
Signatures of Correct Computation

Charalampos Papamanthou
UC Berkeley

cpap@cs.berkeley.edu

Elaine Shi
University of Maryland

elaine@cs.umd.edu

Roberto Tamassia
Brown University
rt@cs.brown.edu

January 22, 2013

Abstract
We introduce Signatures of Correct Computation (SCC), a new model for verifying dynamic com-

putations in cloud settings. In the SCC model, a trusted source outsources a function f to an untrusted
server, along with a public key for that function (to be used during verification). The server can then
produce a succinct signature σ vouching for the correctness of the computation of f , i.e., that some re-
sult v is indeed the correct outcome of the function f evaluated on some point a. There are two crucial
performance properties that we want to guarantee in an SCC construction: (1) verifying the signature
should take asymptotically less time than evaluating the function f ; and (2) the public key should be
efficiently updated whenever the function changes.

We construct SCC schemes (satisfying the above two properties) supporting expressive manipula-
tions over multivariate polynomials, such as polynomial evaluation and differentiation. Our construc-
tions are adaptively secure in the random oracle model and achieve optimal updates, i.e., the function’s
public key can be updated in time proportional to the number of updated coefficients, without performing
a linear-time computation (in the size of the polynomial).

We also show that signatures of correct computation imply Publicly Verifiable Computation (PVC), a
model recently introduced in several concurrent and independent works. Roughly speaking, in the SCC
model, any client can verify the signature σ and be convinced of some computation result, whereas in the
PVC model only the client that issued a query (or anyone who trusts this client) can verify that the server
returned a valid signature (proof) for the answer to the query. Our techniques can be readily adapted to
construct PVC schemes with adaptive security, efficient updates and without the random oracle model.

1 Introduction
Given the emergence of the cloud computing paradigm in business and consumer applications, it has become
increasingly important to provide integrity guarantees in third-party data management settings. Consider for
example the following scenario: A company has developed some novel algorithm, e.g., for personalized
medicine, or for stock trend prediction. To avoid investing in expensive IT infrastructure in-house, the
company chooses to outsource the execution of this algorithm to an external, untrusted cloud provider (e.g.,
Amazon, Google). How could a user verify the correctness of the computation under the assumption that
she only trusts the company that developed the algorithm, but not the cloud provider? The above question
poses two crucial requirements: (1) efficiency, meaning that the running time of the verification algorithms
executed by the client should be asymptotically less than the time needed to execute the algorithm in the
cloud; and (2) public verifiability, meaning that our verification mechanism should not be tied to a specific
verifier’s secret key so that any user can verify the computation. In addition, another desirable property is to
efficiently handle updates to the outsourced algorithm, without computing public parameters from scratch.

In this paper, we propose a new paradigm for verifying dynamic computation in the cloud called signa-
tures of correct computation (SCC). SCC allows an untrusted worker to produce a signature vouching for
the correctness of some computation over some input; any user can verify the signature using a public key

1

(produced by an one-time preprocessing) published by a trusted source who outsourced the function in the
cloud.

Signatures of correct computation are closely related to publicly verifiable computation (PVC), proposed
by Parno et al. [34], Canetti et al. [9] and Fiore and Gennaro [13, 14], in concurrent and independent works
to ours. Specifically, signatures of correct computation are stronger than publicly verifiable computation:
given an SCC scheme, one can directly construct a PVC scheme; while the other way around does not
seem to be true. More specifically, in PVC, a “proof of correct computation” is tied to a specific challenge
(generated by an algorithm ProbGen in [34]), and can only be verified by the client who has generated that
challenge (or anyone who trusts this client). By contrast, a signature of correct computation is not tied to
any challenge, and can be verified by anyone in the world, in much the same way as a traditional signature
on a message. We provide a detailed comparison of PVC and SCC in Section 1.2.

1.1 Results and contributions
We design SCC schemes for multivariate polynomial manipulations, including polynomial evaluation and
differentiation. One of our technical highlights is a new method in this setting that allows us to slightly
modify our selectively secure schemes to achieve adaptive security. Our SCC schemes achieve adaptive
security under the random oracle model. We also show that under the weaker PVC model, our techniques
can achieve adaptive security under the standard model without random oracles.

Our main results and contributions are summarized below:

Definition of new paradigm. We are the first ones to formally define signatures of correct computation
(SCC) and its security and to study its relation to PVC.

Novel constructions for polynomial manipulations. We focus on deriving efficient and optimized con-
structions for specific functionalities rather than generic constructions, as the approach taken by Parno et
al. [34] and Canetti et al. [9]. We present efficient SCC constructions for expressive polynomial manipula-
tions, including multivariate polynomial evaluation and differentiation. Operations on polynomials represent
a common building block in a wide range of applications, such as in statistical analysis, scientific computing,
and machine learning. Fiore and Gennaro [14] point out many interesting applications of publicly verifiable
computation on polynomials, including its use in proofs of retrievability, verifiable keyword search, discrete
Fourier tranform, and linear transformations. Our constructions are based on bilinear groups. We prove the
adaptive security of our constructions under the random oracle model.

Efficient incremental updates. Our constructions allow a trusted source to make incremental updates in
time proportional to the number of the updated polynomial coefficients, and without performing a compu-
tation from scratch that would take linear time in the size of the polynomial.

Novel proof techniques for adaptive security. Our constructions and proofs introduce several novel tech-
niques. First, we observe key polynomial decomposition properties (Lemmas 1 and 3) that become the
central idea underlying our constructions. Second, while achieving adaptive security appears relatively easy
for univariate polynomial evaluation [25], achieving adaptive security in the multivariate case appears to be
fundamentally more difficult. To this end, we present novel techniques that involve embedding randomness
in the polynomial decomposition properties (Lemmas 2 and 4), such that our simulator can later manipulate
these random numbers in the proof. We give a high-level technical overview in Section 1.3.

Contributions to publicly verifiable computation. Our results also bring advances in the area of publicly
verifiable computation. Specifically, our techniques can be readily applied to yield publicly verifiable com-
putation schemes (for the same operations) with adaptive security (without the random oracle model) and
with efficient updates. In comparison, existing PVC works [9, 14, 34], achieve adaptive security but do not
support efficient updates. We give a more detailed comparison in Section 1.2.

2

Table 1: Asymptotic cost on the client side. In the table below, n is the number of variables in the
polynomial and d is the maximum degree. With SVC we denote a “secretly delegatable and verifiable
scheme”, with PVC we denote a “publicly delegatable and verifiable scheme”, with PVC* we denote a
“publicly verifiable but not publicly delegatable scheme” (see Section 1.2, Paragraph 5) and with SCC we
denote a “signatures of correct computation scheme”. Notice that an n-variate polynomial of degree d
can have up to

(
n+d
d

)
terms, requiring up to

(
n+d
d

)
time to evaluate. Therefore, the verification costs here

are smaller than the cost of evaluating the polynomial. For PVC schemes, the client cost includes both
delegation and verification costs.

scheme polynomial polynomial efficient security modelevaluation differentiation updates
Benabbas et al. [3] n log d N/A no adaptive SVC
Parno et al. [34] n n+ log d no adaptive PVC

Canetti et al. [9] polylog
((

n+d
d

))
polylog

((
n+d
d

))
no adaptive PVC

Fiore and Gennaro [13, 14] n log d N/A no adaptive PVC*
This paper n n+ d yes selective SCC
This paper n+ d n+ d2 yes adaptive PVC
This paper n+ d n+ d2 yes adaptive (RO) SCC

1.2 Related work
Authenticated data structures. The SCC model is directly related to the model of authenticated data
structures (ADS) [36, 38]. In some sense, SCC and ADS are dual problems to each other, sharing exactly
the same security properties. In SCC, a trusted source outsources a function, and a client wishes to verify the
outcome of the function at a given point. In ADS, a trusted source outsources the data or a data structure, and
the client wishes to verify the correctness of the result of a data structure query, e.g., dictionaries [19, 28],
graphs [21, 27] and hash tables [32, 37]. Most authenticated data structures schemes incur logarithmic or
linear overheads for verification costs, with some exceptions being authenticated range queries [2, 20] and
set operations [33], where verification takes time proportional to the size of the answer.

Verifiable computation in the secret key setting (SVC). Recent works on verifiable computation [1, 10, 15]
achieve efficient verification of general boolean circuits, but in the secret key model. Therefore they are
inherently inadequate for the setting of signatures, which are required to be publicly verifiable.

Verifiable computation for polynomials. Benabbas et al. [3] developed methods for efficient verification
of multivariate polynomial evaluation by using algebraic one-way functions—however, in the SVC model.
This work does not achieve efficient updates of polynomial coefficients (specifically, in order to update a
coefficient, one has to re-randomize all the existing coefficients).1 Kate et al. [25] give a publicly verifiable
commitment scheme for univariate polynomials, which is essentially an SCC scheme for univariate poly-
nomial evaluation. However, their scheme does not directly extend to multivariate polynomials. Also note
that our construction is the first to support efficient verification of differentiation queries—even in the SVC
setting.

Relation to CS proofs and SNARGs. Our SCC model is strongly related to the model of computationally-
sound proofs, introduced by Micali in 1994 [29], and to the subsequent works on succinct non-interactive
arguments (SNARGs) by Groth [23], Bitansky et al. [4, 5] and Gennaro et al. [16]. The main connection

1However, apart from verification of polynomial evaluation, their techniques can be applied to support very efficient dynamic
verifiable databases (constant query and update complexity).

3

is that both SCC and SNARGs models are non-interactive and publicly verifiable (CS proofs can also be
non-interactive in the random oracle model), i.e., a publicly verifiable proof can be computed independently
from (and with no communication with) the verifier. We note here that all CS proofs and SNARGs construc-
tions that have been presented in the literature are generalized, in that they can handle all of NP by using
powerful tools such as the PCP theorem (with an exception of [16] that uses a different characterization of
NP). Moreover, all of them (except for the work of Micali [29] that is secure in the random oracle model)
are proved secure based on non-falsifiable assumptions [18], e.g., the works of Groth [23] and Gennaro et
al. [16] use variants of the knowledge-based assumption introduced by Damgard [12]. Non-falsifiable as-
sumptions are considered to be a lot stronger than all common assumptions used in cryptography (one-way
functions, trapdoor permutations, DDH, RSA, LWE etc.). We note that the assumptions that we are using
in our construction do not belong in this category—however, for verifying multivariate polynomials (not for
univariate ones) we do use the random oracle, as the construction of Micali [29] does. The main difference
(with [29]) however is that we do not use the PCP theorem, hence achieving more practical schemes.

Concurrent and independent works. Two closely related schemes are the ones by Parno et al. [34] and
Cannetti et al. [9], which were developed concurrently with and independently from our work.

In the PVC formulation proposed by Parno et al. [34], any client can verify that an untrusted server
correctly computes a function f on a specific input a. Their definition however requires an input preparation
randomized algorithm (ProbGen), mapping user inputs a to server inputs σa and preparing an object VKa

to be used for verification, specific for σa. Therefore, as opposed to the SCC setting, only the client that
issued a query for a (or anyone who trusts this client) can verify that the server returned a valid signature
(proof) for f(a). For otherwise, a client running the ProbGen algorithm can potentially collude with the
server to forge a proof, convincing another party to accept the proof. Apart from defining PVC, Parno et
al. [34] give a construction for generalized boolean functions (closed under complement) from attribute-
based encryption (ABE). Their construction is asymptotically efficient—the proof size is proportional to the
size of the answer. Moreover, due to recent advances in ABE schemes by Lewko and Waters [26], the PVC
constructions of Parno et al. [34] can be proved adaptively secure, since they directly inherit the security of
the underlying ABE scheme.

A PVC scheme having similar properties with the scheme of Parno et al. [34] was presented by Canetti et
al. [9], where client verification is polylogarithmic in the size of the evaluated circuit. Canetti et al. achieve
adaptive security under a slightly weaker model (as Parno et al. point out [34]), in which the client needs
to keep certain secret state. Their scheme shares the same limitation with the scheme of Parno et al. [34] in
that a client can verify only his queries unless extra assumptions are put into place.

The most closely related works are the recent works by Fiore and Gennaro [14], who presented a PVC
scheme tailored for multivariate polynomials that is based on algebraic one-way functions. An improved
version [13] uses less complex assumptions such as RSA to achieve the same goal. The works by Fiore
and Gennaro differ from ours in the following sense. First, they consider a model (denoted with PVC*
in Table 1) that is more restrictive than the PVC model proposed by Parno et al. [34]—and hence more
restrictive than the SCC model. Specifically, there is an explicit delegation phase where a problem instance
is generated based on an input (as in the PVC definition by Parno et al. [34]). However, in their constructions
(and unlike the original PVC definition), only the party who ran the setup algorithm for a specific function
can run the problem generation algorithm. Therefore, their schemes are publicly verifiable, but not publicly
delegatable. As a result, their schemes would not work for the application scenario where a pharmaceutical
company outsources a genomic algorithm, and each user submits their own genomic data for computation.
Moreover, they do not consider efficient updates of the polynomial coefficients. In comparison, their scheme
has more efficient verification and a delegation step ofO(n log d) cost. A detailed comparison of our scheme
against several related works in terms of verification cost and security model is presented in Table 1.

