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Abstract

In this paper, a new class of Public-Key Cryptosys-
tem (PKC) based on Random Simultaneous Equation of de-
gree g(RSE(g)PKC) is presented. The proposed scheme uses
a new class of trap-doors based on two classes of transforma-
tion, i.e. random transformation and message-dependent ran-
dom transformation. For constructing the proposed scheme,
random transformations X and Ψ are used. The transforma-
tion Ψ would yield a breakthrough to a field of multivaliate
cryptosystem in a sense that the transformation is dependent
on a message. Namely it is a message-dependent transfor-
mation on the basis of random coding. We show that the
proposed PKC’s, can be secure against the various excellent
attacks such as the attack based on the Gröbner bases cal-
culation(Gröbner bases attack, GB attack), Patarin’s attack
and Braeken-Wolf-Preneel attack, due to the random trans-
formations using new trap-doors.
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1 Introduction

In this paper, we present a new class of PKC whose security
depends on the difficulty of the problem of solving a set of
random simultaneous equations of degree g.

Extensive studies have been made of the PKC con-
structed based on the simultaneous equations of degree g
(SE(g)PKC)[1-20]. All these proposed schemes are very inter-
esting and important. However unfortunately, some of these
schemes have been proved not necessarily secure against the
conventional attacks such as Patarin’s attack[21], Gröbner ba-
sis attack[22-24], Braeken-Wolf-Preneel (BWP) attack[25].

In 2008, the author proposed a multivariate public key
cryptosystem referred to as K(III)RSE(g)PKC [16]. The au-
thor has long endeavored to improve the security of the
K(III)SE(g)PKC, because K(III)SE(g)PKC might be insecure
against the rank attack[25].

In this paper, for being secure against the conventional
attacks, we present a new class of RSE(g)PKC. The proposed
RSE(g)PKC will be referred to as K(XIV)RSE(g)PKC,
which is a modified version K(III)RSE(g)PKC. In
K(XIV)RSE(g)PKC, the random transformations X and Ψ
are used. The transformation Ψ would yield a breakthrough
to a field of multivariate cryptosystem in a sense that it is
dependent on a message. Namely it is a message-dependent
transformation on the basis of a random coding.

We show that the proposed PKC can be secure against the
various attacks including Gröbner basis attack.

Throughout this paper, when the variable vi takes on
a value ṽi, we shall denote the corresponding vector v =
(v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by the
polynomial as

v(x) = v1 + v2x + · · · + vnxn−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

2 K(XIV)RSE(g)PKC

2.1 Preliminaries

Let a message M over F2 be denoted by

M = (M1,M2, · · · , M3n). (3)

We assume that the messages M1,M2, · · · ,M3n are mutu-
ally independent and equally likely.

The message M is transformed to vector m as follows:

M · HI = m = (m1,m2, · · · , m3n), (4)

where HI is a 3n × 3n non-singular matrix over F2.

Definition 1: The transformation:

F (X) = Y, (5)
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is referred to as “non-singular”, if and only if the trans-
formation has the following inverse transformation:

F−1(Y ) = X, (6)

for any given Y in a unique manner. On the other hand if
the inverse-transformed value does not exist uniquely, for
a given Y , the transformation is referred to as “singular”.

2

Throughout this paper, the transformation F (X) will be
denoted by F (Y |X) or simply by F .

For the proposed K(XIV)RSE(g)PKC, in the followings, we
assume that the degree g is given by g = 2 for simplicity. The
generalization to the case for g > 2 is straightforward.

Let us partition m into three n-tuples mL, mR and mP

as

mL = (m1,m2, · · · ,mn) (7)
mR = (mn+1,mn+2, · · · ,m2n) (8)

and

mP = (m2n+1, m2n+2, · · · ,m3n). (9)

The message mP is publicized.

Remark 1: Each of the components of mL, mR and
mP constitutes a set of linear equations in the vari-
ables M1,M2, · · · ,M3n. 2

Before describing the details of the transformations, in
Fig.1, we show the rough sketch of the transformations per-
formed on mL, mR and mP .

2.2 Transformation X(yL|mL)

Using X(yL|mL), the message mL = (m1, m2, · · · ,mn) is
encrypted to yL, for example by the methods presented in
Refs.[1], [5] and [20], as

yi = h
(2)
i (m1,m2, · · · , mn); i = 1, 2, · · · , n, (10)

where h
(2)
i (m1, m2, · · · ,mn) implies the i-th quadratic equa-

tion in the variables m1, m2, · · · ,mn.
The p

(2)
i (m1,m2, · · · ,mn) and q

(2)
i (m2n+1,m2n+2,

· · · , m3n) will be similarly defined.
Set of the equations y1, y2, · · · , yn constitutes the set of

public key {yi}L.

