the meaning of research on 1-resilient group rekeying protocols by showing that they are actually 

building blocks for constructing hybrid group rekeying protocols with tunable collusion-bandwidth tradeoffs. We then construct secure and efficient 

1-resilient group rekeying protocols based on the idea of exclusive key. Given a group of users, an exclusive key for a user i is a key shared by all 

users in this group except i, and thus can be used to exclude i from this group effectively. We first present three personal key assignment algorithms 

based on this idea. The first is based on independent exclusive keys, and thus has a great storage requirement. The other two are based on 

functionally-dependent exclusive keys, and thus greatly reduce the storage requirement. Employing each personal key assignment algorithm, we 

propose both a stateful group rekeying protocol and a stateless one. We prove that all six protocols are secure against single-user attacks (i.e., 

1-resilient) in a symbolic security model. Performance comparisons between our protocols and related ones show that either of the proposed 

Protocol III and Protocol III’ is the best in its own class. 

Index Terms—multicast key distribution, group rekeying, 1-resilient, collusion attack 

1 INTRODUCTION 

1.1 A Brief Survey of Research on Group Rekeying 

Recent years have seen the rise of a large variety of group-oriented applications, for instance, pay-per-view, Pay-TV, DVB 

(Digital Video Broadcast), audio/video conferences, collaborative applications, stock quote streaming and so on. For some 

group-oriented applications like stock quote streaming, providing a security guarantee of data authenticity will suffice. 

However, for the other applications like pay-per-view, Pay-TV, audio/video conferences, providers would like to limit 

content distribution to subscribers who paid for the service. Thus, providing a security guarantee of confidentiality for 

group communication is mandatory. One of the most efficient ways to achieve private group communication is to use 

symmetric-key encryption. The group controller (GC) provides a common symmetric key called group key to all members of 

a group. Then a sender (or content provider) uses this shared group key to encrypt all digital contents and sends the 

encrypted data to all members over a broadcast channel. All members can use this shared group key to decrypt the 

encrypted data. However, the group key must be changed for every membership change due to the following reasons. To 

prevent a new member from decoding messages exchanged before it joined a group (if it has recorded earlier messages 

encrypted with the old group key), a new group key must be distributed for the group when a new member joins. This 
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security requirement is called group backward secrecy. On the other hand, to prevent a departing member from continuing 

access to the group’s communication (if it keeps receiving the messages), the group key must be changed as soon as a 

member leaves. This requirement is called group forward secrecy. The process of updating the group key among all members 

upon every single change in group membership is referred to as (immediate) group rekeying in the literature. We further refer 

to group rekeying process induced by a member’s departure (resp. join) as leave rekeying (resp. join rekeying). As we can 

expect, designing a scalable and efficient immediate group rekeying protocol for large dynamic multicast groups is a 

challenging problem. 

Group rekeying protocols can be subdivided into two categories: the stateful and the stateless. For stateful group rekeying 

protocols, receivers must remain online and keep updating their internal states (personal keys). A successful decipher of 

current group key depends on successfully receiving all (or part) of past rekey messages. If a receiver happens to be off-line 

when a group rekeying operation occurs, or current rekey message was lost due to a network failure, the receiver will not 

be able to successfully decipher any future rekey messages. On the contrary, for stateless group rekeying protocols, 

receivers are not allowed to maintain any internal state. After personal keys are given to registered receivers, they remain 

unchanged thereafter. The same setting is also assumed by broadcast encryption (BE) protocols [1], therefore broadcast 

encryption protocols can also be regarded as stateless group rekeying protocols. For example, the famous subset difference 

based member revocation (SDR) protocol [2] is regarded both as a BE protocol and as a stateless group rekeying protocol in 

the literature. In these protocols, current rekey message is independent of past rekey messages. A legitimate member can 

extract the group key from current rekey message even if it has missed all previous rekey messages. Thus, these protocols 

are very well suitable for application scenarios where members may go off-line frequently (e.g., pay-TV systems), or 

communication channel is lossy, or no feedback channel exists (e.g., encrypted DVD distribution). 

The last decade has seen an exciting growth of research on group rekeying protocols (See [3] for an excellent survey, and 

two recent surveys are available in [4] and [5]). Most of group rekeying protocols in the literature are stateful. Among all 

stateful group rekeying protocols, the tree-based ones are most efficient and popular. The first tree-based stateful group 

rekeying protocol called Logical Key Hierarchies (LKH) was independently suggested by Wong et al. [6], Wallner et al. [7], 

and Caronni et al.[8]. Since the LKH protocol, various stateful group rekeying protocols [9],[10],[11],[12] based on logic key 

tree were proposed. For a multicast group of n users, immediate stateful group rekeying following these protocols has 

communication, computational and storage complexity all logarithmic in n. In highly dynamic groups, immediate rekeying 

upon every single membership change may be too expensive. To cope with this problem, researchers proposed to use batch 

or periodic rekeying [13], [14] instead. In periodic rekeying, a group rekeying operation will not be initiated until a 



3 
 

predetermined number of time units have passed irrespective of membership dynamics. In batch rekeying, a group rekeying 

operation will not be initiated until a predetermined number of group membership changes have happened. Obviously, 

batch group rekeying is more general than immediate group rekeying. Given a batch group rekeying protocol, we 

immediately obtain a corresponding immediate group rekeying one by simply restricting the number of changes in group 

membership to 1. 

Typical stateless group rekeying (BE) protocols are those based on so-called subset cover framework [2]: the complete 

sub-tree (CS) protocol [2], the subset difference (SD) protocol [2], and the layered subset difference(LSD) protocol [15]. 

Removing R members from the group of size n following the CS protocol requires transmission of O(Rlog2(n/R)) encrypted 

keys. Each member needs to store O(log2n) keys and perform 1 decryption operation. Revocation of R members following 

the SD protocol requires transmission of at most 2R-1 encrypted keys. Each user needs to store O(log22n) keys and perform 

O(log2n) computations. Revocation of R members following the LSD protocol requires transmission of O(R) encrypted keys. 

The protocol requires each user holds O(log23/2n) keys and performs O(log2n) computations. 

1.2 The Meaning of Research on 1-Resilient Group Rekeying Protocols 

Recent research by Micciancio and Panjwani [16] confirmed that O(log2n) is actually the lower bound on the 

communication complexity of generic collusion-resistant group rekeying protocols. This lower bound reveals that it is 

impossible to achieve a lower communication overhead than O(log2n) without trading off some degree of collusion 

resistance. Fiat and Naor [1] introduced the following concept called k-resilience to quantify the degree of collusion 

resistance. Denote by U={1, 2,…, n} the universe of all users. A group rekeying protocol is called resilient to a set SU, if for 

every subset TU\S, no eavesdropper that has all secrets associated with members of S, can obtain “knowledge” of the 

secret common to T. A protocol is called k-resilient if it is resilient to any set SU of size k. According to this definition, a 

protocol is called 1-resilient if it is secure against any single-user attack, but a coalition of two receivers might break its 

security. 

As claimed by Fan et al. in [17], some commercial content delivery applications (e.g., Internet based pay-per-minute 

audio/video broadcast program provider) will be extremely cost sensitive and willing to trade off some degree of collusion 

resistance for a decrease in rekeying message cost. Some resource-constraint environments may also require a 

communication complexity lower than O(log2n). Interestingly, Fan et al. [17] proposed a framework called a hybrid 

structure of receivers (HySOR) which is tunable between the LKH protocol [6], [7], [8] and a 1-resilient protocol called the 

LORE protocol [17] (see Section 2.2 for details) extremes in the sense that one can trade off some degree of collusion 

resistance for a decrease in broadcast size. Enlightened by this research, we will show in Section 3 that any 1-resilient group 
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rekeying protocol (stateful or stateless) with constant communication overhead can be used in conjunction with a 

collusion-resistant tree-based protocol to construct a hybrid protocol with tunable collusion-bandwidth tradeoffs. On the 

other hand, Fiat and Naor [1] also showed that k-resilient BE (stateless group rekeying) protocols can be constructed from 

1-resilient BE protocols. Therefore, research on designing secure and efficient 1-resilient group rekeying protocols has its 

own value despite the fact that they are only secure against single-user attack. 

1.3 Contributions and Organization 

Besides clarifying the meaning of research on 1-resilient group rekeying protocols, we construct 1-resilient protocols based 

on a useful concept called exclusive keys. Given a group of n users, an exclusive key for a user i is a key shared by all users in 

this group except i, and thus can be used to exclude i from the group. In this paper, we present three personal key 

assignment algorithms based on this idea. The first algorithm is based on independent exclusive keys, and has a storage 

requirement of O(n) keys. The second is based on functionally-dependent exclusive keys which are derived using a dual 

hash chain, and thus greatly reduce the storage requirement from O(n) keys to O(1) keys but at the cost of an average 

computational complexity of O(n) evaluations of a one-way hash function. The third is also based on 

functionally-dependent exclusive keys which are derived using a binary hash tree, and has a storage requirement of O(log2n) 

keys and an average computational complexity of O(log2n) evaluations of a one-way hash function. Employing each of 

these algorithms, we propose both a stateful group rekeying protocol and a stateless group rekeying protocol. Among the 

proposed six protocols, the proposed Protocol III is in fact an improved version of a famous stateless group rekeying 

protocol proposed by Fiat and Naor [1]. We use one of the subset-cover techniques called the complete sub-tree method [2] to 

improve it with respect to both computational overhead and security. We prove that all six protocols are secure against 

single-user attacks (i.e., 1-resilient) in a symbolic security model. Performance comparisons between our protocols and 

related ones show that either of the proposed Protocol III and Protocol III’ is the best in its own class. 