4

1.3 Highlights of techniques
Multivariate polynomial evaluation. The polynomial commitment scheme by Kate et al. [25] can be
employed to construct an SCC scheme of univariate polynomial evaluations. Specifically, Kate et al. [25]
observe that to vouch for the outcome of a polynomial f(x) in Zp evaluated at the point a ∈ Zp, one can
rely on the property that the polynomial f(x)−f(a) is perfectly divisible by the degree-1 polynomial x−a,
where a ∈ Zp. In other words, one can find a polynomial w(x) such that f(x) − f(a) = (x − a)w(x).
Using this property, they construct a witness from the term w(x), and using the pairing operation in bilinear
groups, they encode the above test f(x)− f(a) = (x− a)w(x) in the exponents of group elements.

Unfortunately, the above test does not apply to the multivariate case. We therefore propose a novel
technique based on the following observation. Let f(x) be a multivariate polynomial in Zp where x =
[x1, x2, . . . , xn]. Then, for a = [a1, a2, . . . , an] ∈ Znp , the polynomial f(x) − f(a) can be expressed as
f(x) − f(a) =

∑n
i=1(xi − ai)wi(x). The polynomials wi(x) will be used to construct witnesses in our

scheme. Specifically, we encode their terms as exponents of bilinear group elements. The verification is a
pairing product equation encoding the above test in the exponent.

From selective to adaptive security. The test that holds for the polynomial evaluation contains a sum of
terms, as opposed to a single term in the univariate case [25]. This gives rise to certain technicalities in the
proof, allowing us to prove only the weaker notion of selective security (see Definition 6 in Section A of the
Appendix).

Going from selective security to adaptive security turns out to be non-trivial. To achieve this, we devise
a novel technique where we build randomness into the polynomial decompositions (Lemmas 2 and 4) which
are central to our constructions. As an immediate corollary of our adaptively secure SCC construction with
random oracles, we construct an adaptively secure PVC scheme in the plain model.

Derivative evaluation. A naive method to support verifiable derivative evaluation is for the source to com-
mit to nk polynomials during setup, corresponding to the 1st, 2nd, . . . , k-th derivatives of each possible
variable. However, as noted in Section 5, this scheme results in increased setup and update overhead.

Our techniques for verifying the evaluation of an arbitrary derivative are inspired by the following ob-
servation that holds for first derivatives of univariate polynomials: Given a univariate polynomial f(x), the
remainder of dividing the polynomial f(x) − f ′(a)x with the polynomial (x − a)2 is always a constant
polynomial, and not a degree-one polynomial, as would generally happen. In other words, f(x)− f ′(a)x =
(x− a)2q(x) + b for some q(x) ∈ Zp[x], and b ∈ Zp. A similar, slightly more involved, observation can be
made for higher-order derivatives and multivariate polynomials. More details are provided in Section 5.

2 Preliminaries, definitions and assumptions
In this section, we give necessary definitions that are going to be used in the rest of the paper. The security
parameter is denoted λ, PPT stands for probabilistic polynomial-time and neg(λ) denotes the set of negligi-
ble functions, i.e., all the functions less than 1/p(λ), for all polynomials p(λ). We also use bold letters for
vector variables, i.e., x = [x1, x2, . . . , xn] denotes a vector of n entries x1, x2, . . . , xn.

2.1 Problem definition
We now formally define signatures of correct computation (SCC).

Definition 1 (SCC scheme) An SCC scheme (signatures of correct computation) for a function family F is
a tuple (KeyGen,Setup,Compute,Verify,Update) of five PPT algorithms with the following specification:

1. (PK, SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security parameter λ and a func-
tion family F . It outputs a public/secret key pair (PK,SK). KeyGen is run only once at system
initialization by a trusted source;

5

2. FK(f)← Setup(SK,PK, f): Algorithm Setup (run by a trusted source) takes as input the secret key
SK, the public key PK, and a function f ∈ F . It outputs the function public key FK(f) for the function
f ;

3. (v, w) ← Compute(PK, f,a): Algorithm Compute (run by an untrusted server) takes as input the
public key PK, a function f ∈ F and a value a ∈ domain(f). It outputs a pair (v, w), where v = f(a)
and w is a signature;

4. {0, 1} ← Verify(PK,FK(f),a, v, w): Algorithm Verify (run by any verifier) takes as input the public
key PK, the function public key FK(f), value a ∈ domain(f), a claimed result v and a signature w.
It outputs 0 or 1;

5. FK(f ′) ← Update(SK,PK,FK(f), f ′): Algorithm Update (run by a trusted source) takes as input
the secret key SK, the public key PK, the function public key FK(f) for the old function f and the
updated function description f ′. It outputs the updated function public key FK(f ′).

The Update algorithm allows the source to update the function f to a new function f ′. A naive way to
implement Update is to simply run the Setup algorithm again for the new f ′. However, in practice, one may
wish to allow more efficient incremental updates (and this is what is achieved by our constructions).

2.2 Correctness and security definitions
We describe now the correctness and adaptive security definitions for SCC. Intuitively, an SCC scheme is
correct if whenever its algorithms are executed honestly, it never rejects a correct signature. Also, it is secure
if, after the setup/update algorithms have been executed, an adversary cannot convince a verifier to accept a
wrong result on an input of his choice, except with negligible probability.

Definition 2 (Correctness of an SCC scheme) Let λ be the security parameter and letP be an SCC scheme
(KeyGen,Setup,Compute,Verify,Update) for a function familyF . Let (PK,SK)← KeyGen(λ,F). For all
i = 1, . . . , poly(λ), for any function fi ∈ F , suppose FK(fi) is the output of Update(SK,PK,FK(fi−1), fi),
where FK(f0) is output by algorithm Setup(SK,PK, f0) for some f0 ∈ F . We say that P is correct,
if for any i = 0, . . . , poly(λ), for any a ∈ domain(fi), it is 1 ← Verify(PK,FK(fi),a, v, w), where
(v, w)← Compute(PK, fi,a).

Definition 3 (Adaptive security of an SCC scheme) Let λ be the security parameter and let P be an SCC
scheme (KeyGen,Setup,Compute,Verify,Update) for a function family F . We say that P is adaptively
secure if no PPT adversaryA has more than negligible probability neg(λ) in winning the following security
game, played between the adversary A and a challenger:

1. Initialization. The challenger runs algorithm KeyGen which outputs (PK,SK) and then gives PK to
the adversary but maintains SK secret;

2. Setup and update. The adversary makes an oracle query to the Setup(SK,PK, f0) algorithm, speci-
fying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where k = poly(λ), he
makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi) algorithm, each
time specifying fi ∈ F . The challenger answers the queries by returning the resulting FK(fi);

3. Forgery. The adversary A outputs a point b ∈ domain(fi) for some 0 ≤ i ≤ k, and the forgery
(b, v, w).

The adversary A wins the game if 1← Verify(PK,FK(fi),b, v, w) and fi(b) 6= v.

2.3 SCC implies PVC
As we highlighted in the introduction, signatures of correct computation (SCC) are stronger than the publicly
verifiable computation (PVC) notions studied in concurrent but independent papers [9, 13, 14, 34]. Specif-
ically, a correct and secure SCC scheme implies a correct and secure PVC scheme, but not the other way

6

around. To see that, one can implement algorithm σa ← ProbGen(PK,a) of the PVC scheme (e.g., [34]) to
simply output a and all the other algorithms remain the same.

For completeness, in Definition 7 in Section A of the Appendix, we also provide the definition of publicly
verifiable computation (PVC) along with its correctness (Definition 8) and adaptive security (Definition 9)
definitions. Our PVC definition is essentially equivalent to those proposed by Parno et al. [34] and Canetti et
al. [9], with the exception that we augment it with an Update algorithm which a trusted source can employ
to incrementally update the outsourced function (also, our ProbGen algorithm is called Challenge).

2.4 Multivariate polynomials notation
We now give some notation for multivariate polynomials. We use the notion of a multiset over some universe
U , a generalized set comprising elements from the universe U , where each element can appear more than
once; for example, {1, 1, 2, 3, 3, 3} is a multiset. In this paper, we use the following notation to denote
multisets. Formally, a multiset S : U → Z≥0 is a function mapping each element in a universe U to its
multiplicity. For any x /∈ S, S(x) = 0. E.g., for the multiset {a, a, b, c, c, c}, we have S(a) = 2, S(b) = 1,
S(c) = 3; however, S(e) = 0 since e is not contained in the above multiset.

Let now S, T denote two multisets over universe U . It is S ⊆ T , if ∀a ∈ U , S(a) ≤ T (a). The
size of S over universe U , denoted |S|, is defined as the sum of the multiplicity of all elements in S, i.e.,
|S| =

∑
a∈U S(a). Finally, Sd,n denotes the set of multisets of size at most d over the universe {1, 2, . . . , n}.

Let now f ∈ Zp[x1, x2, . . . , xn] = Zp[x] be an n-variate polynomial over Zp with maximum degree d. We
can use the following generic notation to represent f , i.e.,

f(x) = f(x1, x2, . . . , xn) =
∑

S∈Sd,n

cS ·
∏
i∈S

x
S(i)
i . (2.1)

For example, the multiset {1, 1, 2, 2, 2, 5} corresponds to the term for x2
1x

3
2x5 in the expanded form of the

polynomial. The empty multiset ∅ corresponds to the constant term in the polynomial. Finally, the degree of
a multivariate polynomial is the maximum total degree of any monomial contained in the polynomial. For
example, the degree of the polynomial 3x1x2 + x3

3x4x5 is 5.

2.5 Bilinear groups and computational assumption
We now review some background on bilinear groups of prime order. Let G be a cyclic multiplicative group
of prime order p, generated by g. Let also GT be a cyclic multiplicative group with the same order p and
e : G×G→ GT be a bilinear pairing with the following properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab

for all P,Q ∈ G and a, b ∈ Zp; (2) Non-degeneracy: e(g, g) 6= 1; (3) Computability: There is an efficient
algorithm to compute e(P,Q) for all P,Q ∈ G. We denote with (p,G,GT , e, g) the bilinear pairings
parameters, output by a PPT algorithm on input 1λ. We use the following computational assumption [6]:

Definition 4 (Bilinear `-strong Diffie-Hellman assumption) Suppose λ is the security parameter and let
(p,G,GT , e, g) be a uniformly randomly generated tuple of bilinear pairings parameters. Given the ele-
ments g, gt, . . . , gt

` ∈ G for some t chosen at random from Z∗p, for ` = poly(λ), there is no PPT algorithm
that can output the pair (c, e(g, g)1/(t+c)) ∈ Z∗p\{−t} ×GT except with negligible probability neg(λ).

3 Selectively secure multivariate polynomial evaluation
As a warm-up exercise, in this section we first present an SCC scheme for multivariate polynomial evaluation
that is secure under a relaxed security model, namely, the selective security model. Then, in Section 4, we
explain how to augment this selectively secure scheme and achieve adaptive security in the random oracle
model.

7

Selective security is weaker than adaptive security, requiring the adversary to commit ahead of time
to the challenge point a, which is analogous to the selective security notion often adopted in Identity-
Based Encryption (IBE) [7], Attribute-Based Encryption (ABE) [22], Functional Encryption (FE) [35] and
Predicate Encryption (PE) [8]. The detailed selective security definition is described in Definition 6 in the
Appendix.

3.1 Intuition
Our construction relies on the following key observation.

Lemma 1 (Polynomial decomposition) Let f(x) ∈ Zp[x] be an n-variate polynomial. For all a ∈ Znp ,
there exist polynomials qi(x) ∈ Zp[x] such that the polynomial f(x) − f(a) can be expressed as f(x) −
f(a) =

∑n
i=1(xi − ai)qi(x). Moreover, there exists a polynomial-time algorithm to find the above polyno-

mials qi(x).

Proof: The direct of the claim is straightforward: If a polynomial f(x) − f(a) can be expressed as∑
i∈[n](xi − ai)qi(x), it evaluates to 0 at a. For the inverse, the proof is by explicit construction. Given a

polynomial f(x) − f(a) ∈ Zp[x], we use polynomial division to first divide f(x) − f(a) by (x1 − a1).
Specifically,

f(x1, x2, . . . , xn) = (x1 − a1) · q1(x1, x2, . . . , xn) + s1(x2, x3, . . . , xn) ,

where s1(x2, x3, . . . , xn) is the remainder term, and s1(x2, x3, . . . , xn) should no longer contain the variable
x1. Next, divide s1(x2, x3, . . . , xn) by (x2 − a2), and divide the remainder by (x3 − a3), and so on. In this
way, we can write f(x)− f(a) as

f(x)− f(a) =
∑
i∈[n]

(xi − ai)qi(x) + sn ,

where sn ∈ Zp. Now since f(x) − f(a) = 0, sn has to be 0, since otherwise, f(x) − f(a) would not
evaluate to 0.