2.3 Transformation Ψ(yR|mL,mP ,mR)

The transformation Ψ(yR|mL, mP ,mR) is performed by a
series of transformations ψ(zR|mL, mP ), ρ(T b(i)|zR) and
ρ(yR|T b(i), mR) as shown in Fig.1.

Figure 1: Brief sketch of transformations

(I) Transformation ψ(zR|mL, mP )
The publicized mP is transformed into

mP HII = m′
P , (11)

where HII is an n × n non-singular matrix over F2.
The message mL is transformed into

mLHIII = m′
L, (12)

where HIII is an n×n matrix over F2 which is not necessarily
non-singular.

The m′
L and m′

P are transformed into

m′
L(x)m′

P (x) ≡ zR(x) mod GF (x)

= z1 + z2x + · · · + znxn−1,
(13)

where GF (x) is a random primitive polynomial of degree n
over F2.

The zR(x) is publicized.

(II) Transformation ρ(T b(i)|zR)
For zR = (z1, z2, · · · , zn), let us define a sampling func-

tion Si(θi1, θi2, · · · , θiµ); i = 1, · · · , λ, where i1, i2, · · · , iµ ran-
domly take on values from 1 to n under the condition that

1 ≤ i1 < i2 < · · · < iµ ≤ n. (14)

The components of zR, zi1, zi2, · · · , zn, are sampled using
the sampling function Si(θi1, θi2, · · · , θiµ). Let the sampled
value zSi be denoted by

zSi = (zi1, zi2, · · · , ziµ). (15)
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Regarding zi1 as the most significant digit and ziµ, the least
significant digit, zSi can be transformed to a binary number,
b(i). The order of {b(i)} is evidently given by

#{b(i)} = 2µ. (16)

For each b(i), we provide uniquely decodable tables,
{
Tb(i)

}
.

We assume that the tables Tb(i)’s are all distinct each other.
Namely, the order of the tables, #{Tb(i)} is also given by

#{Tb(i)} = 2µ. (17)

Let us partition message mR into

mR = (mR1, mR2, · · · , mRλ), (18)

where mRi is given by

mRi = (mn+(i−1)t+1, · · · ,mn+it), (1 ≤ i ≤ λ). (19)

We assume that the following relation holds:

µ ≥ t =
n

λ
. (20)

For the components of mR, mR1, mR2, · · · , mRλ, 2µ differ-
ent random coding tables are provided.

When m̃Ri is given, the i-th sampling function
Si(θi1, θi2, · · · , θiµ) is assinged to z̃R, yielding z̃Si =
(z̃i1, z̃i2, · · · , z̃iµ) given by Eq.(15). When z̃Si represent
the binary number b̃(i), Table Tb̃(i) is selected from the
set

{
Tb(i)

}
for encrypting m̃Ri. For message m̃R =

(m̃R1, m̃R2, · · · , m̃Rλ), the following vector of the chosen ta-
bles is given.

T b̃(i) = (Tb̃(1), Tb̃(2), · · · , Tb̃(λ)). (21)

(III) Transformation σ(yR|
{
Tb(i)

}
, mR)

In the followings we shall present one of the methods for pro-
viding the set of tables, {Tb(i)}, each of which lists 2t code
words that are uniquely decodable. Using the set of tables{
Tb(i)

}
the message mRi, a component of mR, is transformed

to the codeword as

mRi = (mn+(i−1)t+1, · · · ,mn+it)
7→ yRi = (yi1, yi2, · · · , yit). (22)

An example of Tb(i) is given in Table 1 where we assume
that t = 3. As the size of mRi is t = 3, we see that the
2t = 23 = 8 different code words are provided for the encrypt-
ing of mRi, the i-th component of mR. For example, when
zSi represents the binary number b(i) = 1011, then T1011 as
shown in Table 1 is chosen. Furthermore we assume that the
message mRi happens to be (1 1 0), then this message (1 1 0)
is encoded to yRi = (011).