The rest of this paper is organized as follows. Section 2 reviews some related research results on 1-resilient group 

rekeying protocols. In Section 3, we show that any 1-resilient group rekeying protocol (stateful or stateless) with constant 

communication overhead can be used in conjunction with a collusion-resistant tree-based protocol to construct a hybrid 

protocol with tunable collusion-bandwidth tradeoffs. In Section 4, we present formal definitions of exclusive keys and 

three personal key assignment algorithms respectively based on independent exclusive keys, a dual hash chain and a binary 

hash tree. Section 5 presents six group rekeying protocols respectively based on these three algorithms. In Section 6, we 

prove all proposed protocols are secure against single-user attacks in a symbolic security model. In section 7, we give 

performance comparisons between our protocols and existing 1-resilient group rekeying protocols. Section 8 concludes this 
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paper and gives some interesting topics for future research. 

2 RELATED RESEARCH ON 1-RESILIENT GROUP REKEYING 

Recall that we denote by U={1, 2,…, n} the universe of all users. In the rest of our paper, we denote the privileged subset of 

users at time t by S(t) U and the complement of set S(t) with respect to U by R(t) (note that R(t) actually represents a subset 

that includes all identities of receivers that have been revoked up to time t and all identities that have not been assigned yet 

up to time t). For an arbitrary set S, we use |S| to denote the order of S. The group key used to encrypt all information sent 

to S(t) is denoted by GK(t). Below, we interchangeably refer to S(t) as the group of legitimate users at time t or the set of ids of 

users in S(t). We use {M}K to denote the symmetric encryption of M by K. 

2.1 1-Resilient Stateless Group Rekeying (BE) Protocols 

In [1], Fiat and Naor proposed a 1-resilient broadcast encryption (BE) protocol based on pseudo-random functions. A 

complete binary tree is derived from a random seed by repeatedly applying two pseudo-random functions in a top-down 

manner as follows. Suppose that the two pseudo-random functions are denoted by f1 and f2 respectively, and for an 

arbitrary intermediate node S, its left child is denoted by Sl and its right child by Sr. We have Sl=f1(S) and Sr=f2(S). Every 

user is associated with one of the leaves of the derived binary tree. Assignment of personal keys to users is based on the 

derived binary tree such that each leaf key is known to all users except its associated user. To revoke multiple members, 

GC only needs to Xor all their associated leaf-keys and uses the resulting key to encrypt the new group key. Thus all 

members except those evictees can extract the new group key from the rekey message. For convenience, we call this 

protocol the FN 1st protocol in the rest of this paper. 

Fiat and Naor [1] also proposed a 1-resilient BE protocol that is cryptographically equivalent to the RSA scheme [18]. GC 

chooses a random RSA composite N=PQ where P and Q are distinct primes. Given the group ZN*, GC selects an element g 

with high order and keeps g secret. User i is assigned personal key mod  ip
ig g N , where pi and pj are relatively prime for 

all i, jU. All users know what user index refers to what pi. For a privileged subset of users S(t), GC computes the 

corresponding group key GK(t) as ( )( ) modt ii S
ptGK g N and broadcasts S(t) (or the corresponding revocation list R(t)). 

After receiving the list S(t) or R(t), every user i in S(t)

 
can compute 

( ) \{ }( ) mod
t jj S i

pt
iGK g N . Fiat and Naor proves that if 

the problem of root extraction modulo an RSA composite is hard, then this protocol is secure against single-user attacks 

(1-resilient). It is readily seen that any two user can collude to compute g. For convenience, we call this protocol the FN 2nd 

protocol in the rest of this paper. 
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2.2 1-Resilient Stateful Group Rekeying Protocols 

Stateful (immediate or batch) join rekeying can be conducted trivially in either of the following two manners: 

1) When a few new members join at time t, GC simply broadcasts a new group key GK(t+1) encrypted under current 

group key GK(t), i.e., the rekey message is   ( )

( 1)
t

t

GK
GK  . Thus, all members except the joining members can 

decrypt GK(t+1) from the rekey message. For each of the joining members, GC sends it the new group key GK(t+1) and 

its personal keys over a secure unicast channel; 

2) GC can first apply a public one-way hash function h (MD5 [19], or SHA-1[20]) to current group key GK to obtain the 

new group key as GK(t+1)=h(GK(t)), then broadcast a rekey notification message. After receiving this message, all 

members except the joining members can derive the group key GK(t) as above. 

Compared with join rekeying, designing an efficient leave rekeying algorithm is much harder, because a revoked 

member always brings out information that may be used to encrypt future group keys. To ensure group forward secrecy, 

we must invalidate all knowledge held by an evictee. However, this is not a trivial task. The following 1-resilient group 

rekeying protocols all employ a join rekeying algorithm like either of the above. Thus, we only need to introduce their 

leave rekeying algorithms. 

Fan et al. [17] proposed a 1-resilient stateful group rekeying protocol called linear ordering of receivers (LORE) which has 

constant communication overhead. Assignment of personal keys (also known as control keys in [17]) to users is based on 

two independent one-way hash chains, respectively called forward chain and backward chain. GC assigns each user two 

control keys, respectively selected from the forward chain and backward chain according to its rank in both chains. In leave 

rekeying, these two control keys in conjunction with current group key will be used to encrypt the new group key such 

that all users except the evictee can extract the new group key. 

Kim et al. [21] proposed a 1-resilient stateful group rekeying protocol with constant communication overhead whose 

personal key assignment is based on a structure similar to a binary hash tree (BHT) (see Section 4.3 for details) except that 

instead of using traditional one-way hash functions to derive a binary key tree, they chose to use multiplicative one-way 

functions to facilitate updating the whole key tree when a member leaves or joins the group. For convenience, we call their 

protocol the KHYC protocol in the rest of this paper. 

In [12], Waldvogel et al. proposed a 1-resilient stateful group rekeying protocol known as the flat-table (FT) protocol in the 

literature. Its personal key assignment is based on a simple structure called flat-table. The table contains one entry for the 

group key and 2log2n more entries for key encryption keys (KEKs), where log2n is the number of bits in the member id 

(because we need log2n bits to uniquely identify each member for a group of size n). There are two keys available for each 
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bit in the member id, one associated with each possible value of the bit. A member knows only the key associated with the 

state of its bit. In total, each member holds log2n+1 keys. Chang et al. [22] independently proposed a similar protocol and 

employed Boolean function minimization techniques (BFM) to greatly reduce the communication overhead of batch rekeying. 

However, compared with the LORE protocol and the KYHC protocol, immediate rekeying following these flat-table based 

protocols require transmission of O(log2n) encrypted keys. 

3 FROM 1-RESILIENT GROUP REKEYING TO THAT WITH TUNABLE COLLUSION-BANDWIDTH TRADEOFFS 

For all 1-resilient stateful/stateless group rekeying protocols reviewed in Section 2, a coalition of any two revoked receivers 

can break their group forward secrecy. Given a 1-resilient stateful (resp. stateless) group rekeying protocol with constant 

communication overhead, a straightforward solution to improve its collusion resistance is simply as follows. A group of n 

receivers are divided into d divisions. GC simply employs an independent instance of the 1-resilient stateful/stateless 

group rekeying protocol (i.e., each set of control keys respectively associated with each division is independent from each 

other) for each division to rekey group keys. Since the communication overhead of the 1-resilient stateful/stateless group 

rekeying protocol is O(1) encrypted keys, the communication overhead of the straightforward solution is O(d) encrypted 

keys. Now we analyze this solution’s vulnerability to collusion attacks. To achieve the highest level of collusion protection, 

GC has to allocate a receiver to a randomly-chosen division when it joins the group. It is readily seen that a group of k 

colluding receivers can succeed if and only if at least two of them are allocated to the same division since combining 

control keys from distinct divisions does not help the colluders. If we use Pk to denote the probability that at least two of 

the k colluding receivers are allocated in the same division, then according to [17] we have 

1,

!( )!( )
1 , .

!( )!

k
k

k d

nP d n k
d k d

n d k


 
  



  

It is readily seen that for given n and k, Pk is a decreasing function with respect to d. In other words, to reduce vulnerability 

to collusion attack, we must increase the number of divisions, d. But a greater d means a higher communication overhead 

(which is proportionate to d). Therefore, there exists a tradeoff between collusion resistance and bandwidth. 

However, an obvious drawback of the above solution is that its communication overhead is linearly proportional to the 

number of divisions. In the following, we will show how to further reduce the communication overhead of the 

straightforward solution for stateful group rekeying (resp. the straightforward solution for stateless group rekeying) while 

maintaining the same level of security. In the following, we call the above straightforward solution for stateful (resp. 
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stateless) group rekeying the stateful straightforward solution (resp. the stateless straightforward solution) for short. 

