
Fully Secure Spatial Encryption under Simple Assumptions

with Constant-Size Ciphertexts

Jie Chen Hoon Wei Lim San Ling Huaxiong Wang

Nanyang Technological University, Singapore
s080001@e.ntu.edu.sg;{hoonwei,lingsan,hxwang}@ntu.edu.sg

December 2, 2011

Abstract

In this paper, we propose two new spatial encryption (SE) schemes based on existing
inner product encryption (IPE) schemes. Both of our SE schemes are fully secure under
simple assumptions and in prime order bilinear groups. Moreover, one of our SE schemes
has constant-size ciphertexts. Since SE implies hierarchical identity-based encryption
(HIBE), we also obtain a fully secure HIBE scheme with constant-size ciphertexts under
simple assumptions. Our second SE scheme is attribute-hiding (or anonymous). It has
sizes of public parameters, secret keys and ciphertexts that are quadratically smaller than
the currently known SE scheme with similar properties. As a side result, we show that
negated SE is equivalent to non-zero IPE. This is somewhat interesting since the latter is
known to be a special case of the former.
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1 Introduction

The notion of spatial encryption (SE), introduced by Boneh and Hamburg [4], is a generalized
concept of identity-based encryption (IBE) [3, 6] that finds a broad range of applications. An
SE scheme is defined generically in that plaintexts/ciphertexts are associated with some “poli-
cies” and secret (decryption) keys are associated with some “roles”. This way, one can embed
various cryptosystems, such as hierarchical IBE (HIBE), broadcast IBE, and inclusive/co-
inclusive IBE into SE. Consequently, SE can be turned into many useful systems, such as
broadcast HIBE, forward-secure IBE, identity-based ring signatures, encryption supporting
flexible and sparse products, and encryption providing zero-handshake transport layer secu-
rity. See [4, 11] for more details of the applications of SE.

1.1 Problem Statement

Informally, in n-dimensional SE, a secret key is associated with an affine space in Znq for some
integer n and some prime q, while a ciphertext is associated with a vector in Znq . A ciphertext
can be decrypted by a secret key if and only if the vector for the ciphertext is an element of
the affine space for the secret key. This can be represented as a function F(S, (~x,m)) = m
in the functional encryption sense [5] for an affine space S, a vector ~x and a message m.
Furthermore, one can use a secret key for S to delegate a key for a relevant subspace S ′ of S.

The first SE scheme, proposed by Boneh and Hamburg [4], has short ciphertexts—a very
attractive and important property. This is so since any application of the Boneh-Hamburg SE
scheme as mentioned above will inherit the same property. However, the Boneh-Hamburg SE
scheme is proven to be only selective secure and under complex assumptions. Subsequently,
Zhou and Cao [24] proposed a selective secure SE scheme under simple assumptions. However,
their scheme no longer produces short ciphertexts but linear in the dimension n. Chen et
al. [8] then gave a method of generically constructing SE from hierarchical inner product
encryption (HIPE) [17, 13, 18, 20]. As expected, any SE scheme derived using their method
preserves properties of the original HIPE scheme. Such a transformation technique is useful,
for example, in obtaining attribute-hiding SE schemes (since most existing HIPE scheme are
attribute-hiding [17, 13, 20]). Unfortunately, current HIPE schemes do not have short or
even constant-size ciphertexts. Further, there are other SE constructions, such as [11, 16],
that are fully secure but proven either under more complex assumptions or composite order
bilinear groups [9] (which are less efficient than prime order bilinear groups). Summarizing the
prior art of SE, to our knowledge, there is currently no fully secure SE scheme under simple
assumptions and in prime order bilinear groups with short or constant-size ciphertexts. The
main goal of this paper is, therefore, to construct such a scheme.

We note that, on the other hand, Attrapadung and Libert [1] showed that it is possible
to construct an inner product encryption (IPE) scheme with the aforementioned desired
properties. IPE, introduced by Katz, Sahai and Waters [12], is another instance of functional
encryption where both the secret key and ciphertext are associated with vectors in Znq for
some integer n and prime q. A ciphertext for a vector ~x can be decrypted by a secret key
sk~v for a vector ~v if and only if the inner product ~x · ~v = 0, i.e., F(~v, (~x,m)) = m. We
note that SE and IPE are somehow related in the sense that it is not difficult to convert
SE to IPE. We can achieve this by simply running the key generation algorithm of the SE
scheme for the space S⊥(~v) and setting the resulting key to be a secret key for the vector ~v,
where S⊥(~v) is the orthogonal space of ~v (i.e., the Euclidean space spanned by ~x such that
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~x · ~v = 0). However, it seems that there does not exist any known generic construction of
SE from IPE. This is partly because IPE has no key delegation mechanism. Without key
delegation, it is even not clear how one can derive HIBE from IPE (it is, in principle, easier
to derive HIBE from IPE in comparison to SE from IPE). One may naturally consider extend
IPE to the hierarchical setting, namely HIPE, by adding a delegation mechanism. However,
even if the IPE scheme has constant-size ciphertexts, the corresponding HIPE scheme may
have ciphertexts with sizes dependent on the depth of the hierarchy. Moreover, constructing
SE from HIPE is quadratically expensive as shown in [8].

1.2 Our Contributions

We take an approach along the line of extending IPE to an appropriate “intermediate” form
such that constructing SE introduces only minimal cost while retaining all desired properties.
Instead of extending IPE to HIPE, we extend IPE to a variant of IPE we call multi-predicate
IPE, which preserves the sizes of public parameters and ciphertexts of the IPE scheme from
which it is derived, while the sizes of secret keys increase by about a factor of O(n). We then
construct an SE scheme from the multi-predicate IPE scheme under linear reduction. Hence,
our approach of constructing SE preserves the sizes of public parameters and ciphertexts of
the original IPE.

We investigate two IPE schemes of [1, 20] and propose two fully secure SE schemes under
simple assumptions and in prime order bilinear groups:

• Our first scheme achieves constant-size ciphertexts. It is based on the Attrapadung-
Libert IPE scheme [1]. The corresponding multi-predicate IPE scheme is presented in
Section 3.1.

Particularly, we obtain a non-anonymous HIBE (presented in Section 5.1) with all the
mentioned desired properties. Note that there exist a few HIBE schemes [22, 23, 20]
that are known to be fully secure under simple assumptions, but none of them has
constant-size ciphertexts.

• Our second scheme is based on the Okamoto-Takashima IPE scheme [20]. The corre-
sponding multi-predicate IPE scheme is shown in Section 3.2. It is proven secure under
the adaptively attribute-hiding model [12, 20]. Although an SE scheme with similar
properties could be derived from the techniques of [8], our construction quadratically
reduces the sizes of public parameters, secret keys, and ciphertexts.

We focus on the IPE schemes of [1, 20] because they are more efficient and possess more
desired properties than the others.

As explained, given an IPE scheme, one may extend it to HIPE or our proposal of multi-
predicate IPE (mIPE), which in turn, is converted to an SE scheme:

IPE - HIPE or mIPE - SE

Our results show that SE derived from multi-predicate IPE is more compact and efficient
than those from HIPE in terms of the sizes of public parameters PP, secret keys sk, cipher-
texts c in the number of group elements, and the number # of pairing computation during
decryption. These are summarized in Table 1. Here, we assume all IPE, multi-predicate IPE,
SE schemes are in Znq while all HIPE schemes have hierarchy ~µ := (n, d;µ1, . . . , µd) that is
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defined in Appendix C.1. Also, for comparison sake, we extend the Attrapadung-Libert IPE
scheme to HIPE, which is presented in Appendix C.2. We note that the sizes of ciphertexts
are not constant for the SE scheme derived from this HIPE scheme.

Table 1: Comparisons of SE schemes derived from HIPE and those from mIPE.

size of PP size of sk size of c # pairings

Attrapadung-Libert IPE [1] O(n) O(n) 10 9

HIPE (Appendix C.2)
↓

SE

O(n)

O(n2)

O(n)

O(n2)

O(d)

O(n)

O(d)

O(n)

mIPE
↓

SE

O(n)

O(n)

O(n2)

O(n2)

10

10

O(n)

O(n)

Okamoto-Takashima IPE [20] O(n2) O(n) O(n) O(n)

HIPE [20]
↓

SE

O(n2)

O(n4)

O(n2)

O(n4)

O(n)

O(n2)

O(n)

O(n2)

mIPE
↓

SE

O(n2)

O(n2)

O(n2)

O(n2)

O(n)

O(n)

O(n)

O(n)

Table 2 gives a summary of the comparisons of existing SE schemes against our schemes.
Here, we assume all SE schemes are n-dimensional. We compare their efficiency as well as
their properties. The schemes of ‘OT∗ [18]’ and ‘OT∗ [20]’ are the SE schemes derived from
the Okamoto-Takashima HIPE schemes of [18] and [20], respectively, using the transformation
techniques of [8].

Table 2: Comparisons between existing and our SE schemes.

Source
Non-Anonymous SE Anonymous SE

BH [4] ZC [24] OT∗ [18] Our 1st scheme OT∗ [20] Our 2nd scheme

size of PP O(n) O(n) O(n3) O(n) O(n4) O(n2)

size of sk O(n) O(n) O(n3) O(n2) O(n4) O(n2)

size of c 3 O(n) O(n2) 10 O(n2) O(n)

# pairings 2 O(n) O(n2) O(n) O(n2) O(n)

fully secure No No Yes Yes Yes Yes

anonymous No No No No Yes Yes

constant c Yes No No Yes No No

prime order Yes Yes Yes Yes Yes Yes

simple
assumptions

No Yes Yes Yes Yes Yes

As a further contribution, we show generic construction of negated SE, i.e., F(S, (~x,m)) =
m iff ~x 6∈ S, from non-zero IPE, i.e., F(~v, (~x,m)) = m iff ~x ·~v 6= 0. As before, our transforma-
tion preserves the sizes of public parameters and ciphertexts. Interestingly, although non-zero
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IPE is known as a special case of negated SE, we prove that negated SE and non-zero IPE
are in fact equivalent.

1.3 Our Techniques

We obtain our SE schemes from IPE schemes through some multi-predicate IPE schemes.
Informally, in our multi-predicate IPE schemes, a secret key is associated with a set of vectors
Γ = {~v1, . . . , ~v`} instead of a single vector in the IPE setting (hence the moniker “multi-
predicate”), while a ciphertext is still associated with a single vector ~x. Hence, we have
F(Γ, (~x,m)) = m if and only if the inner product ~x · ~vi = 0 for all i ∈ [`].1 Moreover, we
allow key delegation, that is, a secret key for a set of vectors Γ can create a key for a set of
vectors Γ′ where Γ ⊂ Γ′. Our definition of multi-predicate IPE is very close to that of the
standard IPE. The key difference is that the former delegates secret keys by adding in more
vectors while the latter does not. We summarize our multi-predicate IPE schemes, which are
fully secure under simple assumptions and in prime order bilinear groups, as follows:

• The first multi-predicate IPE scheme is based on the Attrapadung-Libert IPE scheme,
which has constant-size ciphertexts. In our construction, the setup, encryption al-
gorithms are unchanged from the IPE scheme, which make the multi-predicate IPE
preserving the size of public parameters and ciphertexts. We employ a secret-sharing
technique, which is similar with the technique used in the HIBE schemes of [23, 15].
More precisely, a secret key for Γ = {~v1, . . . , ~v`} is associated with an `-out-of-` secret
sharing. When the secret key delegates a new key for Γ′ = {~v1, . . . , ~v`′}, it changes
the secret sharing to an `′-out-of-`′ by introducing fresh randomness. Our construction
looks rather similar to a combination of the Attrapadung-Libert IPE scheme and the
Waters HIBE scheme of [23], except that our delegation mechanism is not hierarchical.