Table 1: Example of T1011

m1 m2 m3 y1 y2 y3

0 0 1 1 1 0
0 0 0 1 0 1
0 1 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 0 0 0

As we have explained by the above-mentioned example, in
general, the message mR = (mR1,mR2, · · · , mRλ) is en-
crypted to (yR1,yR2, · · · , yRλ) based on the set of tables{
Tb(i)

}
and zR.

The ciphertext CR is simply given by

CR = (yR1, yR2, · · · , yRλ), (23)

where yRi = (yn+(i−1)t+1, · · · , yn+it); i = 1, 2, · · · , λ.

Remark 1 : The i-th component of the message vector mR,
mRi, is transformed to the code word yRi using the table
Tb(i). For the given m̃Ri, the table Tb̃(i) is not fixed but
is given, depending on another message vector z̃Si in the
variables M̃1, M̃2, · · · , M̃3n. Namely K(XIV)SE(g)PKC
is constructed based on a series of message depen-
dent transformations ψ(zR|mL, mP ), ρ(Tb(i)|zR) and
σ(yR|

{
Tb(i)

}
,mR). 2

Public Keys : mP , {yi}L, {zRi}, ρ(T b(i)|zR),
σ(yR|{Tb(i)}, mR).

Secret Keys : HI , GF (x), X(yL|mL),
ψ(zR|mL, mP ).

2.4 Ciphertext

Letting the ciphertext C be represented by C =
(CL, CR, CP ), the ciphertext CL is given by

CL = (y1, y2, · · · , yn), (24)

where yi = h
(2)
i (m1,m2, · · · ,mn).

The ciphertext CR is simply given by

CR = (CR1, CR2, · · · , CRλ), (25)

where

CRi = yRi(1 ≤ i ≤ λ). (26)
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Table 2: Example of K(III)RSE(g)PKC

Example
Number of
Variables,

3n

Length of
Subblock,
n (bit)

Size of
Public key
SPK(KB)

t λ µ

I 90 30 93 3 10 8
II 120 40 219 4 8 10
III 150 50 427 5 8 10
IV 180 60 738 6 8 10

The ciphertext CP is given by

CP = (m2n+1,m2n+2, · · · ,m3n). (27)

2.5 Encryption and dycryption

2.5.1 Encryption

Step1: Given the message sequences M̃1, M̃2, · · · ,
M̃3n, the ciphertext C̃L is given by C̃L =
(ỹ1, ỹ2, . . . , ỹn).

Step2: After calculating z̃R from the public key {zRi},
using the sampling function Si(θi1, θi2, · · · , θiµ)
; i = (1, 2, · · · , λ), the set of tables
Tb̃(1), Tb̃(2), · · · , Tb̃(λ) is obtained.

Step3: Using T̃ = (Tb̃(1), Tb̃(2), · · · , Tb̃(λ)), the mes-
sage m̃R = (m̃R1, m̃R2, · · · , m̃Rλ) is encrypted
to the ciphertext C̃R = (ỹ1, ỹ2, · · · , ỹλ) =
(ỹn+1, ỹn+2, · · · , ỹ2n).

Step4: From the public equations, m2n+1, m2n+2, · · · ,
m3n, the ciphertext C̃P is simply given by C̃P =
(m̃2n+1, · · · , m̃3n).

2.5.2 Decryption

Step1: From C̃L = (ỹ1, ỹ2, · · · , ỹn), the message vector
m̃1, m̃2, · · · , m̃n are decoded.

Step2: From m̃L = (m̃1, m̃2, · · · , m̃n) and m̃P =
(m̃2n+1, m̃2n+2, · · · , m̃3n), the venctor z̃R =
(z̃R1, z̃R2, · · · , z̃Rλ) is decoded by Eqs.(11),(12)
and (13).

Step3: Using the sampling functions {Si(θi1, · · · , θiµ)},
the set of tables Tb̃(1), Tb̃(2), · · · , Tb̃(λ) are decoded.

Step4: From the i-th component of C̃R, ỹi, the mes-
sage m̃Ri is decoded using the table Tb̃(i) ; i =
1, 2, · · · , λ, yielding m̃R = (m̃1, m̃2, · · · , m̃λ).

Step5: From m̃L, m̃R and m̃P , the message m̃ =
(m̃L, m̃R, m̃P ) = (m̃1, m̃2, · · · , m̃3n) is decoded.

