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Abstract. We address a lattice based method on small secret exponent
attack on RSA scheme. Boneh and Durfee reduced the attack into finding
small roots of a bivariate modular equation: x(N+1+y)+1 ≡ 0( mod e),
where N is an RSA moduli and e is the RSA public key. Boneh and Dur-
fee proposed a lattice based algorithm for solving the problem. When the
secret exponent d is less than N0.292, their method breaks RSA scheme.
Since the lattice used in the analysis is not full-rank, the analysis is
not easy. Blömer and May gave an alternative algorithm. Although their
bound d ≤ N0.290 is worse than Boneh–Durfee result, their method used
a full rank lattice. However, the proof for their bound is still complicated.
Herrmann and May gave an elementary proof for the Boneh–Durfee’s
bound: d ≤ N0.292. In this paper, we first give an elementary proof for
achieving the bound of Blömer–May: d ≤ N0.290. Our proof employs un-
ravelled linearization technique introduced by Herrmann and May and
is rather simpler than Blömer–May’s proof. Then, we provide a unified
framework to construct a lattice that are used for solving the problem,
which includes two previous method: Herrmann–May and Blömer–May
methods as a special case. Furthermore, we prove that the bound of
Boneh–Durfee: d ≤ N0.292 is still optimal in our unified framework.

Keywords: LLL algorithm, small inverse problem, RSA, lattice-based
cryptanalysis

1 Introduction

1.1 Background

RSA cryptosystem is the widely used cryptosystem [12]. Let N be an
RSA moduli and d be an RSA secret key. The small secret exponent d
is often used to speed up the decryption or signature generation in some
cryptographic applications. However, it is well known that RSA scheme
is easily broken if secret exponent d is small.
⋆ This is the full version of [9]



In 1990, Wiener [14] showed that RSA scheme is broken by using
continued fraction expansion when d < 1

3N1/4. In 1999, Boneh and Durfee
reduced the small secret exponent attack into finding small roots of a
bivariate modular equation:

x(A + y) ≡ 1(mod e)

and then proposed two algorithms for solving the problem [2]. They re-
ferred to the problem as the small inverse problem. Their algorithms are
based on Coppersmith’s approach [3–5]. Their first algorithm breaks RSA
scheme when d ≤ N0.284. Then, they presented another algorithm for solv-
ing the small inverse problem and improved the bound to d ≤ N0.292. It
employed a non-full rank lattice for improving the bound. Evaluation of
a volume of non-full rank lattice was needed in evaluating the bound,
which is not so easy task in general. To overcome this difficulty, they in-
troduced a concept of “Geometrically Progressive Matrix” and succeeded
to evaluate an upper bound of its volume [2]. However, its proof is rather
complicated.

In 2001, Blömer and May proposed another algorithm for solving the
small inverse problem [1]. When d ≤ N0.290, their method solves the
small inverse problem. One of good properties is that the lattice used
in their method is full rank. However, the analysis for bound is still
complicated. In 2010, Herrmann and May [7] presented another algo-
rithm which achieves Boneh–Durfee’s improved bound: d ≤ N0.292. In
their proof, they employed unravelled linearization technique introduced
in Asiacrypt2009 [6]. As opposed to the Boneh–Durfee’s method, their
method used a full rank lattice.

1.2 Our Contributions

In this paper, we first give a novel method for achieving the bound of
Blömer–May by using unravelled linearization technique, which is also
used in the proof of Herrmann–May. We use the same set of shift-polynomials
as Blömer–May’s and show that our method achieves the same bound
as that of Blömer–May: d ≤ N0.290. Nevertheless, our proof is rather
simpler than Blömer–May’s original proof. Next, we provide a unified
framework which includes two previous methods: Herrmann–May’s and
Blömer–May’s as a special case. Our framework captures well the lattice
structure in the previous methods. Then, we derive a condition such that
the small inverse problem can be solved in polynomial time and make an
optimization in our framework. Since our framework includes Herrmann–
May’s method, we have a chance to go beyond the Boneh–Durfee’s bound:
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d ≤ N0.292. Unfortunately, that does not happen. We prove that the
bound d ≤ N0.292 is still optimal in our framework (Theorem 3). Then, we
present a hybrid method which enjoys the both advantages of Herrmann–
May’s and Blömer–May’s methods. Finally, we generalize to the case when
the upper bound of solution y is much smaller than e1/2. We show that
Blömer–May’s method can be superior to Boneh–Durfee’s method and is
optimal in our framework (Theorem 4).

1.3 Organization

Section 2 gives preliminaries and reviews previous known results. In Sec-
tion 3, we present an elementary proof for Blömer–May’s bound: d ≤
N0.290. In Section 4, we present a unified framework which includes Herrmann–
May’s proof and Blömer–May’s proof as a special case. Then, we show a
condition that the problem is solvable in polynomial time. Then, we prove
that the Boneh–Durfee’s bound: d ≤ N0.292 is optimal in our framework.
In Section 5, we extend to more general situation and discuss its optimal
bound in our framework. Section 6 concludes our paper.

2 Preliminaries

First, we briefly recall the LLL algorithm and Howgrave-Graham’s lemma.
Then, we review the small secret exponent attack on RSA cryptosys-
tem [2] and introduce the “small inverse problem.” Then, we explain
previous algorithms for solving the small inverse problem.

2.1 The LLL Algorithm and Howgrave-Graham’s Lemma

For a vector b, ||b|| denotes the Euclidean norm of b. For an n-variate
polynomial h(x1, . . . , xn) =

∑
hj1,...,jnxj1

1 · · ·xjn
n , define the norm of a

polynomial as ||h(x1, . . . , xn)|| =
√∑

h2
j1,...,jn

. That is, ||h(x1, . . . , xn)||
denotes the Euclidean norm of the vector which consists of coefficients of
h(x1, . . . , xn).

Let B = {aij} be a non-singular w × w square matrix of integers.
The rows of B generate a lattice L, a collection of vectors closed under
addition and subtraction; in fact the rows forms a basis of L. The lattice
L is also represented as follows. Letting ai = (ai1, ai2, . . . , aiw), the lattice
L spanned by 〈a1, . . . , aw〉 consists of all integral linear combinations of
a1, . . . , aw, that is:

L =

{
w∑

i=1

niai|ni ∈ Z

}
.
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The volume of full-rank lattice is defined by vol(L) = |det(B)|.
The LLL algorithm outputs short vectors in a lattice L:

Proposition 1 (LLL [10]). Let B = {aij} be a non-singular w × w
matrix of integers. The rows of B generate a lattice L. Given B, the LLL
algorithm finds vectors b1, b2 ∈ L such that

||b1|| ≤ 2(w−1)/4(vol(L))1/w, ||b2|| ≤ 2w/4(vol(L))1/(w−1)

in time polynomial in (w, max log2 |aij |).