There are new challenges in our security reduction. This is because of not only our
multi-predicate IPE that allows key delegation as opposed to IPE without delegation
mechanism, but also the adversary has less query restriction compared to that of HIBE.

As with the Waters HIBE scheme, our multi-predicate IPE scheme also has the “tag
lineage” problem, namely, if we run the delegation algorithm to generate a new secret
key, the new key will inherit the previous key’s tag values and there is no method for
rerandomizing them. However, it is not adequate to adopt the proof techniques for the
Waters HIBE scheme to our multi-predicate IPE setting. We introduce a new strategy
based on tree structure, which helps us to overcome the tag lineage problem. We discuss
this in Section 3.1.

• The second multi-predicate IPE scheme is based on the Okamoto and Takashima IPE
scheme [20], which is secure under adaptively attribute-hiding model. In our construc-
tion, the setup and encryption algorithms are also unchanged from the IPE scheme. We
use a different way to generate a secret key since the structure of this IPE construction
is different from the Attrapadung-Libert IPE scheme. To generate a secret key for a
vector set Γ = {~v1, . . . , ~v`}, we first mask each vector with a random value and then
sum all elements of the masked vectors, namely, we compute a secret key for

∑`
i=1 σi~vi,

where σ1, . . . , σ`
$← Fq. Note that such a construction method for IPE with general del-

egation has also been mentioned in the full version of [13]. The security can be proved

1In this paper, we use [`] to denote the set {1, . . . , `}, and [`1, `2] to denote the set {`1, `1 + 1, . . . , `2}.
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exactly in the same way as the Okamoto-Takashima HIPE scheme due to such minor
modification.

We then adopt techniques, which are similar to HIPE-to-SE transformation of [8], to con-
vert the above multi-predicate IPE schemes into SE schemes. The crux of the transformation
from a multi-predicate scheme to an SE scheme is to convert vector inclusion by space relation
to inner product relation. This involves two major steps: (i) construct an n-dimensional SE
scheme that works in a subset of affine spaces—Euclidean spaces; (ii) use encoding techniques
to derive an n-dimensional SE scheme in affine spaces from an (n+1)-dimensional SE scheme
in Euclidean spaces. We provide further details in Section 4.1.

1.4 Outline of the Paper

We organize the rest of the paper as follows. In Section 2, we provide the definitions and
security models of multi-predicate IPE and SE. Moreover, we give the necessary preliminaries
for our constructions. In Section 3, we give two concrete constructions of multi-predicate IPE
schemes. In Section 4, we then present generic construction of SE from multi-predicate IPE.
In Section 5, we discuss how to how to construct a fully secure HIBE scheme under simple
assumptions with constant-size ciphertexts and how to derive negated SE from non-zero IPE.
We conclude our work in Section 6.

2 Background

In what follows, we borrow the definition and the game-based security model for functional
encryption (FE) from [5] which are adequate to define all encryption systems in this paper.

2.1 Functional Encryption

As in [5], we first describe a functionality F of the syntactic definition of FE. The functionality
F describes the functions of a plaintext that can be learned from the ciphertext:

Definition 1. A functionality F defined over (K,X ) is a function F : K × X → {0, 1}∗
described as a (deterministic) Turing Machine. The set K is called the key space and the set
X is called the plaintext space.We require that the key space K contain a special key called the
empty key denoted ε.

An FE scheme for the functionality F enables one to evaluate F(k, x) given the encryption
of x and a secret key skk for k. The algorithm for evaluation F(k, x) using skk is called decrypt.
More precisely, an FE scheme is defined as follows:

Definition 2. A functional encryption scheme (FE) for a functionality F defined over (K,X )
is a tuple of four probabilistic polynomial-time (PPT) algorithms (Setup, KeyGen, Enc, Dec)
and an additional, but optional PPT algorithm KeyDel satisfying the following correctness
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condition for all k ∈ K and x ∈ X :

(PP,MK)← Setup(λ) (generate a public and master secret key pair)

skk ← KeyGen(PP,MK, k) (generate a secret key for k)

c← Enc(PP, x) (encrypt plaintext x)

y ← Dec(PP, skk, c) (use skk to compute F(k, x) from c)

skk′ ← KeyDel(PP, k, skk, k
′) (generate a secret key for k′ that satisfies a partial

order relation denoted as k′ � k)

then we require that y = F(k, x) with probability 1.

The empty key ε: The special key ε in K captures all the information about the plaintext
that intentionally leaks from the ciphertext. The secret key for ε is empty and also denoted
by ε. Thus, anyone can run Dec(PP, ε, c) on a ciphertext c ← Enc(PP, x) and obtain all the
information about x that intentionally leaks from c. Take IBE for example, F(ε, (ID,m))
outputs only |m| (the length of message m) in the attribute-hiding setting while it outputs
|m| and the identity ID in the payload-hiding setting. Henceforth, we assume that every FE
scheme contains the empty key ε in the key space K and we will not explicitly mention it.

We now define the security model for FE. For the plaintext pair (x(0), x(1)) of an adversary’s
choice, we need the following requirement to make the experiment non-trivial:

F(k, x(0)) = F(k, x(1)) for all k for which the adversary has skk. (1)

Then we define a security game for an FE scheme as follows:

Definition 3. For β = 0, 1 define an experiment β for an adversary A as follows:

• Setup: It runs (PP,MK)← Setup(λ) and gives PP to A.

• Query: A adaptively makes repeated key queries of one of three types:

– Generate: A submits a key generation query k ∈ K. The challenger generates a
secret key skk for k, but does not give it to A. It instead adds the key to the set S
and gives the adversary a reference to it.

– Delegate: A specifies a key skk in the set S for k ∈ K, then it submits a key delega-
tion query for k′ ∈ K, where k′ � k. The challenger runs the KeyDel(PP, k, skk, k

′)
algorithm to get a new secret key skk′ and adds this to the set S.

– Reveal: A specifies an element of the set S for a secret key skk. The challenger
removes the item from the set S and gives A the secret key. We note at this point
there is no need for the challenger to allow more delegate queries on the key since
A can run them itself.

• Challenge: A submits two plaintexts x(0), x(1) ∈ X satisfying requirement (1) and in
return, it receives Enc(PP, x(β)).

• Guess: A continues to issue key queries as before subject to requirement (1) and even-
tually outputs a bit in {0, 1}.
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For β = 0, 1 let Wβ be the event that the adversary outputs 1 in Experiment β and define

AdvFEA (λ) := |Pr[W0]− Pr[W1]|.

Definition 4. An FE scheme is secure if for all PPT adversaries A the function AdvFEA (λ)
is negligible.

2.2 Multi-Predicate Inner Product and Spatial Encryption

In both multi-predicate IPE and SE, a plaintext x ∈ X is itself a pair (ind,m) ∈ I×M where
ind is called an index and m is called the payload message.

In the multi-predicate IPE setting, a functionality F is defined over a key space and an
index space using sets of vectors. In an n-dimensional multi-predicate IPE scheme, the key
space K corresponds to all sets of vectors in the form Γ = {~v1, . . . , ~v`} where ~vi ∈ Znq for all
i ∈ [`] (w.l.o.g, we require that Γ is linearly independent and ` < n) and the index space I
corresponds to all vectors ~x in Znq . Hence we have

F(Γ, (~x,m)) :=

{
m if ~x · ~vi = 0 for all i ∈ [`]
⊥ otherwise.

Moreover, if Γ′ = {~v′1, . . . , ~v′`′}, then Γ′ � Γ iff Γ ⊂ Γ′. Note that it is IPE when all Γ are
restricted to be only one vector.

In the SE setting, a functionality F is defined over a key space and an index space using
sets of spaces and vectors, respectively. In an n-dimensional SE scheme, the key space K
corresponds to all affine spaces S in Znq and the index space I corresponds to all vectors ~x in
Znq . Hence

F(S, (~x,m)) :=

{
m if ~x ∈ S
⊥ otherwise.

Moreover, S ′ � S iff S ′ is a subspace of S.
Let x(0) = (ind(0),m(0)), x(1) = (ind(1),m(1)) ∈ X be the adversary’s choice of plaintext

pair. The security game for both multi-predicate IPE and SE can then be defined using
Definition 3 with the following variations:

• If the adversary outputs the challenge indices ind(0), ind(1) before the Setup phase, the
security game is under the selective security model. Otherwise it is under the full security
model.

• If the adversary outputs the challenge indices such that ind(0) = ind(1), the security game
is under the payload-hiding security model, that is F(ε, (ind,m)) = (ind,|m|). Otherwise
it is under the attribute-hiding security model, that is F(ε, (ind,m)) = |m|.
• In the attribute-hiding model, if the adversary is allowed key queries ki in which
F(ki, (ind(0),m(0))) = m(0) = m(1) = F(ki, (ind(1),m(1))), the security game is con-
sidered adaptively or fully attribute-hiding [12, 20]. Otherwise, if F(ki, (ind(0),m(0)))
(resp. F(ki, (ind(1),m(1)))) does not reveal m(0) (resp. m(1)) for all key queries ki, the
security game is considered weakly attribute-hiding.
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2.3 Notation

In the remainder of the paper, if not explicitly specified, we assume that all vectors are row
vectors in Znq for some integer n and prime q and spaces are Euclidean spaces spanned by row
vectors. Table 3 summarizes some notation used in the remainder of the paper.

Table 3: Notation.

t
R←− T t is chosen at random from a set T according to its distribution

t
U←− T t is chosen uniformly at random from a set T

S(~v1, . . . , ~vr) the space spanned by {~v1, . . . , ~vr}

S⊥(~v1, . . . , ~vr)
the orthogonal space of S(~v1, . . . , ~vr), i.e., the space
spanned by all ~x where ~x · ~vi = 0 for i ∈ [r]

B(S) a basis of S
B⊥(S) a basis of S⊥
dim(S) the dimension of S
Mi the i-th row of matrix M

det(M) the determinant of matrix M

S(M,~y) the affine space {~zM + ~y : ~z ∈ Zrq}, where M ∈ Zr×nq

Note also that we use a subscript to indicate the set type of a scheme. For example, we
use KSE (resp. ISE) to denote the key space K (resp. index space I) with regards to SE.

2.4 Concepts from Linear Algebra

We require the following lemmata for our generic constructions. The proofs are simple and
can be obtained from [7], for example.

Lemma 1. Given a space S, then dim(S) + dim(S⊥) = n and (S⊥)⊥ = S.

Lemma 2. Given a space S, there exists a polynomial-time algorithm BasisGen taking as
input S and outputting a basis B⊥ of S⊥.

Lemma 3. Given a space S, a subspace S ′ and a basis B⊥ of S⊥, there exists a polynomial-
time algorithm BasisDel taking as input S,S ′,B⊥ and outputting a basis B′⊥ of S ′⊥, which
contains all the vectors of B⊥.

2.5 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

Definition 5. “Symmetric bilinear pairing groups” (q,G,GT , g, e) are a tuple of a prime
q, cyclic (multiplicative) groups G and GT of order q, g 6= 1 ∈ G, and a polynomial-time
computable nondegenerate bilinear pairing e : G × G → GT i.e., e(gs, gt) = e(g, g)st and
e(g, g) 6= 1. Let Gbpg be an algorithm that takes as input λ and outputs a description of
bilinear pairing groups (q,G,GT , g, e) with security parameter λ.

In this paper, we concentrate on the symmetric version of dual pairing vector spaces [17, 13]
constructed using symmetric bilinear pairing groups given in Definition 5.