Step6: The original message M̃ = (M̃1, M̃2, · · · , M̃3n) is
decoded by

(m̃1, m̃2, · · · , m̃3n)H−1
I = M̃ (28)

2.6 Several parameters

Let us define several symbols:

NV : Total number of message variables, 3n.
NEPl : Total number of linear equations used for

encrypting mP .
NELq : Total number of quadratic equations used

for encrypting mL.
NERq : Total number of random quadratic equations

used for choosing a random coding table
from {Tb(i)}

ST : Size of Tb(i) (bit).

The size of the public key {yi}L for encoding mL, SPKLq,
is given by

SPKLq =NV H2 · NELq =
(3n + 1)9n2

2
(bit). (29)

Similarly, the size of the public key used for choosing a
random table from {Tb(i)} is given by

SPKRq =NV
H2 · NERq =

(3n + 1)9n2

2
(bit). (30)

The size of the public key for encrypting mP , SPKPl, is
given by

SPKPl = NV · NEPl = 3n2. (31)

The size of the table {Tb(i)}, ST , is given by

ST = 2t+1 · 2µ (bit). (32)

The size of the public key, SPK , is given by

SPK = SPKLq + SPKRq + SPKPl + ST

= 27n3 + 12n2 + 2t+1+µ (bit). (33)

The size of the ciphertexts, CL, CR and CP are given by

|CL| = |CR| = |CP | = n (bit). (34)

The size of the ciphertexts, C = (CL, CR, CP ) is given by

|C| = |CL| + |CR| + |CP | = 3n (bit). (35)
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The coding rate, ρ, is give by

ρ =
NV

|C|
=

3n

3n
= 1.0. (36)

We see that the proposed scheme realizes the coding rate of
exactly 1.0.

We present several examples of K(XIV)RSE(g)PKC in Ta-
ble 2.

3 Security Considerations

3.1 Preliminaries

It should be noted that K(XIV)RSE(g)PKC has the following
advantage, before discussing on the security of the proposed
scheme.

”One of the advantage of the proposed
K(XIV)RSE(g)PKC is that for any given ci-
phertext, z̃R = (z̃R1, z̃R2, · · · , z̃Rλ) is not ex-
plicity given, although the set of public keys,
{zRi}, is publicized.”

3.2 Various attack on K(XIV)RSE(2)PKC

Attack I: Disclosing m1, m2, · · · ,mn, from the given the ci-
phertext C̃L.

The total number of the quadratic equations y1, y2, · · · , yn

is equal to the total number of variables m1, m2, · · · ,mn.
As a result, using GB attack[23,24], it would be possible

to disclose m̃′
1, m̃

′
2, · · · , m̃′

n in the variables M̃1, M̃2, · · · , M̃3n

that yields the set of equations ỹ1, ỹ2, · · · , ỹn. However it
seems hard to find the set of m′

1,m
′
2, · · · , m′

n such that

m̃′
i = m̃i; i = 1, 2, · · · , n. (37)

2

Attack II: Exhaustive attack on a set of tables used for C̃R.

As the order of the set of the random coding tables
{
Tb(i)

}
is given by Eq.(17) the probability PC [{T̃b(i)}] of estimating
all of the tables T̃b(i)’s randomly chosen at the sending end,
with no knowledge on z̃R, is given by

PC [{T̃b(i)}] = {2µλ}−1. (38)

We see that the probability PC [{T̃b(i)}] can be made suffi-
ciently small when

µλ >∼ 80 (39)

holds. 2

Attack III: BWP attack.

Braeken-Wolf-Preneel(BWP) attack have been widely
known. Using the rank attack [25], it would be possi-
ble to disclose n linear equations m′′

L = (m′′
1 ,m′′

2 , · · · ,m′′
n)

that can be obtained by a linear transformation of mL =
(m1,m2, · · · ,mn).

However it seems quite hard to construct zR from m′′
L and

mP , because zR is constructed by Eq.(11), (12) and (13). 2

4 Concluding remarks

In this paper a new class of multivariate cryptosystem referred
to as K(XIV)RSE(g)PKC. The K(XIV)RSE(g)PKC seems se-
cure due to the following reasons:

A new type of trap-door is given. That is, the “message-
dependent” transformation Ψ(yL|mR, mP ,mR) is used.
The transformation Ψ(yR|mL, mP ,mR) is given by a se-
ries of tranformations ψ(zR|mL,mP ) → ρ(T b(i)|zR) →
σ(yR|T b(i), mR). It should be noted that z̃R is not explicitly
given, but only ỹR is given, although zR is publicized as a
public key.

We have shown that, with this new trap-door,
K(XIV)RSE(g)PKC is secure against the various attacks.
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