To convert the modular equation into an equation over the integers,
we use the following lemma.

Lemma 1 (Howgrave-Graham [8]). Let ĥ(x, y, z) ∈ Z[x, y, z] be a
polynomial, which is a sum of at most w monomials. Let m be a positive
integer and X,Y, Z and φ be some positive integers. Suppose that

1. ĥ(x̄, ȳ, z̄) = 0 mod φm, where x̄, ȳ and z̄ are integers such that |x̄| <
X, |ȳ| < Y, |z̄| < Z.

2. ||ĥ(xX, yY, zZ)|| < φm/
√

w.

Then ĥ(x̄, ȳ, z̄) = 0 holds over integers.

2.2 Small Inverse Problem [2]

Let (N, e) be a public key in RSA cryptosystem, where N = pq is the
product of two distinct primes. For simplicity, we assume that gcd(p −
1, q − 1) = 2. A secret key d satisfies that ed = 1 mod (p − 1)(q − 1)/2.
Hence, there exists an integer k such that ed+k((N+1)/2−(p+q)/2) = 1.
Writing s = −(p+q)/2 and A = (N+1)/2, we have k(A+s) = 1 ( mod e).

We set f(x, y) = x(A + y) + 1. Note that the solution of f(x, y) ≡
0(mod e) is (x, y) = (−k, s). If one can solve a bivariate modular equa-
tion: f(x, y) = x(A + y) + 1 = 0 (mod e), one has k and s and knows the
prime factors p and q of N by solving an equation: v2 + 2sv + N = 0.
Suppose that the secret key satisfies d ≤ N δ. Further assume that e ≈ N .
To summarize, the secret key will be recovered by finding the solution
(x, y) = (x̄, ȳ) of the equation:

f(x, y) = x(A + y) + 1 ≡ 0 (mod e),

where |x̄| < eδ and |ȳ| < e1/2. They referred to this as the small inverse
problem.
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2.3 Known Algorithms for Solving Small Inverse Problem

Boneh and Durfee proposed a lattice-based algorithm for solving the small
inverse problem [2]. First, we briefly recall the algorithm though we use
different symbols from the original description.

They define the polynomials g[i,j](x, y) := xif(x, y)jem−j and h[i,u](x, y) :=
yif(x, y)uem−u. The g[i,j] polynomials are referred as x-shifts and the
h[i,u] polynomials are referred as y-shifts. Let FBD(m; τ) be a set of shift-
polynomials. The set FBD(m; τ) is given by

GBD(m) := {g[u−i,i]|u = 0, . . . ,m; i = 0, . . . , u},
HBD(m; τ) := {h[i,u]|u = 0, . . . ,m; i = 1, . . . , τm} and
FBD(m; τ) := GBD(m) ∪HBD(m; τ).

They achieved a bound: d ≤ N0.284 using FBD(m; τ). We refer to this
method as Boneh–Durfee’s weaker method. Then, Boneh and Durfee im-
proved the bound to d ≤ N0.292 by removing y-shift polynomials whose
coefficient of leading term exceeds em. The resulting lattice is not full
rank and computing its volume is not easy. To overcome this difficulty,
they introduced a concept of “Geometrically Progressive Matrix” and
succeeded to obtain an upper bound of the volume. The analysis for its
bound, especially its volume evaluation, is rather complicated.

Blömer and May [1] presented another algorithm. Although the bound:
d ≤ N0.290 is worse than Boneh–Durfee’s bound, their method has several
interesting features. The first is that it requires a smaller lattice dimen-
sion for solving the problem. The second is that the involved lattice is
full rank and the analysis for the bound is simpler than Boneh–Durfee’s.
However, the evaluation of bound is still complicated.

Herrmann and May [7] proposed a novel method which achieves the
bound: d ≤ N0.292 by employing unravelled linearization technique. We
briefly recall Herrmann–May’s method. Note that we use different no-
tation from the original description of [7]. First, f(x, y) is transformed
into f(x, y) = x(A + y) + 1 = (xy + 1) + Ax. The first step of their
method is to perform a linearization of f(x, y) into f̄(x, z) := z + Ax by
setting xy + 1 = z. In a second step of analysis, xy is back-substituted
by xy = z − 1 for each occurrence of xy. They define the polynomials
as ḡ[i,j](x, z) := xif̄(x, z)jem−j and h̄[i,u](x, y, z) := yif̄(x, z)uem−u. Let τ
be an optimization parameter with 0 < τ ≤ 1. Let FHM(m; τ) be a set of
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shift-polynomials. The FHM(m; τ) is given by

GHM(m) := {ḡ[u−i,i]|u = 0, . . . ,m; i = 0, . . . , u},
HHM(m; τ) := {h̄[i,u]|u = 0, . . . ,m; i = 1, . . . , τu} and
FHM(m; τ) := GHM(m) ∪HHM(m; τ).

They achieved the bound: d ≤ N0.292 using FHM(m; τ). Note that its
lattice is also full rank.

3 A New Proof for Bound of Blömer–May: d ≤ N0.290

Blömer and May [1] presented the algorithm which achieves the bound:
d ≤ N0.290. Although this bound is worse than the result of Boneh–
Durfee, it has a desirable property. Since it uses full-rank lattice, the
analysis for bound is rather easy. On the other hand, Herrmann and
May [7] presented the algorithm which achieves d ≤ N0.292 by using un-
ravelled linearization technique. In this section, we provide a new proof for
the bound of Blömer–May: d ≤ N0.290 by using unravelled linearization
technique as like as the proof of Herrmann–May.

3.1 A Set of Shift-Polynomials

First, we transform f(x, y) = x(A + y) + 1 into f(x, y) = (xy + 1) + Ax.
We define z = xy + 1 and

f̄(x, z) := z + Ax

as well as Herrmann and May method [7]. Note that the term xy will
be replaced by xy = z − 1 for each occurrence of xy in the consequent
analysis.

We define shift-polynomials as follows. For x-shifts, we define

ḡ[i,k](x, z) := xif̄(x, z)kem−k.

Let z̄ = x̄ȳ + 1. It is easy to see that ḡ[i,k](x̄, z̄) = 0(mod em) for any
non-negative integers i and k. The upper bound of |z̄| is given by XY +1
and then we define Z = XY + 1.