8



Definition 6. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct product of
symmetric pairing groups q,G,GT , g, e are a tuple of prime q, n-dimensional vector space

V :=

n︷ ︸︸ ︷
G× · · · ×G

over Zq, cyclic group GT of order q, canonical basis A := (a1, . . . ,an) of V, where

ai := (

i−1︷ ︸︸ ︷
1, . . . , 1, g,

n−i︷ ︸︸ ︷
1, . . . , 1)

and pairing e : V× V→ GT .
The pairing is defined by e(x,y) :=

∏n
i=1 e(gi, hi) ∈ GT where x := (g1, . . . , gn) ∈ V

and y := (h1, . . . , hn) ∈ V. This is nondegenerate bilinear, i.e. e(sx, ty) = e(x,y)st and if

e(x,y) = 1 for all y ∈ V, then x = 0. For all i and j, e(ai,aj) = g
δi,j
T where δi,j = 1 if i = j,

and 0 otherwise, and gT := e(g, g) 6= 1 ∈ GT .
DPVS also has linear transformations φi,j on V s.t. φi,j(ai) = ai, φi,j(ak) = 0 if k 6= j,

which can be easily achieved by

φi,j := (

i−1︷ ︸︸ ︷
1, . . . , 1, gj ,

n−i︷ ︸︸ ︷
1, . . . , 1)

where x := (g1, . . . , gn). We call φi,j “distortion maps”. DPVS generation algorithm Gdpvs
takes input λ (λ ∈ N) and n ∈ N, and outputs a description of param′V := (q,V,GT ,A, e) with
security parameter λ and n-dimensional V. It can be constructed by using Gbpg.

Based on the above definitions, we now describe a random dual orthonormal bases gener-
ator Gob that is used as a subroutine in our proposed multi-predicate IPE schemes:

Gob(λ, n) : param′V := (q,V,GT ,A, e)
U←− Gdpvs(λ, n), ψ

U←− Z∗q
X := (χi,j)

U←− GL(n,Zq), (ϑi,j) := (X>)−1, gT := e(g, g)ψ, paramV := (param′V, gT )

bi :=

n∑
j=1

χi,jaj , B := (b1, . . . ,bn), b∗i :=

n∑
j=1

ϑi,jaj , B∗ := (b∗1, . . . ,b
∗
n),

return (paramV,B,B∗).

2.6 Complexity Assumptions

Definition 7 (DLIN: Decisional Linear Assumption.). The DLIN problem is to guess β ∈
{0, 1}, given (paramG, g, f, v, g

θ0 , fθ1 , T )
U←− GDLIN

β (λ), where

GDLIN(λ) : paramG := (q,G,GT , g, e)
R←− Gbpg(λ),

θ0, θ1
U←− Zq, f, ν

U←− G

Y0 := νθ0+θ1 , Y1
U←− G

β
U←− {0, 1}, T := Yβ

return (paramG, g, f, ν, g
θ0 , fθ1 , T ).
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For β = 0, 1 let Wβ be the event that the adversary outputs 1 and define

AdvDLIN
A (λ) := |Pr[W0]− Pr[W1]|.

The DLIN assumption is: For any probabilistic polynomial-time adversary A, the advan-
tage AdvDLIN is negligible in λ.

Definition 8 (DBDH: Decisional Bilinear Diffie-Hellman Assumption.). The DBDH problem

is to guess β ∈ {0, 1}, given (paramG, g, g
θ0 , gθ1 , gθ2 , T )

U←− GDBDH
β (λ), where

GDBDH(λ) : paramG := (q,G,GT , g, e)
R←− Gbpg(λ),

θ0, θ1, θ2
U←− Zq, Y0 := gθ0θ1θ2 , Y1

U←− G

β
U←− {0, 1}, T := Yβ

return (paramG, g, g
θ0 , gθ1 , gθ2 , T ).

For β = 0, 1 let Wβ be the event that the adversary outputs 1 and define

AdvDBDH
A (λ) := |Pr[W0]− Pr[W1]|.

The DBDH assumption is: For any probabilistic polynomial-time adversary A, the advan-
tage AdvDBDH is negligible in λ.

3 Fully Secure Multi-Predicate IPE under Simple Assump-
tions

3.1 Achieving Constant-Size Ciphertexts

Our first construction of multi-predicate IPE scheme is from the IPE scheme of [1]. The latter
is a variant of Waters’ dual system IBE scheme [23], which is fully secure under the DLIN
and DBDH assumptions with constant-size ciphertexts. We describe our multi-predicate IPE
scheme as follows:

• SetupmIPE(λ, n): It picks paramG := (q,G,GT , g, e)
R←− Gbpg(λ). It then picks

α, a0, a1, b
U←− Zq and w,w0, w1, h0, h1, . . . , hn

U←− G. The public parameters consist of

PP =

( g, w, w0, w1, h0, h1, . . . , hn,
A0 = ga0 , A1 = ga1 B = gb, B0 = gba0 , B1 = gba1 ,
τ0 = w · wa00 , τ1 = w · wa11 , T0 = τ b0 , T1 = τ b1 , Z = e(g, g)αa0b

)
.

The master key is defined to be MK = (gα, gαa0).

• KeyGenmIPE(PP,MK,Γ): It parses Γ to be {~v1, . . . , ~v`}. It further parses each ~vi ∈ Γ
as (vi,1, . . . , vi,n) and returns ⊥ if vi,n = 0. It then runs the following steps:

– Pick r0, . . . , r`, z0, z1
U←− Zq, set r = r0 + · · ·+ r`.

– For i ∈ [`], pick tagki,1, . . . , tagki,n−1
U←− Zq.
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– Generate skΓ = (D1, . . . , D7, {Ki,0,Ki,1, . . . ,Ki,n−1, tagki,1, . . . , tagki,n−1}i∈[`]) by
computing

D1 = gαa0 · wr, D2 = g−α · wr0 · gz0 , D3 = B−z0 , D4 = wr1 · gz1 ,
D5 = B−z1 , D6 = Br0 , D7 = gr1+···+r` ,

for i ∈ [`] we set :

Ki,0 = gri , Ki,j = (h
−
vi,j
vi,n

n · hj · h
tagki,j
0 )ri for j ∈ [n− 1].

• EncmIPE(PP, ~x,m): To encrypt m ∈ GT under ~x = (x1, . . . , xn) ∈ Znq , it picks

s0, s1, t, tagc
U←− Zq and computes c = (C1, . . . , C7, C,E0, E1, tagc) where

C1 = Bs0+s1 , C2 = Bs0
0 , C3 = As00 , C4 = Bs1

1 ,

C5 = As11 , C6 = τ s00 · τ
s1
1 , C7 = T s00 · T

s1
1 · h

−t
0 ,

C = m · Zs1 , E0 = gt, E1 = (htagc0 ·
n∏
i=1

hxii )t.

• DecmIPE(PP, skΓ, c): It recovers the message in the following steps:

– Compute tagki = tagki,1x1 + · · ·+ tagki,n−1xn−1 for i ∈ [`].

– Compute W =
∏5
j=1 e(Cj , Dj) · (

∏7
j=6 e(Cj , Dj))

−1 = e(g, g)αa0bs1 ·
e(g, h0)(r1+···+r`)t.

– Compute Wi = (
e((Ki,1)x1 ...(Ki,n−1)xn−1 , E0)

e(E1,Ki,0) )
1

tagki−tagc = e(g, h0)rit.

– Recover the message as m = C/Zs1 = C/e(g, g)αa0bs1 ← C ·W2 · · ·W` ·W−1.

• DelmIPE(PP,Γ, skΓ,Γ
′): It parses Γ as {~v1, . . . , ~v`} and Γ′ as {~v1, . . . , ~v`, ~v`+1, . . . , ~v`′}.

For all i ∈ [`′] it parses each ~vi as (vi,1, . . . , vi,n), and returns ⊥ if vi,n = 0. It then runs
the following steps:

– Parse skΓ to be

D1, . . . , D7, {Ki,0,Ki,1, . . . ,Kn−1, tagki,1, . . . , tagki,n−1}i=1,...,`.

– Pick r′0, . . . , r
′
`′ , z

′
0, z
′
1

U←− Zq and set r′ = r′0 + · · ·+ r′`′ .

– For i ∈ [`+ 1, `′], pick tagki,1, . . . , tagki,n−1
U←− Zq.

– Generate skΓ′ = (D′1, . . . , D
′
7, {K ′i,0,K ′i,1, . . . ,K ′i,n−1, tagki,1, . . . , tagki,n−1}i∈[`′]) by

computing

D′1 = D1 · wr
′
, D′2 = D2 · wr

′
0 · gz

′
0 , D′3 = D3 ·B−z

′
0 , D′4 = D4 · wr

′
1 · gz

′
1 ,

D′5 = D5 ·B−z
′
1 , D′6 = D6 ·Br′0 , D′7 = D7 · gr

′
1+...+r′

`′ ,

for i ∈ [`] we set :

K ′i,0 = Ki,0 · gr
′
i , K ′i,j = Ki,j · (h

−
vi,j
vi,n

n · hj · h
tagki,j
0 )r

′
i for j ∈ [n− 1],

for i ∈ [`+ 1, `′] we set :

K ′i,0 = gr
′
i , K ′i,j = (h

−
vi,j
vi,n

n · hj · h
tagki,j
0 )r

′
i for j ∈ [n− 1].
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Theorem 1. The multi-predicate IPE scheme is fully secure under the DLIN and DBDH
assumptions.

Proof. Our proof uses the dual system methodology similar to that in [23, 1], which involves
ciphertexts and secret keys that can be normal or semi-functional. The semi-functional ci-
phertext and key generation algorithms (which are not used in a real system) can be described
as follows:
Semi-Functional Ciphertexts: The algorithm first runs the encryption algorithm to gen-

erate a normal ciphertext (C ′1, . . . , C
′
7, C

′, E′0, E
′
1, tagc

′). It then chooses χ
U←− Zq before

replacing (C ′4, C
′
5, C

′
6, C

′
7) by

C4 = C ′4 · gba1χ, C5 = C ′5 · ga1χ, C6 = C ′6 · w
a1χ
1 , C7 = C ′7 · w

a1bχ
1 ,

respectively.
Semi-Functional Secret Keys: The algorithm first runs the encryption algorithm to gen-
erate a normal private key D′1, . . . , D

′
7, {K ′i,0,K ′i,1, . . . ,K ′i,n−1, tagk

′
i,1, . . . , tagk

′
i,n−1}i∈[`]. The

semi-functional key is obtained by choosing γ
U←− Zq and replacing (D′1, D

′
2, D

′
4) by

D1 = D′1 · g−a0a1γ , D2 = D′2 · ga1γ , D4 = D′4 · ga0γ ,

respectively.
Let us assume that adversary Amakes at most qR key reveal queries and qA key generation

& delegation queries. Our proof can then proceed in a sequence of games defined as follows:

– GameReal is the actual multi-predicate IPE security game.

– Game0 is identical to GameReal except that the challenge ciphertext is semi-functional.

– Gamek (for 1 ≤ k ≤ qR) is identical to Game0 except that the first k key reveal queries
are answered by returning a semi-functional key.

– GameFinal is as GameqR but the challenge ciphertext is semi-functional encryption of a
random element of GT instead of the actual plaintext.

In Appendix B, we prove a set of lemmata that argue the indistinguishability between any
two consecutive games under the DLIN and DBDH assumptions The game ends in GameFinal,
where any adversary’s advantage must be negligibly close to 0.

The indistinguishability of GameReal and Game0 (see Lemma 4) as well as that of GameqR
and GameFinal (Lemma 6) can be proved in the similar way as with [23]. It turns out that
the main challenge is to show indistinguishability between Gamek−1 and Gamek (Lemma 5).
This is mainly because multi-predicate IPE allows key delegation as opposed to IPE without
delegation mechanism and the adversary’s queries have less restriction than that of HIBE.