3.1 From 1-Resilient Stateful Group Rekeying to That with Tunable Collusion-Bandwidth Tradeoffs 

Fan et al. [17] proposed a framework called a hybrid structure of 

receivers (HySOR) which can be used to reduce the stateful 

straightforward solution’s communication complexity from O(d) to 

O(log2d) without compromising its security. HySOR uses a 1-resilient 

protocol — the LORE protocol (see Section 2.2 for some details) and 

the LKH protocol [6], [7], [8] to achieve tunable collusion-bandwidth 

tradeoffs. As illustrated in Figure 1, receivers are also divided into d 

divisions and each division is logically regarded as a leaf node (known 

as d-node) in an LKH key tree. Division keys are represented by the leaf 

k-nodes in an LKH key tree. Each receiver’s personal keys include not only the control keys as required by the LORE 

protocol but also the auxiliary keys corresponding to the nodes in the path from its division key to the root as required by 

the LKH protocol. For each division, GC employs an independent instance of the LORE protocol to rekey the 

corresponding division key when there is a change in membership happened in that division. For simplicity, we assume 

that every division has at least one active receiver after a change in membership. When some division has no active 

receiver (i.e., it becomes inactive), the group rekeying procedure is a little different from the following. Please refer to [17] 

for details. When a receiver of the i-th division joins/leaves the group, GC first uses the i-th instance of the LORE protocol 

to update the corresponding division key Ki, and then uses the LKH protocol to update all the keys corresponding to the 

nodes in the path from Ki to the root of the key tree (note that the root node corresponds to the group key). Of course, the 

LORE protocol used by HySOR can be substituted by any 1-resilient stateful group rekeying protocol with constant 

communication overhead. Suppose that the constant communication overhead of the 1-resilient protocol is C, then the 

communication overhead of the resulting hybrid protocol is only 2log2d+C encrypted keys. That of the LKH protocol is 

2log2n encrypted keys, where n>>d. Since the LKH protocol has been proved free from collusion attacks [23], the resulting 

hybrid protocol maintains the same level of security as the stateful straightforward solution. And there is also a trade-off 

between collusion resistance and bandwidth like the stateful straightforward solution. 

3.2 From 1-Resilient Stateless Group Rekeying to That with Tunable Collusion-Bandwidth Tradeoffs 

We can use a collusion-resistant tree-based stateless protocol (like those based on the subset-cover framework) to construct a 

hybrid stateless protocol which reduces the stateless straightforward solution’s communication overhead without 

 

Fig.1. Hybrid structure 
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compromising its security. Since all schemes based on the subset cover framework — the complete sub-tree (CS) protocol 

[2], the subset difference (SD) protocol [2], the layered subset difference(LSD) protocol [15] — have been proved 

collusion-resistant, each of them can be used to construct this hybrid protocol. Personal key assignment is also based on the 

hybrid structure illustrated in Figure 1. Specifically, each receiver’s personal keys include not only those control keys as 

required by a 1-resilient stateless protocol but also those auxiliary keys in the key tree as required by a subset-cover based 

stateless protocol. For example, for the CS protocol, the latter are those keys along the path from the corresponding d-node 

to the root just like the LKH protocol. We call a division and its corresponding d-node in the key tree complete if all receivers 

in that division are current members of a group; otherwise we call them incomplete. For each incomplete division, GC 

simply uses an independent instance of a 1-resilient stateless group rekeying protocol to rekey group keys. From 

perspective of the subset-cover based stateless group rekeying, all complete d-nodes are regarded as legitimate members 

while all incomplete ones as evictees. Following a subset-cover based stateless protocol, GC needs to first find those 

privileged subsets that together “cover” all complete d-nodes (we call these subsets “covering” subsets for short), and then 

use their corresponding auxiliary keys to encrypt the new group key. To exemplify this idea, we use the CS protocol [2] 

and an arbitrary 1-resilient stateless protocol to construct a hybrid protocol with tunable collusion-bandwidth tradeoffs. 

We reuse Figure 1 to explain how to perform group rekeying following this hybrid protocol when all evictees are 

distributed in divisions C, D and F (i.e., A, B, E, G and H are complete divisions). GC performs the following three steps to 

complete group rekeying: (1) For each incomplete division, GC simply uses an independent instance of the 1-resilient 

stateless protocol to rekey group keys; (2) GC uses the so-called complete sub-tree method on which the CS protocol is based 

[2] to find those “covering” subsets (that covers all complete divisions) and their corresponding auxiliary keys. Specifically, 

as illustrated in Figure 1, GC needs to first compute a Steiner tree that is spanning the root and all incomplete d-nodes (i.e., 

C, D, and F in this case). Then all auxiliary keys associated with those “covering” subsets are just those associated with the 

roots of those sub-trees that hang off the Steiner tree. Taking the case illustrated by Figure 1 as an example, these “covering” 

subsets are {A, B}, {E}, {G, H}, and their corresponding auxiliary keys are Kab, Ke, and Kgh, respectively; (3) GC sends the new 

group key encrypted with these auxiliary keys respectively. For our example, GC sends the following rekey message:

{ '} ,{ '} ,{ '}
ab e ghK K KGK GK GK . 

Suppose that the group is divided into d divisions, and all m (m>r) evictees are uniformly distributed in r (r<d) 

incomplete divisions, then the communication overhead of this hybrid protocol is O(r)+O(rlog2(d/r)) encrypted keys which 

is less than both that of the straightforward solution (O(d)) and that of the CS protocol (O(mlog2(n/m))). Since the CS 

protocol has been proved free from collusion attacks [1], the hybrid protocol maintains the same level of security as the 
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stateless straightforward solution. There is a trade-off between collusion and bandwidth like the stateless straightforward 

solution. 

In this section, we showed that any 1-resilient stateful (resp. stateless) group rekeying protocol with constant 

communication overhead can be used in conjunction with a collusion-resistant stateful (resp. stateless) tree-based protocol 

to construct a hybrid stateful (resp. stateless) protocol with tunable collusion-bandwidth tradeoffs. And communication 

overhead of the resulting hybrid protocol is exactly between that of 1-resilient protocol and that of the tree-based protocol. 

Therefore, research on designing secure and efficient 1-resilient group rekeying protocols has its own value despite the fact 

that they are only secure against single-user attack. In the following, we focus on designing efficient and secure 1-resilient 

group rekeying protocols with constant communication overhead. 

4 1-RESILIENT PERSONAL KEY ASSIGNMENT ALGORITHMS BASED ON EXCLUSIVE KEYS 

An informal concept of exclusive key was first given by Kim et al. [21] recently, while the idea actually originated in [1] more 

than a decade ago. In this section, we formalize this concept, and then propose three personal key assignment algorithms 

for group rekeying based on this idea. We also prove the security of them. 

Definition 1 — Given a universe U of n users, an exclusive key Ki for an arbitrary user iU is a long-term key shared by all 

users in U\{i}. 

We can extend Definition 1 to obtain Definition 2. 

Definition 2 — Given a universe U of n users, an exclusive key KS for an arbitrary subset SU is a long-term key shared by 

all users in U\S. 

In leave rekeying, an exclusive key Ki (resp. KS) can be used by GC to exclude i (resp. all users in S) in the sense that GC 

can broadcast a new group key encrypted by Ki (resp. KS) such that all users in U except i (resp. all users in S) can decrypt 

the rekey message.  

Personal key assignment based on the idea of exclusive key is bound to be only 1-resilient, because a coalition of an 

arbitrary pair of users i and j can break their security as follows. According to Definition 1, i and j both hold an exclusive 

key that can be used to exclude each other. They can simply exchange those exclusive keys such that neither of them can be 

excluded by GC. 

If we want to construct a feasible group rekeying protocol based on exclusive key, then its personal key assignment 

based on exclusive keys must at least satisfy the following three conditions: 

1) Correctness — for an arbitrary exclusive key Ki for i, Ki must be shared by all users except i. 
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2) Completeness — for every user iU, i must hold or is able to derive the exclusive key Kj for all ji. In fact, the key set 

{Kj | ji} or the intermediate seeds used to derive this key set will be assigned to i by GC as its personal key. 

3) Security (1-resilience) — for every user iU, it is (information-theoretically) impossible or (computationally) 

infeasible for i to compute the exclusive key Ki for i given its personal key. 

  Now we present three personal key assignment algorithms that all fulfill the three conditions. 

4.1 Personal Key Assignment Based on Independent Exclusive Keys (IEK) — the IEK Algorithm 

GC (GC) first generates a set of n random (independent) keys denoted by 

S={K1,…,Kn}. As illustrated in Table 1, each rank i (i=1,2,…,n) is associated with a 

set of keys {K1,…,Ki-1, Ki+1,…,Kn} (i.e., S\{Ki}). When user i joins the group, GC 

assign it a unique rank, namely i (for simplicity) and associated set of keys S\{Ki} 

as its personal key. In the following, we interchangeably refer to i as a rank or a 

user according to its context. Once user i is assigned a rank, i will occupy this rank 

and its associated personal key forever in the sense that they will never be 

assigned to other users even if i leaves the group. The effect of such a personal key assignment is such that each Ki is shared 

among all users except i, and can be used to exclude i in a leaving rekeying algorithm (correctness). For example, if GC 

wants to exclude user i, it broadcasts the new group key GK’ encrypted by Ki such that all member except i can decrypt the 

new group key. It is easy to check that the IEK algorithm satisfies the completeness condition. According to the following 

theorem, this algorithm is information-theoretically secure against single-user attacks (1-resilience). 