For y-shifts, we set

h̄[i,k](x, y, z) := yif̄(x, z)kem−k.

It is easy to see that h̄[i,k](x̄, ȳ, z̄) = 0(mod em) for any non-negative
integers i and k.
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Remark 1. From the definition, it holds that ḡ[0,u](x, z) = h̄[0,u](x, y, z).

Next, we fix a set of indexes for shift-polynomials. Let t be a parameter
which is optimized later with 0 ≤ t ≤ m. Let FBM(m; t) be a set of shift-
polynomials. The set FBM(m; t) is given by

GBM(m; t) := {ḡ[u−i,i]|u = m − t, . . . ,m; i = 0, . . . , u},
HBM(m; t) := {h̄[i,u]|u = m − t, . . . ,m; i = 1, . . . , t − (m − u)} and
FBM(m; t) := GBM(m; t) ∪HBM(m; t).

Then, we define a polynomial order ≼ in FBM(m; t) as follows:

– ḡ[i,j] ≼ h̄[i′,u] for any i, j, i′, u

– ḡ[i,j] ≼ ḡ[i′,j′] if (i + j < i′ + j′) or (i + j = i′ + j′ and j ≤ j′)
– h̄[i,u] ≼ h̄[i′,u′] if (u < u′) or (u = u′ and i ≤ i′)

We write a ≺ b if a ≼ b and a ̸= b.
Regarding the set FBM(m; t) for shift-polynomials and the above poly-

nomial order, we have the following two lemmas.

Lemma 2. If ḡ[u−j,j] ∈ FBM(m; t) for j ≥ 1, then ḡ[u−j+1,j−1] ∈ FBM(m; t)
and ḡ[u−j+1,j−1] ≺ ḡ[u−j,j].

Lemma 3. If h̄[j,u] ∈ FBM(m; t), then h̄[j−1,u] and h̄[j−1,u−1] ∈ FBM(m; t).
Furthermore, it holds that h̄[j−1,u] ≺ h̄[j,u] and h̄[j−1,u−1] ≺ h̄[j,u].

Proof of Lemma 3 It is clear that h̄[j−1,u] ∈ FBM(m; t). Note that we
can ḡ[0,u] instead of h̄[0,u] since h̄[0,u] and ḡ[0,u] are identical from Remark 1.
Since h̄[j,u] ∈ FBM(m; t), it holds that 1 ≤ j ≤ u+t−m. Then, 0 ≤ j−1 ≤
(u − 1) + t − m. Hence, it holds that h̄[j−1,u−1] ∈ FBM(m; t). ⊓⊔

3.2 Expansions of Shift-Polynomials

First, we introduce some definitions.

Definition 1. We denote by S(f) a set of monomials appearing in ex-
pansion of f .

Note that a monomial xiyjzk with i, j ≥ 1 never appears in S(h[i,j](x, y, z))
since we replace xy by xy = z − 1. Hence, only the terms xizk and yjzk

appear in the expansion of shift-polynomials.

Definition 2. We say f(x, y, z) ∼= g(x, y, z) if S(f) = S(g).
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A lattice basis is constructed by using the coefficient vectors of shift-
polynomials in FBM(m; t) as basis vectors. Note that the coefficient vec-
tors of the shift-polynomials g[u−i,i](xX, zZ) and h[i,u](xX, yY, zZ) are
written as row vectors. Let BBM(m; t) be a matrix, where all rows of
BBM(m; t) are the coefficient vectors of shift-polynomials according to
the ordering of FBM(m; t).

Theorem 1. Let m and t be integers with t ≤ m. A lattice basis matrix
BBM(m; t) is triangular for any m and t.

Before giving a proof, we give three lemmas, whose proofs are given
in Appendix A.1.

Lemma 4. If 0 ≤ u ≤ m, S(ḡ[u,0] − emxu) = ∅.

Lemma 5. If 0 ≤ u ≤ m and 1 ≤ j ≤ u, S(ḡ[u−j,j] − em−jxu−jzj) =
S(ḡ[u−j+1,j−1]).

Lemma 6. If 1 ≤ u ≤ m and i ≥ 1, S(h̄[i,u]−em−uyizu) ⊆ S(h̄[i−1,u−1])∪
S(h̄[i−1,u]).

Proof of Theorem 1 We show that the number of monomials newly ap-
pearing in expansion of shift-polynomial is one for any shift-polynomials
in FBM(m; t). In this proof, we abbreviate FBM(m; t) as F . We define
Ff := {g ∈ F|g ≺ f} and S(Ff ) :=

∪
g∈Ff S(g). It is enough for proving

Theorem 1 to show that for any polynomial f ∈ F there exist a monomial
mf such that

– S(f − mf ) ⊆ S(Ff ) and
– mf ̸∈ S(Ff ).

From Lemmas 2–3 and 4–6, for any f ∈ F , there exists mf such that
S(f − mf ) ⊆ S(Ff ). We can easily verify that mf ̸∈ S(Ff ). Then, the
lattice basis matrix is triangular. ⊓⊔

We show an example for m = 2. We consider ḡ[1,2](x, z). The expan-
sion of ḡ[1,2](x, z) is given by x1(z + Ax)2 = xz2 + 2Ax2z + A2x3. Since
ḡ[1,2](x, z)−xz2 = 2Ax2z+A2x3, it holds that S(ḡ[1,2]−xz2) = {x2z, x3}.
On the other hand, since ḡ[2,1] = ex2(z + Ax) = ex2z + eAx3, it holds
that S(ḡ[2,1]) = {x2z, x3}. Then, S(ḡ[1,2] − xz2) = S(ḡ[2,1]) and Lemma 5
holds. We’ll show another example. We consider h̄[2,2](x, y, z). The expan-
sion of h̄[2,2](x, y, z) is given by y2(z +Ax)2 = y2z2 +2Axy2z+A2(xy)2 =
y2z2 +2Ay(z− 1)z +A2(z− 1)2 = y2z2 +2Ayz2 − 2Ayz +A2z2 − 2A2z +
A2. Then, we have S(h̄[2,2] − y2z2) = {yz2, yz, z2, z, 1}. On the other
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hand, since h̄[1,1] = ey(z + Ax) = eyz + Aexy = eyz + Ae(z − 1) =
eyz + Aez − Ae, we have S(h̄[1,1]) = {yz, z, 1}. Furthermore, we have
h̄[1,2] = y(z + Ax)2 = y(z2 + 2Axz + A2x2) = yz2 + 2Axyz + A2x2y =
yz2 + 2A(z − 1)z + A2x(z − 1) = yz2 + 2Az2 − 2Az + A2xz − A2x.
Hence, we have S(h̄[1,2]) = {yz2, z2, z, xz, x}. Then, it holds that S(h̄[2,2]−
y2z2) = {yz2, yz, z2, z, 1} ⊆ S(h̄[1,1]) ∪ S(h̄[1,2]) = {yz2, yz, z2, z, xz, x, 1}
and Lemma 6 holds.