In the HIBE scheme of [23], the challenger embeded some 2-equation trapdoors into the
k-th key reveal query’s identity (id1, . . . , id`) and the challenge identity (id∗1, . . . , id

∗
`∗). More

precisely, it plans to embed a 2-equation trapdoor into id` and id∗` , this is because the key
query and challenge identity always have the restriction that id∗` 6= id` if `∗ ≥ `. To do this,
the challenger guesses a key generation or delegation query as the k-th key reveal query. This
strategy overcomes the “tag lineage” problem because the challenger embeds the trapdoor

12



before the tag values are “locked”, resulting the challenger’s guess to be correct with prob-
ability 1/q′A, where q′A is the number of key generation & delegation queries. Subsequently,
Attrapadung and Libert [1] used an n-equation trapdoor as opposed to a 2-equation trapdoor
for their IPE scheme to deal with the difficulties arising from the richer structure of IPE and
the aggregation of ciphertexts into a constant number of elements. To embed the n-equation
trapdoor, it requires that the adversary’s k-th key reveal query on ~v has the restriction of
~x∗ · ~v 6= 0 for a challenge vector ~x∗, which is clearly necessary under payload-hiding model.

In our multi-predicate IPE scheme, the adversary’s query is less restricted than the previ-
ous cases in the sense that, for a challenge vector ~x∗ and a key reveal query Γ := {~v1, . . . , ~v`},
we only require some ~vi such that ~x∗ ·~vi 6= 0. Thus, our goal is to embed an n-equation trap-
door into the challenge vector ~x∗ and some vector ~vi of the k-th reveal query Γ := {~v1, . . . , ~v`},
where ~x∗ · ~vi 6= 0 holds. As expected, our construction also faces the “tag lineage” problem.
However, adopting Waters’s strategy described above does not work here since we may get
~x∗ · ~v` = 0. Moreover, we cannot simply guess further a vector in the key reveal query that
will satisfy the restriction. This is because the k-th reveal query may be a key delegation
query from a previous key for Γ := {~v1, . . . , ~v`} delegated to Γ′ := {~v1, . . . , ~v`′} while the tag
values for vectors in Γ have already been “locked”. We introduce a new strategy based on
tree structure. The challenger arranges all queries and their vectors (each vector is associated
with an universal counter value) in a tree. It guesses a value k∗ for all vectors in the tree such
that the k∗-th vector will appear in the k-th key reveal query and the corresponding vector
~v satisfies the condition of ~x · ~v 6= 0. This allows us to embed the n-equation trapdoor to the
correct vector of the key reveal query.

3.2 Improving Efficiency under Adaptively Attribute-Hiding Model

Our second construction of multi-predicate IPE scheme makes use of the IPE scheme of [20]
as a building block. The latter is fully secure and adaptively attribute-hiding under the DLIN
assumption but without constant-size ciphertexts. The main idea of our construction is that
to generate a secret key, we mask each vector in Γ with a random value form Zq and then
compute the sum of all the masked vectors. We include a delegation mechanism in a similar
way to the HIPE scheme of [13, 20]. We use ~0 to denote the n-dimensional zero vector and
span〈b1, . . . ,bn〉 to denote all linear combination of {b1, . . . ,bn} (i.e., σ1b1+. . .+σnbn where
σ1, . . . , σn ∈ Zq). Our multi-predicate IPE scheme is as follows:

• SetupmIPE(λ, n): It performs the following steps:

– Pick (paramV,B,B∗)
$← Gob(λ, 4n+ 2).

– Set B̂ := (b0, . . . ,bn,b4n+1), B̂∗ := (b∗0, . . . ,b
∗
n), B̃∗ := (b∗3n+1, . . . ,b

∗
4n).

– Return PP := (paramV, B̂, B̃∗) and MK := B̂∗.

• KeyGenmIPE(PP,MK,Γ): It sets Γ to be {~v1, . . . , ~v`} and does the following steps:

– Pick σdec,i, σran,1,i, . . . , σran,`,i, σdel,1,i, . . . , σdel,n,i, ψ
$← Fq for i ∈ [`].

– Pick ~ηdec, ~ηran,1, . . . , ~ηran,`, ~ηdel,1, . . . , ~ηdel,n
$← Fnq .
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– Compute

k∗`,dec := (1, σdec,1~v1 + . . .+ σdec,`~v`, ~0, ~0, ~ηdec, 0)B∗ ,

k∗`,ran,j := (0, σran,j,1~v1 + . . .+ σran,j,`~v`, ~0, ~0, ~ηran,j , 0)B∗ for j ∈ [`],

k∗`,del,j := (0, σdel,j,1~v1 + . . .+ σdel,j,`~v` + ψ~vj ,~0, ~0, ~ηdel,j , 0)B∗ for j ∈ [n].

– Return skΓ := (k∗`,dec,k
∗
`,ran,1, . . . ,k

∗
`,ran,`,k

∗
`,del,1, . . . ,k

∗
`,del,n).

• EncmIPE(PP, ~x,m): It

– Picks ζ, δ, η
$← Fq.

– Computes c0 := m · gζT , c1 := (ζ, δ~x, ~0, ~0, ~0, η)B.

– Returns c := (c0, c1).

• DecmuIPE(PP, skΓ, c): It recovers message m := c0/e(c1,~k
∗
`,dec).

• DelmIPE(PP,Γ, skΓ,Γ
′): It sets Γ to be {~v1, . . . , ~v`}, Γ′ to be {~v1, . . . , ~v`, ~v`+1, . . . , ~v`′},

and ~vi to be (vi,1, . . . , vi,n) for i ∈ [`′]. It then does the following steps:

– Pick αdec,i, αran,1,i, . . . , αran,`′,i, αdel,1,i, . . . , αdel,n,i, ψ
′ $← Fq for i ∈ [`′].

– Pick r∗dec, r
∗
ran,1, . . . , r

∗
ran,`′ , r

∗
del,1, . . . , r

∗
del,n

$← span〈b∗3n+1, . . . ,b
∗
4n〉.

– Compute

k∗`′,dec := k∗`,dec +
∑̀
i=1

αdec,ik
∗
`,ran,i +

`′∑
i=`+1

αdec,i(

n∑
t=1

vi,tk
∗
`,del,t) + r∗dec

k∗`′,ran,j :=
∑̀
i=1

αran,j,ik
∗
`,ran,i +

`′∑
i=`+1

αran,j,i(
n∑
t=1

vi,tk
∗
`,del,t) + r∗ran,j for j ∈ [`′],

k∗`′,del,j :=
∑̀
i=1

αdel,j,ik
∗
`,ran,i +

`′∑
i=`+1

αdel,j,i(
n∑
t=1

vi,tk
∗
`,del,t) + ψ′k∗`,del,j + r∗del,j for j ∈ [n].

– Return skΓ′ := (k∗`′,dec,k
∗
`′,ran,1 . . . ,k

∗
`′,ran,`′ ,k

∗
`′,del,1, . . . ,k

∗
`′,del,n).

Theorem 2. The multi-predicate IPE scheme is fully secure under the DLIN assumption.

The security proof of the theorem is essentially similar to that for the IPE scheme of [20].
Hence, we do not discuss any further here.

4 Generic Construction of SE from Multi-Predicate IPE

In this section, we describe how to construct an n-dimensional SE scheme from a multi-
predicate IPE scheme that works in Euclidean spaces. One can adopt similar techniques
of [8] to derive an n-dimensional SE scheme in affine spaces from an (n+ 1)-dimensional SE
scheme in Euclidean spaces. For completeness, we describe such techniques in Appendix A.
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4.1 Intuition

In a multi-predicate IPE scheme, a secret key associated with a set of vectors {~v1, . . . , ~v`} ∈
KmIPE can be viewed as being associated with the space S⊥(~v1, . . . , ~v`). In other words, we
can interpret the relation between a ciphertext and a secret key as F(S⊥(~v1, . . . , ~v`), (~x,m)) =
m in the SE setting. From this observation and the property that (S⊥)⊥ = S from Lemma
1, instead of generating a secret key for an (n − `)-dimensional space S ∈ KSE , we generate
a secret key for a basis B⊥(S) = {~v1, . . . , ~v`} ∈ KmIPE of S⊥ by using the KeyGen algorithm
of the multi-predicate IPE scheme. Here B⊥(S) can be generated by running the BasisGen
algorithm as described in Lemma 2.

We note that when more linearly independent vectors are added into the vector set,
the dimension of the orthogonal space gets smaller. Namely S⊥(~v1, . . . , ~v`, ~v`+1, . . . , ~v`′) is a
subspace of S⊥(~v1, . . . , ~v`). This property is crucial for key delegation. Given a space S, a
subspace S ′ of S, and a “fixed” basis B⊥ = {~v1, . . . , ~v`} of S⊥, we can derive a basis in the
form B′⊥ = {~v1, . . . , ~v`, ~v`+1, . . . , ~v`′} of S ′⊥ by running the BasisDel algorithm as described
in Lemma 3.

4.2 Construction

We now describe the construction of an SE scheme from a multi-predicate IPE scheme using
the above idea. To construct an n-dimensional SE scheme, we require a multi-predicate IPE
scheme with the same dimension. Given a multi-predicate IPE scheme with five algorithms:
SetupmIPE , KeyGenmIPE , EncmIPE , DecmIPE , and DelmIPE , we construct an SE scheme with
the corresponding five algorithms: SetupSE , KeyGenSE , EncSE , DecSE , and DelSE , as follows:

• SetupSE(λ, n): It runs SetupmIPE(λ, n) and outputs public parameters PP and a master
key MK.

• KeyGenSE(PP,MK,S): It generates a secret key for an (n − `)-dimensional space
S. It first runs BasisGen(S) and outputs B⊥(S) = {~v1, . . . , ~v`}. It then runs
KeyGenmIPE(PP,MK,B⊥(S)) and outputs a secret key skS with B⊥(S).

• EncSE(PP, ~x,m): It runs EncmIPE(PP, (~x,m)) and outputs a ciphertext c.

• DecSE(PP, skS , c): It runs DecmIPE(PP, skS , c) and outputs a message m.

• DelSE(PP,S, skS ,S ′): It delegates a secret key to an (n − `′)-dimensional subspace S ′
of S, where B⊥(S) = {~v1, . . . , ~v`}. It first runs BasisDel(S,S ′,B⊥(S)) and outputs
B⊥(S ′) = {~v1, . . . , ~v`, ~v`+1, . . . , ~v`′}. It then runs DelmIPE(PP,B⊥(S), skS ,B⊥(S ′)) and
outputs a secret key skS′ with B⊥(S ′).

We now show that the resulting SE scheme works correctly and is indeed secure.

Theorem 3. The SE scheme constructed from the multi-predicate IPE scheme works cor-
rectly.

Proof. From our construction, the only algorithm that needs to be considered is delegation.
Given a partial order pair S ′ � S of KSE , we transform it into a pair (B⊥(S ′), B⊥(S)) using
the BasisDel algorithm such that B⊥(S ′) � B⊥(S) in the multi-predicate IPE setting. Thus,
the key delegation algorithm works as required.
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Given a plaintext (~x,m) ∈ XSE and an (n− `)-dimensional space S ∈ KSE , we transform
them into (~x,m) ∈ XmIPE and B⊥(S) = {~v1, . . . , ~vr} ∈ KmIPE respectively. Then we have

F(S, (~x,m)) = m⇔ ~x ∈ S
⇔ ~x · ~vi = 0 for all ~vi ∈ B⊥(S)

⇔ F(B⊥(S), (~x,m)) = m.

This implies that the resulting SE scheme inherits the decryptability from the original multi-
predicate IPE scheme, i.e., F(S, (~x,m)) = m iff ~x ∈ S as defined in Section 2.2.

Theorem 4. For any adversary A against the SE scheme in the same security model for the
multi-predicate IPE scheme, there is an adversary D against the multi-predicate IPE scheme,
running in about the same time as A, such that

AdvSEA (λ) ≤ AdvmIPED (λ).

Moreover, the SE scheme preserves properties from the multi-predicate IPE scheme.

Proof. Given any adversary A against the SE scheme in the same security model for the
multi-predicate IPE scheme (which is fully/selective secure, attribute/payload-hiding), we
simulate an adversary D with advantage AdvSEA (λ) against the multi-predicate IPE scheme
as follows:

• Setup: It runs a real game RG of multi-predicate IPE and forwards PP to adversary A.