Given now an n-variate polynomial f(x), the trusted source runs algorithms KeyGen and Setup to create
the function public key FK(f) = gf(t) of the polynomial f evaluated over a randomly chosen point t. Later
in the computation stage, when a server wishes to prove that v is indeed the value f(a), it will rely on
the key observation stated in Lemma 1: It will compute n polynomials q1(x), q2(x), . . . , qn(x) such that
the relation of Lemma 1 holds, and the values gqi(t) (i = 1, . . . , n) will be provided as the signature. To
allow the server to evaluate the polynomials qi(x) at the commitment point t in the exponent, the public
key must contain appropriate helper terms. If the claimed computation result v is correct, then the following
must be true, where both sides of the equation are evaluated at the commitment point t, i.e., it should
be f(t) − v =

∑
i∈[n](ti − ai)qi(t). We note here that in the real construction, the terms in the above

equation are encoded in the exponents of group elements, and therefore the verifier cannot directly check
the above equation. However, the verifier can check the above condition using operations in the bilinear
group, including the pairing operation which allows one to express one multiplication in the exponent. The
bilinear group operations directly translate to checking the above condition in the exponent.

3.2 Detailed construction
We now present our selectively secure SCC scheme supporting multivariate polynomial evaluation.

Algorithm (PK, SK) ← KeyGen(λ,F): Suppose that the function family F ⊆ Zp[x] represents all poly-
nomials over Zp with at most n variables and degree bounded by d. Namely, family F contains the poly-
nomials represented by multisets in set Sn,d (see Equation 2.1). The KeyGen algorithm invokes the bilinear

8

group generation algorithm to generate a bilinear group instance of prime order p (of λ bits), with a bi-
linear map function e : G × G → GT . Then it chooses a random generator g ∈ G and a random point
t = [t1, t2, . . . , tn] ∈ Znp and computes the signature generation setWn,d

Wn,d =
{
g
∏
i∈S t

S(i)
i : ∀S ∈ Sn,d

}
. (3.2)

For example,W2,2 contains the elements g, gt1 , gt2 , gt
2
1 , gt

2
2 , gt1t

2
2 , gt

2
1t2 , gt

2
1t

2
2 . The algorithm finally outputs

the public key PK that contains g,Wn,d and the description of G,GT , e. The secret key SK contains the
commitment point t. We describe an optimization referring to reducing the number of group elements of
Wn,d in the full version of the paper [31].

Algorithm FK(f)← Setup(SK,PK, f): Let f(x) ∈ Zp[x] denote an n-variate polynomial of maximum
degree d over Zp that is represented by the multisets S1, S2, . . . , Sk ∈ Sn,d and the respective coefficients
c1, c2, . . . , ck ∈ Zp (the polynomial has k terms), as defined in Equation 2.1. The setup algorithm, by using
the signature generation setWn,d contained in PK, computes the polynomial public key, i.e.,

FK(f) = gf(t) =

(
g
∏
i∈S1

t
S1(i)
i

)c1
×
(
g
∏
i∈S2

t
S2(i)
i

)c2
× . . .×

(
g
∏
i∈Sk

t
Sk(i)

i

)ck
. (3.3)

The algorithm outputs the function public key FK(f).

Algorithm (v, w)← Compute(PK, f,a): This algorithm first computes v = f(a). Using Lemma 1, it finds
an appropriate set of polynomials q1(x), q2(x), . . . , qn(x) to express polynomial f(x) − v as f(x) − v =∑n

i=1(xi − ai)qi(x) . The signature w is a vector of n witnesses w1, w2, . . . , wn, such that wi = gqi(t) for
all i ∈ [n]. Note that wi can easily be computed using the signature generation set Wn,d, as is achieved
for the function public key in Equation 3.3. It finally outputs the pair (v, w), where v is the outcome of the
polynomial evaluated at a, and w is the signature of correctness.

Algorithm Verify(PK,FK(f),a, v, w): Parse PK as the signature generation set Wn,d. To verify that v is
indeed f(a), given a signature w = [w1, w2, . . . , wn], algorithm Verify checks if the following equation
holds:

e
(
FK(f)g−v, g

) ?
=

n∏
i=1

e
(
gti−ai , wi

)
. (3.4)

In the above, the terms gti are contained in PK (specifically in Wn,d) and the function public key FK(f)
equals gf(t). The algorithm accepts the result v, and outputs 1 if the above equations hold; otherwise, it
rejects and outputs 0.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Let f denote the current polynomial and f ′ be the new
polynomial that corresponds to the update. Assume f ′ and f differ in only one coefficient. Specifically, let
S denote the multiset corresponding to that coefficient.2 Suppose the current function public key is FK(f).
The algorithm sets

FK(f ′) = FK(f) · g(c′S−cS)
∏
i∈S t

S(i)
i ,

updating FK(f) to FK(f ′), the new function public key. We now state our first theorem.

Theorem 1 There exists an SCC scheme for polynomial evaluation such that (1) It is correct according to
Definition 2; (2) For univariate polynomials, it is adaptively secure according to Definition 3 and under the
`-SBDH assumption; (3) For multivariate polynomials, it is selectively secure according to Definition 6 and
under the `-SBDH assumption.

2I.e., the only difference between f and f ′ is that the coefficient cS corresponding to term
∏
i∈S x

S(i)
i is updated to c′S in f ′.

9

The correctness of our construction follows in a straightforward manner from Lemma 1, and the bilinear
property of the pairing operation e. The asymptotic cost analysis of the scheme’s algorithms are presented
in Section 6. The security proofs in Section C.1 of the Appendix. However, we give a proof sketch in the
following.

3.3 Selective security proof sketch
We briefly explain the selective security proof intuition of our scheme. The simulator obtains an `-SBDH
instance, g, gτ , . . . , gτ

` ∈ G and it will construct a simulation such that if an adversary can break the selec-
tive security of the SCC scheme, the simulator can leverage it to break the `-SBDH instance. Specifically,
with knowledge of the challenge point a = [a1, a2, . . . , an] that the adversary commits to at the beginning
of the selective security game, the simulator can carefully craft the simulation such that ti− ai = λi(τ + c),
where t = [t1, t2, . . . , tn] represents the committed point used to compute the polynomial digest, and λi and
c are constants known to the simulator.

If an adversary can forge a signature for a wrong outcome of a polynomial, then the simulator is able
to raise terms in Equation 3.4 to the (τ + c)−1 power and output e(g, g)(τ+c)−1

, breaking in this way the
`-SBDH assumption. Notice that in the selective security proof, the simulator’s ability to take appropriate
terms in Equation 3.4 to the (τ + c)−1 power relies on knowing the challenge point a in advance, and the
ability to craft the simulation such that ti − ai = λi(τ + c).

4 Adaptively secure multivariate polynomial evaluation
In this section, we augment the above selectively secure SCC scheme to achieve adaptive security in the
random oracle model. We also show that the same techniques can be applied to construct an adaptively
secure PVC scheme under the formulation of Parno et al. [34] without the random oracle model.

4.1 Intuition
The intuition of the new construction is similar to the selectively secure construction. For technical reasons
explained later, instead of relying on the polynomial decomposition method described in Lemma 1, we use
a new decomposition that is randomized, so that it can later be manipulated by a simulator in the proof to
achieve adaptive security. The decomposition we are using is the following:

Lemma 2 (Randomized decomposition) Let f(x) ∈ Zp[x] be an n-variate polynomial of degree at most
d. For all a ∈ Znp and for all r1, . . . , rn−1 ∈ Zp such that r1r2 . . . rn−1 6= 0, there exist polynomials
qi(x) ∈ Zp[x] such that the polynomial f(x)− f(a) can be expressed as

f(x)− f(a) =
n−1∑
i=1

[ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) ,

where qn(xn) is a polynomial of degree at most d that contains only variable xn. Moreover, there exists a
polynomial-time algorithm to find the above polynomials qi(x).

Proof: The direct of the claim is straightforward: If a polynomial f(x)− f(a) can be expressed as∑
i∈[n−1]

[ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) ,

it evaluates to 0 at a. For the inverse, the proof is by explicit construction. Given a polynomial f(x) ∈ Zp[x],
we use polynomial division to first divide f(x)− f(a) by r1(x1 − a1) + x2 − a2. Specifically,

f(x1, x2, . . . , xn) = [r1(x1 − a1) + x2 − a2] · q1(x1, x2, . . . , xn) + s1(x2, x3, . . . , xn) ,

10

where s1(x2, x3, . . . , xn) is the remainder term, and s1(x2, x3, . . . , xn) should no longer contain the variable
x1. Next, divide s1(x2, x3, . . . , xn) by r2(x2 − a2) + x3 − a3, and divide the remainder by r3(x3 − a3) +
x4 − a4, and so on. For the last division we divide with xn − an. In this way, we can write f(x)− f(a) as∑

i∈[n−1]

[ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) + sn ,

where sn ∈ Zp. Now since f(x) − f(a) = 0, sn has to be 0, since otherwise, f(x) − f(a) would not
evaluate to 0.

We note here that in our construction explained below, the numbers r1, r2, . . . , rn−1 mentioned in
Lemma 2 will be chosen “at random” by calling a hash function modelled as a random oracle (see Equa-
tion 4.5).

4.2 Detailed construction
We now continue with the algorithms of our adaptively secure SCC scheme.

Algorithm (PK,SK)← KeyGen(λ,F): Same as in Section 3.

Algorithm FK(f)← Setup(SK,PK, f): Same as in Section 3.

Algorithm (v, w) ← Compute(PK, f,a): Parse a as [a1, a2, . . . , an]. The algorithm first computes the
outcome of the polynomial v = f(a). Next, compute the following, where H : {0, 1}∗ → Zp is a hash
function (later modelled as a random oracle):

∀1 ≤ i ≤ n− 1 : ri = H(a||i) . (4.5)

Now, using Lemma 2, find an appropriate set of polynomials q1(t), q2(t), . . . , qn(tn) to express poly-
nomial f(x) − f(a) as

∑n−1
i=1 [ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) . Next, leverage the

signature generation setWn,d (see Equation 3.2) to compute wi = gqi(t) for 1 ≤ i ≤ n− 1. It is not hard to
see that all wi’s can be computed fromWn,d. The signature w is composed as

w = [w1, w2, . . . , wn, polynomial qn(xn)] ,

where the polynomial qn(xn) contains the description of the polynomial, i.e., up to d coefficients βd, . . . , β0,
since it is a univariate polynomial in xn of degree at most d.

The algorithm outputs the pair (v, w) denoting the outcome of the polynomial evaluated at a, and a
signature to vouch for the correctness of the computation.

Algorithm {0, 1} ← Verify(PK,FK(f),a, v, w): Parse a as [a1, a2, . . . , an] ∈ Znp ; then parse the signature
w as [w1, w2, . . . , wn−1, polynomial qn(xn)]. To verify that v is indeed the outcome of the correct poly-
nomial evaluated at point a ∈ Znp , algorithm Verify first computes gqn(tn) using the signature generation set
Wn,d (Equation 3.2) which is part of the public key PK.

Next, it computes the ri values in the same way as in Equation 4.5, namely, ri = H(a||i) for 1 ≤ i ≤
n− 1. Finally, it checks if the following equation holds:

e
(
FK(f) · g−v, g

) ?
=

n−1∏
i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gqn(tn)

)
, (4.6)

In the above, the terms gti are contained in PK (specifically inWn,d) and FK(f) equals gf(t). The algorithm
accepts if the above equation holds; otherwise, it rejects.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Same as in Section 3.

11

4.3 Adaptive security proof sketch
The simulator obtains an `-SBDH instance, g, gτ , . . . , gτ

` ∈ G and it will construct a simulation such
that if an adversary can break the adaptive security of the SCC scheme, the simulator can leverage it to
break the `-SBDH instance. Unlike in the selective security proof of Section 3.3, without the adversary
committing to the challenge point in advance, the simulator cannot craft terms to satisfy conditions such as
ti− ai = λi(t+ c)—but this condition is crucial later for the simulator to compute e(g, g)(τ+c)−1

and break
the hardness assumption.

To circumvent this barrier in the proof, we embed “randomness” into the verification equation, such that
the simulator can manipulate these random numbers to satisfy a condition described below, without having
to know the challenge point ahead of time:

ri(ti − ai) + ti+1 − ai+1 = λi(τ + c) for i = 1, . . . , n− 1 , (4.7)

where λi and c are constants known to the simulator.
Specifically, since these random numbers are outputs from a “random” hash function, under the random

oracle model, the simulator can manipulate the answers to the random oracle queries in the simulation to
achieve the above goal. Note that our SCC signature with adaptive security has sizeO(n+d), as opposed to
O(n), which was the size of the signature in the selectively secure scheme (see Section 6). This is because
it is essential the signature contain the polynomial qn(xn) for the adaptive security proof to work, so that
the simulator can divide both sides of Equation 4.6 with τ + c. We can now state our main theorem (see
detailed security proof in the Section C.2 of the Appendix).

Theorem 2 There exists an SCC scheme for the evaluation of multivariate polynomials such that (1) It is
correct according to Definition 2; (2) It is adaptively secure according to Definition 3, under the `-SBDH
assumption and in the random oracle model.

4.4 An adaptively secure PVC scheme without random oracles
Our techniques can be readily adapted to construct an adaptively secure PVC scheme for multivariate poly-
nomial evaluation—see Section 2.3. Neverthelsess, if we were to use the observations of Section 2.3 as a
black box, we would construct a PVC scheme that has the random oracle. However, we are able to remove
the random oracle by taking advantage of the fact that PVC is weaker than SCC.