3.3 Deriving the Bound of Blömer–May: d ≤ N0.290

A lattice basis is constructed by using coefficient vectors of x-shifts ḡ[i,k](xX, zZ)
in GBM(m; t) and y-shifts h̄[j,u](xX, yY, zZ) in HBM(m; t). We denote the
number of shift-polynomials used in x-shifts and y-shifts by wx and wy,
respectively. We also denote contributions in x-shifts and y-shifts to lat-
tice volume by vol(LX) and vol(LY ), respectively. The total number of
shift-polynomials w is given by w = wx + wy and a lattice volume vol(L)
is given by vol(L) = vol(LX)vol(LY ).

First, we derive wx and vol(LX). The lattice dimension wx is given
by wx =

∑m
l=m−t

∑l
k=0 1. The volume vol(LX) is given by

vol(LX) =
m∏

l=m−t

l∏
k=0

X l−kZkem−k = emwx

m∏
l=m−t

l∏
k=0

X l−k(Z/e)k.

Let vol(LX) = emwxXsXX (Z/e)sXZ . Each sXX and sXZ is explicitly given
as follows:

sXX =
m∑

l=m−t

l∑
k=0

l − k =
m3 − (m − t)3

6
+ o(m3) =

1 − (1 − η)3

6
m3 + o(m3)

sXZ =
m∑

l=m−t

l∑
k=0

k =
m3 − (m − t)3

6
+ o(m3) =

1 − (1 − η)3

6
m3 + o(m3),

where η := t/m. Then, we have

vol(LX) = emwxX(1−(1−η)3)m3/6(Z/e)(1−(1−η)3)m3/6.

Second, we derive wy and vol(LY ). The lattice dimension wy is given
by wy =

∑t
l=0

∑l
j=1 1. The volume vol(LY ) is given by

vol(LY ) =
t∏

l=0

l∏
j=1

Y jZ l+m−tem−l−m+t = emwy

t∏
l=0

l∏
j=1

Y j(Z/e)l+m−t.
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Let vol(LY ) = emwyY sY Y (Z/e)sY Z . Each sY Y and sY Z is explicitly given
as follows:

sY Y =
t∑

l=0

l∑
j=1

j =
t∑

l=0

l(l + 1)
2

=
t3

6
+ o(m3) = η3 m3

6
+ o(m3)

sY Z =
t∑

l=0

l∑
j=1

l + (m − t) =
t3

3
+ (m − t)

t2

2
+ o(m3) = η2(3 − η)

m3

6
+ o(m3).

Then, we have

vol(LY ) = emwyY η3m3/6(Z/e)η2(3−η)m3/6.

Summing up the above discussion, we have

vol(L) = vol(LX)vol(LY )

= emwX(1−(1−η)3)m3/6Y η3m3/6(Z/e)ηm3/2. (1)

By combining Proposition 1 and Lemma 1, the condition that the problem
can be solved in polynomial time is given by 2w/4vol(L)1/(w−1) ≤ em/

√
w.

By ignoring small terms, we have the condition: vol(L) ≤ emw. From
Eq. (1), we have the condition:

X3−3η+η2
Y η2

Z3 ≤ e3. (2)

By substituting Z = XY + 1 ≤ 2XY and Y = e1/2 into Eq. (2) and
neglecting small terms which don’t depend on e, we have the following
inequality about X:

X < e
3−η2

2(6−3η+η2) .

The maximum value of the exponent part in the right hand side is given
by (

√
6− 1)/5 ≈ 0.290 when η = 3−

√
6 ≈ 0.55. This is exactly the same

as the bound of Blömer–May [1].

4 A Unified Framework for Solving Small Inverse
Problem

As we showed in previous section, the Blömer–May method [1] can be ex-
plained by unravelled linearization technique. It is natural to think that
Herrmann–May method [7] and Blömer–May method [1] have some kinds
of relation. In this section, we will present an explicit relation and an in-
terpolation between two methods. First, we present a unified framework
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for solving small inverse problem, which includes Herrmann–May method
and Blömer–May method as a special case by adequately setting param-
eters. Then, we show that Boneh–Durfee’s improved bound: d ≤ N0.292

is still optimal in our framework. Finally, we propose a hybrid method
by interpolating two methods, which enjoys the both advantages of two
methods.

4.1 A Set of Shift-Polynomials

We define ḡ[i,k](x, z) := xif̄(x, z)kem−k for x-shifts and h̄[i,u](x, y, z) :=
yif̄(x, z)uem−u for y-shifts, respectively. The above are the same shift-
polynomials described in Section 3. However, we use a different set of
index for shift-polynomials. Let τ and η be parameters which are opti-
mized later with 0 < τ ≤ 1 and 0 < η ≤ 1.

We define sets G(m; η),H(m; τ, η) and F(m; τ, η) of shift-polynomials
as follows:

G(m; η) := {ḡ[u−i,i]|u = ⌈m(1 − η)⌉, . . . ,m; i = 0, . . . , u}
H(m; τ, η) := {h̄[i,u]|u = ⌈m(1 − η)⌉, . . . ,m; i = 1, . . . , ⌈τ(u − m(1 − η))⌉} and
F(m; τ, η) := G(m; η) ∪H(m; τ, η)

We define a polynomial order ≼ in F(m; τ, η) as follows:

– ḡ[i,j] ≼ h̄[i′,u] for any i, j, i′, u
– ḡ[i,j] ≼ ḡ[i′,j′] if (i + j < i′ + j′) or (i + j = i′ + j′ and j ≤ j′)
– h̄[i,u] ≼ h̄[i′,u′] if (u < u′) or (u = u′ and i ≤ i′)

Regarding the set F(m; τ, η) for shift-polynomials and the above poly-
nomial order, we have the following two lemmas.

Lemma 7. Suppose that 0 < τ ≤ 1. If ḡ[u−j,j] ∈ F(m; τ, η) for j ≥ 1,
then ḡ[u−j+1,j−1] ∈ F(m; τ, η) and ḡ[u−j+1,j−1] ≺ ḡ[u−j,j].