• Query: It answers A’s queries by querying RG’s key generation and delegation oracles.

• Challenge: It forwards A’s challenge to RG and then returns RG’s output to A.

• Guess: It answers A’s queries as Query phase and D forwards A’s guess to RG.

In the above security game, we can efficiently transform the elements in KSE and XSE , as
required by the multi-predicate IPE setting. From Theorem 3 and its proof, all the oracles of
the SE scheme can be simulated correctly. Moreover, the plaintexts x(0) = (~x(0),m(0)), x(1) =
(~x(1),m(1)) ∈ XSE , any space S ∈ KSE of A’s choices and those in the multi-predicate IPE
setting satisfy requirement (1) (and other restrictions of the security model) simultaneously.
Thus, the simulation is perfect and we conclude that AdvmIPED (λ) is at least AdvSEA (λ).

It is clear that properties such as full/selective security (under simple assumptions) and
attribute/payload-hiding are preserved in the transformation since the model of security game
we simulate for the SE scheme is identical to that for the original multi-predicate IPE scheme.
Moreover, should the original multi-predicate IPE scheme work in prime order bilinear groups
and have constant ciphertexts (and other properties), the derived SE scheme would also inherit
such properties since the SE scheme can be viewed as a “restricted” form or an embedding
of the multi-predicate IPE scheme.

Remark: We note that our first multi-predicate IPE scheme described in Section 3.1 re-
quires that vn 6= 0 for any vector (v1, . . . , vn). Thus, when we derive an SE scheme using
the above generic techniques, we can add one more dimension as a “dummy scalar”. That
is, each vector ~v = (v1, . . . , vn) in B⊥(S) = {~v1, . . . , ~v`} is replaced by a vector (v1, . . . , vn, 1),
and ~x = (x1, . . . , xn) is replaced by a vector (x1, . . . , xn, 0) for key generation and encryption,
respectively.
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5 Discussion

5.1 Fully Secure HIBE Scheme under Simple Assumptions with Constant
Ciphertexts

Building on our results in the previous sections, we now show how one can construct a
fully secure HIBE scheme under simple DLIN and DBDH assumptions with constant-size
ciphertexts. Our HIBE scheme can be regarded as an improved version the Waters HIBE
scheme of [23] by having constant-size ciphertexts not achievable by the latter..

In the HIBE setting, a functionality F is defined over a key space and an index space using
sets of hierarchical identities. In an HIBE scheme with maximum depth n, the key space K
(resp. index space I) corresponds to all hierarchical identities in the form (id1, . . . , id`) (resp.
(id′1, . . . , id

′
`′)), where ` ≤ n. Here

F((id1, . . . , id`), ((id
′
1, . . . , id

′
`′),m)) :=

{
m if ` ≤ `′ and id′i = idi for all i ∈ [`]
⊥ otherwise.

Moreover, (id′1, . . . , id
′
`′) � (id1, . . . , id`) iff ` ≤ `′ and id′i = idi for all i ∈ [`].

Generally, to embed an HIBE scheme with maximal depth n, we require an n-dimensional
SE in affine spaces. We assume that identities are elements in Z∗q , and hence one will use a
collision resistant hash function to hash identities of arbitrary length to Z∗q . For (id1, . . . , id`)
associated with a secret key, we encode it as the affine space which begins with (id1, . . . , id`),
namely

{(id1, . . . , id`, x`+1, . . . , xn) : xi ∈ Zq}.

For (id1, . . . , id`) associated with a ciphertext, we encode it as the vector

(id1, . . . , id`, 0, . . . , 0).

Our HIBE scheme is derived from our SE scheme, which in turn, is obtained from the
multi-predicate IPE in Section 3.1. To construct an n-dimensional SE scheme, we require an
(n+1)-dimensional multi-predicate IPE scheme. Here, we do not need an additional dimension
as a dummy scalar as mentioned before, since we always have vn+1 6= 0 for any vector
~v = (v1, . . . , vn, vn+1) in our construction when running the key generation or delegation
algorithm.

• SetupHIBE(λ, n): It chooses bilinear groups (q,G,GT , g
′, e) of prime order q ≤ 2λ. It

then picks g, w,w0, w1, h0, h1, . . . , hn
U←− G and α, a0, a1, b

U←− Zq. The public parame-
ters consist of

PP =

( g, w, w0, w1, h0, h1, . . . , hn, hn+1

A0 = ga0 , A1 = ga1 B = gb, B0 = gb·a0 , B1 = gb·a1 ,
τ0 = w · wa00 , τ1 = w · wa11 , T0 = τ b0 , T1 = τ b1 , Z = e(g, g)α·a0·b

)
.

The master key is defined to be MK = (gα, gαa0).

• KeyGenHIBE(PP,MK, (id1, . . . , id`)): It picks r0, . . . , r`, z0, z1
U←− Zq, sets r =

∑`
i=0 ri.

For i ∈ [`], it picks tagki,1, . . . , tagki,n
U←− Zq It then generates sk(id1,...,id`) =
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(D1, . . . , D7, {Ki,0,Ki,1, . . . ,Kidi,n, tagki,1, . . . , tagki,n}i∈[`]) by computing

D1 = gαa0 · wr, D2 = g−α · wr0 · gz0 , D3 = B−z0 , D4 = wr1 · gz1 ,
D5 = B−z1 , D6 = Br0 , D7 = gr1+...+r` ,

for i ∈ [`] :

Ki,0 = gri , Ki,i = (h
1
idi
n+1 · hi · h

tagki,i
0 )ri , Ki,j = (hj · h

tagki,j
0 )ri for j ∈ [n]\{i}.

• EncHIBE(PP, (id1, . . . , id`),m): To encrypt m ∈ GT , it picks s0, s1, t, tagc
U←− Zq and

computes c = (C1, . . . , C7, E0, E1, E2, tagc) where

C1 = Bs0+s1 , C2 = Bs0
0 , C3 = As00 , C4 = Bs1

1 ,

C5 = As11 , C6 = τ s00 · τ
s1
1 , C7 = T s00 · T

s1
1 · h

−t
0 ,

C = m · Zs1 , E0 = gt, E1 = (htagc0 · hn+1 ·
n∏
i=1

hidii )t.

• DecHIBE(PP, sk(id1,...,id`), c): It recovers a message by performing the following steps:

– Compute tagki = tagki,1id1 + · · ·+ tagki,`id` for i ∈ [`].

– Compute W =
∏5
j=1 e(Cj , Dj) · (

∏7
j=6 e(Cj , Dj))

−1 = e(g, g)αa0bs1 ·
e(g, h0)(r1+···+r`)t.

– Compute Wi = (
e((Ki,1)id1 ...(Ki,`)

id` , E0)
e(E1,Ki,0) )

1
tagki−tagc = e(g, h0)rit.

– Recover the message as m = C/Zs1 = C/e(g, g)αa0bs1 ← C ·W1 · · ·W` ·W−1.

• DelHIBE(PP, (id1, . . . , id`), skΓ, (id1, . . . , id`′)): To delegate a key, it runs the following
steps:

– Set sk(id1,...,id`) to be

D1, . . . , D7, {Ki,0,Ki,1, . . . ,Ki,n, tagki,1, . . . , tagki,n}i∈[`].

– Pick r′0, . . . , r
′
`, r
′
`+1, . . . , r

′
`′ , z

′
0, z
′
1

U←− Zq and set r′ = r′0 + . . .+ r′`′ .

– For i ∈ [`+ 1, `′], pick tagki,1, . . . , tagki,n
U←− Zq.

– Generate skΓ′ = (D′1, . . . , D
′
7, {K ′i,0,K ′i,1, . . . ,K ′i,n, tagk

′
i,1, . . . , tagk

′
i,n}i∈[`′]) by

computing

D′1 = D1 · wr
′
, D′2 = D2 · wr

′
0 · gz

′
0 , D′3 = D3 ·B−z

′
0 ,

D′4 = D4 · wr
′

1 · gz
′
1 , D′5 = D5 ·B−z

′
1 , D′6 = D6 ·Br′0 ,

D′7 = D7 · gr
′
1+...+r′

`′ ,

for i ∈ [`] we set :

K ′i,0 = Kidi,0 · g
r′i , K ′i,i = Ki,j · (h

1
idi
n+1 · hi · h

tagkidi,j
0 )r

′
i ,

K ′i,j = Ki,j · (hj · h
tagkidi,j
0 )r

′
i for j ∈ [n]\{i},

for i ∈ [`+ 1, `′] we set :

K ′i,0 = gr
′
i , K ′i,i = (h

1
idi
n+1 · hi · h

tagki,i
0 )r

′
i , K ′i,j = (hi · h

tagki,j
0 )r

′
i for j ∈ [n]\{i}.
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The security of our HIBE scheme can be obtained from the Embedding Lemma of [4].

Theorem 5. The HIBE scheme is fully secure under the DLIN and DBDH assumptions.

A summary of comparisons of existing HIBE schemes against ours is presented in Table 4,
where n denotes the maximal depth of HIBE.

Table 4: Comparisons between existing HIBE schemes and ours.

BBG[2] W[22] W[23] LW[14] Ours

size of PP O(n) O(n) O(n) O(n) O(n)

size of sk O(n) O(n) O(n) O(n) O(n2)

size of c 3 O(n) O(n) 3 10

# pairings 2 O(n) O(n) O(n) O(n)

fully secure No Yes Yes Yes Yes

anonymous No No No No No

constant c Yes No No Yes Yes

prime order Yes Yes Yes No Yes

simple
assumptions

No Yes Yes No Yes

We note that the HIBE scheme of [14] has short ciphertexts, but it is under composite order
bilinear group, which is less efficient.

5.2 Generic Relation between SE, HIPE and Multi-Predicate IPE

We have seen that multi-predicate IPE implies SE under some linear reduction. Although SE
implies HIPE, we can also show how to construct HIPE from multi-predicate IPE directly.
In fact, interestingly, multi-predicate IPE can be constructed from SE or HIPE under linear
or quadratic reduction, respectively. Thus, we have the following relation:

SE
Linear
-

�
Linear

mIPE
Linear

-
�
Quadratic

HIPE

These results are shown in Appendix D. Particularly, we obtain a fully secure HIPE scheme
under simple assumptions in prime order group with constant size of ciphertexts from the
multi-predicate IPE scheme of Section 3.1. We note that if we directly extend the IPE scheme
of [1] to HIPE, the size of ciphertexts may be dependent on the depth of the hierarchy.

5.3 Generic Construction of Negated SE from Non-zero IPE

In addition to the generic construction of SE from multi-predicate IPE, we describe a generic
construction of a negated SE scheme that requires only a non-zero IPE scheme. This may be
of independent interest.

Given a non-zero IPE scheme, denoted as nIPE, with four algorithms: SetupnIPE ,
KeyGennIPE , EncnIPE , and DecnIPE , we construct a negated SE scheme, denoted as nSE
with the corresponding four algorithms: SetupnSE , KeyGennSE , EncnSE , and DecnSE , as fol-
lows:
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• SetupnSE(λ, n): It runs SetupnIPE(λ, n) and outputs public parameters PP and a master
key MK.

• KeyGennSE(PP,MK,S): It generates a secret key for an (n − `)-dimensional space
S. It first runs BasisGen(S) and outputs B⊥(S) = {~v1, . . . , ~v`}. It then runs sk~vi =
KeyGennIPE(PP,MK, ~vi) for all i ∈ [`] and outputs a secret key skS := {sk~v1 , . . . , sk~v`}.
• EncnSE(PP, ~x,m): It runs EncnIPE(PP, ~x,m) and outputs a ciphertext c.