The resulting PVC scheme is very similar to our construction in this section—except that in the PVC
scheme, the random numbers ri’s are directly chosen at random (as a challenge) by a client issuing a query
to the untrusted server, instead of being the outputs of a hash function modeled as a random oracle. We
provide the detailed PVC scheme construction in Section B.1 of the Appendix. Its full security proof can be
found in Section C.3 of the Appendix.

Theorem 3 There exists a PVC scheme for the evaluation of multivariate polynomials of total such that (1)
It is correct according to Definition 8; (2) It is adaptively secure according to Definition 9 and under the
`-SBDH assumption.

5 SCC schemes for polynomial differentiation
In this section, we construct an SCC scheme for the verification of differentiation queries. Given a mul-
tivariate polynomial f(x), we show how to construct signatures of correct computation for derivatives
∂kf(x)/∂xkj (a) evaluated at a chosen point a.

One naive method to support verification of derivative computation is to commit to all nk polynomials
corresponding to all the possible derivatives (k in total) of each possible variable. This would incur a setup
cost of O(nk

(
n+d
d

)
). In contrast, our construction requires only O(

(
n+d
d

)
) setup cost (see Section 6), the

same with the polynomial evaluation scheme. Another drawback of the naive method is increased update

12

cost, since an update operation would now involve updating all nk polynomials. In contrast, our construction
allows for efficient incremental updates.

5.1 Intuition
The intuition of supporting polynomial differentiation is similar to the evaluation case. In place of the
decomposition lemmas (Lemmas 1 and 2) for polynomial evaluation, we have the following counterparts
(Lemmas 3 and 4) for derivative computation:

Lemma 3 (Decomposition for derivatives) For a ∈ Znp , the n-variate polynomial f(x) ∈ Zp[x] can be
expressed as

f(x) =

n−1∑
i=1

(xi − ai)ui(x) + (xn − an)k+1q(xn) + ckx
k
n + . . .+ c1xn + c0 .

Then, the k-th derivative of f(x) wrt xn equals k! · ck at point a, i.e., ∂kf(x)/∂xkn(a) = k! · ck. A similar
result holds for other variables xi by variable renaming.

Proof: The proof is by explicit construction. The polynomial u1(x) is the quotient when dividing f(x) by
(r1x1 − a1), the remainder is then divided by (x2 − a2), resulting in the quotient u2(x), and the remainder
is then divided by (x3 − a3), and so on. This goes on until we divide the remainder with (xn−1 − an−1),
at which point, we are left with a remainder s(xn) containing only the variable xn. At this point, we divide
s(xn) by (xn−an)k+1 resulting in the quotient q(xn), and the remainder is expressed as ckxkn+ck−1x

k−1
n +

. . .+c1xn+c0. We now show that ∂kf(x)/∂xkn(a) = k! ·ck. To do this, we analyze the k-th derivative with
respect to xn for each additive term of f(x) expressed in the above form. Notice that for 1 ≤ i ≤ n− 1, we
have

∂k(xi − ai)ui(x)

∂xkn
(a) = (xi − ai)

∂kui(x)

∂xkn
(a) = 0 .

Let g(xn) = (xn − an)k+1. We have ∂kg(xn)q(xn)
∂xkn

(an) = 0. Also notice that for all polynomials whose de-

gree in xn is smaller than k, its k-th derivative with respect to xn is 0. As a result, ∂
kf(x)
∂xkn

(a) = ∂kckx
k
n

∂xkn
(a) =

k! · ck.

Lemma 4 (Randomized decomposition for derivatives) For a ∈ Znp and for all r1, . . . , rn−2 ∈ Zp such
that r1r2 . . . rn−2 6= 0, the n-variate polynomial f(x) ∈ Zp[x] can be expressed as

f(x) =

n−2∑
i=1

[ri(xi − ai) + xi+1 − ai+1]ui(x) + (xn−1 − an−1)un−1(x)

+ (xn − an)k+1q(xn) + ckx
k
n +

k∑
i=0

cix
i
n ,

where un−1(x) is a polynomial containing only variables xn−1 and xn and q(xn) is a polynomial containing
only variable xn. Then, the k-th derivative of f(x) wrt xn equals k! · ck at point a, i.e., ∂kf(x)/∂xkn(a) =
k! · ck. A similar result holds for other variables xi by variable renaming.

Proof: Same as proof of Lemma 3, with the difference that each time we are dividing with ri(xi − ai) +
xi+1 − ai+1 (for i = 1, . . . , n − 2), after that we divide with xn−1 − an−1 and for i = n we devide by
(xn − an). By taking the derivatives as above, one can see that the derivative is again equal to k! · ck.

Similar to the multivariate polynomial evaluation case, Lemmas 3 and 4 allow us to construct respec-
tively: 1) an SCC scheme for polynomial differentiation with selective security; and 2) an SCC scheme
for polynomial differentiation with adaptive security in the random oracle model and a PVC scheme for
polynomial differentiation with adaptive security without the random oracle model .

13

5.2 Detailed construction
We now present the adaptively secure SCC scheme for polynomial differentiation (based on Lemma 4). For
completeness, we also present in the Appendix a selectively secure scheme for polynomial differentiation—
see Sections B.2 and C.4 of the Appendix for the detailed construction and its proof of security respectively.

Algorithm (PK,SK)← KeyGen(λ,F): Same as in Section 3.

Algorithm FK(f)← Setup(SK,PK, f): Same as in Section 3.

Algorithm (v, w) ← Compute(PK, f,a, k, ind): In addition to the point a ∈ Znp , the Compute algorithm
here takes in two additional parameters k and ind, indicating the evaluation of the k-th derivative of the
polynomial with respect to variable xind at a. Without loss of generality, below we assume ind = n. In
other words, the algorithm should evaluate the k-th partial derivative with respect to xn at point a. First, the
algorithm computes randomness ri as

ri = H(a||ind||k||i) ∀1 ≤ i ≤ n− 2 , (5.8)

where H : {0, 1}∗ → Zp is a hash function (later modeled as a random oracle). Due to Lemma 4, f(x)
can be expressed as f(x) =

∑n−2
i=1 [ri(xi − ai) + xi+1 − ai+1]ui(x) + (xn−1 − an−1)un−1(x) + (xn −

an)k+1q(xn) +
∑k

i=0 cix
i
n. The signature w for correct derivative computation is the following tuple:

w =
(
gu1(t), . . . , gun−2(t), gq(tn), ck−1, . . . , c1, c0, polynomial un−1(x)

)
,

where polynomial un−1(x) is a description of the polynomial containing the corresponding coefficients.
Note that by Lemma 4, polynomial un−1(x) contains up to d2 terms. Also, the signature does not contain
the term ck—this can be implicitly retrieved by the result v since ck = v/k!. Finally, the result of the
computation v is returned.

Algorithm Verify(PK,FK(f),a, k, ind, v, w): Let ck = v
k! . To verify that v is indeed the outcome of the

k-th partial derivative on variable xind (ind = n) evaluated at point a ∈ Znp , perform the following steps.
Parse w as (w1, . . . , wn−2, wn, ck−1, . . . , c1, c0, polynomial un−1(x)).
Compute the ri values in the same way as in Equation 5.8, i.e., ri = H(a||ind||k||i) for 1 ≤ i ≤ n− 2.

Check if e (FK(f), g) equals the following quantity (where L =
∏k
i=0 e

(
gt
i
n , g
)ci

):

n−2∏
i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
· e
(
gtn−1−an−1 , gun−1(t)

)
· e
(
g(tn−an)k+1

, wn

)
· L ,

The above quantity can be easily computed with the public keys in O(n + d2) time, since un−1(x) is a
polynomial containing d2 terms and k ≤ d (see Section 6). The algorithm accepts v and outputs 1 if the
above equation holds; otherwise, it rejects.

Algorithm FK(f ′)← Update(SK,PK,FK(f), f ′): Same as in Section 3.

Theorem 4 There exists an SCC scheme for the differentiation of multivariate polynomials such that (1) It
is correct according to Definition 2; (2) It is adaptively secure according to Definition 3, under the `-SBDH
assumption and in the random oracle model.

The proof of security for the above theorem can be found in Section C.5 of the Appendix. By following
the same techniques that we used in Theorem 3, we can construct a PVC scheme without random oracles
for polynomial differentiation as well:

Corollary 1 There exists a PVC scheme for the differentiation of multivariate polynomials such that (1)
It is correct according to Definition 8; (2) It is adaptively secure according to Definition 9 and under the
`-SBDH assumption.

14

6 Asymptotic cost analysis
In this section, we analyze the asymptotic cost of our schemes. Clearly, the worst-case complexity of
KeyGen is O(

(
n+d
d

)
), since the setWn,d should contain one term for every possible term of the polynomial

in n variables and total degree d. Similarly algorithm Setup takes O(
(
n+d
d

)
) time to execute in the worst

case. In practice, both these complexities can be O(m), where m is the number of the terms contained in
the polynomial—see Section D of the Appendix for minimizing the size ofWn,d.

Also for our adaptive security schemes, the size of the signature is O(n), and the client performs O(n)
amount of work to verify it using algorithm Verify (these costs are O(n + d) for derivative computation).
For our adaptive security schemes, the size of the signature increases to O(n + d), and the client performs
O(n+ d) amount of work to verify it (again, these costs O(n+ d2) for derivative computation).

As for algorithm Compute, it needs to decompose the polynomial according to Lemmata 1, 2, 3, 4
(depending on which scheme we are using). This polynomial decomposition dominates the asymptotic
performance. To perform the polynomial decomposition, the server performs n polynomial divisions. If we
use the naive polynomial division algorithm, since each variable can have degree up to d, each polynomial
division involves d steps, and each step takes time proportional to the number of terms in the polynomial,
namely, O(

(
n+d
d

)
). Therefore, the polynomial decomposition (Lemma 1) can be achieved in O(nd

(
n+d
d

)
)

time using the naive algorithm. However, in cases where d > log n, one can use the FFT method to
perform polynomial division, resulting in O(n log n

(
n+d
d

)
) computation time. Finally, algorithm Update

takes constant time to update a constant number of coefficients.

7 Extensions and observations
7.1 I/O privacy
In our constructions, the client’s sensitive input is in plaintext, directly readable by the untrusted server.
To offer input and output privacy, we could potentially use a fully-homomorphic public-key encryption
scheme [17] (FHE scheme) so that algorithm Compute executed by the untrusted server could operate on
encrypted points. In this way, everybody that knows pk could send queries to the server. After Compute
executes on the encryption of some point ā, it outputs the encrypted signaturew of the value v̄ = f(ā) under
the public key pk, allowing only the owner of the secret key to decrypt and retrieve (and verify) the output
of the computation. This could have various applications which we highlight in Section E of the Appendix.

7.2 Removing the random oracles through stronger assumptions
We now observe that if we are willing to (i) use subexponential assumptions and (ii) restrict the size of
the domain of the inputs of our polynomials to be subexponential (now it is exponential), we can remove
the random oracle from our adaptively secure constructions. The subexponential assumption we use can be
stated as follows:

Definition 5 (δ-subexponential bilinear `-strong Diffie-Hellman assumption) Suppose k is the security
parameter, let 0 < δ < log k−1

log k and let (p,G,GT , e, g) be a uniformly randomly generated tuple of bilinear

pairings parameters. Given the elements g, gt, . . . , gt
` ∈ G for some t chosen at random from Z∗p, for

` = poly(k), there is no algorithm running in time less than 22kδ that can output the pair (c, e(g, g)1/(t+c)) ∈
Z∗p\{−t} ×GT , except with negligible probability neg(k).

Note that in the above definition, we require δ < log k−1
log k so that 2kδ < k.

Theorem 5 (Adaptive security in the standard model) Let x be the input to our polynomial. For x be-
longing to a domain of subexponential size, our selectively secure scheme (Section 3) is adaptively secure
in the standard model and assuming the δ-subexponential bilinear `-strong Diffie-Hellman assumption.

15

Namely, for all PPT adversaries, we can build a simulator running in subexponential time that breaks the
δ-subexponential bilinear `-strong Diffie-Hellman assumption (see Definition 5).

Proof: Suppose we have n variables x1, x2, . . . , xn, and each one of which can take values in [0, 1, . . . ,m−
1]. Assume that mn = 2k

δ
, yielding n logm = kδ. To build the desired simulator, we modify the initial-

ization phase of our selective security proof in Section 3.3: We do not require the adversary to commit to
an initial point a. Instead the simulator guesses the point a that the adversary is going to output later as a
forgery—and the simulator aborts if the guess is wrong. Clearly, the guess is successful with probability
2−k

δ
. Therefore the simulation, in expectation, takes 2k

δ
time to succeed. Since the adversary runs in at

most polynomial time (see our adaptive security definition), it follows that we have derived an algorithm
that runs in poly(k)2k

δ
time and breaks the assumption. Note that this is a contradiction since the function

poly(k)2k
δ

= o(22kδ). This completes our proof.
The same technique was also described by Boneh and Boyen [7] to achieve adaptive security in their

IBE scheme.