Lemma 8. Suppose that 0 < τ ≤ 1. If h̄[j,u] ∈ F(m; τ, η), then h̄[j−1,u]

and h̄[j−1,u−1] ∈ F(m; τ, η). Furthermore, it holds that h̄[j−1,u] ≺ h̄[j,u]

and h̄[j−1,u−1] ≺ h̄[j,u].

Proof of Lemma 8 It is clear that h̄[j−1,u] ∈ F(m; τ, η). Since h̄[j,u] ∈
F(m; τ, η), it holds that 1 ≤ j ≤ τ(u − m(1 − η)). Then, 0 ≤ j − 1 ≤
τ(u − m(1 − η)) − 1. Since τ ≤ 1 from the setting, it holds that τ(u −
m(1 − η)) − 1 ≤ τ(u − m(1 − η)) − τ = τ((u − 1) − m(1 − η)). Then,
h̄[j−1,u−1] ∈ F(m; τ, η). ⊓⊔

Remark 2. If τ > 1, Lemma 8 does not always hold.
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4.2 Our Framework Includes Previous Works as Special Cases

We show that our framework includes previous works as special cases.
First, we show that our Framework includes Herrmann–May’s work [7]
as a special case. We gave the set of shift-polynomials FHM(m; τ) for
Herrmann–May’s method in Section 2.3. From the definition, it holds
that

FHM(m; τ) = F(m; τ, 1).

Then, Herrmann–May’s method is obtained by setting η = 1 in our unified
framework. Next, we show that our Framework includes Blömer–May’s
work [1] as a special case. We gave the set of shift-polynomials FBM(m; t)
for Blömer–May’s method in Section 3.1. From the definition, it holds
that

FBM(m; t) = F(m; 1, t/m).

Note that t/m ≤ 1 from the definition. Then, Blömer–May’s method is
obtained by setting τ = 1 in our unified framework.

4.3 Deriving a Condition for Solving Small Inverse Problem
in our Framework

A lattice basis is constructed by using the coefficient vectors of shift-
polynomials in F(m; τ, η) as basis vectors. Note that the coefficient vec-
tors of the shift-polynomials ḡ[u−i,i](xX, zZ) and h̄[i,u](xX, yY, zZ) are
written as row vectors. Let B(m; τ, η) be a matrix, where all rows of
B(m; τ, η) are the coefficient vectors of shift-polynomials according to
the ordering of F(m; τ, η).

Theorem 2. Let m be an integer. Let τ and η be parameters with 0 <
τ ≤ 1 and 0 ≤ η ≤ 1. A lattice basis matrix B(m; τ, η) is triangular for
any m, τ and η.

Proof of Theorem 2 We show that the number of monomials newly ap-
pearing in expansion of shift-polynomial is one for any shift-polynomials
in F(m; τ, η). In this proof, we abbreviate F(m; τ, η) as F . We define
Ff := {g ∈ F|g ≺ f} and S(Ff ) :=

∪
g∈Ff S(g). It is enough for proving

Theorem 2 to show that for any polynomial f ∈ F there exist a monomial
mf such that

– S(f − mf ) ⊆ S(Ff ) and
– mf ̸∈ S(Ff ).

12



From Lemmas 4–6 and 7–8, for any f ∈ F , there exists mf such that
S(f − mf ) ⊆ S(Ff ). We can easily verify that mf ̸∈ S(Ff ). Then, the
lattice basis matrix is triangular. ⊓⊔

We show a small example for m = 3, τ = 1/2 and η = 1/3. We have

G(3; 1/3) = {g[u−i,i]|u = 2, 3; i = 0, . . . , u} and
H(3; 1/2, 1/3) = {h[i,u]|u = 2, 3; i = 1, . . . , u/2 − 1}.

or we explicitly have

G(3; 1/3) = {ḡ[2,0], ḡ[1,1], ḡ[0,2], ḡ[3,0], ḡ[2,1], ḡ[1,2], ḡ[0,3]} and H(3; 1/2, 1/3) = {h̄[1,3]}.

A lattice basis is constructed by using the coefficients vectors x-shifts
ḡ[i,j](xX, zZ) in G(3; 1/3) and y-shifts h̄[i,u](xX, yY, zZ) in H(3; 1/2, 1/3).

ḡ[2,0]

ḡ[1,1]

ḡ[0,2]

ḡ[3,0]

ḡ[2,1]

ḡ[1,2]

ḡ[0,3]

h̄[1,3]



x2 xz z2 x3 x2z xz2 z3 yz3

X2e3

Ae2X2 e2XZ
A2eX2 2eAXZ eZ2

X3e3

AX3e2 e2X2Z
eA2X3 e2AX2Z eXZ2

A3X3 3A2X2Z 3AXZ2 Z3

−A3X2 −3A2XZ −3AZ2 0 A3X2Z 3A2XZ2 3AZ3 Y Z3


Note that if we expand h̄[1,3] by x and y instead of x and z, many monomi-
als appears. The determinant of the above matrix is given by the product
of diagonal elements: e12X9Y 1Z12.

For the following asymptotic analysis, we omit roundings in setting
of F(m; τ, η) as their contribution is negligible for sufficiently large m.
We denote by wx and wy the number of shift-polynomials used in x-
shifts and y-shifts, respectively. And we denote by vol(LX) and vol(LY )
contributions in x-shifts and y-shifts to a lattice volume, respectively. The
total number of shift-polynomials w is given by w = wx +wy and a lattice
volume vol(L) is given by vol(L) = vol(LX)vol(LY ).

First, we derive wx and vol(LX). The lattice dimension wx is given
by wx =

∑m
l=m(1−η)

∑l
k=0 1. The volume vol(LX) is given by

vol(LX) =
m∏

l=m(1−η)

l∏
k=0

X l−kZkem−k = emwx

m∏
l=m(1−η)

l∏
k=0

X l−k

(
Z

e

)k

.
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Let vol(LX) = emwxXsXX (Z/e)sXZ . Each sXX and sXZ is explicitly
given as follows:

sXX =
m∑

l=m(1−η)

l∑
k=0

l − k =
1 − (1 − η)3

6
m3 + o(m3) and

sXZ =
m∑

l=m(1−η)

l∑
k=0

k =
1 − (1 − η)3

6
m3 + o(m3).

Then, we have

vol(LX) = emwxX(1−(1−η)3)m3/6

(
Z

e

)(1−(1−η)3)m3/6

.

Second, we derive wy and vol(LY ). The lattice dimension wy is given
by wy =

∑ηm
l=0

∑τl
j=1 1. The volume vol(LY ) is given by

vol(LY ) =
ηm∏
l=0

τl∏
j=1

Y jZ l+m(1−η)em−l−m(1−η) = emwy

ηm∏
l=0

τl∏
j=1

Y j

(
Z

e

)l+m(1−η)

.