• DecnSE(PP, skS , c): For c associated with some ~x, it selects some i such that ~x · ~vi 6= 0.
It runs DecnIPE(PP, sk~vi , c) and outputs a message m.

By applying our nIPE-to-nSE transformation techniques, we can obtain a fully secure
negated SE scheme under DLIN assumption from the scheme of [18] which has about a factor
O(n) shorter size of public parameters and ciphertexts than the negated SE scheme presented
in [8].

Table 5: Comparisons between existing negated SE schemes and ours.

AL[1] CLLW[8] This Paper

size of PP O(n) O(n3) O(n2)

size of sk O(n) O(n2) O(n2)

size of c 4 O(n2) O(n)

# pairings 3 O(n) O(n)

fully secure No Yes Yes

anonymous No No No

constant c Yes No No

prime order Yes Yes Yes

simple
assumptions

No Yes Yes

6 Open Problem

Existing and our SE schemes are attribute-hiding or have short/constant ciphertexts, but not
both. Constructing a fully secure SE, multi-predicate IPE, or HIPE scheme that is attribute-
hiding and has short/constant ciphertexts in prime order bilinear groups is still an open
problem, particularly one that works under simple assumptions.
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A Construction of SE in Affine Spaces

Now, we briefly show how to construct an n-dimensional SE scheme in affine spaces from an
(n+ 1)-dimensional SE scheme in Euclidean spaces.

Given an affine space S(M,~y) = {~zM + ~y : ~z ∈ Zrq}, where M ∈ Zr×nq , we embed it in
S((M1, 0), . . . , (Mr, 0), (~y, 1)) ∈ XSE . Given a vector ~x ∈ Znq , we embed it in (~x, 1) ∈ ISE .
Then it is not difficult to check that ~x ∈ S(M,~y) iff (~x, 1) ∈ S((M1, 0), . . . , (Mr, 0), (~y, 1)).
Moreover, if S(M ′, ~y′) is a subspace of S(M,~y), namely there is some matrix T ∈ Zr′×rq and
vector ~z ∈ Zrq such that M ′ = TM and ~y′ = ~y+ ~zM , then S((M ′1, 0), . . . , (M ′r′ , 0), (~y′, 1)) is a
subspace of S((M1, 0), . . . , (Mr, 0), (~y, 1)), and vice versa.

B Lemmas for Theorem 6

We let GameRealAdvA denote an adversary A’s advantage in the real game.

Lemma 4. Suppose that there exists an adversary A where GameRealAdvA−Game0AdvA = ε.
Then we can build an algorithm B that has advantage ε in the DLIN game.

Proof. Our algorithm B receives an instance (paramG, g, f, ν, g
θ0 , fθ1 , T ) of the DLIN problem.

Setup It picks α, b, yw, yw0 , yw1

U←− Zq, h0, h1, . . . , hn
U←− G and sets

g = g, w = gyw , w0 = gyw0 , w1 = gyw1 , h0 = h0, . . . , hn = hn,

A0 = ga0 = f, A1 = ga1 = ν, B = gb, B0 = gba0 = f b, B1 = gba1 = νb,

τ0 = w · wa00 = w · fyw0 , τ1 = w · wa11 = w · fyw1 , T0 = τ b0 , T1 = τ b1 , Z = e(g, g)αa0b = e(g, f)αb.

Here, a0, a1 are the exponents that the reduction cannot know itself. Finally, B forwards the
public parameters PP to A. We also note that using α it can compute the master key MK
for itself

gα, gαa0 = fα.
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Key Queries Since B has the actual master secret key MK it simply runs the key generation
to generate the keys in both phases. Note that the MK it has only allows for the creation of
normal keys.
Challenge B receives two messages m(0),m(1) and challenge vector ~x∗. It then flips

β
U←− {0, 1}. It generates the challenge ciphertext in two steps. First, it generates a normal

ciphertext using the real algorithm by calling Enc(PP, ~x∗,m(β)), which outputs a ciphertext
c′ = (C ′1, . . . , C

′
7, C

′, E′0, E
′
1, tagc

∗). Let s′0, s
′
1, t
′ be the random exponents used in generating

the ciphertext.
Then we modify components of the normal ciphertext as follows and returns ciphertext

c = (C1, . . . , C7, C,E0, E1, tagc
∗):

C1 = C ′1 · (gθ0)b, C2 = C ′2 · (fθ1)−b, C3 = C ′3 · (f−θ1), C4 = C ′4 · T b,
C5 = C ′5 · T, C6 = C ′6 · (gθ0)−yw · (fθ1)−yw0 · T yw1 , C7 = C ′7 · ((gθ0)yw · (fθ1)−yw0 · T yw1 )b,

C = C ′ · (e(gθ0 , f) · e(g, fθ1))αb, E0 = E′0, E1 = E′1.

If T is a tuple, then this assignment implicitly sets s0 = −θ1 + s′0, s1 = s′1 + θ0 + θ1 and
s = s0 + s1 = θ0 + s′0 + s′1. If T = νθ0+θ1 it will have the same distribution as a normal
ciphertext; otherwise, it will be distributed identically to a semi-functional ciphertext. B
receives a bit β′ and outputs 0 iff β = β′.

Lemma 5. Suppose that there exists an adversary A that makes at most qR queries and
Gamek−1AdvA − GamekAdvA = ε for some k where 1 ≤ k ≤ qR. Then we can build an
algorithm B that has advantage ε in the DLIN game.

Proof. Our algorithm B receives an instance (paramG, g, f, ν, g
θ0 , fθ1 , T ) of the DLIN problem.

Setup B picks α, a0, a1, yw0 , yw1 , yh0 , . . . , yhn
U←− Zq, ~ζ := (ζ1, . . . , ζn)

U←− Znq and sets

g = g, w = ν−a0a1 , w0 = νa1 · gyw0 , w1 = νa0 · gyw1 ,

h0 = f · gyh0 , h1 = f ζ1 · gyh1 , . . . , hn = f ζn · gyhn ,
A0 = ga0 , A1 = ga1 , B = gb = f, B0 = gba0 = fa0 , B1 = gba1 = fa1 ,

τ0 = w · wa00 = gyw0a0 , τ1 = w · wa11 = gyw1a1 ,

T0 = τ b0 = fyw0a0 , T1 = τ b1 = fyw1a1 , Z = e(g, g)αa0b = e(f, g)αa0 .

Next, B forwards the public parameters PP to A. Note that B knows MK as gα, gαa0 .
Key Queries B begins by choosing a value k∗ uniformly at random between 1 and (n− 1)qA
and creates a counter µ. Initially, µ is set to 0. When either a generate or delegate request is
made µ is incremented as follows:

• If this is a generate query for a vector set Γ := {~v1, . . . , ~v`}, then µ is incremented by 1
for each vector in Γ one by one.

• Suppose this is a delegate query to delegate from a previous key of a vector set
Γ := {~v1, . . . , ~v`} to Γ′ := {~v1, . . . , ~v`′}. Then µ is incremented by 1 for each vector
in {~v`+1, . . . , ~v`′} one by one.

Additionally, B uses a tree structure S to record information of all key queries. Roughly, the
root node is empty, a generate query will be recorded on a new child node of root while a
delegate query will be recorded on a new child of the node of previous key.
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Key Generation is done the same regardless of whether it is phase 1 or 2. Then, B answers
three types of queries as follows:

• Generate: Assume it is a query for Γ := {~v1, . . . , ~v`}. It generates a new child node of
root for Γ. For each vector ~vi ∈ Γ, do

1. It sets µ = µ+ 1.

2. If µ 6= k∗, it picks tag values tagki,1, . . . , tagki,n−1. Otherwise µ = k∗, it computes

tag values tagki,1, . . . , tagki,n−1
U←− Zq for ~vi := (v1, . . . , vn) by using n equation

trapdoor as


tagki,1
tagki,2

...
tagki,n−1

 =


v1
vn

−1
v2
vn

−1
...

. . .
vn−1

vn
−1




ζ1

ζ2
...

ζn

 .

3. It associates the tag values tagki,1, . . . , tagki,n−1, µ, and ~vi to the new node.

• Delegate: Assume it is a query from a previous key of Γ := {~v1, . . . , ~v`} to Γ′ :=
{~v1, . . . , ~v`′}. It generates a new child node of Γ for Γ′. For each vector ~vi ∈
{~v`+1, . . . , ~v`′}, it sets µ = µ + 1 and generates tag values tagki,1, . . . , tagki,n−1 simi-
lar as key generation queries, which are associated to the new node with µ and ~vi.

• Reveal: B answers the η-th reveal query as follows.

Case 1: η > k
Suppose A ask for the key of Γ to be revealed. Since B has the master key MK, it
can generate a normal secret key, using the tag values stored in the node of Γ and its
ancestors.

Case 2: η < k
Suppose A ask for the key of Γ to be revealed. It first generates a normal key using
MK and the tag values stored in the node of Γ and its ancestors. Then it makes it
semi-functional using ga0a1 and the semi-functional key generation algorithm described
in Theorem 6.

Case 3: η = k
Suppose A ask for the key of Γ := {~v1, . . . , ~v`} to be revealed. If any of the following
events happens then the B aborts the simulation and guesses whether T is a tuple
randomly.

– If k∗ is not stored in node of Γ or its ancestors

– If A has already submitted the challenge vector ~x∗, we have ~x∗ ·~vi∗ = 0, where ~vi∗

has the counter value k∗.

The algorithm B first runs the key generation algorithm to generate a normal secret key
skΓ for Γ with D′1, . . . , D

′
7, {K ′i,0,K ′i,1, . . . ,K ′i,n−1}i∈[`] using the tag values stored in the

node of Γ and its ancestors. Let r′0, . . . , r
′
`, z
′
0, z
′
1 be the random exponents used.
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Assume ~vi∗ := (v1, . . . , vn) ∈ Γ has the counter value k∗, it then sets

D1 = D′1 · T−a0·a1 , D2 = D′2 · T a1 · (gθ0)yw0 , D3 = D′3 · (fθ1)yw0 ,

D4 = D′4 · T a0 · (gθ0)yw1 , D5 = D′5 · (fθ1)yw1 , D6 = D′6 · fθ1 ,
D7 = D′7 · (gθ0),

for i ∈ [`]\{i∗} we set :

Ki,0 = K ′i,0, Ki,j = K ′i,j for j ∈ [n− 1],

for i = i∗ we set :

Ki∗,0 = K ′i∗,0 · (gθ0), Ki∗,j = K ′i∗,j · (gθ0)−yhn (vi/vn)+yhi+yh0 tagki∗,j for j ∈ [n− 1],

If T = νθ0+θ1 , then k-th reveal query results in a normal key under randomness r0 =
r′0 + θ1, ri = r′i for i ∈ [`]\{i∗}, ri∗ = r′i∗ + θ0, z0 = z′0 − yw0θ1, and z1 = z′1 − yw1θ1.
Otherwise, if T is a random group element, then we can write T = νθ0+θ1 ·gγ for random
γ ∈ Zq. This forms a semi-functional key where γ is the added randomness to make it
semi-functional.

Challenge B receives two messages m(0),m(1) and challenge vector ~x∗. If µ ≥ k∗ and ~x∗ ·~vi∗ =
0 then the B aborts the simulation and guesses whether T is a tuple randomly, where ~vi∗ has

the counter value k∗. Otherwise, it picks β
U←− {0, 1} and computes the tagc∗ = −〈~x∗, ~ζ〉

for which B will be able to prepare the semi-functional ciphertext. It generates the challenge
ciphertext in two steps. First, it generates a normal ciphertext using the real algorithm by
calling Enc(PP, ~x∗,m(β)), which outputs a ciphertext c′ = (C ′1, . . . , C

′
7, E

′
0, E

′
1, E

′
2, tagc

∗) by

using random exponents s′0, s
′
1, t
′. Then B picks χ

U←− Zq and computes

C1 = C1, C2 = C ′2 C3 = C ′3, C4 = C ′4 · fa1χ,
C5 = C ′5 · ga1χ, C6 = C ′6 · w

a1χ
1 , C7 = C ′7 · ν−yh0a0a1χ · fyw1a1χ,

C = C ′, E0 = E′0 · νa0a1χ, E1 = E′1 · (νyh0 tagc
∗+〈~x∗,~δ〉)a0a1χ.