Acknowledgments
This work was supported by Intel through the ISTC for Secure Computing, by the National Science Founda-
tion under grants CCF-0424422, 0842695, 0808617 and CNS-1228485, by the Air Force Office of Scientific
Research (AFOSR) under MURI award FA9550-09-1-0539, by the MURI program under AFOSR grant
FA9550-08-1-0352, by the Center for Geometric Computing at Brown University, and by a NetApp Faculty
Fellowship. The authors thank Xavier Boyen, Basilis Gidas, Matthew Green, Jonathan Katz, Dawn Song,
Aishwarya Thiruvengadam, Nikos Triandopoulos and Brent Waters for useful discussions, and the TCC
2013 reviewers for their feedback. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the sponsors.

References
[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via se-

cure computation. In International Colloquium on Automata, Languages and Programming (ICALP),
pages 152–163. Springer, 2010.

[2] M. J. Atallah, Y. Cho, and A. Kundu. Efficient data authentication in an environment of untrusted
third-party distributors. In Proceedings of International Conference on Data Engineering (ICDE),
2008.

[3] S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large datasets. In
CRYPTO, pages 111–131, 2011.

[4] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In ITCS, pages 326–349, 2012.

[5] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping for snarks
and proof-carrying data. IACR Cryptology ePrint Archive, 2012:95, 2012.

[6] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption in bilinear
groups. J. Cryptology, 21(2):149–177, 2008.

[7] D. Boneh and X. Boyen. Efficient selective identity-based encryption without random oracles. J.
Cryptology, 24(4):659–693, 2011.

16

[8] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In TCC, pages
535–554, 2007.

[9] R. Canetti, B. Riva, and G. N. Rothblum. Two 1-round protocols for delegation of computation. IACR
Cryptology ePrint Archive, 2011:518, 2011.

[10] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully homomorphic
encryption. In CRYPTO, 2010.

[11] V. C. da Rocha Jr. Digital sequences and the hasse derivative. Communications Coding and Signal
Processing, 3:256–268, 1997.

[12] I. Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In
CRYPTO, pages 445–456, 1991.

[13] D. Fiore and R. Gennaro. Improved publicly verifiable delegation of large polynomials and matrix
computations. Cryptology ePrint Archive, Report 2012/434, 2012. http://eprint.iacr.org/.

[14] D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix computations,
with applications. In ACM Conference on Computer and Communications Security, 2012.

[15] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation
to untrusted workers. In CRYPTO, pages 465–482, 2010.

[16] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct nizks without
pcps. Cryptology ePrint Archive, Report 2012/215, 2012. http://eprint.iacr.org/.

[17] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[18] C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assump-
tions. In STOC, pages 99–108, 2011.

[19] M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated dictionary with
skip lists and commutative hashing. In Proc. DARPA Information Survivability Conference and Expo-
sition II (DISCEX II), pages 68–82, 2001.

[20] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Super-efficient verification of dynamic outsourced
databases. In Proc. RSA Conference, Cryptographers’ Track (CT-RSA), volume 4964 of LNCS, pages
407–424. Springer, 2008.

[21] M. T. Goodrich, R. Tamassia, and N. Triandopoulos. Efficient authenticated data structures for graph
connectivity and geometric search problems. Algorithmica, 60(3):505–552, 2011.

[22] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy attribute based encryption. In
Proceedings of the 35th international colloquium on Automata, Languages and Programming, Part II,
ICALP ’08, pages 579–591, 2008.

[23] J. Groth. Short non-interactive zero-knowledge proofs. In ASIACRYPT, pages 341–358, 2010.

[24] V. Guruswami and C. Wang. Optimal rate list decoding via derivative codes. In APPROX-RANDOM,
pages 593–604, 2011.

[25] A. Kate, G. Zaverucha, and I. Goldberg. Polynomial commitments. In Asiacrypt, 2010.

17

http://eprint.iacr.org/
http://eprint.iacr.org/

[26] A. B. Lewko and B. Waters. New proof methods for attribute-based encryption: Achieving full security
through selective techniques. In CRYPTO, pages 180–198, 2012.

[27] K. M. Man Lung Yiu, Yimin Lin. Efficient verification of shortest path search via authenticated hints.
In ICDE, pages 237–248, 2010.

[28] R. C. Merkle. A certified digital signature. In G. Brassard, editor, Proc. CRYPTO ’89, volume 435 of
LNCS, pages 218–238. Springer-Verlag, 1989.

[29] S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[30] L. Nguyen. Accumulators from bilinear pairings and applications. In Proc. RSA Conference, Cryptog-
raphers’ Track (CT-RSA) , LNCS 3376, pp. 275-292, Springer., 2005.

[31] C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. Cryptology ePrint
Archive, Report 2011/587, 2011. http://eprint.iacr.org/.

[32] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Authenticated hash tables. In Proc. ACM
Conference on Computer and Communications Security (CCS), pages 437–448. ACM, October 2008.

[33] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on dynamic
sets. In CRYPTO, pages 91–110, 2011.

[34] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable
computation from attribute-based encryption. In TCC, 2012.

[35] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.

[36] R. Tamassia. Authenticated data structures. In Proc. European Symp. on Algorithms, volume 2832 of
LNCS, pages 2–5. Springer-Verlag, 2003.

[37] R. Tamassia and N. Triandopoulos. Efficient content authentication in peer-to-peer networks. In Proc.
Int. Conf. on Applied Cryptography and Network Security (ACNS), volume 4521 of LNCS, pages 354–
372. Springer, 2007.

[38] R. Tamassia and N. Triandopoulos. Certification and authentication of data structures. In Proc. Alberto
Mendelzon Workshop on Foundations of Data Management, 2010.

A Definitions
Definition 6 (Selective security of an SCC scheme) Let λ be the security parameter and let P be an SCC
scheme (KeyGen,Setup,Compute,Verify,Update) for a function family F . We say that P is selectively-
secure if no PPT adversary A has more than negligible probability neg(λ) in winning the following game
between A and a challenger:

1. Initialization. The adversary A commits to a point b. The challenger runs algorithm KeyGen which
outputs (PK,SK) and gives PK to A but maintains SK secret;

2. Setup and Update. The adversaryA initially makes an oracle query to algorithm Setup(SK,PK, f0),
specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where k = poly(λ),
he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi) algorithm,
each time specifying fi ∈ F . The challenger answers the queries by returning the resulting FK(fi);

3. Forgery. The adversary A outputs a forgery (b, v, w) for point b that he committed in the initializa-
tion phase, for some function fi previously queried where 0 ≤ i ≤ k.

18

http://eprint.iacr.org/

The adversary A wins if 1← Verify(PK,FK(fi),b, v, w) and fi(b) 6= v.

Definition 7 (PVC scheme) We define a PVC scheme for a function family F to be a tuple of six PPT
algorithms (KeyGen,Setup,Challenge,Compute,Verify,Update) with the following specification:

1. (PK,SK) ← KeyGen(λ,F): Algorithm KeyGen takes as input the security parameter λ and a func-
tion family F . It outputs a public/secret key pair (PK, SK). KeyGen is run only once at system
initialization by a trusted source;

2. FK(f)← Setup(SK,PK, f): Algorithm Setup (run by a trusted source) takes as input the secret key
SK, the public key PK, and a function f ∈ F . It outputs the function public key FK(f) for the function
f ;

3. chal(a) ← Challenge(PK,a): Algorithm Challenge (run by the verifier) takes as input a value a ∈
domain(f). It outputs a challenge chal(a) corresponding to a;

4. (v, w) ← Compute(PK, f,a, chal(a)): Algorithm Compute (run by an untrusted server) takes as
input the public key PK, a function f ∈ F and a value a ∈ domain(f). It outputs a pair (v, w), where
v = f(a) and w is a signature;

5. {0, 1} ← Verify(PK,FK(f),a, chal(a), v, w): Algorithm Verify (run by the verifier) takes as input the
public key PK, function public key FK(f), value a ∈ domain(f), a claimed result v and a signature
w. It outputs 0 or 1;

6. FK(f ′) ← Update(SK,PK,FK(f), f ′): Algorithm Update (run by the trusted source) takes as input
the secret key SK, the public key PK, the function public key FK(f) for the old function f and the
updated function description f ′. It outputs the updated function public key FK(f ′).

Definition 8 (Correctness of a PVC scheme) Let λ be the security parameter and let P be a PVC scheme
(KeyGen,Setup,Challenge,Compute,Verify,Update) for a function familyF . Let (PK, SK)← KeyGen(λ,F).
For all i = 1, . . . , poly(λ), for any function fi ∈ F , suppose FK(fi) is the output of Update(SK,PK,FK(fi−1), fi),
where FK(f0) is output by algorithm Setup(SK,PK, f0) for some f0 ∈ F . We say that P is correct, if
for any i = 0, . . . , poly(λ), for any a ∈ domain(fi), for any chal(a) output by Challenge(PK,a), it is
1← Verify(PK,FK(fi),a, chal(a)), v, w), where (v, w)← Compute(PK, fi,a, chal(a))).

Definition 9 (Adaptive security of a PVC scheme) Let λ be the security parameter and let P be a PVC
scheme (KeyGen,Setup,Challenge,Compute,Verify,Update) for a function family F . We say that P is
adaptively secure if no PPT adversaryA has more than negligible probability neg(λ) in winning the follow-
ing security game, played between the adversary A and a challenger:

1. Initialization. The challenger runs algorithm KeyGen which outputs (PK,SK) and then gives PK to
the adversary but maintains SK secret;

2. Setup and Update. The adversary initially makes an oracle query to algorithm Setup(SK,PK, f0),
specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where k = poly(λ),
he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi) algorithm,
each time specifying fi ∈ F . The challenger answers the queries by returning the resulting FK(fi);

3. Challenge and Forgery. The adversary A outputs a point b and sends it to the challenger. The chal-
lenger returns chal(b) output by Challenge. The adversary A outputs the forgery (b, chal(b), v, w)
for one of the functions fi (0 ≤ i ≤ k) that has been queried.

The adversary A wins if 1← Verify(PK,FK(fi),b, chal(b), v, w) and fi(b) 6= v.

B Constructions
B.1 Construction of adaptively secure PVC for multivariate polynomial evaluation
In this section, we present our adaptively-secure PVC construction without random oracles. We give the
algorithms of our new PVC scheme. Not that since we are in the PVC model, apart from algorithm Compute

19

and Verify, we need to also present algorithm Challenge. The remaining algorithms (KeyGen, Setup and
Update) are the same

Algorithm chal(a)← Challenge(PK,a): Let a = [a1 a2 . . . an] be an input point. The algorithm picks
r1, r2, . . . , rn−1 ∈ Zp uniformly at random and outputs a challenge chal(a) = [r1 r2 . . . rn−1].

Algorithm (v, w)← Compute(PK, f,a, chal(a)): Parse a as [a1 a2 . . . an] and chal(a) as [r1 r2 . . . rn−1].
The algorithm first computes v = f(a). Using Lemma 2, it finds an appropriate set of polynomials
q1(t), q2(t), . . . , qn(tn) to express polynomial f(x)− f(a) in the canonical form as

f(x)− f(a) =
∑

i∈[n−1]

[ri(xi − ai) + xi+1 − ai+1] qi(x) + (xn − an)qn(xn) .

The witness w contains a vector of n − 1 witnesses w1, w2, . . . , wn−1, such that wi = gqi(t) for all i ∈
[n − 1] and the coefficients βd, βd−1, . . . , β0 of the polynomial qn(xn). The algorithm outputs the pair
(v, w) denoting the outcome of the polynomial evaluated at a, and a witness to vouch for the correctness of
the computation.

Algorithm (v, w) ← Verify(PK,FK(f),a, chal(a), v, w): Parse a as [a1 a2 . . . an] ∈ Znp , chal(a) as
[r1 r2 . . . rn−1] ∈ Zn−1

p and w as [w1 w2 . . . wn−1] ∈ Gn−1 and [βd βd−1 . . . β0] ∈ Zd+1
p . To verify that

v is indeed the outcome of the correct polynomial evaluated at point a ∈ Znp , algorithm Verify checks if the
following equation holds:

e
(
FK(f)g−v, g

) ?
=

∏
i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gπ(tn)

)
, (B.9)

where π(tn) = βdt
d
n + βd−1t

d−1
n−1 + . . . + β0. In the above, the terms gti are contained in PK (specifically

inWn,d) and FK(f) equals gf(t). The algorithm accepts the result v, and outputs 1 if the above equations
hold; otherwise, it rejects and outputs 0.

B.2 Construction of selectively secure SCC scheme for multivariate polynomial differenti-
ation

In this section we provide the detailed construction for the verification of derivatives evaluation in the selec-
tive security model. We describe in detail algorithms Compute and Verify. All other algorithms of the SCC
scheme are the same.

Algorithm (v, w) ← Compute(PK, f,a, k, i): The Compute algorithm here takes in two additional pa-
rameters k and i, indicating the evaluation of the k-th derivative of the polynomial with respect to variable
xi at a. Without loss of generality, below we assume i = n. In other words, the algorithm should eval-
uate the k-th partial derivative with respect to xn at point a. Due to Lemma 3, f(x) can be expressed as
f(x) =

∑n−1
i=1 (xi − ai)ui(x) + (xn − an)k+1q(xn) + ckx

k
n + . . . + c1xn + c0. The signature w for the

derivative computation is the following tuple:(
gu1(t), gu2(t), . . . , gun−1(t), gq(tn), ck−1, . . . , c1, c0

)
∈ Gn × Zkp .