  Theorem 1: For an arbitrary user i, the exclusive key Ki for i is random given n-1 exclusive keys {K1,…,Ki-1, Ki+1,…,Kn} (i.e., 

personal key of i). 

Proof: This claim is immediately followed from the fact that all n exclusive keys K1,…,Kn are generated randomly and 

independently. 

The storage requirement for each user is n-1 keys and that for GC is n keys. The computational cost for each user is zero. 

4.2 Personal Key Assignment Based on Dual Hash Chain — the DHC Algorithm 

This personal key assignment is similar to the IEK algorithm except that GC generates functionally-dependent exclusive 

keys instead of independent random ones as illustrated in Table 2. More specifically, GC first chooses two random seeds f1 

and b1, and then generates two (n-1)-length one-way hash chains — forward chain and backward chain by repeatedly 

applying a public one-way hash function h to f1 and b1, respectively. That is, the (i+1)-th forward key fi+1 (resp. the (i+1)-th 

backward key bi+1) is computed as fi+1=h(fi) (resp. bi+1=h(bi)) (i=1,…,n-2). We call this structure comprised of two hash chains a 

TABLE 1 

IEK ALGORITHM 

2 1 1

1 1 1

1 2 1

1 2 1 1

1 2 1

1 2 1 1
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( )1
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i i i n

i i i n

i i n

i i n

i i n

i i i
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K K K K K

K K K K Ki

K K K K Ki
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
 

 



12 
 

dual hash chain (DHC). For each rank i (i=1,2,…,n), GC associates i with two keys fi and bn-i+1 (here we regard both bn and fn 

as null). With fi and bn-i+1, user i can derive all other exclusive keys as illustrated in Table 2 by repeatedly applying h. The 

effect of such a personal key assignment is that GC can exclude user i by broadcasting a rekey message as 

    
1

,
i n if b

GK GK
 

  . Thus users with ranks from 1 to i-1 can decrypt  
1if

GK


  to obtain the new group key because all 

users with ranks from 1 to i-2 can derive the decryption key fi-1 and user i-1 holds fi-1 by itself. And users with ranks from 

i+1 to n can decrypt  
n ib

GK


  to obtain the new group key because all users with ranks from i+2 to n can derive the 

decryption key bn-i and user i+1 holds bn-i by itself. Whereas, user i can decrypt neither  
1if

GK


  nor  
n ib

GK


 . 

According to Definition 1, the exclusive key for user i is a pair of keys {fi-1, bn-i}. It is easy to check that the DHC algorithm 

satisfies the completeness condition. According to the following theorem, this algorithm is computationally secure against 

single-user attacks. 

  Theorem 2: For an arbitrary user i, it is computationally infeasible to compute either of the exclusive key pair fi-1 and bn-i given two 

exclusive keys fi and bn-i+1 (i.e., personal key of i). 

Proof: This claim is immediately followed from the fact that h is a one-way hash function. 

  Compared with the IEK algorithm, the storage requirement for each user is only 2 keys at most, and for GC it is only two 

keys. However, to derive the pair of exclusive keys for an evictee, each user and GC need to perform O(n) evaluations of a 

one-way hash function in average. 

Remark 1: The personal key assignment algorithm of the LORE protocol [17] is also based on DHC, but is different from 

ours. Interestingly, both algorithms have the same storage and computation complexity. 

4.3 Personal Key Assignment Based on Binary Hash Tree— the BHT Algorithm 

As introduced in Section 2.1, to realize a 1-resilient broadcast encryption protocol — the FN 1st protocol, Fiat and Naor [1] 

TABLE 2 
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proposed a personal key assignment algorithm based on a binary tree which is 

derived from a random seed by repeatedly applying two pseudo-random 

functions in a top-down manner. In practice, this binary tree can also be derived 

by using two computationally-efficient one-way hash functions, e.g., MD5 [19] or 

SHA-1 [20]. A binary tree derived by using hash functions is called Binary Hash 

Tree (BHT) by Briscoe [24], and he proposed a time-based multicast key 

distribution protocol based on BHT called MARKS [24]. Here, we use BHT for group rekeying protocols. GC first generates 

a binary hash tree (BHT) that has n leaf k-nodes as illustrated in Figure 2. Specifically, a BHT is derived from a random seed 

K1 in a top-down manner such that given a k-node Ki, its left child K2i is computed as K2i = fL(Ki), and its right child K2i+1 as 

K2i+1 = fR(Ki) where fL and fR are two different one-way hash functions. Every user is associated with a unique leaf k-node. 

For convenience, given a user i, we call those keys in i’s path to the root path keys and those keys that are siblings of path 

keys sibling keys. When a user i joins the group, GC associates it with a unique leaf k-node and assigns it the corresponding 

sibling keys. With these sibling keys, i can compute all keys on the BHT except those path keys. For example, a user 2 

associated with K9 will be assigned a set of sibling keys {K3, K5, K8}, and thus user 2 is able to compute all the keys on the 

BHT except the set of path keys {K1, K2, K4, K9}. The effect of such a personal key assignment is that an intermediate key Ki is 

shared among all users except those associated with the leaf nodes of the sub-tree rooted at Ki. Therefore Ki can be used to 

exclude all users respectively associated with the leaf k-nodes of a sub-tree rooted at Ki (see next section for details). 

According to Definition 2, Ki is the exclusive key for the set of users who are associated with the leaf nodes the sub-tree 

rooted at Ki (correctness). It is easy to check that the BHT algorithm satisfies the completeness condition. According to the 

following theorem, this algorithm is computationally secure against single-user attacks. 

Theorem 3: For an arbitrary user i, it is computationally infeasible to computer any of its path keys given its sibling keys. 

Proof: This claim is immediately followed from the fact that h is a one-way hash function. 

The storage requirement for GC is only one key, but for each user it is log2n keys. However, to derive the exclusive key 

for an evictee, each user and GC only need to perform O(log2n) evaluations of a one-way hash function in average. 

Remark 2: Let us consider the tradeoff between the two relevant resources at user end: storage overhead and 

computational overhead. The IEK-based algorithm achieves a storage complexity of O(n) keys and zero computational cost 

at one end, whereas the DHC-based algorithm a storage complexity of O(1) keys and an average computational complexity 

of O(n) evaluations of one-way hash function at the other end. Between these two extremes, does the BHT algorithm 

achieve a storage complexity of O(log2n) keys and an average computational complexity of O(log2n) evaluations of 

1 2 3 4 5 6 7 8

K3K2

K1

K4 K5 K6 K7

K15K14K13K12K11K10K9K8

 

Fig. 2. Binary hash tree 
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one-way hash function. 

5 EXCLUSIVE KEY-BASED 1-RESILIENT GROUP REKEYING PROTOCOLS 

Using each of the three personal key assignment algorithms, we can design both a stateless group rekeying protocol and a 

stateful one. For the two protocols based on the same type of personal key assignment algorithm, we always introduce the 

stateless one before the stateful one because the batch leave rekeying algorithm of the latter may use the stateless protocol. 

Since immediate group rekeying is just a special case of batch group rekeying, we only need to deal with batch group 

rekeying. Below, we denote “multicast” by “”and “secure unicast” by “”. 

5.1 Group Rekeying Based the IEK Algorithm 

5.1.1 A stateless group rekeying protocol — Protocol I 

We first introduce the stateless group rekeying protocol (or BE protocol) that is based on the IEK algorithm — Protocol I. 

Whenever a new member joins the group, GC assigns it a free rank and sends it associated personal keys by a secure 

unicast channel. Suppose that there are changes in membership (joins or leaves) at time t and the privileged set changes 

from S(t) to S(t+1). Recall that the complement of S(t+1) — R(t+1) represents a subset that includes all ranks of users that have 

been revoked up to time t+1 and all ranks that have not been assigned yet up to time t+1. For the privileged set S(t+1), GC 

generates a random group key GK(t+1) and then sends the following message by multicast: 

GCS(t+1):  
( 1)

( 1) ( 1),
t ii R

t t

K
R GK



 


. 

According to [1], every rekey message of a BE protocol (stateless group rekeying protocol) must contain a set identification 

information that is used to uniquely identify a privileged set. Since |R(t+1)| is usually far less than |S(t+1)|, we choose to use 

the blacklist R(t+1) instead of the white list S(t+1) as the set identification information. Note that the key used to encrypt the 

group key is computed as ( 1)t ii R
K , i.e., Xoring all the exclusive keys associated with all revoked and unassigned ranks 

in R(t+1). 

  The computational cost of GC is only 1 encryption and that of each group member is only one decryption. Note that we 

don’t count the cost of the Xor operations in the remainder of this paper because the Xor operation is very computationally 

efficient. And the multicast size is only one encrypted key plus a blacklist that amounts to |R(t+1)|log2n bits (recall that it 

takes at least log2n bits to uniquely identify a member or a rank for a group of size n). 

5.1.2 A stateful group rekeying protocol — Protocol I’ 

Let us introduce the stateful group rekeying protocol that is based on the IEK algorithm — Protocol I’. Suppose that m 
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users join the group S(t)U at the same time t and we denote this set of users by J={i1, i2,…, im}. For each ijJ (j=1,…, m), GC 

needs to assign it a free rank also denoted by ij. Then GC derives the new group key GK(t+1) by computing GK(t+1)=h(GK(t)) 

where h is a public one-way hash function, and sends the following messages: 

GCS(t): a rekey notification, 

For each ijJ (j=1,…, m) 

   GCij: 1 1 1{ , , , , , }
j ji i nK K K K   , GK(t+1). 