Let vol(LY ) = emwyY sY Y (Z/e)sY Z Each sY Y and sY Z is explicitly given
as follows:

sY Y =
ηm∑
l=0

τl∑
j=1

j = η3τ2 m3

6
+ o(m3) and

sY Z =
ηm∑
l=0

τl∑
j=1

l + (1 − η)m = τη3 m3

3
+ τ(1 − η)m

η2m2

2
= τη2(3 − η)

m3

6
+ o(m3).

Then, we have

vol(LY ) = emwyY η3τ2m3/6

(
Z

e

)τη2(3−η)m3/6

.

Summing up the above discussion, we have

vol(L) = vol(LX)vol(LY )

= emwXη(3−3η+η2)m3/6Y η3τ2m3/6

(
Z

e

)(η(3−3η+η2)+τη2(3−η))m3/6

.(3)
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Remember that the condition that the problem can be solved in polyno-
mial time is given by vol(L) ≤ emw by ignoring small terms. From Eq. (3),
we have the condition:

X3−3η+η2
Y τ2η2

(
Z

e

)(3−3η+η2)+τ(3η−η2)

≤ 1. (4)

As described in previous subsection, we obtain the same set as those of
Herrmann–May or Blömer–May if we set η = 1 or τ=1. Deriving bounds
for each case are described in Appendix B.

4.4 Optimal Bound in our Framework

We have seen that the optimal bound of X is e1−
√

1/2 if η = 1 or τ = 1.
Hence, we have a chance to go beyond the Boneh–Durfee’s bound. Un-
fortunately, the following theorem shows that d ≤ N0.292 is still optimal
in our framework.

Theorem 3. Suppose that Y = e1/2. The maximal bound of X in our
framework is e1−

√
1/2.

Proof of Theorem 3 By substituting Z = XY + 1 and Y = e1/2 into
Eq. (4) and ignoring small terms, Eq. (4) is transformed into

X ≤ e
1
2

(3−3η+η2)+(3η−η2)τ−η2τ2

2(3−3η+η2)+τ(3η−η2) . (5)

Let P and P̄ be sets such that P = {(τ, η) | 0 < τ < 1, 0 < η < 1}
and P̄ = {(τ, η) | 0 < τ ≤ 1, 0 < η ≤ 1}. In order to obtain the maximal
value of the right side of Eq. (5) in P̄, we firstly consider the extremal
values of the following function Ψ(τ, η) in P:

Ψ(τ, η) :=
(3 − 3η + η2) + (3η − η2)τ − η2τ2

2(3 − 3η + η2) + (3η − η2)τ
.

Let Num(τ, η) and Den(τ, η) be the numerator and denominator of Ψ(τ, η)
respectively. Here, we show that Den(τ, η) ̸= 0 in P. If Den(τ, η) = 0,
then we have

0 < τ =
2(3 − 3η + η2)

η2 − 3η
= 2

(η − 3/2)2 + 3
4

(η − 3)η
.

However, this contradicts the condition 0 < η < 1. Therefore, the rational
function Ψ(τ, η) ∈ Q(τ, η) is obviously differentiable in P. By solving the
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algebraic equation ∂Ψ
∂τ = ∂Ψ

∂η = 0, we show that there are no extremal
values of Ψ(τ, η) in P . Let Φτ (τ, η), Φη(τ, η) be polynomials such that

Φτ (τ, η) :=
∂Ψ

∂τ
· Den(τ, η)2, Φη(τ, η) :=

∂Ψ

∂η
· Den(τ, η)2.

Note that both Φτ and Φη are in Z[τ, η], and we solve the algebraic equa-
tion Φτ = Φη = 0 by introducing Gröbner basis. Let G be the Gröbner
basis for the ideal generated by Φτ , Φη with respect to the lexicographic
order ≺LEX such that η ≺LEX τ . Then G contains three polynomials in
Z[τ, η], and one of them is m(η) such that

m(η) = η(η − 1)(η − 3)(η2 − 3η + 3){3(η − 1)2 + 2(η − 3)2}.
This fact implies that, for every extremal value Ψ(τ0, η0) where (τ0, η0) ∈
R2, η0 is a root of m(η) over R. Since m(η) does not have its root in the
real interval (0, 1), there are no extremal values of Ψ(τ, η) in P.

Hence, we only have to check the maximal values of Ψ(0, η), Ψ(1, η)
for 0 ≤ η ≤ 1 and Ψ(τ, 0), Ψ(τ, 1) for 0 ≤ τ ≤ 1, and furthermore the two
cases τ = 1 and η = 1 are discussed above. The maximal value of the right
side of Eq. (5) for τ = 0 or η = 0 is e1/4 since Ψ(0, η) = Ψ(τ, 0) = 1/2,
and thus the maximal value of the right side of Eq. (5) in P̄ is e1−

√
1/2.
⊓⊔

4.5 A Hybrid Method

It has been known that Blömer–May method: (τ, η) = (1, 3 −
√

6) has
an advantage because their method requires a smaller lattice dimension.
On the other hands, Herrmann–May method: (τ, η) = (

√
2− 1, 1) has an

advantage because it achieves a higher bound. We present a simple hybrid
method which enjoys both of advantages by interpolating two methods.
Letting t be a parameter with 0 ≤ t ≤ 1, we set τ(t) and η(t) by

(τ(t), η(t)) = (1 − (2 −
√

2)t, (
√

6 − 2)t + (3 −
√

6))

and use the parameter (τ(t), η(t)) for our framework. The setting t = 0
corresponds to Blömer–May’s method: (τ(0), η(0)) = (1, 3−

√
6) and the

setting t = 1 corresponds to Herrmann–May’s method: (τ(1), η(1)) =
(
√

2−1, 1)). We define Ψ̄(t) := Ψ(τ(t), η(t)). We can easily see that Ψ̄(t)is
monotonically increasing function in the interval 0 ≤ t ≤ 1. Then, there
is a trade-off between a lattice dimension and an achievable bound. That
is, the choice of a bigger t implies a higher bound but less efficiency and
the choice of a smaller t implies more efficiency but a lower bound. Our
hybrid method makes it possible to choose the best lattice construction
for a practical attack.
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5 Extension to Cryptanalysis of Arbitrary Y = eα

In previous section, we discussed only the case of Y = e1/2. In this section,
we extend our results to arbitrary Y = eα. Sarkar et al. presented the
small secret exponent attack under the situation that a few MSBs of the
prime p is known [13]. Suppose that some estimate p0 of p is known such
that |p−p0| < Nα. Let q0 be an estimation of q. Letting A = N+1−p0−q0,
a solution of the modular equation x(A + y) + 1 = 0(mod e) is given by
(x, y) = (k, p0+q0−p−q). Note that k < eδ and |p0+q0−p−q| < eα. They
showed that the barrier d < N0.292 can be broken through if α is strictly
less than 1/2. In this section, we focus on the problem: x(A + y) + 1 =
0(mod e) with upper bound of solution: X = eδ and Y = eα. They
showed extensions of three algorithms: two algorithms from Boneh and
Durfee’s paper [2], and one algorithm from Blömer and May’s paper [1]
into arbitrary α [13]. Although α should be 1/4 < α ≤ 1/2 in this attack
scenario4, we show an analysis for 0 < α < 1.