Note that the proof does not contain the term ck. This is going to be implicitly retrieved by the result of the
derivative computation v, i.e., ck = v/k!. Finally, the result of the computation v is returned.

Algorithm Verify(PK,FK(f),a, v, w, k, i): Let ck = v
k! . Parse PK as the signature generation setWn,d. To

verify that v is indeed the outcome of the k-th partial derivative on variable xn evaluated at point a ∈ Znp ,
perform the following steps. Parsew as (w1, . . . , wn−1, ω, ck−1, . . . , c1, c0). Given the witnessw, algorithm
Verify checks if the following equation holds:

e (FK(f), g)
?
=

n−1∏
i=1

e
(
gtig−ai , wi

)
· e
(
g(tn−an)k+1

, ω
)
·
k∏
i=0

e
(
gt
i
n , g
)ci

.

20

In the above, all the used expressions are computable by using the elements in Wn,d. Also, FK(f) equals
gf(t). The algorithm accepts v and outputs 1 if the above equation holds; otherwise, it outputs 0 and rejects.

C Proofs
C.1 Selectively secure SCC for multivariate polynomial evaluation
Since for n = 1 our scheme is the same with the scheme of Kate et al. [25], its adaptive security follows
from that work. We now prove selective security for the case of n > 1.

We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger
C. The simulator S then embeds this `-SBDH assumption into an instance of the SCC scheme — such
that if an adversary A can break the full security of the SCC scheme with more than negligible probability
when interacting with the simulator, the simulator S can then leverage the adversaryA to break the `-SBDH
instance it obtained from from the challenger, also with non-negligible probability.

Assume that the simulator S obtains the following `-SBDH assumption from the challenger C, where
` = d (the maximum degree of a monomial):(

g, gτ , gτ
2
, . . . , gτ

`
)
.

1. Initialization. The adversary first commits to a challenge point

a = [a1, a2, . . . , an] .

The simulator runs algorithm KeyGen which outputs (PK,SK) and then gives PK to the adversary
but maintains SK secret. To do that, the simulator needs to choose a random point t and create the
corresponding signature generation setWn,d at the chosen point t. The simulator implicitly lets

t1 = τ . (C.10)

For i ∈ {2, 3, . . . n}, the simulator first picks random (ri, si) such that

ai = ri · a1 + si . (C.11)

The simulator then implicitly lets
ti = ri · τ + si . (C.12)

The simulator remembers the values of all ri’s for later usage. Now the simulator needs to compute
Wn,d. The problem is that the simulator does not actually know the ti’s, since these values are in-
herited and transformed from the `-SBDH assumption it obtained from the challenger. Fortunately,
observe that the simulator can still compute all terms in Wn,d since when one plugs in Equations
C.37, it is not hard to see that all terms inWn,d are essentially of the form gq(τ), where q(τ) is some
polynomial of degree at most d. Since the simulator knows the values(

g, gτ , gτ
2
, . . . , gτ

`
)
,

it can easily compute all of these terms. Notice that in the above simulation the terms generated by
the simulator are identically distributed as running the real KeyGen and Setup algorithms, since every
vi and wi are chosen uniformly at random.

2. Setup and Update. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algo-
rithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where
k = poly(λ), he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi)
algorithm, each time specifying fi ∈ F . The simulator answers the queries by returning the resulting
FK(fi). It is not hard to see that the simulator does not need to know the ti’s to update FK(fi);

21

3. Forgery. The adversary outputs a forgery for the committed point a. The forgery consists of some
FK(f), a claimed outcome v of the polynomial at a, and a signaturew = (w1, w2, . . . , wn). Due to the
security of the signature scheme, FK(f) must be an output of one of the oracle queries to either Setup
or Update—since otherwise, one can leverage this adversary and build a straightforward reduction
to break the security of the signature scheme. Let f denote the corresponding input of that oracle
query which resulted in FK(f). If the forgery is successful, the following must be true: v 6= f(a) and
Verify(FK,x, v, w) = 1. The simulator will now leverage this forgery to break the `-SBDH instance
it got from the challenger.
Specifically, let δ = v−f(a) 6= 0 ∈ Zp, i.e., the difference between the true outcome and the claimed
outcome. Since the verification succeeds, we have

e (g, g)f(t)−v =
∏
i∈[n]

e
(
gti−ai , wi

)
.

Or equivalently,
e (g, g)δ = e (g, g)f(t)−f(a) ·

∏
i∈[n]

e
(
gti−ai , w−1

i

)
. (C.13)

Due to Lemma 1, the simulator can find polynomials q1(t), q2(t), . . . , qn(t) such that

f(t)− f(a) =
∑
i∈[n]

(ti − ai)qi(t) .

Therefore, we can re-write the above Equation C.13 as below:

e (g, g)δ =
∏
i∈[n]

e
(
gti−ai , gqi(t)

)
·
∏
i∈[n]

e
(
gti−ai , w−1

i

)
. (C.14)

Or equivalently,
e(g, g)δ =

∏
i∈[n]

e
(
gti−ai , gqi(t) · w−1

i

)
. (C.15)

Now, the simulator will try to raise both sides of the above Equation C.15 to 1
τ−a1

, i.e., divide the
exponent by τ − a∗1. If the simulator can successfully do this for the right-hand side, then clearly, the

simulator would be able to obtain the value e(g, g)
δ

τ−a1 —thereby breaking the `-SBDH assumption.
The problem is that it is not possible to directly raise the right-hand side of Equation C.15 to 1

τ−a1
.

Fortunately, recall that the simulator has carefully crafted the ti values earlier (implicitly without
actually learning the ti values). Specifically, due to Equations C.37, C.11, and C.12, it is not hard to
see that

ti − ai = ri(τ − a1) .

As a result, ∏
i∈[n]

e
(
gti−ai , gqi(t) · wi

) 1
τ−a1

=
∏
i∈[n]

e
(
gri , gqi(t) · w−1

i

)
.

It is not hard to see that the right-hand side of the above equation provides an efficient method for the
simulator to raise the right-hand side of Equation C.15 to 1

τ−a1
. Specifically, the simulator can now

compute

e (g, g)
1

τ−a1 =

∏
i∈[n]

e
(
gri , gqi(t) · w−1

i

)δ−1

,

breaking in this way the `-SBDH assumption. This completes the proof.

22

C.2 Adaptively secure SCC for multivariate polynomial evaluation
We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger C.
The simulator S then embeds this `-SBDH assumption into an instance of the SCC scheme—such that if
an adversary A can break the full security of the SCC scheme with more than negligible probability when
interacting with the simulator, the simulator S can then leverage the adversary A to break the `-SBDH
instance it obtained from from the challenger, also with non-negligible probability. Our proof is under the
random oracle model, i.e., the simulator also implements a random oracle for the adversary to query.

Assume that the simulator S obtains the following `-SBDH assumption from the challenger C, where
` = d (the maximum degree of a monomial):(

g, gτ , gτ
2
, . . . , gτ

`
)
.

1. Initialization. The simulator runs algorithm KeyGen which outputs (PK, SK) and then gives PK to
the adversary but maintains SK secret. To do that, the simulator needs to choose a random point t and
create the corresponding signature generation setWn,d at the chosen point t. The simulator implicitly
sets

ti = χiτ + ζi for i = 1, . . . , n , (C.16)

where χi and ζi are chosen uniformly at random. The simulator remembers the values of all χi’s and
ζi’s for later usage. Now the simulator needs to compute Wn,d. The problem is that the simulator
does not actually know the ti’s, since these values are inherited and transformed from the `-SBDH
assumption it obtained from the challenger. Fortunately, observe that the simulator can still compute
all terms inWn,d since when one plugs in Equations C.37, it is not hard to see that all terms inWn,d

are essentially of the form gq(τ), where q(τ) is some polynomial of degree at most d. Since the
simulator knows the values (

g, gτ , gτ
2
, . . . , gτ

`
)
,

it can easily compute all of these terms. Notice that in the above simulation the terms generated by
the simulator are identically distributed as running the real KeyGen and Setup algorithms, since every
vi and wi are chosen uniformly at random.
The simulator also chooses a random secret c ∈ Zp, which will be useful later in answering random
oracle queries.

2. Setup and Update. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algo-
rithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where
k = poly(λ), he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi)
algorithm, each time specifying fi ∈ F . The simulator answers the queries by returning the resulting
FK(fi). It is not hard to see that the simulator does not need to know the ti’s to update FK(fi);

3. Random oracle queries. Upon each random oracle query a||i, the simulator guesses if a is going
to be the challenge point in the challenge phases. Since the same a may be queried multiple times
with different values of i, it is possible that the guess has been made before. In this case, just use the
previous guess for a. Let qo denote the total number of random oracle queries. The simulator can
guess right with probability at least 1/qo. If it turns out that the simulator guessed wrong, it simply
aborts the simulation.
If the simulator guesses that a is not the challenge point, the simulator chooses a random number and
returns it to the adversary.
If the simulator guesses that a will bet the challenge point, the simulator carefully crafts the response
ri so that it satisfies the following equations:

ri(ti − ai) + ti+1 − ai+1 = λi(τ + c) (C.17)

23

where c was chosen uniformly at random in the initialization stage of the simulation. However, note
that in the initialization phase, the simulator had set ti = χiτ + ζi for i = 1, . . . , n. By doing some
algebra, one can see that, for Equation C.17 to hold for all τ ∈ Zp, the simulator needs to set

ri =
ζi+1 − cχi+1 − ai+1 − ai

cχi − ζi
(C.18)

and
λi =

χiζi+1 − χi+1ζi − χiai+1 − χiai
cχi − ζi

(C.19)

where cχi − ζi 6= 0 except with negligible probability. The simulator now returns this ri to the
adversary.

4. Forgery. The adversary outputs a forgery (a, v, w). The forgery consists of a claimed outcome
v 6= f(a) of the polynomial at a, a witnessw = (w1, w2, . . . , wn−1) and coefficients βd, βd−1, . . . , β0

of a polynomial π(tn), namely it holds

π(tn) = βdt
d
n + βd−1t

d−1
n−1 + . . .+ β0 .

If it turns out that the challenge point a was not what the simulator guessed in the random oracle
queries, then the simulator simply aborts.
The simulator will now leverage this forgery to break the `-SBDH instance it got from the challenger.
Specifically, let δ = f(a)−v 6= 0 ∈ Zp, i.e., the difference between the true outcome and the claimed
outcome. Since the verification succeeds, we have

e (g, g)f(t)−v =
∏

i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gπ(tn)

)
.

Or equivalently,

e (g, g)f(t)−f(a)+δ =
∏

i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gπ(tn)

)
. (C.20)

Due to Corollary 2, the simulator can find polynomials q1(t), q2(t), . . . , qn(tn) such that

f(t)− f(a) =
∑

i∈[n−1]

[ri(ti − ai) + ti+1 − ai+1] qi(t) + (tn − an)qn(tn) .

Therefore, we can re-write Equation C.20 as below (note that qn(tn) is a polynomial in one variable,
the variable tn):

e (g, g)δ+(tn−an)[qn(tn)−π(tn)] =
∏

i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wig

−qi(t)
)
. (C.21)

Note now that by Equation C.17, it is ri(ti−ai) + ti+1−ai+1 = λi(τ + c). Therefore Equation C.23
can be written as

e (g, g)δ+(tn−an)[qn(tn)−π(tn)] =
∏

i∈[n−1]

e
(
gλi(τ+c), wig

−qi(t)
)
. (C.22)

Consider now the polynomial z(tn) = δ + (tn − an)[qn(tn) − π(tn)], which is a polynomial in one
variable tn. Also recall that tn = χnτ + ζn. Therefore

z(tn) = y(τ) = δ + (χnτ + ζn − an)[qn(χnτ + ζn)− π(χnτ + ζn)] .

24

Note that since δ 6= 0, y(τ) is not the zero polynomial. Therefore, the simulator can divide it with
t+ c and therefore it can be written as

y(τ) = Π(τ)(τ + c) + γ ,

where not both Π(t) and γ can be zero. Specifically, γ 6= 0 with overwhelming probability 1− d/2k.
This is because if γ = 0, τ + c divides y(τ). However y(τ) has at most d divisors of the form
(τ + A) (as many as its maximum number of roots) and c is chosen at random from Zp. Therefore
Equation C.22 can be written as

e (g, g)Π(τ)(τ+c)+γ =
∏

i∈[n−1]

e
(
gλi(τ+c), wig

−qi(t)
)
, (C.23)

which gives

e (g, g)
1
τ+c =

 ∏
i∈[n−1]

e
(
gλi , wig

−qi(t)
)
e (g, g)−Π(τ)

γ−1

.

Therefore the simulator is able to break the `-SBDH assumption. This completes the proof.