After receiving the rekey notification message, every current member in S(t) can derive the new group key GK(t+1) by 

computing GK(t+1)=h(GK(t)). 

  In fact, both immediate and batch leave rekeying can be supported by using the stateless counterpart — Protocol I in a 

straightforward way. Suppose that m users leave the group S(t) at the same time t and we denote this set of users by L={i1, 

i2,…, im}. GC simply uses Protocol I to exclude all users in R(t)L from obtaining the new group key. For convenience, we 

call this straightforward approach of using the stateless counterpart for batch leave rekeying stateless leave rekeying in the 

remainder of this paper. Here we introduce another approach called stateful leave rekeying. Because GK(t) is shared by all 

users in S(t)=U\R(t), it can be regarded as a temporary exclusive key for subset R(t) at time t, although it is not a long-term 

one as defined by Definition 2. Therefore, using the exclusive keys respectively for every currently-departing user in L in 

conjunction with GK(t) (i.e., Xoring them together) to encrypt the new group key GK(t+1) is enough to exclude all users in 

R(t+1)=LR(t) at time t. That is to say, GC needs to send the following rekey message: 

GCS(t+1):    ( )

( 1)
1 2, , ,

t
i L ij j

t
m

K GK
i i i GK





 
 here S(t+1)=S(t)-L. 

Every current member of S(t) except those in L can extract GK(t+1) from this message. Due to the usage of current group key, 

this type of batch leave rekeying is stateful (see Remark 3 at the end of this section for the reason). 

  For join rekeying, the computational cost of GC and each group member except the joining member is only one 

evaluation of a one-way hash function. The unicast size is mn keys in total and the multicast size is only one notification 

message. For leave rekeying, the computational cost of GC is only 1 encryption, and that of each group member is only 1 

decryptions. And the multicast size is only 1 encrypted key plus mlog2n bits for identifying m departing members.  

5.2 Group Rekeying Based on the DHC Algorithm 

5.2.1 A stateless group rekeying protocol — Protocol II 

In this section, we introduce the stateless group rekeying protocol that is based on the DHC algorithm — Protocol II. When 

a new member joins the group, GC must send him/her a corresponding personal key by unicast. Suppose that there are 
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changes in group membership (joins or leaves) at time t and the privileged set 

changes from S(t) to S(t+1). Given a privileged set S(t+1), ranks associated with all 

legitimate users (legitimate ranks for short) are distributed by the pattern of 

disjoint rank intervals. Or we would like to say legitimate ranks are covered by 

disjoint rank intervals. As illustrated in the first column of Table 3, if U = {1, 2,…, 

6} and the privileged set of users is {1, 3, 4, 6}, legitimate ranks are covered by 

the following disjoint rank intervals: [1], [3,4] and [6]. We denote these rank 

intervals by I1, I2,…, Ir. GC generates a random group key GK(t+1), and for each rank interval Ij = [j1, jm] (i.e., rank interval Ij 

starts at rank j1 and ends at rank jm), creates a cipher text  
11

( 1)
j

n j jm

t
I

b f
C GK

 




 . Referring to Table 3, it is readily seen 

that only members whose associated rank is covered by Ij can decrypt this cipher text according to the DHC algorithm. 

After creating all those cipher texts, GC sends the following rekey message by multicast: 

  GCS(t+1):
1 21 2, , , , , , ,

rr I I II I I C C C  .  

We encourage the interested readers to refer to the proof of Theorem 7 in Section 6 for more details behind this 

construction. The number of disjoint rank intervals r is at most |R(t+1)|+1. The computational cost of GC is 2n evaluations 

of one-way hash function (for computing the exclusive key pairs for all revoked members) and |R(t+1)|+1 encryptions at 

most. The computational cost of each group member is n evaluations of one-way hash function at most plus one decryption. 

And the multicast size is |R(t+1)|+1 encrypted keys plus (|R(t+1)|+1) 2log2n bits at most (recall that each rank interval is 

uniquely identified by two ranks, therefore 2log2n bits). 

5.2.2 A stateful group rekeying protocol — Protocol II’ 

Now we introduce the stateful group rekeying protocol that is based on the DHC algorithm — Protocol II’. Suppose that m 

users denoted by J={i1, i2,…, im} join the group S(t)U at the same time t. GD performs join rekeying similar to that of 

Protocol I’ except that the unicast message is as follows: 

For each ijJ (j=1,…, m) 

 GC ij: 1,
j ji n if b   , GK(t+1). 

 Both immediate and batch leave rekeying can be supported by using Protocol II in a straightforward manner. Suppose 

that m users leave the group S(t) at the same time t and we denote this set of users by L={i1, i2,…, im}. GC first computes all 

those rank intervals that cover all legitimate users in S(t)-L and then uses Protocol II to exclude all users in R(t)L from 

TABLE 3 

PROTOCOL II 
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5 4 3 4 5
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obtaining the new group key. This is the so-called stateless leave rekeying approach. However, the worst-case multicast 

overhead will be |R(t)|+m+1 encrypted keys plus (|R(t)|+m+1)2log2n bits and would become prohibitively high when 

|R(t+1)| is big. Therefore, we would rather use a similar stateful leave rekeying approach as discussed in Section 5.1.2. 

Suppose that the ranks intervals that cover the subset U-L (instead of S(t)-L as in above approach) are I1, I2,…, Ir. GC needs 

to generate a random group key GK(t+1), and for each rank interval Ij = [j1, jm], create a cipher text 

  ( )
11

( 1)
tj

n j jm

t
I

b f GK
C GK

 



 
  . After creating all those cipher texts, GC sends the following rekey message by multicast: 

  GCS(t+1):
1 21 2, , , , , , ,

rr I I II I I C C C    . 

Every current member of S(t) except those in L can decrypt this message to obtain the new group key GK(t+1). Compared 

with the stateless leave rekeying algorithm, the worst-case multicast size is only m+1 encrypted keys plus (m+1)2log2n 

bits. 

  For join rekeying, the computational cost of GC is 2n+1 evaluations of a one-way hash function at most (for computing 

the exclusive key pairs for the joining members and the new group key) and that of each group member except the joining 

member is only one evaluation of a one-way hash function. The unicast size is only 3m keys in total and the multicast size 

is only one notification message. For leave rekeying, the computational cost of GC is 2n evaluations of a one-way hash 

function (for computing the exclusive key pairs for the departing members) plus m+1 encryptions at most. The 

computational cost of each group member is n evaluations of a one-way hash function at most plus 1 decryption. 

5.3 Group Rekeying Based on the BHT Algorithm 

5.3.1 A stateless group rekeying protocol — Protocol III 

Note that in the remainder of this paper, when referring to the FN 1st 

protocol, we mean the BHT-based version of FN 1st protocol. In Section 3.2, 

when using the CS protocol to construct a hybrid stateless protocol with 

collusion-bandwidth tradeoffs, we used the complete sub-tree method to 

help us find those subsets that cover legitimate users. Whereas in this 

section, we use the same method to help find those subsets that cover 

illegitimate users and their corresponding exclusive keys. Thus we improve 

the FN 1st protocol with respect to both computational overhead and 

security. For convenience, we call the improved protocol Protocol III. Suppose that there are changes in group membership 

(joins or leaves) at time t and the privileged set changes from S(t) to S(t+1). For convenience, we denote by ST(S) the Steiner 

 
 

Fig. 3 Protocol III 
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tree that is spanning the root and all the u-nodes respectively associated with every member of a sub-set SU. As 

illustrated in Figure 3, GC first computes a Steiner tree ST(S(t+1)) so as to obtain all those subsets that together cover all 

revoked users in R(t+1). According to the BHT algorithm, all exclusive keys for these subsets are just those associated with 

the roots of those sub-trees that hang off the Steiner tree ST(S(t+1)) as illustrated by Figure 3. Taking the case illustrated by 

Figure 3 as an example, these “covering” subsets are {3,4} and {6}, and their corresponding exclusive keys are K5 and K13, 

respectively. Suppose all these exclusive keys respectively corresponding to each of the covering subsets for R(t+1) are
1i

K ,

2i
K ,…, and

mi
K . According to [2], the number of these keys is at most |S(t+1)|log2(n/|S(t+1)|). GC then generates a random 

group key GK(t+1) and sends the following message by multicast: 

GCS(t+1):  
1 2

( 1)
1 2, , , ,

i i im

t
m

K K K
i i i GK 

  
 . 

Obviously, only those users in S(t+1) are able to decrypt this message and obtain the new group key according to the BHT 

algorithm. Compared with the CS protocol as illustrated by Figure 1, we compute the Steiner tree here to help find those 

“covering” subsets for R(t+1) rather than S(t+1). 