It is important to point out that the discussion in Sections 3 and 4
(except Sections 4.4 and 4.5) is valid for an arbitrary α, which implies
that a set of indexes F(m; τ, η) of shift-polynomials and the determinant
calculation of the volume are also valid. From the same analysis, we have
the same condition as Eq. (4). Letting X = eδ and Y = eα, we have the
following theorem. A proof is given in Appendix A.2.

Theorem 4. Suppose that Y = eα and X = eδ. The maximal bound of
δ in our framework is given by

δ <

{
1 −

√
α if α ≥ 1/4,

2
5
(
√

4α2 − α + 1 − 3α + 1) if 0 < α < 1/4.

We will present a hybrid method for arbitrary α in Appendix C.
Theorem 4 shows that Blömer–May like method (τ = 1) is superior
to Herrmann–May like method (η = 1) if α < 1/4. Interestingly, if α
is extremely small (α < 3/35), Herrmann–May like and Blömer–May
like methods are not best-known algorithms. We show the details in Ap-
pendix D. We also another extension in Appendix E.

6 Concluding Remarks

We should point out the relationship between our results and the discus-
sion in May’s PhD thesis [11]. He presented the interpolation between
4 Suppose that α is less than or equal to 1/4. The whole prime factor p can be found

by Coppersmith’s attack [4] since the upper half of p is known.
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the results of Blömer–May and Boneh–Durfee by using a concept called
strictly decreasing pattern in Section 7 of [11]. He also argued that Boneh–
Durfee’s stronger bound is optimal over all decreasing patterns. However,
no formal proof of its optimality has been given in [11]. On the contrary
to [11], we give a strict proof of the optimality within our framework in
Section 4. Furthermore, we extend our results to arbitrary Y = eα, which
has not been discussed in [11] and is also an advantage over [11].

It has been known that Blömer–May method has an advantage be-
cause their method requires a smaller lattice dimension than the Boneh–
Durfee’s lattice. Theorem 4 gives another view of their algorithm. The-
orem 4 shows Blömer–May method has another advantage because it
achieves a better bound in addition to less lattice dimension; Blömer–
May method achieves a higher bound than Herrmann–May method (and
Boneh–Durfee’s method) if α ≤ 1/4.

For the usual small secret exponent attack on RSA, we just showed
that d ≤ N0.292 is an optimal bound in our framework. Hence, the bound
might be improved if we develop the other method outside of our frame-
work, which is an open problem.
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A Proofs

A.1 Proofs of Lemma 4–6

Proof of Lemma 4 The polynomial ḡ[u,0] is given by ḡ[u,0](x, z) = emxu.
Then, we have the lemma. ⊓⊔

Proof of Lemma 5 The expansion of ḡ[u−j,j] for j ≥ 1 is given by

ḡ[u−j,j](x, z) = em−jxu−j(z + Ax)j =
j∑

i=0

em−jxu−j

(
j

i

)
zixj−iAj−i

= em−jxu−jzj +
j−1∑
i=0

em−jAj−i

(
j

i

)
xu−izi.

Then, we have

ḡ[u−j,j](x, z) − em−jxu−jzj ∼=
j−1∑
i=0

xu−izi = xu−j+1
j−1∑
i=0

x(j−1)−izi

∼= xu−j+1(z + Ax)j−1 ∼= ḡ[u−j+1,j−1].

Then, we have S(ḡ[u−j,j] − em−jxu−jzj) = S(ḡ[u−j+1,j−1]). ⊓⊔

Proof of Lemma 6 The expansion of h̄[j,u] for j ≥ 1 is given as follows:

h̄[j,u](x, y, z) = yj(z + Ax)uem−u = em−u
u∑

i=0

(
u

i

)
yjzi(Ax)u−i

= em−uyjzu + em−u
u−1∑
i=0

(
u

i

)
Au−ixu−iyjzi.
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Then, we have

h̄[j,u](x, y, z) − em−uyjzu ∼=
u−1∑
i=0

xu−iyjzi = yj−1xy

u−1∑
i=0

x(u−1)−izi

∼= yj−1(z − 1)(z + Ax)u−1 ∼= yj−1(z + Ax)u−1z + yj−1(z + Ax)u−1

∼= h̄[j−1,u−1]z + h̄[j−1,u−1].

Hence, we have

S(h̄[j,u](x, y, z) − em−uyjzu) = S(h̄[j−1,u−1]z) ∪ S(h̄[j−1,u−1])
⊆ S(h[j−1,u−1](z + Ax)) ∪ S(h̄[j−1,u−1]) = S(h̄[j−1,u]) ∪ S(h̄[j−1,u−1]).

Then, we have the lemma. ⊓⊔

A.2 Proof of Theorem 4

By substituting Z = XY + 1 and Y = eα into Eq. (4) and ignoring small
terms, Eq. (4) is transformed into

X ≤ e
(1−α)((3−3η+η2)+(3η−η2)τ)−αη2τ2

2(3−3η+η2)+(3η−η2)τ . (6)

Let P and P̄ be the sets defined in the proof of Theorem 3. In order to
obtain the maximal value of the right side of (6) in P̄, we firstly consider
the extremal values of the following function Ψα(τ, η) in P:

Ψα(τ, η) =
(1 − α)((3 − 3η + η2) + (3η − η2)τ) − αη2τ2

2(3 − 3η + η2) + (3η − η2)τ

Notice that the denominator of Ψα(τ, η) is Den(τ, η) given in the proof of
Theorem 3, and so Ψα(τ, η) is also differentiable in P.