C.3 Adaptively secure PVC for multivariate polynomial evaluation
We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger C.
The simulator S then embeds this `-SBDH assumption into an instance of the PVC scheme—such that if
an adversary A can break the full security of the PVC scheme with more than negligible probability when
interacting with the simulator, the simulator S can then leverage the adversary A to break the `-SBDH
instance it obtained from from the challenger, also with non-negligible probability.

Assume that the simulator S obtains the following `-SBDH assumption from the challenger C, where
` = d (the maximum degree of a monomial):(

g, gτ , gτ
2
, . . . , gτ

`
)
.

1. Initialization. The simulator runs algorithm KeyGen which outputs (PK, SK) and then gives PK to
the adversary but maintains SK secret. To do that, the simulator needs to choose a random point t and
create the corresponding signature generation setWn,d at the chosen point t. The simulator implicitly
sets

ti = χiτ + ζi for i = 1, . . . , n , (C.24)

where χi and ζi are chosen uniformly at random. The simulator remembers the values of all χi’s and
ζi’s for later usage. Now the simulator needs to compute Wn,d. The problem is that the simulator
does not actually know the ti’s, since these values are inherited and transformed from the `-SBDH
assumption it obtained from the challenger. Fortunately, observe that the simulator can still compute
all terms inWn,d since when one plugs in Equations C.37, it is not hard to see that all terms inWn,d

are essentially of the form gq(τ), where q(τ) is some polynomial of degree at most d. Since the
simulator knows the values (

g, gτ , gτ
2
, . . . , gτ

`
)
,

it can easily compute all of these terms. Notice that in the above simulation the terms generated by
the simulator are identically distributed as running the real KeyGen and Setup algorithms, since every
χi and ζi are chosen uniformly at random.

25

2. Setup and Update. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algo-
rithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where
k = poly(λ), he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi)
algorithm, each time specifying fi ∈ F . The simulator answers the queries by returning the resulting
FK(fi). It is not hard to see that the simulator does not need to know the ti’s to update FK(fi);

3. Challenge and forgery. The adversary A outputs a point a ∈ domain(fk) and sends point a to the
simulator. The simulator outputs chal(a), not by calling Challenge(PK,b), but in the following way.
He carefully computes the random numbers r1, r2, . . . , rn−1 so that they satisfy the equations

ri(ti − ai) + ti+1 − ai+1 = λi(τ + c) for i = 1, . . . , n− 1 , (C.25)

where c is chosen uniformly at random. However, note that in the initialization phase, the simulator
had set ti = viτ +wi for i = 1, . . . , n. By doing some algebra, one can see that, for Equation C.25 to
hold for all τ ∈ Zp, the simulator needs to set

ri =
ζi+1 − cχi+1 − ai+1 − ai

cχi − ζi
for i = 1, . . . , n− 1 , (C.26)

and
λi =

χiζi+1 − χi+1ζi − χiai+1 − χiai
cχi − ζi

for i = 1, . . . , n− 1 , (C.27)

where cχi − ζi 6= 0 with overwhelming probability. Note that each number ri has two degrees of
freedom (wi+1 and vi+1), therefore, since wi and vi are chosen uniformly at random at initialization
phase, it follows that r1, r2, . . . , rn−1 appear random to the adversary. The simulator now sends
chal(b) = [r1 r2 . . . rn−1] to the adversary, where each ri is given in Equation C.26.
Then the adversary outputs the forgery (a, v, w). The forgery consists of a claimed outcome v 6= f(a)
of the polynomial at a, a witness w = (w1, w2, . . . , wn−1) and coefficients βd, βd−1, . . . , β0 of a
polynomial π(tn), namely it holds

π(tn) = βdt
d
n + βd−1t

d−1
n−1 + . . .+ β0 .

The simulator will now leverage this forgery to break the `-SBDH instance it got from the challenger.
Specifically, let δ = f(a)−v 6= 0 ∈ Zp, i.e., the difference between the true outcome and the claimed
outcome. Since the verification succeeds, we have

e (g, g)f(t)−v =
∏

i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gπ(tn)

)
.

Or equivalently,

e (g, g)f(t)−f(a)+δ =
∏

i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
e
(
gtn−an , gπ(tn)

)
. (C.28)

Due to Lemma 2, the simulator can find polynomials q1(t), q2(t), . . . , qn(tn) such that

f(t)− f(a) =
∑

i∈[n−1]

[ri(ti − ai) + ti+1 − ai+1] qi(t) + (tn − an)qn(tn) .

Therefore, we can re-write Equation C.28 as below (note that qn(tn) is a polynomial in one variable,
the variable tn):

e (g, g)δ+(tn−an)[qn(tn)−π(tn)] =
∏

i∈[n−1]

e
(
gri(ti−ai)+ti+1−ai+1 , wig

−qi(t)
)
. (C.29)

26

Note now that by Equation C.25, it is ri(ti−ai) + ti+1−ai+1 = λi(τ + c). Therefore Equation C.29
can be written as

e (g, g)δ+(tn−an)[qn(tn)−π(tn)] =
∏

i∈[n−1]

e
(
gλi(τ+c), wig

−qi(t)
)
. (C.30)

Consider now the polynomial z(tn) = δ + (tn − an)[qn(tn) − π(tn)], which is a polynomial in one
variable tn. Also recall that tn = χnτ + ζn. Therefore

z(tn) = y(τ) = δ + (χnτ + ζn − an)[qn(χnτ + ζn)− π(χnτ + ζn)] .

Note that since δ 6= 0, y(τ) is not the zero polynomial. Therefore, the simulator can divide it with
t+ c and therefore it can be written as

y(τ) = Π(τ)(τ + c) + γ ,

where not both Π(t) and γ can be zero. Specifically, γ 6= 0 with overwhelming probability 1− d/2k.
This is because if γ = 0, τ + c divides y(τ). However y(τ) has at most d divisors of the form
(τ + A) (as many as its maximum number of roots) and c is chosen at random from Zp. Therefore
Equation C.31 can be written as

e (g, g)Π(τ)(τ+c)+γ =
∏

i∈[n−1]

e
(
gλi(τ+c), wig

−qi(t)
)
, (C.31)

which gives

e (g, g)
1
τ+c =

 ∏
i∈[n−1]

e
(
gλi , wig

−qi(t)
)
e (g, g)−Π(τ)

γ−1

.

Therefore the simulator is able to break the `-SBDH assumption. This completes the proof.

C.4 Selectively secure SCC for multivariate polynomial differentiation
We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger C.
The simulator S then embeds this `-SBDH assumption into an instance of the SCC scheme—such that if
an adversary A can break the full security of the SCC scheme with more than negligible probability when
interacting with the simulator, the simulator S can then leverage the adversary A to break the `-SBDH
instance it obtained from from the challenger, also with non-negligible probability.

Assume that the simulator S obtains the following `-SBDH assumption from the challenger C, where
` = (k + 1)d: (

g, gτ , gτ
2
, . . . , gτ

`
)
.

1. Initialization. The adversary first commits to a challenge point

a = [a1, a2, . . . , an] .

The simulator runs algorithm KeyGen which outputs (PK, SK) and then gives PK to the adversary
but maintains SK secret. To do that, the simulator needs to choose a random point t and create the
corresponding signature generation setWn,d at the chosen point t. The simulator guesses at random
an index j ∈ [n], and an order 0 ≤ k ≤ d—such that in the challenge stage, the adversary will output
a forgery for the k-th derivative

∂kf(x)

∂xkj

27

at point a. If this guess turns out to be wrong later, the simulation simply aborts. Notice that the
simulator can guess right with probability 1

nd .
For the chosen coordinate j, the simulator implicitly lets

tj = τ , (C.32)

without actually computing tj .
For i 6= j, the simulator picks random ri ∈ Zp, and implicitly chooses

ti = ri(τ − aj)k+1 + ai , (C.33)

without actually computing the values. The simulator remembers the values of all ri’s for later usage.
Now the simulator needs to computeWn,d. The problem is that the simulator does not actually know
the ti’s, since these values are inherited and transformed from the `-SBDH assumption it obtained
from the challenger. Fortunately, observe that the simulator can still compute all terms inWn,d since
when one plugs in Equations C.37, it is not hard to see that all terms in Wn,d are essentially of the
form gq(τ), where q(τ) is some polynomial of degree at most d. Since the simulator knows the values(

g, gτ , gτ
2
, . . . , gτ

`
)
,

it can easily compute all of these terms. Notice that in the above simulation the terms generated by
the simulator are identically distributed as running the real KeyGen algorithm.

2. Setup and Update. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algo-
rithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where
k = poly(λ), he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi)
algorithm, each time specifying fi ∈ F . The simulator answers the queries by returning the resulting
FK(fi). It is not hard to see that the simulator does not need to know the ti’s to update FK(fi);

3. Forgery. The adversary outputs a forgery for the committed point a, evaluating the derivative

∂kf(x)/∂xkj

at point a. If the values of k and j turn out to be different that what the simulator guessed, simply
abort the simulation. As mentioned earlier, the simulator can guess correctly with probability 1

nd .
The forgery consists of some FK(f), a claimed derivative v for ∂kf(x)/∂xkj (a), and a witness parsed
as:

w = (w2, w3, . . . , wn, ω, ck−1, ck−2 . . . , c0) .

Due to the security of the signature scheme, FK(f) must be an output of one of the oracle queries to
either Setup or Update—since otherwise, one can leverage this adversary and build a straightforward
reduction to break the security of the signature scheme. Let f denote the corresponding input of that
oracle query which resulted in FK(f). If the forgery is successful, the following must be true:

v 6= ∂kf(x)

∂xkj
(a) and Verify(FK,x, v, w, k, i) = 1 .

The simulator will now leverage this forgery to break the (k + 1)d-SBDH instance it got from the
challenger. Since the verification succeeds, the following holds:

e
(
gf(t), g

)
=
∏
i 6=j

e
(
gtig−ai , wi

)
· e
(
g(tj−aj)k+1

, ω
)
·
k∏
i=0

e
(
gt
i
j , g
)ci

, (C.34)

28

where ck = v
k! . The simulator now decomposes f(t) as in Lemma 3.

f(t) =
∑
i 6=j

(ti − ai)ûi(t) + (xj − aj)k+1q̂(tj) + ĉkt
k
j + ĉk−1t

k−1
j + . . .+ ĉ1tj + ĉ0 .

Notice that we use the convention that the hatted values correspond to the correct decomposition of
the polynomial which is performed by the simulator. The unhatted versions of the same variables are
those returned by the adversary. They may not be from the correct the decomposition, however, the
verification equation (Equation C.34) still holds. Rewrite Equation C.34 as:

k∏
i=0

e
(
gt
i
j , g
)ĉi−ci

= e
(
g(tj−aj)k+1

, ωg−q̂(t)
)∏
i 6=j

e
(
gti−ai , wig

−û(t)
)
. (C.35)

Due to Equation C.33, for i 6= j, we have

ti − ai = ri (tj − aj)k+1 = ri (τ − aj)k+1 .

The simulator can raise the right-hand side of Equation C.35 to 1
(τ−aj)k+1 , by computing the following:

e
(
g, ωg−q̂(t)

)∏
i 6=j

e
(
gri , wig

−û(t)
)
.

Notice that the simulator is able to compute the values gq̂(t) and gû(t) (evaluated at t) simply by using
terms contained inWn,d, even though the simulator does not know the value of t in the clear.
Let ∆i = ĉi − ci. The simulator now has the following:

e (g, g)

∑k
i=0 ∆iτ

i

(τ−aj)k+1
= e

(
g, ωg−q̂(t)

)∏
i 6=j

e
(
gri , wig

−û(t)
)
. (C.36)

Note here that
∑k

i=0 ∆iτ
i is not the zero polynomial since, ĉk − ck 6= 0—this is due to the fact that v

is not the correct derivative and ĉk = v/k! but however ck = u/k!, where u is the correct derivative.
We now prove the following lemma.

Lemma 5 Given e (g, g)

∑k
i=0 ∆iτ

i

(τ−aj)k+1 from Equation C.36, the simulator can break the (k + 1)d-SBDH
assumption.

Suppose, without loss of generality that
∑k

i=0 ∆iτ
i does not divide (τ − aj)

k+1. If not, one can
cancel out the (τ − aj) factors appearing in polynomial

∑k
i=0 ∆iτ

i, which yields prime polynomials.
Then, by using the extended Euclidean algorithm, the simulator can compute polynomials g(τ) and
f(τ) such that

g(τ)

k∑
i=0

∆iτ
i + f(τ)(τ − aj)k+1 = 1⇒ g(τ)

k∑
i=0

∆iτ
i = 1− f(τ)(τ − aj)k+1 .

Therefore Equation C.36 is equivalent to

e (g, g)

1−f(τ)(τ−aj)k+1

(τ−aj)k+1
= e

(
gg(τ), ωg−q̂(t)

)∏
i 6=j

e
(
grig(τ), wig

−û(t)
)
,

29

yielding

e (g, g)
1

(τ−aj)k+1
= e (g, g)f(τ) e

(
gg(τ), ωg−q̂(t)

)∏
i 6=j

e(grig(τ), wig
−û(t)) ,

which eventually gives

e (g, g)
1

τ−aj = e (g, g)f(τ)(τ−aj)k e
(
gg(τ)(τ−aj)k , ωg−q̂(t)

)∏
i 6=j

e
(
grig(τ)(τ−aj)k , wig

−û(t)
)
.