We claim that c = (C1, . . . , C7, E0, E1, E2, tagc
∗) is a semi-functional ciphertext with

underlying exponents χ, s0 = s′0, s1 = s′1 and t = t′ + logg(ν)a0a1χ. One can check it
as in Lemma 2 of [1]. Also it can show that tagc∗, tagki∗,1, . . . , tagki∗,n−1 are still n-wise
independent. But this holds since their relations form a system

M · ~ζ :=


− v1
vn

1

− v2
vn

1
...

. . .

−vn−1

vn
1

x1 x2 x3 . . . xn




ζ1

ζ2
...

ζn

 = −


tagki∗,1
tagki∗,2

...
tagki∗,n−1

tagc∗


which has a solution in ~ζ whenever det(M) = (−1)n+1~x∗ ·~vi∗/vn 6= 0. Since all the other tags
of the k-th reveal key are randomly chosen, all the tags are independent in A’s view.

Eventually, B receives a bit β′ from A and outputs 0 iff β = β′.
The reduction will not abort 1/(n · qA) amount of the time and the abort condition will

be independent of the adversary’s success.
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Lemma 6. Suppose that there exists an adversary A that makes at most qR queries and
GameqRAdvA − GameFinalAdvA = ε. Then we can build an algorithm B that has advantage ε
in the DBDH game.

Proof. Our algorithm B receives an instance (paramG, g, g
θ0 , gθ1 , gθ2 , T ) of the DBDH problem.

Note that in both of these two games the challenge ciphertexts and all the private keys are
semi-functional. Therefore, B only needs to be able to generate semi-functional private keys.

Setup The algorithm B picks a0, b, yw, yw0 , yw1 , yh0 , . . . , yhn
$← Zq and sets

g = g, w = gyw , w0 = gyw0 , w1 = gyw1 , h0 = gyh0 , . . . , hn = gyhn

B = gb, A0 = ga0 , A1 = gθ1 , B0 = gba0 , B1 = gba1 = (gθ1)b,

τ0 = w · wa00 , τ1 = w · (gθ1)yw1 ,

T0 = τ b0 , T1 = τ b1 , Z = e(g, g)αa0b = e(gθ0 , gθ1)a0b.

Next, B forwards the public parameters PP to A. Note that the master key gα is not available
to B, where α = θ0 · θ1 and a1 = θ1.
Key Queries All key generations result in semi-functional keys. When a request for Γ :=

{~v1, . . . , ~v`} is made, the key generation algorithm chooses random r0, . . . , r`, z0, z1, γ
′ U←−

Zq and sets r = r0 + . . . + r` and implicitly sets the variable γ = θ0 + γ′. It also picks

tagki,1, . . . , tagki,n−1
U←− Zq for i ∈ [`], It then generates the key as:

D1 = (gθ1)−a0γ
′ · wr, D2 = (gθ1)−γ

′ · wr0 · gz0 , D3 = B−z0 ,

D4 = (gθ1)a0 · ga0γ′ · wr1 · gz1 , D5 = B−z1 , D6 = Br0 , D7 = gr1+···+r` ,

for i ∈ [`] we set :

Ki,0 = gri , Ki,j = (h
−
vi,j
vi,n

n · hj · h
tagki,j
0 )ri for j ∈ [n− 1].

Challenge B receives two messages m(0),m(1) and challenge vector ~x∗. B will now generate a
challenge ciphertext that is a semi-functional ciphertext of either m(β) or a random message,

depending on T . It first picks β
U←− {0, 1}.

B picks s0, t, tagc
U←− Zq. It will implicitly let s1 = θ2. It then picks χ′

U←− Zq and will
implicitly set χ = −θ2 + χ′.

C1 = gbs0 · (gθ2)b, C2 = gba0s0 C3 = ga0s0 , C4 = (gθ1)bχ
′
,

C5 = (gθ1)χ
′
, C6 = τ s00 · (g

θ2)yw · (gθ1)yw1χ
′
, C7 = T s00 · (g

θ2)byw · (gθ1)byw1χ
′ · h−t0 ,

C = m(β) · T ba0 , E0 = gt, E1 = (htagc0 ·
n∏
i=1

hxii )t.

If T is a tuple, then we are in GameqR otherwise, we are in GameFinal. B receives a bit β′

and outputs 0 iff β = β′.

C Hierarchical Inner Product Encryption

C.1 Definition of HIPE

Here, we give the definition of n-dimensional HIPE scheme with a hierarchy of depth d.
Similarly as the definition of multi-predicate IPE and SE, in the HIPE setting, a functionality
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F is defined over a key space and an index space using sets of hierarchical vectors. Let a
hierarchy of depth d vector spaces have the form of ~µ := (n, d;µ1, . . . , µd) where µ0 = 0 <
µ1 < µ2 < . . . < µd = n. Let Φi := Zµi−µi−1

q \{~0} for i ∈ [d] be the sets of vectors. Let
Φ :=

⋃d
i=1(Φ1 × . . .×Φd), where the union is a disjoint union. The key space K (resp. index

space I) for HIPE then corresponds to all hierarchical vectors (~v1, . . . , ~v`) (resp. (~x1, . . . , ~xh))
of depth at most d in Φ. Here

F((~v1, . . . , ~v`), ((~x1, . . . , ~xh),m)) :=

{
m if ` ≤ h and ~xi · ~vi = 0 for all i ∈ [`]
⊥ otherwise.

Moreover, (~v′1, . . . , ~v
′
`′) � (~v1, . . . , ~v`) iff ` ≤ `′ and ~v′i = ~vi for all i ∈ [`]. Namely

(~v1, . . . , ~v`, ~v`+1, . . . , ~v`′) � (~v1, . . . , ~v`).

C.2 Fully Secure HIPE Scheme under Simple Assumptions

• SetupHIPE(λ, ~µ): It picks paramG := (q,G,GT , g, e)
R←− Gbpg(λ). It then picks

α, a0, a1, b
U←− Zq and w,w0, w1, h0, h1, . . . , hn

U←− G. The public parameters consist of

PP =

( g, w, w0, w1, h0, h1, . . . , hn,
A0 = ga0 , A1 = ga1 B = gb, B0 = gba0 , B1 = gba1 ,
τ0 = w · wa00 , τ1 = w · wa11 , T0 = τ b0 , T1 = τ b1 , Z = e(g, g)αa0b

)
.

The master key is defined to be MK = (gα, gαa0).

• KeyGenHIPE(PP,MK, (~v1, . . . , ~v`)): It parses ~vi as (vµi−1+1, . . . , vµi) and returns ⊥ if

vµi = 0 for i ∈ [`]. Otherwise, it picks r0, r1, r`, z0, z1
U←− Zq and sets r = r0+r1+· · ·+r`.

It also picks tagki,µi−1+1, . . . , tagki,µ`−1
U←− Zq for i ∈ [`]. It then generates sk(~v1,...,~v`) =

(D1, . . . , D7, {Ki,0,Kµi−1+1, . . . ,Kµi−1, tagki,µi−1+1, . . . , tagki,µi−1}i∈[`]) by computing

D1 = gαa0 · wr, D2 = g−α · wr0 · gz0 , D3 = B−z0 , D4 = wr1 · gz1 ,
D5 = B−z1 , D6 = Br0 , D7 = gr1 ,

for i ∈ [`] we set :

Ki,0 = gri , Kj = (h
−

vj
vµi

µi · hj · h
tagki,j
0 )ri for j ∈ [µi−1 + 1, µi − 1].

• EncHIPE(PP, (~x1, . . . , ~x`),m): To encrypt m ∈ GT , it parses ~xi = (xµi−1−1, . . . , xµi)

for i ∈ [`]. It picks s0, s1, t
U←− Zq, tagc1, . . . , tagc`

U←− Zq and computes c =
(C1, . . . , C7, C,E0, E1 . . . , E`, tagc1, . . . , tagc`) where

C0 = m · Zs1 , C1 = Bs0+s1 , C2 = Bs0
0 , C3 = As00 , C4 = Bs1

1 ,

C5 = As11 , C6 = τ s00 · τ
s1
1 , C7 = T s00 · T

s1
1 · h

−t
0 ,

C = m · Zs1 , E0 = gt, Ei = (h
tagci
0 ·

µi∏
j=µi−1+1

h
xj
j )t for i ∈ [`].

• DecHIPE(PP, sk(~v1,...,~v`), c): To recover a message, it performs the following steps:

– Compute tagki = tagki,µi−1+1xµi−1+1 + · · ·+ tagki,µi−1xµi−1 for i ∈ [`];
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– Compute W =
∏5
j=1 e(Cj , Dj) · (

∏7
j=6 e(Cj , Dj))

−1 = e(g, g)αa0bs1 ·
e(g, h0)(r1+···+r`)t.

– Compute Wi = (
e((Kµi−1+1)

xµi−1+1 ···(Kµi−1)
xµi−1 , E0)

e(Ei,Ki,0) )
1

tagki−tagci = e(g, h0)rit for i ∈ [`].

– Recover the message as m = C/Zs1 = C/e(g, g)αa0bs1 ← C ·W1 · · ·W` ·W−1.

• DelHIPE(PP, (~v1, . . . , ~v`), sk(~v1,...,~v`), (~v1, . . . , ~v`′)): It parses ~vi as (vµi−1+1, . . . , vµi) and
returns ⊥ if vµi = 0 for i ∈ [`′]. It also parses sk(~v1,...,~v`) to be

D1, . . . , D7, {Ki,0,Kµi−1+1, . . . ,Kµi−1, tagki,µi−1+1, . . . , tagki,µi−1}i∈[`].

It then runs the following steps:

– Pick r′0, . . . , r
′
`, r
′
`+1, . . . , r

′
`′ , z

′
0, z
′
1

U←− Zq and set r′ = r′0 + · · ·+ r′`′ .

– For i ∈ [`+ 1, `′], pick tagki,µi−1+1, . . . , tagki,µi−1
U←− Zq.

– Generate sk(~v1,...,~v`′ )
= (D′1, . . . , D

′
7, {K ′i,0,K ′µi−1+1, . . . ,K

′
µi−1, tagki,µi−1+1, . . . , tagki,µi−1}i∈[`′])

by computing

D′1 = D1 · wr
′
, D′2 = D2 · wr

′
0 · gz

′
0 , D′3 = D3 ·B−z

′
0 ,

D′4 = D4 · wr
′

1 · gz
′
1 , D′5 = D5 ·B−z

′
1 , D′6 = D6 ·Br′0 ,

D′7 = D7 · gr
′
1+...+r′

`′ .

Then for i ∈ [`] we set :

K ′i,0 = Ki,0 · gr
′
i , K ′j = Kj · (h

−
vj
vµi

µi · hj · h
tagki,j
0 )r

′
i for j ∈ [µi−1 + 1, µi − 1],

for i ∈ [`+ 1, `′] we set :

K ′~vi,0 = gr
′
i , K ′j = (h

−
vj
vµi

µi · hj · h
tagki,j
0 )r

′
i for j ∈ [µi−1 + 1, µi − 1].

Theorem 6. The HIPE scheme is fully secure under the DLIN and DBDH assumptions.

The security proof is essentially similar to that for the multi-predicate IPE scheme in
Section 3.1. The only difference is that showing indistinguishability of Gamek−1 and Gamek
requires a (µi − µi−1) equation trapdoor for each level. We embed these trapdoors into each
level of challenge vector and one trapdoor into a guessed vector of the k-th reveal query.
Hence, we do not discuss any further here.