In the same manner as the proof of Theorem 3, we show that there are
no extremal values of Ψα(τ, η) in P for any α ∈ (0, 1). Let Φ

(α)
τ (τ, η), Φ(α)

η (τ, η)
be polynomials such that

Φ(α)
τ (τ, η) =

∂Ψα

∂τ
· Den(τ, η)2, Φ(α)

η (τ, η) =
∂Ψα

∂η
· Den(τ, η)2.

We solve the algebraic equation Φ
(α)
τ = Φ

(α)
η = 0 by introducing Gröbner

basis. Let Gα be the Gröbner basis under 0 < α < 1 for the ideal gener-
ated by Φ

(α)
τ , Φ

(α)
η with respect to the lexicographic order ≺LEX such that

η ≺LEX τ . One of polynomials in Gα is mα(η) such that

mα(η) = η(η − 1)(η − 3)(η2 − 3η + 3){3α(η − 1)2 + (η − 3)2}.
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This fact implies that, for every extremal value Ψα(τ0, η0) where (τ0, η0) ∈
R2, η0 is a root of mα(η) over R. Since mα(η) does not have its root in
the real interval (0, 1), there are no extremal values of Ψα(τ, η) in P.

Hence, we only have to check the maximal values of Ψα(0, η), Ψα(1, η)
for 0 ≤ η ≤ 1 and Ψα(τ, 0), Ψα(τ, 1) for 0 ≤ τ ≤ 1. If η = 0 or τ = 0, then
Ψα(τ, 0) = Ψα(0, η) = (1 − α)/2, and so the maximal value for η = 0 or
τ = 0 is (1 − α)/2.

For η = 1, we have that

Ψα(τ, 1) =
−ατ2 + (1 − α)(1 + 2τ)

2(τ + 1)
,

and so the maximal value for η = 1 is{ 3
4 − α (τ = 1, 0 < α < 1

4)
1 −

√
α (τ =

√
1/α − 1, 1

4 ≤ α < 1).
(7)

For τ = 1, we have that

Ψα(1, η) =
3 − α(η2 + 3)
6 − 3η + η2

,

and so the maximal value for τ = 1 is

2
5
(
√

α2 − α + 1 − 3α + 1). (8)

By comparing with the above values, we have the theorem. ⊓⊔

B Deriving Bounds for Each Case

B.1 Herrmann-May’s case

First, we derive a bound for Herrmann-May’s case. Substituting η = 1
into Eq. (4), we have XY τ2 (

Z
e

)1+2τ ≤ 1. By substituting Z ≤ 2XY and
Y = e1/2 into the above inequality, we have

X ≤ e
1+2τ−τ2

4(1+τ) .

By maximizing X, the maximal value of X is given by X ≤ e1−
√

1/2 by
setting τ =

√
2 − 1. Note that 0 <

√
2 − 1 ≤ 1. This bound is equivalent

to Boneh–Durfee’s bound. We can easily extend to the case of Y = eα.
In this case, we have the bound: δ < 1 −

√
α by setting τ =

√
1/α − 1,

which is equivalent to Theorem 4 in [13].
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B.2 Blömer–May’s case

Second, we derive a bound for Blömer–May’s case. Substituting τ = 1
into Eq. (4), we have X3−3η+η2

Y η2 (
Z
e

)3 ≤ 1. By substituting Z ≤ 2XY

and Y = e1/2 into the above inequality, we have

X ≤ e
3−η2

2(6−3η+η2) .

By maximizing X, the maximal value of X is given by X ≤ e(
√

6−1)/5 by
setting η = 3 −

√
6. Note that 0 ≤ 3 −

√
6 ≤ 1. This bound is equivalent

to Blömer–May’s bound [1]. We can easily extend to the case of Y = eα.
In this case, we have the bound: δ < 2

5(
√

4α2 − α + 1−3α+1) by setting
η = ((1+α)−

√
4α2 − α + 1)/α, which is equivalent to Theorem 5 in [13].

C Hybrid Method for α ≥ 1/4

We can apply the hybrid method as described in Section 4.5 into α ≥ 1/4.
Let t be a parameter with 0 ≤ t ≤ 1. We set τ(t;α) and η(t; α) by

(τ(t; α), η(t; α)) =

(
1 −

(
2 −

√
1
α

)
t,

√
4α2 − α + 1 − 1

α
t +

α + 1 −
√

4α2 − α + 1
α

)
.

Set Ψ̄(t; α) := Ψ(τ(t;α), η(t; α)). We can easily verify that Ψ̄(t; α)is mono-
tonically increasing function in the interval 0 ≤ t ≤ 1.

D Best Known Bound for an Arbitrary α

Sarkar et al. [13] proved that RSA is insecure by extending Boneh–
Durfee’s weaker method into arbitrary α if δ < (α + 3 − 2

√
α(α + 3))/3.

Note that this bound can be obtained by using FBD introduced in Sec-
tion 2.3. Corollary 1 shows that the best bound in our framework and
Sarkar et al.’s extension of Boneh–Durfee’s result.

Corollary 1. Suppose that X = eδ and Y = eα. The maximal bound of
δ in our framework and the Extension of Boneh-Durfee’s weaker bound is
given by

δ <


1 −

√
α if α ≥ 1

4 ,
2
5
(
√

4α2 − α + 1 − 3α + 1) if 3
35 ≤ α < 1

4 ,

α + 3 − 2
√

α(α + 3)
3

if 0 < α < 3
35 .
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E Extension to x(A + y) + C = 0(mod e) for an
Arbitrary Integer C

In Section 4, we discussed only the case of x(A + y) + 1 = 0(mod e).
In this section, we extend to x(A + y) + C = 0(mod e) for an arbitrary
integer C. For simplicity, we assume that 0 < |C| < e. In the discussion of
Section 4, we set Z as Z = XY + 1. For general C, Z should be replaced
into Z = XY + |C|. The value Z is upper bounded by 2max(XY, |C|).
We consider two typical cases.

Suppose that |C| is small compared to XY for the first case. Con-
cretely, suppose that XY ≥ |C|. Since Z ≤ 2XY , the discussion of Sec-
tion 4 is valid and the same bound is obtained.

Suppose that |C| is uniformly chosen from integers within the interval
(0, e). It is clear that |C| ≈ e with high probability. In this case, Z ≤ 2e.
By ignoring small terms, Eq. (4) is transformed into X3−3η+η2

Y τ2η2
< 1.

Since X and Y are positive integers, there are no ranges for X and Y
satisfying the above inequality. Then, we cannot solve the problem by
using our framework5 in this case.

5 Boneh and Durfee’s weaker method is valid even if |C| is large.
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