  Note that all exclusive keys used to encrypt the new group key are computed by GC from the root key K1 on the fly 

when it performs group rekeying. As illustrated in Figure 3, the computational cost for GC to compute all exclusive keys is 

proportional to the size of the Steiner tree ST(R(t+1)) denoted by |ST(R(t+1))|. According to [10], we have 

2|R(t+1)|-1+log2(n/|R(t+1)|)|ST(R(t+1))| 2|R(t+1)|-1+|R(t+1)|log2(n/|R(t+1)|). Intuitively, the minimum size of ST(R(t+1)) 

occurs when the ST(R(t+1)) is a densely embedded sub-tree of the key tree, as would happen when users in R(t+1) are 

associated with adjacent u-nodes of the key tree. The maximum size occurs when the ST(R(t+1)) is sparsely embedded in the 

key tree, as occurs when the u-nodes that users in R(t+1) are associated with are evenly distributed in the key tree. Since the 

size of the Steiner tree ST(R(t+1)) is determined by the distribution pattern of the revoked u-nodes in the key tree which is 

unpredictable due to group dynamics, we can only estimate the computational and communication cost of Protocol III (and 

the FN 1st protocol) by analyzing the following two extreme cases: 

(1) The best case — 

When ST(R(t+1)) has the minimum size, the computational cost of both GC and members reaches its lowest level. The 

minimum value of ST(R(t+1)) occurs when the ST(R(t+1)) includes a “densely packed” sub-tree of size 2|R(t+1)|-1 at the lowest 

level of the key tree, and this sub-tree is attached to the root of the key tree by a single path of length log2(n/|R(t+1)|). 

Therefore, the computational cost of GC amounts to log2(n/|R(t+1)|) evaluations of a one-way hash function plus 1 

encryption. As introduced in Section 2.1, in the FN 1st protocol, the key used to encrypt the new group key is computed by 
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Xoring all leaf exclusive keys respectively associated with those revoked users in R(t+1). Therefore, for the FN 1st protocol, 

the computational cost of GC in this case amounts to 2|R(t+1)|-2+log2(n/|R(t+1)|) evaluations of a one-way hash function 

plus 1 encryption. For both Protocol III and the FN 1st protocol, because the computational cost of a member is determined 

by the relative position of its associated u-node with respect to the “densely packed” sub-tree, we only discuss the average 

cost here. For Protocol III, the average computational cost of a member is
 ( 1)

2

( 1)

log /
2

t

t

n n R

S






 evaluations of a one-way 

hash function plus 1 decryption. For the FN 1st protocol, the average computational cost of a member is

 ( 1)

2 ( 1)

( 1)

log /
2 4

t

t

t

n n R
R

S








 evaluations of a one-way hash function plus 1 decryption. The multicast size is one 

encrypted key plus log2(2n-1) bits (note that it takes log2(2n-1) bits to uniquely identify a node of a full binary tree with n 

leaf nodes). 

(2) The worst case — 

When ST(R(t+1)) has the maximum size, the computational cost of both GC and members reaches its highest level. The 

maximum value of ST(R(t+1)) occurs when the ST(R(t+1)) includes a subtree of size 2|R(t+1)|-1 at the highest level of the key 

tree, with |R(t+1)| paths each of length log2(n/|R(t+1)|) flowing downward from its leaves to the leaves of the key tree. For 

both Protocol III’ and the FN 1st protocol, the computational cost of GC amounts to 2|R(t+1)|-2+|R(t+1)|log2(n/|R(t+1)|) 

evaluations of a one-way hash function plus 1 encryption and that of a member is 

2|R(t+1)|-3+|R(t+1)|log2(n/|R(t+1)|)-2log2|R(t+1)| evaluations of a one-way hash function at most plus 1 decryption. For 

both protocols, the multicast size is one encrypted key plus |S(t+1)|log2(n/|S(t+1)|)log2(2n-1) bits at most (this is what it 

takes to identify all those exclusive keys used to encrypt the new group key, whose number is at most 

|S(t+1)|log2(n/|S(t+1)|)). 

Although both Protocol III and the FN 1st protocol have the same worst-case computational and communication 

overhead, the advantage of Protocol III over the FN 1st protocol in both aspects increases as the revoked u-nodes become 

more densely distributed in the key tree, and reaches its maximum when all revoked u-nodes can be covered by just one 

subset. 

Another interesting advantage of Protocol III over the FN 1st protocol is concerning collusion resistance. In the FN 1st 

protocol, the new group key is encrypted by a key computed by Xoring all the leaf exclusive keys respectively for each 

revoked user in R(t+1). An arbitrary pair of revoked users in R(t+1) can collectively compute all these exclusive keys from their 

personal keys, and thus can decrypt the rekey message. Unlike the FN 1st protocol, not an arbitrary pair of revoked users in 
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R(t+1) can collude to break the security of Protocol III. For example, a coalition among those revoked users in R(t+1) who 

belong to the same “covering” subset, e.g, S is useless because it is computationally infeasible for them to compute the 

corresponding exclusive key KS that is used to encrypt the new group key GK(t+1) according to Theorem 3. Taking the case 

illustrated in Figure 3 as an example, a coalition between users 3 and 4 will be useless. 

5.3.2 A stateful group rekeying protocol — Protocol III’ 

Here, we introduce the stateful group rekeying protocol that is based on the BHT algorithm — Protocol III’. Suppose that m 

users denoted by J={i1, i2,…, im} join the group S(t)U at the same time t. GD performs join rekeying similar to that of 

Protocol I’ except that the unicast message is as follows: 

  For each ijJ (j=1,…, m) 

GCij: sibling keys for ij, GK(t+1). 

  Both immediate and batch leave rekeying can be supported by using Protocol III straightly. Suppose that m users leave 

the group S(t) at the same time t and we denote this set of users by L={i1, i2,…, im}. GC simply computes the Steiner tree 

ST(R(t)L) to obtain all subsets that together cover all revoked users in R(t)L, and use the corresponding exclusive keys for 

these subsets to encrypt the new group key so as to exclude all users in R(t)L from obtaining the new group key. This is 

the so-called stateless leave rekeying approach. Here we also introduce a similar stateful leave rekeying approach as 

discussed in Section 5.1.2. GC needs to compute the Steiner tree ST(L) instead of ST(R(t)L) as in above approach to obtain 

all subsets that together cover revoked users in L instead of R(t)L. Suppose all exclusive keys respectively associated with 

each of these subsets are
1i

K ,
2i

K ,…, and
mi

K . GC then generates a random group key GK(t+1) and sends the following 

message by multicast: 

GCS(t+1):   ( )
1 2

( 1)
1 2, , , ,

t
i i im

t
m

K K K GK
i i i GK 

   
 . 

In this way, all current members of S(t) except users in L can decrypt this message and obtain the new group key. 

Compared with the stateless approach, the stateful one reduces the computational complexity from O(|ST(R(t)L)|) to 

O(|ST(L)|) but weakens the collusion resistance at the same time. Suppose that a first group of users (resp. a second group 

of users) leave the group at time t1 (resp. at a later time t2), and these users (resp. the second group of users) can be covered 

by just one subset denoted by L1 (resp. L2) when GC performs batch leave group rekeying using the stateful approach at 

time t1 (resp. at time t2). Of course, we have L1L2=. We also suppose that these disjoint subsets L1 and L2 can be covered 

by just one subset denoted by L (i.e., L1L2=L) when GC performs batch group rekeying using the stateless approach at 

time t2. For stateful batch group rekeying, an arbitrary pair of users respectively from L1 and L2 can collude to break the 
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group forward security as follows: since they collectively know the exclusive key KL2 for L2 and the group key GK(t2+1), they 

can collude to decrypt the rekey message at time t2 to obtain GK(t2+1). On the contrary, for stateless batch group rekeying, an 

arbitrary type of coalition among users in L will be useless because it is computationally infeasible for them to compute the 

encryption key KL for GK(t2+1) according to Theorem 3. 

For join rekeying, the computational cost of GC is m(2log2n-1)+1 evaluations of a one-way hash function at most (for 

computing the personal keys for the joining members and the new group key) and that of each group member except the 

joining member is only one evaluation of a one-way hash function. The unicast size is m(log2n+1) keys in total and the 

multicast size is only one notification message. The computational and communication cost of the stateless leave rekeying 

algorithm is just the same to Protocol III. The computational and communication cost of the stateful leave rekeying 

algorithm can be easily derived from that of Protocol III. We also give its computational and communication cost for the 

two extreme cases like we did for Protocol III: (1) The best case — The computational cost of GC amounts to log2(n/m) 

evaluations of a one-way hash function plus 1 encryption. The average computational cost of a member is

 2
log /

2
n n m

n m




 evaluations of a one-way hash function plus 1 decryption. The multicast size is only one encrypted key 

plus log2(2n-1) bits. (2) The worst case — The computational cost of GC amounts to 2m-2+mlog2(n/m) evaluations of a 

one-way hash function plus 1 encryption, and that of a member is

 

2m-3+mlog2(n/m)-2log2m evaluations of a one-way hash 

function at most plus 1 decryption. The multicast size is one encrypted key plus (n-m)log2[n/(n-m)]log2(2n-1) bits at most. 

  Remark 3: Compared with its corresponding stateless counterpart protocol, the stateful join rekeying algorithm (resp. 

stateful leave rekeying algorithm) requires every receiver to store the current group key GK(t) which will be used to derive 

(resp. encrypt) the next group key GK(t+1). If a legitimate receiver misses the current rekey message, she (or he) may be 

unable to decrypt all future rekey messages. That is why we call them “stateful”. 