In other words, unless the adversary honestly follows the protocol, the simulator will be able to break
the (k + 1)d-SBDH assumption.

C.5 Adaptively secure SCC for multivariate polynomial differentiation
We now build a simulator S which obtains an instance of the `-SBDH assumption from a challenger C.
The simulator S then embeds this `-SBDH assumption into an instance of the SCC scheme—such that if
an adversary A can break the full security of the SCC scheme with more than negligible probability when
interacting with the simulator, the simulator S can then leverage the adversary A to break the `-SBDH
instance it obtained from from the challenger, also with non-negligible probability. Our proof is under the
random oracle model, i.e., the simulator also implements a random oracle for the adversary to query.

Assume that the simulator S obtains the following `-SBDH assumption from the challenger C, where
` = d (the maximum degree of a monomial):(

g, gτ , gτ
2
, . . . , gτ

`
)
.

1. Initialization. The simulator runs algorithm KeyGen which outputs (PK, SK) and then gives PK to
the adversary but maintains SK secret. To do that, the simulator needs to choose a random point t and
create the corresponding signature generation setWn,d at the chosen point t. The simulator implicitly
sets tn = τ and

ti = χiτ + ζi for i = 1, . . . , n− 1 , (C.37)

where χi and ζi are chosen uniformly at random. The simulator remembers the values of all χi’s and
ζi’s for later usage. Now the simulator needs to compute Wn,d. The problem is that the simulator
does not actually know the ti’s, since these values are inherited and transformed from the `-SBDH
assumption it obtained from the challenger. Fortunately, observe that the simulator can still compute
all terms inWn,d since when one plugs in Equations C.37, it is not hard to see that all terms inWn,d

are essentially of the form gq(τ), where q(τ) is some polynomial of degree at most d. Since the
simulator knows the values (

g, gτ , gτ
2
, . . . , gτ

`
)
,

it can easily compute all of these terms. Notice that in the above simulation the terms generated by
the simulator are identically distributed as running the real KeyGen and Setup algorithms, since every
vi and wi are chosen uniformly at random.
The simulator also chooses a random secret c ∈ Zp, which will be useful later in answering random
oracle queries.

2. Setup and Update. The adversary initially makes an oracle query to the Setup(SK,PK, f0) algo-
rithm, specifying an initial function f0 ∈ F , outputting FK(f0). Then, for i = 1, . . . , k, where
k = poly(λ), he makes a polynomial number of oracle queries to the Update(SK,PK,FK(fi−1), fi)
algorithm, each time specifying fi ∈ F . The simulator answers the queries by returning the resulting
FK(fi). It is not hard to see that the simulator does not need to know the ti’s to update FK(fi);

30

3. Random oracle queries. Upon each random oracle query a||ind||k||i, the simulator guesses if
(a, ind, k) is going to be the challenge point in the challenge phases. Since the same (a, ind, k)
may be queried multiple times with different values of i, it is possible that the guess has been made
before. In this case, just use the previous guess for (a, ind, k). Let qo denote the total number of
random oracle queries. The simulator can guess right with probability at least 1/qo. If it turns out that
the simulator guessed wrong, it simply aborts the simulation.
If the simulator guesses that (a, ind, k) is not the challenge point, the simulator chooses a random
number and returns it to the adversary.
If the simulator guesses that (a, ind, k) will bet the challenge point, the simulator carefully crafts the
response ri so that it satisfies the following equations:

ri(ti − ai) + ti+1 − ai+1 = λi(τ − an) . (C.38)

However, note that in the initialization phase, the simulator had set ti = χiτ + ζi for i = 1, . . . , n− 1
and tn = τ By doing some algebra, one can see that, for Equation C.38 to hold for all τ ∈ Zp, the
simulator needs to set

ri =
ζi+1 − anχi+1 − ai+1 − ai

cχi − ζi
for i = 1, . . . , n− 2 , (C.39)

and
λi =

χiζi+1 − χi+1ζi − χiai+1 − χiai
anχi − ζi

for i = 1, . . . , n− 2 , (C.40)

where anχi − ζi 6= 0 except with negligible probability. The simulator now returns this ri to the
adversary.

4. Forgery. The adversary outputs a forgery (a, k, v, w). The forgery consists of a claimed outcome
v 6= f [k](a) of the polynomial at a, a witness w = (w1, w2, . . . , wn−2), the polynomials un−1(x), wn
and the numbers c0, c2, . . . , ck. If it turns out that the challenge point a was not what the simulator
guessed in the random oracle queries, then the simulator simply aborts.
Since the verification succeeds, we have

e (g, g)f(t) =
n−2∏
i=1

e
(
gri(ti−ai)+ti+1−ai+1 , wi

)
·e
(
gtn−1−an−1 , gun−1(t)

)
·e
(
g(tn−an)k+1

, wn

)
·
k∏
i=0

e
(
gt
i
n , g
)ci

.

(C.41)
Due to Lemma 4, the simulator can find polynomials u1(t), u2(t), . . . , un−2(t), ûn−1(t) and q̂(tn)
and numbers ĉi for i = 0, . . . , k such that

f(x) =
n−2∑
i=1

[ri(xi−ai)+xi+1−ai+1]ui(x)+(xn−1−an−1)un−1(x)+(xn−an)k+1q(xn)+ckx
k
n+

k∑
i=0

cix
i
n .

Therefore, by replacing ri(ti − ai) + ti+1 − ai+1 = λi(τ − an) from Equation C.17, we can re-write
Equation C.41 as below

e(g, g)
∑k
i=0(ĉi−ci)tin =

n−2∏
i=1

e
(
gλi(τ−an), wig

−ui(t)
)
·e
(
gtn−1−an−1 , gun−1(t)−ûn−1(t)

)
·e
(
g(tn−an)k+1

, wng
−q̂(tn)

)
,

which can be further be written as

e(g, g)
∑k
i=0(ĉi−ci)tin−(tn−1−an−1)un−1(t)−ûn−1(t) =

n−2∏
i=1

e
(
gλi(τ+c), wig

−ui(t)
)
e
(
g(tn−an)k+1

, wng
−q̂(tn)

)
.

31

Note now that both side are divisible by (τ − an) since ti = χiτ + ζi = λi(τ − an) for i 6= n (and
tn = τ) and the polynomial in the exponent at the left hand side is not the zero polynomial (this is
because ĉk 6= ck since the derivative is wrong). Therefore the simulator can write the above equation
as

e(g, g)(τ−an)Π(t)+γ =

n−2∏
i=1

e
(
gλi(τ−an), wig

−ui(t)
)
e
(
g(τ−an)k+1

, wng
−q̂(tn)

)
.

which gives

e (g, g)
1

τ−an =

(
n−2∏
i=1

e
(
gλi , wig

−ui(t)
)
e
(
g(tn−an)k , wng

−q̂(tn)
)
e (g, g)−Π(τ)

)γ−1

.

Therefore the simulator is able to break the `-SBDH assumption. This completes the proof.

D Smaller signature generation set for smaller polynomials
In our basic constructions, the signature generation set Wn,d contains one term corresponding to every
possible monomial with at most n variables and degree d. Therefore, the signature generation set is of size(
n+d
d

)
—the number of multisets of d elements chosen among n+ 1 things (the n variables and the constant

1).
In practice, if a polynomial is smaller in size when expressed as a sum of product terms, one can po-

tentially reduce the size ofWn,d. Specifically, for every monomial
∏
i∈S x

S(i)
i contained in the polynomial,

represented by multiset S, the server just needs the following terms (monomials) to appear inWn,d:

∀T ⊆ S : g
∏
i∈T t

T (i)
i , (D.42)

where T ⊆ S if and only if T (i) ≤ S(i) ∀i ∈ [n]. Therefore, if each variable has O(1) degree, and there
are at most m terms in the polynomial, then the total size ofWn,d will be O(m).

Notice that if this optimization is used, the Update algorithm needs to be modified accordingly. Specifi-
cally, if a new monomial corresponding to the multiset S is added during an update, then the trusted source
also has to additionally expand the public key PK and compute and transfer the terms contained in Equa-
tion D.42 to the server during an update.

E Input and output privacy
Consider a verifiable computation setting involving a pharmaceutical company: We showed in previous sec-
tions how a PVC scheme is required to assure that the untrusted provider, on input the genome data received
by the patients, correctly executes the genome analysis algorithm on behalf of the pharmaceutical company.
However, the patient’s sensitive genome data is still in plaintext, directly readable by the untrusted provider!
To offer input and output privacy, we could potentially use a fully-homomorphic public-key encryption
scheme [17] (FHE scheme) so that algorithm Compute executed by the untrusted server could operate on
encrypted points. In this way, everybody that knows pk (i.e., the public key of user A) could send queries to
the server. After Compute executes on the encryption of some point a, it outputs the encrypted version of a
witness w and of the value v = P (a) under the public key pk, allowing only the owner of the secret key to
decrypt and retrieve (and verify) the output of the computation.

One of the main limitations of the PVC scheme with I/O privacy is the fact that Alice cannot verify the
output to a query that was encrypted under Bob’s public key, since this would require Alice having access to
Bob’s secret key, so that she can decrypt the output of algorithm Compute. However, our scheme with I/O
privacy retains its core public verifiability properties and has the following unique features:

32

1. Consider the pharmaceutical company example again, where a doctor is responsible for collecting the
outputs of the function f executed on the genome of many patients. In this way, the doctor could study
the results and send his personalized recommendations to the patients. Our model makes that feasible
by having all patients encrypting their genome data under the doctor’s public key. Then Algorithm
Compute will execute and will eventually output results that can only be decrypted by the doctor. This
enables the doctor to analyze verifiable computations across patients in a private way (i.e., only the
doctor will learn information about the patients data). Note that this was not feasible in recent works
on verifiable computation in the secret key setting (e.g., [1, 9, 10, 15]), where a doctor would only be
able to analyze his data;

2. Consider now a different scenario where a every patient would like to execute function f in a verifi-
able fashion on his genome data without revealing the output to anyone else. In this case, a patient
could encrypt his genome under his public key and have the cloud execute Compute under his public
key. Note that this does not involve a preprocessing phase of complexity proportional to the size of
the circuit evaluated by Compute at the client side. After the execution of algorithm Setup by the
pharmaceutical company (which is done once), the only action required by each patient is executing
an algorithm to encrypt the input which takes constant time. This property again is not achievable
in recent works on verifiable computation in the secret key setting (e.g., [1, 9, 10, 15]), where every
patient would have to do separate expensive preprocessing based on his secret key.

F Applications
Polynomial evaluation has a wide range of applications in everyday cloud computations as they are widely
used for statistical purposes (e.g., computing statistical measures, machine learning) and scientific comput-
ing (e.g., solving a system of equations). Moreover several useful constructions are also enabled by verifying
polynomial operations, such as accumulators [30], verifiable set operations [33], verifiable databases [3] and
proofs of retrievability [3].

Although applications of polynomial evaluation are more straightforward, one might wonder what is the
meaning of a derivative in Zp and why its verification can be of any use. Derivatives in Zp have applications
in coding theory. For example, the r-th Hasse derivative f [r](x) of polynomials in finite fields is used
by various families of codes [11], and is directly related to classic Newton-Leibniz r-th derivative f (r)(x)
through a simple formula, i.e., f (r)(x) = r!f [r](x). Therefore, verification of the classic derivative in Zp
directly enables the verification of the Hasse derivative. Also, recently Guruswami and Wang [24] presented
a family of codes, called derivative codes whose function depends on the evaluations of the first m − 1
classic Newton-Leibniz derivatives at n distinct field elements. Therefore, we can envision the encoding and
decoding algorithms of such family of codes running in the cloud and having respective clients verifying
their function by using our publicly verifiable derivative evaluation schemes.

33

	Introduction
	Results and contributions
	Related work
	Highlights of techniques

	Preliminaries, definitions and assumptions
	Problem definition
	Correctness and security definitions
	SCC implies PVC
	Multivariate polynomials notation
	Bilinear groups and computational assumption

	Selectively secure multivariate polynomial evaluation
	Intuition
	Detailed construction
	Selective security proof sketch

	Adaptively secure multivariate polynomial evaluation
	Intuition
	Detailed construction
	Adaptive security proof sketch
	An adaptively secure PVC scheme without random oracles

	SCC schemes for polynomial differentiation
	Intuition
	Detailed construction

	Asymptotic cost analysis
	Extensions and observations
	I/O privacy
	Removing the random oracles through stronger assumptions

	Definitions
	Constructions
	Construction of adaptively secure PVC for multivariate polynomial evaluation
	Construction of selectively secure SCC scheme for multivariate polynomial differentiation

	Proofs
	Selectively secure SCC for multivariate polynomial evaluation
	Adaptively secure SCC for multivariate polynomial evaluation
	Adaptively secure PVC for multivariate polynomial evaluation
	Selectively secure SCC for multivariate polynomial differentiation
	Adaptively secure SCC for multivariate polynomial differentiation

	Smaller signature generation set for smaller polynomials
	Input and output privacy
	Applications