D Relation between SE, HIPE and Multi-Predicate IPE

D.1 Generic Construction of HIPE from Multi-Predicate IPE

To constructing an HIPE scheme from a multi-predicate IPE scheme, we use the similar
partition techniques of the transformation of SE to HIPE [8]. To construct an HIPE scheme
with hierarchy ~µ := (n, d;µ1, . . . , µd), we require a multi-predicate IPE scheme with dimension

n′ = n + d. Given a vector ~v ∈ Φi and b̂ ∈ {0, 1}, we use ~V (i,b̂) = (0, . . . , 0, (~v, b̂), 0, . . . , 0)
to denote an n′-dimensional vector, where (~v, b̂) is embedded in the (µi−1 + i)-th up to the
(µi + i)-th scalars. Let ~I(i) = (0, . . . , 0, 1, 0, . . . , 0) be an n′-dimensional vector, where the
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(µi + i)-th scalar is 1. The idea of our generic construction is essentially simple. We embed
the i-th level of ~µ of HIPE into the (µi−1 + 1)-th up to the µi-th scalars of multi-predicate
IPE.

Given a multi-predicate IPE scheme with five algorithms: SetupmIPE , KeyGenmIPE ,
EncmIPE , DecmIPE , and DelmIPE , we construct an HIPE scheme with the corresponding
five algorithms: SetupHIPE , KeyGenHIPE , EncHIPE , DecHIPE , and DelHIPE , as follows:

• SetupHIPE(λ, ~µ) runs SetupmIPE(λ, n′) and outputs public parameters PP and a master
key MK.

• KeyGenHIPE(PP,MK, (~v1, . . . , ~v`)) sets Γ := {~V (1,1)
1 , . . . , ~V

(`,1)
` }. It runs

KeyGenmIPE(PP,MK,Γ) and outputs a secret key sk(~v1,...,~v`) with Γ.

• EncHIPE(PP, (~x1, . . . , ~xh),m) sets ~X
(i,0)
i = ~I(i) for i ∈ [h + 1, d]. It runs

EncmIPE(PP,
∑d

i=1
~X

(i)
i ,m) and outputs a ciphertext c.

• DecHIPE(PP, sk(~v1,...,~v`), c) runs DecSE(PP, sk(~v1,...,~v`), c) and outputs a message m.

• DelHIPE(PP, (~v1, . . . , ~v`), sk(~v1,...,~v`), (~v1, . . . , ~v`′)) where Γ := {~V (1,1)
1 , . . . , ~V

(`,1)
` } and

sets Γ′ := {~V (1,1)
1 , . . . , ~V

(`′,1)
`′ }. It runs DelSE(PP,Γ, sk(~v1,...,~v`),Γ

′) and outputs a secret
key sk(~v1,...,~v`′ )

with Γ′.

We now show that the resulting HIPE scheme works correctly and is indeed secure.

Theorem 7. The HIPE scheme constructed from the multi-predicate IPE scheme works cor-
rectly. For any adversary A against the HIPE scheme in the same security model for the
original multi-predicate IPE scheme, there is an adversary D against the multi-predicate IPE
scheme, running in about the same time as A, such that

AdvHIPEA (λ) ≤ AdvmIPED (λ).

Moreover, the HIPE scheme preserves properties (such as full/selective security, at-
tribute/payload hiding, and short/constant ciphertexts) from the original multi-predicate IPE
scheme.

Proof. From our construction, the only algorithm that needs to be considered is key del-
egation. Given a partial order pair (~v1, . . . , ~v`′) � (~v1, . . . , ~v`) of KHIPE , we transform

it into a pair ({~V (1,1)
1 , . . . , ~V

(`′,1)
`′ }, {~V (1,1)

1 , . . . , ~V
(`,1)
` }) such that {~V (1,1)

1 , . . . , ~V
(`′,1)
`′ } �

{~V (1,1)
1 , . . . , ~V

(`,1)
` } in the multi-predicate IPE setting. Thus, the key delegation algorithm

also works.
Given a plaintext ((~x1, . . . , ~xh),m) ∈ XHIPE and hierarchical vectors (~v1, . . . , ~v`) ∈

KHIPE , we transform them into ~X =
∑d

i=1
~X

(i,0)
i ∈ XmIPE and {~V (1,1)

1 , . . . , ~V
(`,1)
` } ∈ KmIPE

respectively. Then we have

• if ` > h, we always let ~X
(i,0)
i = ~I(i) for i ∈ [h + 1, d] in our transformation, then

~X · ~V (i,1)
i = 1 for i ∈ [h+ 1, `], implying that ~X 6∈ S⊥(~V

(1,1)
1 , . . . , ~V

(`,1)
` );

• if ` ≤ h, then

F ((~v1, . . . , ~v`), ((~x1, . . . , ~xh),m)) = m⇔ ~xi · ~vi = 0 for i ∈ [`]

⇔ ~X · V (i,1)
i = 0 for i ∈ [`]

⇔ ~X ∈ {~V (1,1)
1 , . . . , ~V

(`,1)
` }

⇔ F ({~V (1,1)
1 , . . . , ~V

(`,1)
` }, ( ~X,m)) = m.

29



This shows that the resulting HIPE scheme inherits the decryptability from the original
multi-predicate IPE scheme, i.e., we have F((~v1, . . . , ~v`), ((~x1, . . . , ~xh),m)) = m iff ` ≤ h and
~xi · ~vi = 0 for all i ∈ [`] as defined in Appendix ??.

The remaining part of the theorem could be obtained by using the same argument of the
proof in Theorem 4.

D.2 Generic Construction of Multi-Predicate IPE from SE

To construct an n-dimensional multi-predicate IPE scheme, we require an SE scheme with
same dimension. Given an HIPE scheme with five algorithms: SetupSE , KeyGenSE , EncSE ,
DecSE , and DelSE , we construct an SE scheme with the corresponding five algorithms:
SetupmIPE , KeyGenmIPE , EncmIPE , DecmIPE , and DelmIPE , as follows:

• SetupmIPE(λ, n) runs SetupHIPE(λ, n) and outputs public parameters PP and a master
key MK.

• KeyGenmIPE(PP,MK,Γ) first runs BasisGen(S(Γ)) and outputs B⊥. It then runs
KeyGenSE(PP,MK,S(B⊥)) and outputs a secret key skΓ with S(B⊥).

• EncmIPE(PP, ~x,m) runs EncHIPE(PP, ~x,m) and outputs a ciphertext c.

• DecmIPE(PP, skΓ, c) runs DecHIPE(PP, skΓ, c) and outputs a message m.

• DelmIPE(PP,Γ, skΓ,Γ
′) where the secret key skΓ is associated with a space S(B⊥). It

first runs BasisGen(S(Γ′)) and outputs B′⊥. It then runs DelSE(PP,S(B⊥), skΓ,S(B′⊥))
and outputs a secret key skΓ′ with S(B′⊥).

We now show that the resulting multi-predicate IPE scheme works correctly and is indeed
secure.

Theorem 8. The multi-predicate IPE scheme constructed from the SE scheme works cor-
rectly. For any adversary A against the multi-predicate IPE scheme in the same security
model for the original SE scheme, there is an adversary D against the SE scheme, running
in about the same time as A, such that

AdvmIPEA (λ) ≤ AdvSED (λ).

Moreover, the multi-predicate IPE scheme preserves properties (such as full/selective security,
attribute/payload hiding, and short/constant ciphertexts) from the original SE scheme.

Proof. From our construction, the only algorithm that needs to be considered is delegation.
Given a partial order pair Γ′ � Γ of KmIPE , we transform it into a pair (S⊥(Γ′), S⊥(Γ)) such
that S⊥(Γ′) � S⊥(Γ) in the SE setting. Thus, the key delegation algorithm also works.

Given a plaintext (~x,m) ∈ XmIPE and a set Γ =: {~v1, . . . , ~v`} ∈ KmIPE , we transform
them into (~x,m) ∈ XSE and S⊥(Γ) ∈ KSE respectively. Then we have

F(Γ, (~x,m)) = m⇔ ~x · ~vi = 0 for all ~vi ∈ Γ

⇔ ~x ∈ S⊥(Γ)

⇔ F(S⊥(Γ), (~x,m)) = m.

30



This shows that the resulting multi-predicate IPE scheme inherits the decryptability from the
original SE scheme, i.e., we have F(Γ, (~x,m)) = m iff ~x · ~vi = 0 for all ~vi ∈ Γ as defined in
Section 2.2.

The remaining part of the theorem could be obtained by using the same argument of the
proof in Theorem 4.

D.3 Generic Construction of Multi-Predicate IPE from HIPE

To construct a multi-predicate IPE scheme, we require an HIPE scheme with hierarchy
~µ := ((n − 1)n, n − 1;n, 2n, . . . , (n − 1)n). Given an HIPE scheme with five algorithms:
SetupHIPE , KeyGenHIPE , EncHIPE , DecHIPE , and DelHIPE , we construct an SE scheme
with the corresponding five algorithms: SetupmIPE , KeyGenmIPE , EncmIPE , DecmIPE , and
DelmIPE , as follows:

• SetupmIPE(λ, n) runs SetupHIPE(λ, ~µ) and outputs public parameters PP and a master
key MK.

• KeyGenmIPE(PP,MK,Γ) phases Γ as {~v1, . . . , ~v`}. It runs
KeyGenHIPE(PP,MK, (~v1, . . . , ~v`)) and outputs a secret key skΓ.

• EncmIPE(PP, ~x,m) runs EncHIPE(PP, (~x, . . . , ~x),m) and outputs a ciphertext c.

• DecmIPE(PP, skΓ, c) runs DecHIPE(PP, skΓ, c) and outputs a message m.

• DelmIPE(PP,Γ, skΓ,Γ
′) where Γ = {~v1, . . . , ~v`} and phases Γ′ = {~v1, . . . , ~v`′}. It runs

DelHIPE(PP, (~v1, . . . , ~v`), skS , (~v1, . . . , ~v`′)) and outputs a secret key skΓ′ .

We now show that the resulting multi-predicate IPE scheme works correctly and is indeed
secure.

Theorem 9. The multi-predicate IPE scheme constructed from the HIPE scheme works cor-
rectly. For any adversary A against the multi-predicate IPE scheme in the same security
model for the original HIPE scheme, there is an adversary D against the HIPE scheme,
running in about the same time as A, such that

AdvmIPEA (λ) ≤ AdvHIPED (λ).

Moreover, the multi-predicate IPE scheme preserves properties (such as full/selective security,
attribute/payload hiding, and short/constant ciphertexts) from the original HIPE scheme.

Proof. From our construction, the only algorithm that needs to be considered is key delega-
tion. Given a partial order pair Γ′ := {~v1, . . . , ~v`′} � Γ := {~v1, . . . , ~v`} of KmIPE , we transform
it into a pair ((~v1, . . . , ~v`), (~v1, . . . , ~v`′)) such that ~v1, . . . , ~v` � ~v1, . . . , ~v`′ in the HIPE setting.
Thus, the key delegation algorithm also works.

Given a plaintext (~x,m) ∈ XmIPE and hierarchical vectors Γ = {~v1, . . . , ~v`} ∈ KmIPE ,
we transform them into (~x, . . . , ~x) ∈ XHIPE and (~v1, . . . , ~v`) ∈ KHIPE respectively. Then we
have

F (Γ, (~x,m)) = m⇔ ~x · ~vi = 0 for i ∈ [`]

⇔ F ((~v1, . . . , ~v`), (~x,m)) = m.
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This shows that the resulting multi-predicate IPE scheme inherits the decryptability from the
original HIPE scheme, i.e., we have F(Γ, (~x,m)) = m iff ~x · ~vi = 0 for all ~vi ∈ Γ as defined in
Section 2.2.

The remaining part of the theorem could be obtained by using the same argument of the
proof in Theorem 4.
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