6 SECURITY PROOFS 

Panjwani [23] developed a symbolic security model for analyzing the security of multicast key distribution protocols. In 

this model, all keys and messages generated by a multicast key distribution protocol are treated as abstract data types and 

cryptographic primitives as abstract functions over such data types. Security can be specified by the notion of recoverability, 

i.e., some group key is safe if it cannot be recovered by an adversary from its personal key and all rekey messages. Below, 

we prove that all three protocols are secure against single-user attacks (1-resilient) under this model. 

  Consider a multicast group of n users, labelled by 1, 2,…, n. For an n-user group rekeying protocols , we introduce the 

following notations given by [23]. At any time t, the privileged set of users who are authorized to receive information sent 



22 
 

over a multicast channel is denoted by S(t)  {1,2,…, n }. The rekey message generated by protocol  (including both unicast 

and broadcast messages) for S(t) is denoted by ( )tS
M  . The group key used to encrypt all the information sent to S(t) is 

denoted by GK(t). Let [n] denote the set {1,…,n} and let 2[n] denote the power set of [n]. An arbitrary group dynamics up to 

time t can be uniquely represented by a sequence of privileged user sets ( ) (0) (1) ( ) [ ]( , , , ) (2 )t t n tS S S S 


 . A message 

sequence ( ) [ ](2 )t n tS 


is called simple, if for all t1, S(t-1) changes into S(t) through a single change in group membership. It is 

clear that arbitrary group membership updates can be simulated using simple sequence only. Let ( )t
S

M  denote the set of all 

the rekey messages generated by protocol  up to time t. That is, ( ) ( ')
1 '

t S tS
t t

M M 

 

  . Each user i obtains a personal key set 

PKSi from the key server when it joins the group. For any information set M, we use Rec(M) to denote the set of all 

information that are recoverable from M by using all sorts of cryptographic transformations employed by the group 

rekeying protocol (irrespective of the number of steps required to do so). 

  Definition 3: An n-user stateful group rekeying protocol  is called correct if for all t≥0, and for all sequence

there exists a key GK(t) such that ( )

( ) ( ): Re ( )t

t t
i S

i S GK c PKS M    . 

Definition 4: An n-user stateless group rekeying protocol  is called correct if for all t≥0, and for all sequence

there exists a key GK(t) such that ( )

( ) ( ): Re ( )t

t t
i S

i S GK c PKS M     . 

Definition 5: An n-user immediate stateful group rekeying protocol  is called secure against single-user attacks (i.e., 

1-resilient), if for all t0, and for all simple sequence , iS(t), ( )
( ) Re ( )t
t

i S
GK c PKS M   . 

Definition 6: An n-user stateless group rekeying protocol  is called secure against single-user attacks (i.e., 1-resilient), if for 

all t0, and for all sequence , iS(t), ( )
( ) Re ( )t
t

i S
GK c PKS M   . 

It is easy to derive that 1-resilience implies both group forward secrecy (against single-user attacks) and group backward 

secrecy (against single-user attacks). For stateful protocols, we only prove security with respect to an arbitrary simple 

message sequence (i.e., security of immediate group rekeying versions of stateful protocols). Security of batch group 

rekeying versions can be proved using a similar argument. We first prove the correctness and security of Protocol III’. 

Theorem 4: Protocol III’ is correct and 1-resilient. 

Proof: We prove this claim using induction over t. For t=0, since (0)S  , the claim is trivially true. Now we argue that if 

the claim is true for some t-1≥0, then it is true for t as well. According to Protocol III’, PKSi is fixed and consisted of all the 

( ) [ ](2 )t n tS 


( ) [ ](2 )t n tS 


( ) [ ](2 )t n tS 


( ) [ ](2 )t n tS 

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siblings keys in the key tree user i is entitled to. For any simple sequence ( ) (0) (1) ( 1) ( )( , , , , )t t tS S S S S


 , we only need to 

consider the recoverability of group keys from PKSi and ( )t
S

M  in the following cases:  

Case 1 (iS(t-1)∧iS(t), and S(t-1) changes into S(t) due to the other member’s departure): From inductive hypothesis, i holds 

GK(t-1) as required by Definition 3. According to the BHT algorithm and the leave rekeying algorithm of Protocol III’, i can 

recover group key GK(t) from {GK(t-1),PKSi, ( )t
III
S

M }. 

Case 2 (iS(t-1)∧iS(t), and S(t-1) changes into S(t) due to some member’s joining): From inductive hypothesis, i holds GK(t-1) as 

required by Definition 3. According to the join rekeying algorithm, i can compute GK(t) as GK(t)=h(GK(t-1)). 

Case 3 (iS(t-1)∧iS(t)): That is to say, i joins the group at time t. According to the join rekeying algorithm, every newly 

joining member i can recover GK(t) from the unicast message contained in ( )t
III
S

M . 

Case 4 (iS(t-1)∧iS(t)): That is to say, i is revoked at time t. From the inductive hypothesis, i holds GK(t-1). According to the 

BHT algorithm and the leave rekeying algorithm, i can never recover GK(t) from {GK(t-1), PKSi , ( )t
III
S

M }, i.e., 

( ) ( 1)
( ) Re ( ) Re ( )t t
t III III

i iS S
GK c PKS M c PKS M     . 

Case 5 (iS(t-1)∧iS(t)): That is to say, i is evicted before time t-1. From the inductive hypothesis, i can never recover GK(t-1) 

from ( 1)t
III
S

M  . Suppose that the leaf exclusive key for i is Ki1. However, GK(t) is encrypted by GK(t-1)Ki1 in ( )t
III
S

M , therefore i 

can never recover GK(t) from ( )t
III

S
M  , i.e., ( )

( ) Re ( )t
t III

i S
GK c PKS M  .Therefore, according to Definition 3 and Definition 5, 

Protocol III’ is correct and 1-resilient.                 � 

Using a similar argument, we can prove Theorem 5 and Theorem 6. 

Theorem 5: Protocol I’ is correct and 1-resilient. 

Theorem 6: Protocol II’ is correct and 1-resilient. 

For stateless protocols, we prove security with respect to an arbitrary message sequence. We first prove the correctness 

and security of Protocol II. 

Theorem 7: Protocol II is correct and 1-resilient. 

Proof: According to Definition 4 and Definition 6, the correctness and security of Protocol II immediately follows from the 

following claim — for all t≥0, and for all sequence , for an arbitrary user i, i can recover GK(t+1) from ( )t

II

S
M  if and only 

if iS(t). We first prove its sufficiency. Suppose that ( )t

II

S
M  = 

1 21 2, , , , , , ,
rr I I II I I C C C  . If iS(t) (for simplicity, we assume 

its rank is also i) , then we have j (1jr) s.t. iIj, i.e., j1ijm. According to the DHC algorithm, we have PKSi={fi, bn-i+1}. 

( ) [ ](2 )t n tS 

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Because of j1ijm, user i can derive both 
1 1n jb  

 
from bn-i+1 and

mj
f from fi. Therefore, i can recover GK(t+1) from

 

 
11

( 1)
j

n j jm

t
I

b f
C GK

 




 . Next, we prove its necessity. If user i can recover GK(t+1) from ( )t

II

S
M  , then j (1jr) s.t. i can 

recover GK(t+1) from 
jIC . Therefore, i must know both 

1 1n jb  

 
and 

mj
f . However, according to the DHC algorithm, 

1 1n jb  

 
is derivable by any user with rank no less than j1, and 

mj
f  is derivable by any user with rank no more than jm. 

That is to say, only user with rank between j1 and jm can derive both
1 1n jb   and

mj
f . Therefore, it must be true that iIj 

(j1ijm), i.e., iS(t).                     � 

Using a similar argument, we can prove Theorem 8 and Theorem 9. 

Theorem 8: Protocol I is correct and 1-resilient. 

Theorem 9: Protocol III is correct and 1-resilient. 

7 PERFORMANCE COMPARISONS OF RELATED 1-RESILIENT GROUP REKEYING PROTOCOLS 

7.1 A Comparison of Stateful 1-Resilient Group Rekeying Protocols 

All the stateful 1-resilient group rekeying protocols introduced in Section 2 are falling into the category of immediate group 

rekeying. Therefore, we have to compare the immediate group rekeying versions of our protocols with them. The personal 

key assignment of the KHYC protocol [21] relies on a dynamic group access control structure [25] which keeps changing 

with group dynamics, while the LORE protocol [17], the flat-table protocol [12],[22], and the three proposed stateful 

protocols here all rely on static group access control structures which remain unchanged irrespective of group dynamics. It 

becomes very complicated to make a performance comparison between protocols with dynamic group access control 

structure and those with static one. We refer the interested readers to [25] for more information. Due to space constraint, 

we only make a performance comparison among all 1-resilient stateful group rekeying protocols with static group access 

TABLE 4 

COMPARISON OF RELATED IMMEDIATE GROUP REKEYING PROTOCOLS 

 
CE, CD, Ch denote the computation cost of 1 block encryption, 1 block decryption, and 1 hashing, respectively. We use 
n to denote the prospective size of a group and it remains unchanged. 

 

Flat-table Protocol LORE Protocol I' Protocol II' Protocol III'

2log 2n  keys 2 keys n  keys 2 keys 1 key

log 2n  keys 2 keys n -1 keys 2 keys log 2n  keys

GC comp. log 2n C h 1C E +n C h 1C h (n+ 1)C h 2log2n C h

member comp. (log 2n- 1)C h  at most 1C D 1C h 1C h 1C h

Unicast size log 2n+ 1 keys 3 keys n  keys 3 keys log 2n+ 1 keys

Multicast size 1 notifi. msg. 1 key 1 notifi. msg. 1 notifi. msg. 1 notifi. msg.

GC comp. 3log 2n C E 4C E + n C h 1C E 2C E +n C h 1C E +log 2n C h

member comp. (2log 2n- 1)C D  at most 2C D +n C h at most 1C D 1C D +n C h at most 1C D + [n log 2n/ (n- 1)-2]C h in average

Multicast size log 2n  bits+2log 2n  keys log 2n  bits+2 keys log 2n  bits+1 key log 2n  bits+2 keys log 2(2n  -1) bits+1 key

GC stora.

Member stora.

Join
Rekeying

Stateful
Leave
Rekeying

  Measures          
Protocols
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control structures. We summarize those performance-related discussions already made in Sections 2, 4 and 5 to provide in 

a Table 4 a comprehensive comparison among these protocols covering the following measures: GC storage, member 

storage, GC computational overhead, member’s computational overhead, unicast size, and multicast size. 

Consider join rekeying. The Flat-table protocol has a worst-case computational overhead logarithmic in n for group 

members, whereas the others only have a constant overhead because the former requires each current member to update a 

part of its personal keys when a new member joins. Both the LORE protocol and Protocol II’ relies on a linear structure (a 

dual hash chain), and it takes them a computational overhead linear in n for GC to compute the personal key for the joining 

member. 

Consider leave rekeying. The Flat-table protocol has the biggest multicast size and highest computational overhead for 

GC of all five protocols, since it requires GC to update all log2n auxiliary keys held by the leaving member and secretly 

distribute them to the remaining members. While the other four protocols all achieve a constant multicast size (the 

identification information for a revoked user is negligible, and thus its cost is usually not counted in the literature). Since 

both the LORE protocol and Protocol II’ rely on a linear structure with functional dependency (a dual hash chain), both 

have a computational complexity linear to group size n for both GC and members. Whereas, both the flat-table protocol 

and Protocol III’ rely on a tree structure, and thus have a computational complexity logarithmic in group size n for both GC 

and members. 

Protocol III’ achieves both a logarithmic computational complexity and a logarithmic storage complexity while 

maintaining a constant multicast size. It achieves the most balanced performance, and is the best 1-resilient immediate 

group rekeying protocol of all the five protocols. 

TABLE 5 

COMPARISON OF BATCH GROUP REKEYING PROTOCOLS 

 
Denotations of CE, CD, Ch, n are same as Table 4. We use m to denote the number of users who join/leave 
the group at the same time. 

Protocol I' Protocol II'

n  keys 2 keys

n -1 keys 2 keys

GC comp. 1C h 2n C h at most

member comp. 1C h 1C h

Unicast size m n  keys 3m  keys

Multicast size 1 notifi. msg. 1 notifi. msg.

Best case 1C E +log 2(n/m )C h

Worst case 1C E +[2m -2+m log2(n /m )]C h

Best case 1C D +[n log 2(n /m )/(n -m )-2]C h  in average

Worst case
1C D +[2m -3+m log2(n /m )-2log2m ]C h

at most

Best case log 2(2n  -1) bits+1 key

Worst case
(n -m )log 2[n /(n -m )]log 2(2n  -1) bits+1 key

at most

Protocol III'

1 key

log 2n  keys

[m -2+2m log2(n/m )]C h at most

1C h

1C D +n C h at most

GC stora.

Member stora.

Join
Rekeying

Stateful
Leave
Rekeying

  Measures          
Protocols

Multicast size m log 2n  bits+1 key 2(m +1)log 2n  bits+(m +1) keys

m (log 2n+ 1) keys

1 notifi. msg.

GC comp. 1C E (m +1)C E + 2n C h at most

member comp. 1C D
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We also provide in Table 5 a comparison of all three batch group rekeying protocols proposed in Section 5. For the same 

reason discussed above, Protocol III’ achieves the most balanced performance. 

7.2 A Comparison of Stateless 1-Resilient Group Rekeying Protocols 

In this section, we summarize those performance-related discussions already made in Sections 2, 4, and 5 to provide in 

Table 6 a comprehensive comparison between our stateless protocols and other existing 1-resilient stateless group rekeying 

protocols, i.e., the FN 1st protocol [1] and the FN 2nd protocol [1]. The FN 2nd protocol requires both GC and member to 

perform |S(t)| modular exponentiations (|R(t)|<< |S(t)| in most occasions) and thus has the highest computational 

overhead of all five protocols. Although Protocol I’ has the constant computational overhead, it has a storage overhead 

linear to the group size. The FN 1st protocol and Protocol III achieve both a logarithmic computational complexity and a 

logarithmic storage complexity while maintaining a constant multicast size if we don’t count the set identification 

information. Although both Protocol III and the FN 1st protocol have the same worst-case computational and 

communication overhead, the former is superior to the latter in the best case. As we discussed in Section 5.3.1, although 

both Protocol III and the FN 1st protocol have the same worst-case computational and communication overhead, the 

advantage of Protocol III over the FN 1st protocol in both aspects increases as the revoked u-nodes become more densely 

distributed in the key tree, and achieves its maximum in the best case. As discussed in Section 5.3.1, another advantage of 

Protocol III over all the other protocols lies in its collusion resistance. To the best of our knowledge, Protocol III is the most 

TABLE 6 

COMPARISON OF RELATED 1-RESILIENT STATELESS PROTOCOLS 

 
Denotations of CE, CD, Ch, n are same as Table 4. We also use CEx denote the computation cost of a modular exponentiation operation. 
Recall that we use S(t) to denote the set of legitimate users at time t and |S(t)| to denote the size of S(t). R(t) denotes the complement of 
set S(t). 

 

FN 2
nd

 Protocol Protocol I Protocol II

Yes Yes Yes

1 private key,
n  public keys

n  keys 2 keys

1 private key,
n  public keys

n- 1 keys 2 keys

Best case
1C E +[2|R

(t +1)
|-

2+log 2(n /|R (t +1)|)]C h

Best case 1C E +log 2(n /|R (t +1)|)*C h

Worst
case

1C E +[2|R (t +1)|-

2+|R (t +1)|log 2(n /|R (t +1)|)]C h

Worst
case

1C E +[2|R (t +1)|-

2+|R (t +1)|log 2(n /|R (t +1)|)]C h

Best case
1C D +[n log 2(n /|R (t +1)|)/|S (t+1) |+

2|R (t+1) |-4]C h  in average
Best case

1C D +[n log 2(n /|R
(t +1)

|)/|S
(t+1)

|-

2]C h  in average

Worst
case

1C D +[2|R (t +1)|-

3+|R (t +1)|log 2(n /|R (t +1)|)-

2log2|R (t +1)|]C h  at most

Worst
case

1C D +[2|R (t +1)|-

3+|R (t +1)|log 2(n /|R (t +1)|)-

2log2|R (t +1)|]C h  at most

Best case |R
(t+1)

| log 2(2n -1) bits+1key Best case log 2(2n -1) bits+1key

Worst
case

|S
(t +1)

|log 2(n /|S
(t +1)

|)log 2(2n -1)

bits+1 key at most

Worst
case

|S
(t +1)

|log 2(n /|S
(t +1)

|)log 2(2n -1)

bits+1 key at most

  Measures
Protocols

GC comp.

Multicast size

Protocol III

1 key

log 2n keys

Member comp. |S (t+1) | C Ex 1C D C D +n C h at most

FN 1st Protocol

1 key

log 2n keys

|S (t+1) | C Ex 1C E
(|R (t+1) |+ 1)C E +

2n C h at most

Collusion between
any two users in

R (t+1)
Yes No

GC stora.

Member stora.

|R (t+1) |log 2n  bits
|R (t+1) |log 2n  bits+

1 key

2(|R (t) |+ 1)log 2n bits+

(|R (t+1) |+ 1) keys at most
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efficient and secure 1-resilient stateless group rekeying protocol to date. According to both Table 5 and Table 6, each 

stateless leave rekeying algorithm relying on the corresponding stateless protocol usually has a higher computational 

overhead and a bigger multicast size than its stateful counterpart. 

8 CONCLUSION AND FUTURE RESEARCH 

We clarified the meaning of research on 1-resilient group rekeying protocols by showing that they are actually building 

blocks for constructing hybrid group rekeying protocols with tunable collusion-bandwidth tradeoffs. We proposed three 

personal key assignment algorithms based on the idea of exclusive key. Employing each of them, we proposed both a 

stateful group rekeying protocol and a stateless one. Each of all three stateful protocols (resp. all three stateless protocols) 

offers a different tradeoff between storage overhead and computational overhead. Micciancio and Panjwani [16] 

successfully developed a flexible symbolic model of computation and used it to prove lower bounds on the communication 

complexity of generic collusion-resistant multicast key distribution protocols. For 1-resilient group rekeying protocols with 

constant communication overhead, it would be interesting to further apply their method to derive a lower bound on either 

of computational complexity and storage complexity when the other is constrained. Fiat and Naor [1] utilized 1-resilient BE 

protocols to construct k-resilient BE protocols. It will be a worthwhile topic to construct from 1-resilient stateful group 

rekeying protocols k-resilient ones with a communication complexity lower than O(log2n). 
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